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The motivation for this work was a simple experiment [P. M. C. de Oliveira, S. Moss de Oliveira,

F. A. Pereira and J. C. Sartorelli, preprint (2010), arXiv:1005.4086], where a little polystyrene

ball is released falling in air. The interesting observation is a speed breaking. After an initial

nearly linear time-dependence, the ball speed reaches a maximum value. After this, the speed
¯nally decreases until its ¯nal, limit value. The provided explanation is related to the so-called

von K�arm�an street of vortices successively formed behind the falling ball. After completely

formed, the whole street extends for some hundred diameters. However, before a certain tran-
sient time needed to reach this steady-state, the street is shorter and the drag force is relatively

reduced. Thus, at the beginning of the fall, a small and light ball may reach a speed superior to

the sustainable steady-state value.

Besides the real experiment, the numerical simulation of a related theoretical problem is also
performed. A cylinder (instead of a 3D ball, thus reducing the e®ective dimension to 2) is

positioned at rest inside a wind tunnel initially switched o®. Suddenly, at t ¼ 0 it is switched on

with a constant and uniform wind velocity ~V far from the cylinder and perpendicular to it. This

is the ¯rst boundary condition. The second is the cylinder surface, where the wind velocity is
null. In between these two boundaries, the velocity ¯eld is determined by solving the

Navier�Stokes equation, as a function of time. For that, the initial condition is taken as the

known Stokes laminar limit V ! 0, since initially the tunnel is switched o®. The numerical
method adopted in this task is the object of the current text.

Keywords: Turbulence; Navier-Stokes equation.

1. Introduction

Relaxation is the prime numerical method to solve Laplace equation r2 ð~r Þ ¼ 0 for

a ¯eld  ð~r Þ inside a surface where some ¯xed boundary condition is de¯ned. It is

based on the fact that  ð~roÞ equals the continuous average over neighboring values

along a closed contour around~ro. Translated to a discrete mesh (for instance a square

or cubic lattice),  ð~roÞ should be equal to the discrete average over the neighboring

lattice points. The method consists in starting from some trial distribution of  ð~r Þ
over the lattice points inside the region of interest, which does not obey the quoted
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average rule. Then, each  ð~r Þ is replaced by the average over its neighbors,

sequentially, up to numerical convergence over the whole region. For a good

description of this traditional and simple method, see Ref. 1.

The relaxation idea can be extended to other problems, more complicated than

the Laplace one, by pro¯ting from the same property of the Laplacian operator r2.

For instance, the Navier�Stokes equations for incompressible °uid dynamics can be

written as in the forthcoming Eqs. (1)�(3), introduced in Ref. 2. This particular

formulation, based on the so-called vorticity ¯eld ~! instead of the velocity ¯eld ~v, is

convenient because the Laplacian operator acts on ~!, not on ~v. The purpose of this

work is to explore this idea.

Relaxation methods are historically applied to the traditional formulation of the

Navier�Stokes equation (based on the ¯eld ~v, not in ~!), mainly by engineers not by

physicists, see for instance Ref. 3. The reason for that is presumably the practical

interest in aeronautics and similar research ¯elds. During the last half century, many

sophisticated improvements have been introduced in order to enhance the perfor-

mance of the numerical task. Examples are: The division of matrices into convective

and viscous parts; curved mesh according to the geometry of the ¯xed object crossed

by the °uid, with lines orthogonal to the surface of this object; nonuniform mesh with

smaller cells near the object; methods for implementing the routines in many pro-

cessors in parallel, etc. None of these improvements are implemented here, the

purpose is just to test the direct relaxation of the vorticity ~! instead of ~v, an idea

which has not yet been explored, at least up to my knowledge. Performance

improvements are postponed.

Figure 1 shows the result of a home made experiment.4 A polystyrene ball with

diameter D ¼ 2:5 cm and mass of 0.2 g is released from di®erent heights above the

°oor and the falling time is measured with a hand chronometer.

A Reynolds numberR � 6000 is reached at the end of the fall (speed V � 4m/s).a

In this regime, the steady-state drag force is experimentally known to be proportional

to the squared speed. This is certainly true at the end of the fall some 3m below the

release point. However, just after the ¯rst centimeter of fall the Reynolds number is

already R � 1000, entering into the range (103 < R < 105) where the proportion-

ality (drag force vs squared speed) holds. Therefore, by neglecting the ¯rst centimeter

of a much longer fall, it seems legitimate to adopt this proportionality during the

whole fall. However, the result of this approach is the lower curve in Fig. 1, in clear

disagreement with reality.

The mistake is to adopt a distance limit, 1 cm, as the standard for neglecting what

occurred before the steady-state regime is reached. Instead, one should adopt a time

limit as the standard for the transient to be taken into account. Figure 1 again leads

to the conclusion that the drag force is negligible (compared with the ball's weight)

before the ¯rst half second of the fall, since the two leftmost experimental points

coincide with the free fall parabola. Note the speed at that time already larger than

aR ¼ VD=�, where � � 1:7� 10�5 m2/s is the air ratio viscosity/density.

P. M. C. de Oliveira
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the ¯nal steady-state value, as a closer look to the slopes between successive ex-

perimental points in the ¯gure shows. The Reynolds number reaches its maximum of

some ten thousands. The overall conclusion is that, during a transient of half a

second, i.e. before the ¯rst meter of fall, the drag force is indeed much smaller than

the steady-state value predicted for this range of Reynolds numbers.

The dotted line in Fig. 1 was obtained by the simple procedure of neglecting the

drag force before an adjusted transient time, with the squared speed rule after that.

It is adjusted to 0.42 s in order to ¯t just the rightmost experimental point. In doing

so, the other points result also ¯tted, as well as the ¯nal speed (slope). A second

version of the experiment was performed4 by observing successive snapshots of the

fall, obtained with a fast camera. With this device the speeds could be precisely

measured. The surprising e®ect of losing speed is indeed con¯rmed.

The conceptual explanation for the phenomenon comes from the gradual for-

mation of successive turbulent vortices behind the ball, the so-called von K�arm�an

street responsible for the drag force proportional to the square of the speed. Looking

from the reference frame of the ball, each vortex is formed close to it and goes away

with a small speed, much smaller than the wind speed. Soon, another vortex is

formed, following the same fate and so on successively. Looking from the lab refer-

ence frame, the successive vortices run down behind the ball almost with the same

Fig. 1. Falling time for di®erent heights. The vertical error bars are negligible. The horizontal error bar

displayed for each experimental point is calculated from the statistics of 10 repeated time measurements.

Using the Earth gravitational ¯eld g ¼ 9:8m=s2, the upper curve is the free fall parabola, X ¼ g T 2=2, no
friction at all. The other two curves correspond to a friction force proportional to the square of the speed.

At the lower curve, this force acts during the whole fall, since beginning. At the intermediate, dotted curve,

the same force is switched on only after an adjusted initial transient time (open bullet), with no friction

before that. Note that the slope of this curve has a maximum around �0:4 s. Note also that the observed
fall is in advance by more than 0:1 s (arrow), relative to the lower curve.

Relaxation Method for Navier�Stokes Equation
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speed, i.e. they are dragged by the ball. Indeed, the street of vortices is experimen-

tally known to extend for some hundred diameters behind the ball, corresponding in

our case to the order of magnitude of a meter. Therefore, only after the ball has

already fallen approximately 1m the vortices street is completely formed. Before

that, the drag force is much smaller, similar to the Stokes laminar regime propor-

tional to the (nonsquared) speed, negligible in the present experimental case. While

still under this reduced drag force during the beginning of the fall, the ball reaches a

speed larger than its own future limit value which is settled only after the vortices

street is completely formed.

The current text is organized as follows. Next section describes a related theo-

retical problem to be solved numerically: A cylinder is ¯xed inside a wind tunnel

initially switched o®, R ¼ 0, when the wind is suddenly switched on at time t ¼ 0

according to a larger and constant Reynolds number, say R ¼ 30 or R ¼ 1000. This

is not exactly the same problem of the experiment, where the Reynolds number

gradually increases as the ball accelerates. Also the ball is replaced by a cylinder

perpendicular to the wind in order to reduce the computer e®ort from 3D to 2D. In

spite of these di®erences, this new theoretical problem shares with the experiment the

transient behavior of gradual formation of the von K�arm�an vortices street. It allows

us to observe the evolving air velocity °ow around the cylinder, during this transient.

A relaxation method for the numerical solution of Navier�Stokes equation is in-

troduced and applied to this problem. Finally, conclusions are presented in the last

section.

2. Relaxation Method for Navier{Stokes
In principle one can theoretically approach the experimental problem described in

the previous section by some phenomenological relation providing the drag force as a

function of the speed and time and then solving Newton's law by adding this force to

the weight of the ball. The important point is to realize that the drag force cannot be

a function of the speed only, some explicit time dependence should hold during the

transient at the beginning of the fall. One can invent a lot of such phenomenological

approaches, by including retarded terms into known formulas, or obtaining them

from linear approximations (see Ref. 5), or other complications. In all of them, during

the transient initial time, the steady-state already known value must be replaced by

something else much smaller. The simplest approach is to neglect this \something

else" completely, no drag at all during the transient. This procedure was already

performed in the intermediate curve of Fig. 1, where a transient time of 0.42 s is

adjusted in order to ¯t the rightmost experimental point. The problem can be solved

even analytically.6

None of these phenomenological, macroscopic approaches would be helpful in

understanding what is going on concerning the air °ow behind the ball, which indeed

is the ultimate phenomenon responsible for the macroscopic observations. Therefore,

in order to study the phenomenon, one needs to adopt some approach allowing to

P. M. C. de Oliveira
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de¯ne local air velocities around the ball, within a mesoscopic, sub-millimetric scale.

In other words, one needs to face the solution of the Navier�Stokes nonlinear

equation, a much harder numerical problem.

This is not a trivial task for the falling ball case. A time-dependent Reynolds

number RðtÞ must be calculated \on °ight", starting from Rðt ¼ 0Þ ¼ 0 when the

ball is released. Worse, in order to know the function RðtÞ one needs to calculate

the drag force at each time, which added to the ball's weight allows one to determine

the instantaneous speed variation. From that, the current speed can be obtained by

integration since t ¼ 0 and hence RðtÞ. The determination of the drag force from the

current velocity ¯eld around the ball is traditionally obtained from the velocity ¯eld

gradient at the ball surface. Therefore, one needs high precision to pick up a 2D

surface which corresponds to a null-measure set inside a 3D ¯eld.b

Instead of this hard numerical problem, we decided in Ref. 4 to simplify it along

two directions. First, the ball is replaced by a long cylinder (direction Z) at rest

perpendicular to the wind (direction X). In addition, the air °ow around is also

supposed to be perpendicular to the cylinder, i.e. a 2D velocity ¯eld on theXY plane.

Experiments justify these assumptions. The known curves for the steady-state drag

force on a sphere or on such a cylinder are essentially the same. Moreover, the

observed velocity ¯eld indeed remains restricted to planes perpendicular to the

cylinder, within the range of Reynolds numbers we are dealing with.

Second simpli¯cation, the unknown function RðtÞ is replaced by a simple step

function

RðtÞ ¼ 0; t � 0;

R; t > 0;

�

where R is some constant.c The initial velocity ¯eld adopted at t ¼ 0 is the laminar

Stokes con¯guration which holds for a vanishing Reynolds number. Then, vortices

are initially absent, but will be gradually formed as time goes by. One can thus

observe the transient regime of interest, in particular one can observe the transient

time elapsed until the complete formation of the von K�arm�an street. As a result

obtained from the numerical solution described below, the estimated transient time

corresponds to a wind travelled distance of some half-hundred diameters at least. It is

certainly smaller than the real one observed in the falling ball experiment, since an

already large R is set since t ¼ 0, in contrast with the ball case where RðtÞ slowly
increases. This result is therefore compatible with the provided explanation4 for the

bA possible trick to bypass this di±culty is to remove the ball and repeat the calculation of the velocity

¯eld at tþ dt from the known con¯guration at t with the ball. Removed the ball at t, the velocity ¯eld is

allowed to penetrate a little bit inside the volume the ball would occupy. Then, by integrating the
penetrating velocities inside this volume one gets the total momentum which would be transferred to the

ball from the air around. Dividing this momentum by dt one gets the instantaneous drag force. This

procedure is entirely 3D, reducing the necessity of too high precision near the ball surface.
cThe drag force can be obtained analytically in the limit of low R, see problem 9 of Ref. 5. Curiously, the

resulting force also decays with time as in our experiment. However, our interest is the case of large R
where the vortices street appears and no analytical formulas are available.

Relaxation Method for Navier�Stokes Equation
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breaking during the fall, since the observed von K�arm�an street indeed extends for

some hundred diameters downstream.

Already taken in dimensionless units,2 the Navier�Stokes equation is

@~!

@t
¼ 1

Rr2~!� ~r� ð~!�~v Þ; ð1Þ

where ~v are the air velocities in di®erent positions. In our 2D case, one has

~vðx; y; tÞ ¼ vxðx; y; tÞx̂ þ vyðx; y; tÞŷ. The vorticities

~! ¼ ~r�~v ð2Þ
are auxiliary vectors. In our case they are always parallel to the cylinder, i.e. they

represent a scalar ¯eld !ðx; y; tÞ. Additionally, air density °uctuations do not appear

in our experiment because all speeds are much smaller than the sound speed

(�330m/s). Therefore we can set

~r �~v ¼ 0: ð3Þ
The set of Eqs. (1)�(3) completely de¯ne the problem. Two boundary conditions

are adopted: (I) null velocities and vorticities along the cylinder surface as well as

inside it; and (II) wind velocity~v ¼ V x̂ and null vorticities far from it. Here, V ¼ 1 in

the dimensionless units all equations above are already expressed. Given some initial

¯eld ~vðx; y; t ¼ 0Þ, one can solve the set (1)�(3) in order to obtain the velocities at

any position ðx; yÞ in any time t > 0.

Let's start with the Stokes laminar limit for which the Navier�Stokes equation

reduces to the Laplace equation

r2! ¼ 0 for R ! 0 ð4Þ
which must be solved inside the outer boundary (rectangle) and outside the inner

boundary (circle) displayed in Fig. 2. Note that in this Stokes limit the °ow is

stationary, no time dependence.

Fig. 2. Square grid adopted in the numerical solution. The inner circle represents the cylinder, inside which
the velocities are kept null.Outside the rectangle, velocities are kept equal to the ¯xedwindvelocity indicated

by the arrows. In between, the velocities~v are de¯ned at the full dots, whereas the vorticities ! at the open

bullets. Only few points are represented for clarity, the real grid has 400� 200 full dots inside the rectangle.

P. M. C. de Oliveira

1250021-6

In
t. 

J.
 M

od
. P

hy
s.

 C
 2

01
2.

23
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 C

E
N

T
R

O
 B

R
A

SI
L

E
IR

O
 D

E
 P

E
SQ

U
IS

A
S 

FI
SI

C
A

S 
on

 0
4/

14
/1

5.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



Equation (4) can be numerically solved by the traditional relaxation method1

illustrated in Fig. 3. The procedure should be repeated for all points, in any chosen

order, again and again until convergence. In our case, however, ~v is also present, not

only !, therefore a translator ~v , ! is needed. It is de¯ned in Figs. 4 and 5. As

boundary conditions, ~v ¼ x̂ is imposed at all full dots along the rectangle of Fig. 2,

and also outside it, as well as ! ¼ 0 at the external open bullets. Along the circular

line and inside it, ~v ¼ ! ¼ 0.

Equation (6) is simply the discretized version of Eq. (2). It is second-order ac-

curate in the grid spacing �, a very important care we kept along all our numerical

Fig. 3. Relaxation method. The value of ! at the central point is replaced by the average over its

neighbors, Eq. (5).

Fig. 4. Translator~v ) !. The value of ! at the central open bullet is given by Eq. (6), where x and y refer
to directions, while a, b � � � l refer to the neighboring points indicated in the ¯gure. The extended two-shells

neighborhood is adopted in order to retain (at least) second-order accuracy relative to the ¯rst-neighbor

distance � (in the current implementation, � ¼ 0:025).

Fig. 5. Translator !) ~v. The values of vx and vy at the central point are given by Eq (7). Both should be
applied many times to all points, with ¯xed !, until convergence.

Relaxation Method for Navier�Stokes Equation
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procedure. Long range correlations are expected to occur, say within a macroscopic

scale L ¼ N� whereN is a large number. In order to properly link two points distant

L from each other, one needs to jump some N steps on the grid in going from one

point until the other, accumulating the numerical errors in each step, i.e. multiplying

the local inaccuracy by N ¼ L=�. Therefore, with a second-order local inaccuracy

proportional to �2, the total error remains controllable, i.e. proportional to �.

Any desired accuracy can thus be obtained simply by taking a small enough �.

Equations (7) mixes (2) and (3), allowing to obtain the vector ¯eld ~v from the

knowledge of its curl and divergence.

In order to solve the Stokes Eq. (4) one starts from some velocity distribution

respecting the boundary conditions. For example all velocities ~v ¼ x̂ outside the

cylinder and null inside. From that, one determines ! through Eq. (6) at every grid

point (open bullets). Then, ! is relaxed through Eq. (5), over the whole grid,

repeating this procedure as many times as needed until convergence. Finally, a new~v

distribution is determined through Eq. (7), this step being also repeated until con-

vergence. The resulting ! distribution is shown in Fig. 6. The streamlines, in Fig. 7.

Fig. 6. Stokes con¯guration (R ! 0), vorticity !ðx; yÞ.

Fig. 7. Stokes con¯guration (R ! 0), streamlines. The velocity ~vðx; yÞ is tangent to these lines at each

point.

P. M. C. de Oliveira
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Considering the origin at the cylinder center, the R ! 0 time-independent Stokes

con¯guration shown in Figs. 6 and 7 presents two symmetries, relative to both axis

X and Y

vxðx;�yÞ ¼ vxðx; yÞ; vyðx;�yÞ ¼ �vyðx; yÞ; ð8Þ
vxð�x; yÞ ¼ vxðx; yÞ; vyð�x; yÞ ¼ �vyðx; yÞ: ð9Þ

This con¯guration is also the starting point for the R 6¼ 0 time-dependent problem,

Eq. (1), to be treated hereafter.

From the current ~v and ! distributions one determines the time derivative of !

through Eq. (10). With this, ! is updated as

!ðtþ�tÞ ¼ !ðt��tÞ þ 2� t
@!

@t
; ð11Þ

where �t is the discretized time interval adopted. In dimensionless units, we used

�t ¼ �=10. Not only !ðtÞ must be stored, but also !ðt��tÞ as well. This way, the
whole procedure is second-order accurate also in time, i.e. the errors accumulated

each new time step are proportional to the squared time interval �t2. Once obtained

the updated ! one determines the updated ~v through Eq. (7), repeatedly applied

until convergence.

Finally, ! must be relaxed until convergence through

! ¼ !1 þ !2 þ !3 þ !4

4
�R�2 @!

@t
þ 1

2�
½vxð!3 � !1Þ þ vyð!2 � !4Þ�

� �
; ð12Þ

where vx and vy are the averages over points a, b, c and d in Fig. 8, passing by

recalculations of~v through Eq. (7), as well as ! and @!=@t through Eqs. (6) and (10),

respectively, until complete convergence of both ! and ~v ¯elds.

After each time step one can follow the time evolution of ~v and ! over the grid.

Symmetry (8) remains for not so high Reynolds numbers, but symmetry (9) is broken

for any R 6¼ 0: The disturbed region behind the cylinder becomes longer than the

Fig. 8. Discretized version of the Navier�Stokes dynamic Eq. (1).

Relaxation Method for Navier�Stokes Equation
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front one, di®erent from Fig. 7. For very small R � 1, the °ux remains laminar in

spite of this asymmetry. For R � 10 two symmetric air vortices appear behind the

cylinder, one above the X axis running clockwise, the other below X running

counterclockwise, thus preserving symmetry (8). Both vortices form simultaneously

very near the cylinder, then they grow and move a little bit to the right. Finally they

stabilize and remain at rest behind the cylinder, i.e. the whole ¯eld ~v remains con-

stant after some transient time. This steady-state is shown in Fig. 9 for R ¼ 30.

By increasing further the Reynolds number toR > 102, no stationary steady state

is reached, the °ow becomes eternally time-dependent. The von K�arm�an street starts

to be constructed. For R ¼ 1000, Fig. 10 shows an early stage in this evolution. Two

still symmetric vortices have already appeared behind the cylinder, one of them is

shown in the close up. Some time later, they have already moved a little bit down-

stream and start to become stretched along theX direction, as shown in Fig. 11. The

slow movement downstream continues after that, as well as the stretching process.

Suddenly, too much stretched and some three or four diameters far form the

cylinder, one vortex bifurcates and becomes a pair of vortices running in the same

sense and repelling each other along the X direction. Symmetry (8) was ¯nally

broken, the other side remains with a single vortex for a while. Later on, it also

bifurcates. Only then the von K�arm�an street begins to be formed: One vortex run-

ning clockwise slowly goes away downstream, followed by another running coun-

terclockwise and so on. First, they are produced by bifurcations. Later, new vortices

are produced in series near the cylinder back surface. Therefore, the complete street,

extending some hundred diameters long, spends some time to be formed.

Fig. 9. Stationary steady-state reached after a certain transient time, for R ¼ 30. Only a small region

behind the (gray) cylinder and above the X axis is shown. Symmetry (8) still holds, the other symmetric
vortex runs counterclockwise below X, not shown. Arrows represent local velocities which are relatively

small in this region. Speeds larger than 0.3 (relative to the wind speed) are omitted in the right upper

corner of the ¯gure.
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Two technical details remain to be explained. First, in order to avoid strong

numerical °uctuations, after each time step a small fraction of the so-called nu-

merical viscosity is introduced into the ! ¯eld. This procedure is traditional, consists

in replacing ! by the combination fr2!þ ð1� fÞ!. In our R ¼ 1000 calculations,

for instance, we adopted f ¼ 0:01. Probably this step becomes unnecessary by using

implicit integration methods, but again we decide to postpone performance

improvements. Second, the rectangular frame Lx � Ly in Fig. 2 is not long enough to

observe the complete von K�arm�an vortices street. Its length Lx is only 10 times larger

than the cylinder diameter (three ahead and seven downstream). This is not a

problem because our interest is only to observe the beginning of the street formation,

i.e. the few ¯rst vortex bifurcations which occur some three or four diameter

Fig. 10. Starting from the Stokes con¯guration (Figs. 6 and 7), the wind is switched on at t ¼ 0 with a
¯xed Reynolds number R ¼ 1000. Figures show the result at t ¼ 1, when a °uid element far from the

cylinder has already travelled one diameter. The bottom ¯gure is a close up of the region behind the

cylinder, above the X axis, the other symmetric vortex below is not shown.
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downstream. After that, the slowly moving vortices would be somehow \re°ected"

by the rigid boundary conditions adopted at the rightmost rectangle limit in Fig. 2,

the back door. Nevertheless, by applying a simple trick, we could avoid this arti¯cial

behavior in order to observe forever the continuous vortex productions near the

cylinder. For that, we change a little bit the boundary condition at the back door, as

follows. Instead of keeping the rigid condition ~v ¼ x̂, after each time step we replace

it by the combination fðyÞ~vðyÞ þ ½1� fðyÞ�x̂, where ~vðyÞ are the velocities along the

left neighbor column (the one just before the back door) and fðyÞ ¼ 1� 2jyj=Ly (the

rectangle width Ly in Fig. 2 corresponds to ¯ve cylinder diameters). This trick allows

the vortices to escape through the back door, instead of being \re°ected" back into

the region near the cylinder.

The method can be easily applied to 3D systems, of course with some extra com-

puter work due to a genuine 3D vector ¯eld ~!. Before that, many improvements can

Fig. 11. Later than Fig. 10, t ¼ 2. Vortices are still symmetric.
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be introduced. One of them is to adopt another grid, not the square one of Fig. 2. For

instance, a cylindrical grid with logarithmic scale in the radial direction. Another

improvement is to control the number of relaxations up to convergence, within each

time step (here, we simply ¯xed this number far above the necessary). Also, the

convergence is not uniform, one can stop the relaxation process in regions already

converged far from the cylinder, continuing the process further only near the cylinder.

3. Conclusions

This text introduces a relaxation method to solve the dynamical Navier�Stokes

equation for not compressible °uids. It is applied to the °ow past a long cylinder

positioned inside a wind tunnel, perpendicular to the wind. The interest is the

dynamic behavior during the transient time when the von K�arm�an street of vortices

starts to be formed. The wind is initially switched o®, therefore the starting velocity

¯eld is the laminar, time-independent Stokes con¯guration corresponding to a van-

ishing Reynolds number, without vortices. Then, at t ¼ 0 the wind is switched on

with some ¯nite value R of the Reynolds number. For t > 0 one can observe the

gradual appearance of vortices near the cylinder, in sequence, which will eventually

produce the quoted street. At the end, the street is known to extend downstream for

some hundred diameters long.

The method was invented in order to observe the transient, during which the

street is not yet completely formed and the drag force on the cylinder is strongly

reduced when compared with the ¯nal steady state regime. This feature explains a

curious experimental observation,4 in which a small and light polystyrene ball falling

in air has its speed reduced. First, during the transient, the ball reaches a larger

speed. Later, when the von K�arm�an vortices street is ¯nally complete and the drag

force reaches its steady state, the speed is reduced to the ¯nal sustainable value. A

similar and equally curious phenomenon is also observed7 during the transient when

the wake gradually forms: The speed of a light and small ball falling in water

oscillates. The authors speculate about new unexpected phenomena to be observed

for lighter and smaller yet balls. We can add some kind of hysteresis and eventual

bistability with two possible ¯nal speeds.

\This text is dedicated to David Landau. Would he read it, I can imagine his

question about the contents, with his loud voice: `. . . What about the error bars?'

I could not introduce error bars into my ¯gures showing the simulated air °ow, but at

least beautiful error bars can be seen in the experimental plot, Fig. 1. Congratulations

to David."
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