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Abstract. We present a self-organized model for the growth of two- and three-
dimensional percolation clusters in multi-layered structures. Anisotropy in the
medium is modeled by randomly allocating layers of different physical properties.
A controlling mechanism for the growing aggregate perimeter is introduced in
such a manner that the system self-tunes to a stationary regime that corresponds
to the percolation threshold. The critical probability for infinite growth is studied
as a function of the anisotropy of the medium.
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1. Introduction

Percolation models provide a useful tool for the quantitative description of several
phenomena in natural systems [1,2]. Some relevant applications may be encountered
in soil physics [3], oil recovery [4], fluid transport in porous media [5]-[8] and growth of
branched structures [9]-[13], among many other areas [14]-[22].

Indeed, whereas most studies have been dedicated to isotropic percolation, disordered
systems such as layered fractured rocks are in general anisotropic, i.e. physical properties
such as density or porosity may vary over the different layers [23]-[26]. It is well known
that geometrical and transport properties in diverse kinds of rocks and geological fields
must be effectively characterized in terms of their degree of anisotropy [7]. Moreover, many
systems in nature are known to be anisotropic in geometrical, mechanical, electrical or
optical properties. Anisotropy has been incorporated into a two-dimensional percolation
model by attributing different concentrations p to the different layers, whereby the critical
percolation threshold p. has been found to be a function of the amount of anisotropy in
the system [25].

Taking inspiration from the self-organized branching process proposed by Zapperi et
al [27], a percolation model has been proposed for the mechanism of growth of percolation
clusters in which self-organization leads the system spontaneously to criticality [28,29].
In the self-organized percolation (SOP) model the number of sites or bonds in the growth
front of the aggregate is maintained close to a threshold value by imposing a controlling
mechanism on the probability of occupation p of the lattice sites. In contrast to previous
models, in which p is fixed all over the simulation, the SOP model allows for variations
in p which are controlled by the mass of the perimeter of the growing cluster. In this
manner, the system is spontaneously driven to a stationary state that corresponds to
the percolation threshold of the lattice topology [28]. In fact, in the SOP process,
criticality and self-organization [27,30] are ingredients of the same dynamics: the system
self-tunes around a critical state without the need of adjusting any model parameter.
An advantageous method for calculating p. is, thus, provided, since the SOP model
does not require the trial and error scheme intrinsic to traditional numerical models
for percolation [31]. In this way, the SOP model has been successfully applied for the
prediction of the percolation threshold in a variety of physical systems, ranging from the
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growth of branching polymers to ferromagnetic Ising systems and the spreading of fire [28],
[32]-[38].

In the present work, the self-organized percolation model is adapted in order to
account for anisotropy. As in multi-layered percolation [25], sites which belong to different
layers of the lattice representing the medium are allocated with different probabilities.
However, these probabilities are allowed to vary in time according to the controlling
mechanism of the SOP model. The percolation threshold is then studied as a function of
the amount of anisotropy for two- and three-dimensional systems.

The paper is organized as follows. In section 2, we present a description of the
anisotropic SOP model. In section 3, we present and discuss our results. A list of
conclusions is given in section 4.

2. The model

We first consider a square lattice of dimensions L x L, the axes of which are labeled x
and y. Stratification is introduced by attributing to the concentration p, of each layer in
the y coordinate one of the values p; or ps, which are chosen with equal probability 1/2.
The layer is of type 1 (2) if its probability is p; (ps), whereas we consider py < p;. We
assume that p, are independent random variables. All sites (z,y) along the layer y have
the same probability, p, = p1 or p, whereas the case p; = ps recovers the set of regular
isotropic percolations [25]. For convenience, we define the transformed variables

p=(p+p2)/2, (1)
A= |p1—P2|/27 (2)

where the parameter A gives a measure of the amount of anisotropy in the system [25].

At time ¢t = 0, only the central site of the lattice is occupied. Each one of the available
nearest neighbors of the seed is assigned a uniform random number 0 < r < 1, and the
neighbor is subsequently occupied if its probability p, is larger than r. If, however, an
available nearest neighbor is not occupied, then it remains non-occupied until the end of
the calculations. The algorithm is applied, at each time step ¢, to the N(¢) sites that were
occupied at iteration ¢ — 1. The N(t) perimeter sites are also called the active sites of
the growing process [28,29,31]. However, in order to ensure that N(t) will not increase
exponentially in time and that, at the same time, the cluster will never stop growing, we
introduce a controlling mechanism by allowing the probability p to vary in time according
to the following equation:

pt+1) = p(t) + k[NL — N(t)], (3)

where k is a kinetic coefficient and Ny, is a threshold parameter [28,29]. At each time
step ¢, equation (3) is applied to obtain p from N(t), and the probabilities p; and po are,
thereafter, updated by using equations (1) and (2). In this manner, in contrast to previous
models [25, 31], where the site probabilities are kept constant over time, our model allows
for time variations in p in order to compensate for the increase or decrease in the number
N(t) of active sites in the growth front. As a consequence of equation (3), the cluster
growth is kept at a minimum rate [28,29]. Although p; and p, are allowed to vary, the
respective labels (1 or 2) of the lattice layers do not change in time. The values of the
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Figure 1. Typical realizations in a square lattice of dimensions 2000 x 2000 with
(a) A = 0.0 (isotropic) and (b) A = 0.2. In case (b), the lattice is stratified,
i.e. each value of the coordinate y (vertical axis) is randomly labeled 1 or 2. At
t =0, p1 = pa = 1.0 for both layer types, whereas only the central site of the
lattice is occupied. The growth algorithm described in section 2 is, then, applied,
whereby p; and po are recursively calculated from p and A, using equations (1)—
(3). In the simulations, k = 107> and N, = 200.

probabilities p; and p, are obviously limited to the range [0, 1], so whenever calculations
yield a value smaller than 0 or larger than 1 for one of the probabilities p; or ps, the values
0 and 1, respectively, are imposed as the solution for that probability. The simulation is
performed until the growing cluster reaches one of the lattice borders.

A systematic study of the SOP model for different k and Ny parameters was presented
in [29, 35] for the case of isotropic percolation, i.e. when p; = p,. In this case, the value
of p is found to evolve in time into a stationary value that fluctuates around the critical
percolation threshold for the square lattice, p. &~ 0.59, independently of the values of
the model parameters. In the stationary state, p undergoes fluctuations around p., the
frequency and magnitude of which depend on k and N . As explained in [29], large values
of k lead to high frequency oscillations in N(¢). On the other hand, the threshold number
Ny, must be large enough to prevent the remaining active sites in the growth front from
being killed by fluctuations, and small enough to avoid too long transient times. As in
previous applications [28, 29,32, 33,36, 37|, the value of k taken in the calculations of the
present work is 107°, whereas Ny, is of the order of 10%.

3. Results and discussion

Figures 1(a) and (b) show typical simulation outcomes in a square lattice with 2000 x 2000
sites, using A = 0 and A = 0.2, respectively, and starting, in both cases, with p = 1.0 at
t = 0. As expected, the first simulation steps yield a compact cluster for both values of A.
However, once the growing number N(t) of active sites at the cluster perimeter exceeds
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Figure 2. Different realizations on the square lattice with stratification. The
figure shows the time evolution of p for different values of A, obtained using
k = 107° and Ny, = 300. In each case, p is found to converge into a stationary
value p.(A), which corresponds to the critical probability for percolation in the
stratified lattice.

the threshold number Ny, p starts decreasing due to equation (3). After a given number of
time steps, which depends both on & and Ny, [29,35], a critical probability p. is obtained
around which p fluctuates (figure 2) in such a way as to maintain N(¢) around Ny. In the
case of no stratification (A = 0, figure 1(a)), the stationary state is p = p; = p ~ 0.59,
i.e. the threshold p. for isotropic percolation in the square lattice [28,29]. However, as
A — 0.5, the stationary values of ps and p; approach 0 and 1, respectively, whereas
p. — 0.5. Consequently, as the anisotropy in the system increases, the growing clusters
become increasingly narrowed in the y direction, as illustrated in figure 1(b).

We perform simulations for different values of A on a lattice with 10® sites, by varying
A from 0 to 0.5 in steps of 0.025. Figure 3 shows the phase diagram p.(A) obtained from
our model simulations (circles). Also shown are the results obtained by Dayan et al [25]
(stars) using the ‘cluster perimeter method’ [9,39,40]. As seen in figure 3, the agreement
between this method and our model of automatic search for the critical point p — p.
is excellent. For each value of A, the curve p.(A) separates two different regimes, one
containing systems of finite clusters (p < p.) and one with systems of an infinite cluster
(p > pc). Indeed, in both models, p.(A) is not linear, in contrast to the prediction of [24].

For completeness, we also investigated the ‘alternating’ percolation model in which
the stratification is such that a layer y is labeled 1 (2) if it is even (odd) [25]. In this
case, smaller values of p.(A) than the ones for the random model are found in the interval
0 < A < 0.5, as also found in [25].

We next extend the model in order to study self-organized percolation in three
dimensions. Stratification of the cubic lattice is modeled in two different ways. The first
model, called stratification in sheets, consists of randomly labeling different coordinates
y as 1 or 2, in such a manner that all sites (x,y,, z) on the sheet y = y,, have the same
probability p; or po, respectively. Sedimentary rocks constitute one of the many examples
in nature where such stratification occurs [2]. The results obtained for this model are
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Figure 3. Circles represent the critical probability p. as a function of A for the
square lattice calculated with the method described in section 2. Results have
been averaged over 4000 time steps in a total of 100 realizations. Good agreement
is found between our results and the ones obtained by Dayan et al [25] (stars).
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Figure 4. Self-organized percolation in three-dimensional multi-layered systems.
The results are for the cubic lattice with stratification in sheets, i.e. each layer y
is randomly labeled type 1 or 2. The main plot shows the stationary state values
of the probabilities p; (empty squares), py (stars) and p (=p.) (filled circles) for
different values of A. The calculations have been performed with & = 107> and
Ny, = 300.

shown in figure 4. The main plot of this figure shows the average stationary values of p;
(empty squares), po (stars) and p. (filled circles) obtained from simulations in a lattice
with 1.25 x 10® sites. As can be seen in this figure, for A = 0 the critical probability
pe = 0.31 for the isotropic percolation in the cubic lattice is recovered [1]. As A increases
from zero, the cluster grows with increasing preference in the sheets of higher probability
(p1), and becomes, thus, increasingly narrowed in the direction of stratification. We find
that the lower probability (py) vanishes when A ~ 0.19.
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Figure 5. Critical probability p. as a function of A for the cubic lattice calculated
with the SOP model [28,29] using two types of stratification: (i) ‘sheets’ (filled
circles) and (ii) ‘fibers’ (empty circles), i.e. with one of the coordinates (z,y, z)
randomly labeled 1 or 2. For A = 0, the value p. ~ 0.31 (dashed line) for
the homogeneous cubic lattice is recovered in both cases, as expected. The
calculations were performed with & = 107> and N7, = 300.

The second three-dimensional model describes the percolation process with fiber
stratification. In this case, each pair (x,y) of the cubic lattice is attributed one of the
labels 1 or 2, whereas all sites (z,,yn,2) along the line (z = z,,,y = y,) have equal
probability p; or ps, respectively. One possible application of this model is the study
of percolation in composites filled with fibers [2,14]. In this model, as A increases the
cluster growth takes place mainly along preferred lines (or fibers) of higher probability p;.
This type of stratification is evidently a case intermediate between the isotropic case and
the stratification in sheets. As shown in figure 5, we find that pS(A) < pf(A) < 0.31 for
A > 0, where p¢ and p{ refer to the critical points for stratification in sheets and fibers,
respectively.

It should be emphasized that, although the stationary state obtained in the SOP
model in fact corresponds to the critical point for percolation, the structures obtained in
the simulations do not display the same statistical properties of the fractal percolating
clusters of corresponding dimensionality due to the fluctuations around the critical point
that are intrinsic to the SOP dynamics [28]. In fact, since the SOP model introduces
a controlling mechanism to the original dynamical algorithm of growing percolation
clusters [31], it can be adapted to dimensions d > 2 more easily than, for example,
the self-avoiding walk method for obtaining the percolation threshold [25]. Further, the
SOP model can be extended to the study of d-dimensional anisotropic percolation, with
d> 3.

The quantities Ny, and k controlling the growth dynamics dictated by the feedback
mechanism, equation (3), of the SOP model are both observable and controllable. Thus,
practical implementation of the SOP process in order to reach a self-organized critical
state where the percolation probability is around the threshold p. does indeed pose an
experimentally feasible task. One example of possible application is in polymerization
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experiments, where the growth rate of the total polymer mass can be controlled by means
of a device which monitors the concentrations of the different species of monomers at
the inlet, as well as the total concentration of monomers at the outlet solution from the
polymerization reactor [28]. As shown recently, the SOP model also suggests a conceivable
experimental scheme for the generation of percolation hydrocarbons [20]. The process of
vascularization (angiogenesis) of certain kinds of tumors, which display percolation-like
scaling [41], can represent a possible biological application of the SOP model [33]. Further
practical applications may involve the growth of percolating clusters in disordered or
stratified lattices.

4. Conclusions

In conclusion, a model for self-organized percolation (SOP) of growing clusters in
anisotropic random systems was presented. The model couples the dynamical model
for the growth of anisotropic percolation clusters [31] with global controlling rules that
regulate the growth rate of a percolation aggregate, leading the system to a self-organized
critical state that corresponds to the percolation threshold [28,29]. The SOP process
was studied in the stratified square lattice with randomly allocated layers of two different
types (concentrations p; or py) [25]. The dependence of the percolation threshold p. on
the amount of anisotropy, namely A = (ps — p1)/2, was studied and good agreement with
results from traditional percolation methods [25] was found. Further, first results for the
cubic lattice were presented using two types of stratification. By using the SOP model, it
was possible to predict the threshold anisotropy amount in the cubic lattice, above which
one of the lattice layers becomes statistically inactive (i.e. po = 0). This threshold value
is A ~ 0.19. Finally, we showed that the critical probability p.(A) in three-dimensional
lattices with stratification in ‘fibers’ is larger than in the case of stratification in ‘sheets’.

Thus, the SOP model has proven to be an efficient method for obtaining the critical
point in anisotropic random media. As a result of the dynamic rules of the SOP model, the
system is driven spontaneously to the percolation threshold with no need of tuning model
parameters or repeating simulations with different values of p [3,31]. In fact, previously
studied percolation models, such as those in [27, 42, 43], also display this property. Further,
the SOP model can be easily adapted to different algorithms of percolation [28], lattice
types [34] and also to different types of stratification.
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