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a b s t r a c t

Using the effective field theory with a probability distribution technique that accounts for
the self-spin correlation functions, the magnetic properties of disordered Fe–Al alloys on
the basis of a site-diluted quantum Heisenberg spin model are examined. We calculated
the critical temperature and the hysteresis loops for this system. We find a number of
characteristic phenomena. In particular, the effect of concentration c of magnetic atoms
and the reduced exchange anisotropic parameter η on both the critical temperature and
magnetization profiles are clarified.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Magnetic systems have always been of great practical interest, mainly due to their possible usage in information
technology, as well as novel materials for a variety of applications. In the former case, the giant magnetoresistance is a
special example for technological information storage [1,2]. Thesematerials have also been the subject of intense theoretical
investigation in both, pure and disordered versions [3]. Among the family of magnetic alloys, the Fe–Al system has been one
of the most interesting because of the several magnetic phases that can be present in this system, such as ferromagnetism,
paramagnetism, and even the spin-glass phase [4,5]. The region of the magnetic phase diagram in which these phases exist
are strongly dependent upon how the constituent atoms are distributed in the crystalline lattice. The Fe1−qAlq system in
the bcc structure shows an interesting magnetic behavior since its critical temperature decreases with q = 1 − c but
shows a kind of plateau for low Al concentrations. Theoretical studies [5,6], using mean field renormalization group [7]
and Bogoliubov inequality [8] approaches have been used to explain this behavior by taking a simple Ising Hamiltonian.
Sato and Arrot [9] obtained the magnetization by assuming a ferromagnetic exchange between nearest-neighbor Fe atoms
and an antiferromagnetic superexchange between two Fe atoms separated by an Al atom. This model, however, predicts
an antiferromagnetic phase at low temperatures which was not revealed by neutron scattering experiments [10]. Shukla
and Wortis [11] and Grest [12] did their estimates assuming a spin-glass state near the critical Al concentration. In this
case, a rather good agreement with experimental data has been achieved. More recently, an experimental study of Fe–Al
alloys in the disordered phase has been reported for Al concentrations q = 1 − c with c is the concentration of Fe
atoms, in the range 0 ≤ q ≤ 0.5 [13]. It has been shown that this system, at room temperature, undergoes a ferro-
to paramagnetic phase transition at a critical Al concentration qc = 0.475 [13]. It has also been noted that the critical
temperature of the ferro- to paramagnetic transition decreases as the Al concentration increases. Moreover, these alloys
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are all ferromagnetic and do not show the anomalous behavior of the ordered ones. Moreno and Montenegro [14] reported
an investigation of the ferromagnetic disordered Fe1−qAlq alloys by magnetization measurements. For a special value of
concentration q, they obtained the critical temperature and critical exponents for different alloys. Our aim in this paper
is to extend the results reported in Ref. [15] for studying the phase transition and the site-diluted quantum Heisenberg
spin model applied to the magnetic properties of Fe–Al disordered alloys, in the framework of the effective field theory
with a probability distribution technique [16]. The model studied is the same as that analyzed in Ref. [15]. In particular, an
anisotropic Heisenberg model with site dilution is investigated in mean-field approximation. To simplify the consideration
further a two-site cluster approximation is already usedwhich is based on a two-site cluster theory introduced by Bobak and
Jascur [17] inwhich attention is focused on a cluster comprising just two selectedHeisenberg spins. Themagnetic properties
such as the hysteresis loops and coercive field as functions of the temperature and concentration respectively are discussed.
We discuss on simple cubic symmetric with nearest-neighbor exchange interactions in which the strength is assumed to be
different from the bulk value in the surface. In Section 2, we outline the formalism and derive the equations that determine
the phase diagrams, the hysteresis loops and critical temperature. The phase diagram of the system as functions of the
parameters R, η and c are discussed in Section 3. The conclusion is given in Section 4.

2. Formalism

In order to obtain the critical properties of the Fe–Al disordered alloys we assume a quenched site-diluted quantum
Heisenberg model with only the nearest-neighbor interactions. The model is defined on a simple cubic lattice and the
Hamiltonian of the system is given by

H = −
∑
〈ij〉

Jijcicj(ξSi,xSj,x + ηSi,ySj,y + ζ Si,zSj,z) (1)

where ci is a random variable which takes the value 1 or 0 according to whether the site i is occupied by a spin Si, or not.
Jij is the exchange parameter between spins. The parameters ξ, η and ζ control the anisotropy of the exchange interaction
Jij. For some special values of ξ, η and ζ one recovers the well-known models, namely, the Ising model [I] (ξ = η = 0), the
isotropic Heisenberg model [H] (ξ = η = ζ ) and the X–Y model [XY] (ξ = η, ζ = 0).
In this paperwe report results for the two-site cluster approximation. The following notationwill be adopted throughout.

The two nearest-neighboring sites forming the pair cluster are denoted by 1 and 2. λi (i = 1 to N1) denote the nearest-
neighboring sites of 1 (excluding 2), while αi (i = 1 to N2) those of 2 (excluding 1). Some lattices have sites common to
both the sets {λi} and {αi}. These are denoted by ϕi(i = 1 to N).

{
λ′i
}
and

{
α′i
}
denote the sets {λi} and {αi} when the sets

{ϕi} have been removed. Si,z , Si,x and Si,y denote the Pauli matrices which are the components of the quantum spin
−→
Si of

magnitude S = 1/2 at site i, and the summation runs over all pairs of nearest neighbors.
The starting point for the two-site cluster approximation is to split the Hamiltonian into the following terms

H = H12 + H1 + H2 + H ′ = H0 + H ′ (2)

with

H12 = −c1c2J
(
ξS1,xS2,x + ηS1,yS2,y + ζ S1,zS2,z

)
(3)

and H1(H2) is the Hamiltonian type, namely

H1 = −Jc1

(
ξS1,x

N1∑
i=1

cλiSλi,x + ηS1,y
N1∑
i=1

cλiSλi,y + ζ S1,z
N1∑
i=1

cλiSλi,z

)
(4)

H2 = −Jc2

(
ξS2,x

N2∑
i=1

cαiSαi,x + ηS2,y
N2∑
i=1

cαiSαi,y + ζ S2,z
N2∑
i=1

cαiSαi,z

)
. (5)

Allowing for the fact that H0 and H ′ do not commute, the thermal average of S1,z , for example, can be written as

〈Sz〉 =
〈
B
A

〉
−

〈(
B
A
− S1,z

)
∆

〉
, (6)

where

A = Tr0 exp(−βH0), B = Tr0[S1,z exp(−βH0)], (7)

∆ = 1− exp(−βH0) exp(−βH ′) exp(βH0). (8)

In the above, Tr0means the partial tracewith respect to the states of the cluster spins S1 and S2. Eq. (6) is an exact relation,
but is difficult to the presence of the second thermal on the right-hand side. Following Ref. [18], we avoid this difficulty by
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Fig. 1. Dependence of the Curie temperature on the (1− c) Al concentration for different values of the parameter R = Js/J and for the Heisenberg model
η = 1.0.

replacing the quantum spins surrounding the two-site cluster by Ising spins. With this replacement, H0 and H ′ commute
and∆→ 0, so we are left with the simple relation

〈Sz〉 =
1
2

〈
Tr0{(S1,z + S2,z) exp[−β(H12,z + H1,z + H2,z)]}

Tr0 exp[−β(H12,z + H1,z + H2,z)]

〉
(9)

where

H1,z = −x1Jc1S1,z

(
x1 ≡ ζ

N1∑
i=1

cλiSλi,z

)
(10)

H2,z = −x2Jc2S2,z

(
x2 ≡ ζ

N2∑
i=1

cαiSαi,z

)
. (11)

Remembering that c21 = c1, etc., on effecting the partial traces in Eq. (9), one has the following result

〈Sz〉 = c1c2 [〈f3 (x1, x2)〉 + 〈f2 (x1, x2)〉]+ 2c1 (1− c2) 〈f1(x1)〉 , (12)

where

f1(x1) =
1
4
tanh

(
1
2
βJx1

)
, (13)

f2(x1, x2) =
x1 + x2
X

sinh
( 1
4βJX

)
cosh

( 1
4βJX

)
+ exp

( 1
2βJζ

)
cosh

( 1
4βJY

) , (14)

f3(x1, x2) =
x1 − x2
Y

exp
( 1
2βJζ

)
sinh

( 1
4βJY

)
cosh

( 1
4βJX

)
+ exp

( 1
2βJζ

)
cosh

( 1
4βJY

) (15)
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Fig. 2. Dependence of the Curie temperature on the reduced exchange anisotropic parameter η for different values of concentration c .

with

X =
√
4 (x1 + x2)2 + (ξ − η)2, Y =

√
4 (x1 − x2)2 + (ξ + η)2. (16)

For the system under consideration, in the casewhen the exchange interactions are between nearest-neighbor sites only,
one finds (for fixed spatial configuration of the spins) and for simplicity the expression of the 〈Sz〉 as follows

〈Sz〉 = c

〈
f2

(∑
i1 6=1

Ji1jci1Si1,z,
∑
i2 6=1

Ji2jci2Si2,z

)〉
(17)

where in particular

f2(x1, x2) = fz(x1, x2) =
1
2

sinh
( 1
2βJ(x1 + x2)

)
cosh

( 1
2βJ(x1 + x2)

)
+ exp

( 1
2βJ

)
cosh

[
1
2βJ

√
(x1 − x2)2 + η2

] . (18)

The sums in Eq. (17) are over the N − 1 nearest neighbors of the sites
−→
S1 and

−→
(S2), N being the nearest-neighbor coordi-

nation number of the lattice.
The method we use is the effective-field theory, fully described in Ref. [16], that employed the probability distribution

technique to account for the single-site spin correlations. Following that procedure, we find in the current situation for a
fixed configuration of neighboring spins that the layer magnetization is given by

mnz = 〈Snz〉 =

〈
fz

(∑
i16=1

Jijci1Si1,z,
∑
i16=1

Jijci2Si2,z

)〉
(19)

with β = 1
kBT
and T is the temperature. In Eq. (19), 〈· · · 〉 indicates the usual canonical ensemble thermal average for a given

configuration and the sum runs over all nearest neighbors of the spin
−→
S i.

To perform thermal averaging on the right hand side of Eq. (19), we follow the general approach described in Ref. [16]. First
of all, in the spirit of the effective field theory, multispin correlation functions are approximated by products of single spin
averages. We then take advantage of the integral representation of the Dirac’s delta distribution, in order to write Eq. (19)
in the following form
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Fig. 3. Dependence of the Curie temperature on the reduced exchange anisotropic parameter η for c = 1.0 and R = 1.0.

mnz =
∫
dωfz(ω)

1
2π

∫ [
dt exp(iωt)

∏
j

〈exp(itJijσjz)〉

]
. (20)

Now, we introduce the probability distribution of the spin variables (for details see Ref. [16])

P(Siz, c) =
1
2
(1− c)δ(cn)

[
δ

(
Snz +

1
2

)
+ δ

(
Snz −

1
2

)]
+
1
2
δ(cn − 1)

[
(c − 2mnz)δ

(
Snz +

1
2

)
+ (c + 2mnz)δ

(
Snz −

1
2

)]
. (21)

Using the four previous equations, we get the following equations for the layer magnetization

mz = c22−2N
N−1∑
µ=0

N−1−µ∑
µ1=0

N−1∑
ν=0

N−1−ν∑
ν1=0

{
CN−1µ CN−1−µµ1

CN−1ν CN−1−νν1
(1− c)ν+µ2(−µ−ν)

× (c − 2mz)µ1+ν1(c + 2mz)2(N−1)−(µ1+ν1+ν+µ)
}
fz

(
β
J
2
(N − 1− µ− 2µ1), β

J
2
(N − 1− ν − 2ν1)

)
. (22)

In these equations, the case of a simple cubic lattice which is considered (N = 6) and C lk are the binomial coefficients,
C lk =

k!
l!(k−l)! .

We have thus obtained the self-consistent equation (22) for the magnetization mz , that can be solved directly by
numerical iteration. No further algebraic manipulation is necessary. This is the advantage of introducing the probability
distribution technique.

3. Results and discussion

Let us begin with the evaluation of the critical temperature kBTc/J versus the (1 − c) Al concentration. The Curie
temperature kBTc/J is determined as the lowest temperature at which Eq. (22) has a nontrivial solution mz 6= 0. In other
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Fig. 4. The interaction parameter R dependence of the (1− c) Al concentration. The parameters adopted here are T = 0.1 and η = 1.0.

words, when Eq. (22) is expanded into power series of mz , the coefficient of the linear term of mz on the right-hand side is
equal to unity at Tc . Thus the equation for Tc becomes

a = 1 (23)

where

a = 2−2N+2
N−1∑
µ=0

N−1−µ∑
µ1=0

N−1∑
ν=0

N−1−ν∑
ν1=0

µ1+ν1∑
i1=0

2N−2−(µ+ν+µ1+ν1)∑
i2=0

CN−1µ CN−1−µµ1
CN−1ν CN−1−νν1

× Cµ1+ν1i1
C2N−2−(µ+ν+µ1+ν1)i2

(1− c)ν+µ2µ+ν+i1+i2c2N−(µ+ν+i1+i2+1)(−1)i1

× δi1+i2,1fz

(
β
J
2
(N − 1− µ− 2µ1), β

J
2
(N − 1− ν − 2ν1)

)
. (24)

The dependence of the critical temperature on the (1 − c) Al concentration is shown in Fig. 1. The curves correspond
to the Heisenberg model (η = 1), and for different values of the parameter R = Js/J . We see that for this model, with
the increasing of the value of concentration (1− c) of magnetic atom of Al, the phase diagram in which the ferromagnetic
ordering is realizable gradually becomes small and goes to a low value at the critical concentration, and near of this value
the critical temperature is independent of the parameter R.
The dependence of the critical temperature on the reduced exchange anisotropic parameter η is shown in Fig. 2 for

different values of concentration c. As expected for different values of concentration c , with the increasing the value of the
anisotropic parameter η, the critical temperature kBTc/J decreases and its start from different values of kBTc/J depending on
the value of Al concentration.
In Fig. 3, and in particular for the pure case we have plotted the dependence of the critical temperature on the reduced

exchange anisotropic parameter. The critical temperature Tc decreases from its Ising value kBTc/J = 1.2598 (η = 0) with
the increase of η to reach its lowest value which is the Heisenberg value at kBTc/J = 1.2228 (η = 1). Our results are in

agreement with those of Idogaki et al. [19] and Wu et al. [20]. (Because
−→
S
2
=
1
4 , our numerical values are

1
4 their values).
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Fig. 5. The longitudinal magnetic field dependence of the spontaneous magnetization for different value of concentration c. Solid, dotted and dashed lines
correspond to the value of concentration c = 1.0, 0.8 and 0.7 respectively. The parameters adopted here are R = 0.1, η = 1.0 and T = 0.1.

Fig. 4 shows the calculated R = Js/J as a function of the Al concentration. It can be noted that the parameter R increases
slowly from a value near one for low concentration (1 − c) and then increases rapidly near the critical concentration
(1− c) ' 0.78.
Fig. 5 shows the hysteresis loops evaluated at T = 0.1 and R = 0.1 for these disordered alloys. From these, one can

see that this is a soft magnetic material. The (M–h) ferromagnetic hysteresis loops are obtained by changing cyclically the
value of themagnetic field for different values of the concentration c of Fe atoms. The hysteresis loops obtained indicate, the
transition from the paramagnetic to ferromagnetic state.We can see in Fig. 5 that themagnetization curves are symmetric for
both positive and negative longitudinal fields and the hysteresis loops aremore influenced by the value of the concentration,
in particular for the low values of longitudinal field from the pure to the diluted case respectively and also with increasing
the value of concentration c , the saturation increases, which also suggests that a ferromagnetic coupling indeed should be
expected between the Fe and Al atoms. Inset of Fig. 5, we have plotted the dependence of the coercive field on the value of
concentration c , we can see that by increasing the value of concentration c , the coercive fieldHc decreases. This reduction on
the coercive field due to the collective response of the magnetic moments that lead to a reduction of the energy barrier for
magnetization reversal. In Fig. 6, we plot the magnetization dependence of the longitudinal magnetic field, by changing the
value of the temperature T . For these curves, the hysteresis loops are regular and symmetrical, whereas at low temperature
and magnetic field h the curves tend to the same value of saturation.

4. Conclusion

In conclusion, we have studied the phase diagrams and some magnetic properties of the ferromagnetic site-diluted
quantum Heisenberg model applied to the disordered Al–Fe alloys, using the effective field theory based on the probability
distribution technique. From this study, we have investigated the influence of the reduced exchange anisotropic parameter
η and (1 − c) Al concentration on the critical temperature and magnetization profiles. We can see that the present model,
although simple, can give a satisfactory description of Al–Fe alloys in the disordered phase. Moreover, from this theoretical
point of view, just for the parameters R and η, the present model can account for the main magnetic properties of these
disordered alloys such as the hysteresis loops and the coercive field found for some typical values of concentration c , R and
the anisotropic parameter η.
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Fig. 6. The longitudinal field dependence of the spontaneous magnetization for different values of temperatures T . Solid, dotted and dashed lines
correspond to the value of temperature T = 1.3, 0.3 and 0.1 respectively. The parameters adopted here are R = 0.1, η = 1.0 and c = 0.8.
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