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We show, computationally and analytically, that asymmetrically shaped walls can organize the flow of
pedestrians driven in opposite directions through a corridor. Precisely, a two-lane ordered state emerges in
which people always walk on the left-hand side (or right-hand side), controlled by the system’s parameters.
This effect depends on features of the channel geometry, such as the asymmetry of the profile and the
channel width, as well as on the density and the drift velocity of pedestrians, and the intensity of noise. We
investigate in detail the influence of these parameters on the flow and discover a crossover between ordered
and disordered states. Our results show that an ordered state only appears within a limited range of drift
velocities. Moreover, increasing noise may suppress such flow organization, but the flow is always
sustained. This is in contrast with the “freezing by heating” phenomenon according to which pedestrians
tend to clog in smooth channels for strong noise [Phys. Rev. Lett. 84, 1240 (2000)]. Therefore, the
ratchetlike effect proposed here acts on the system not only to induce a “keep-left” behavior but also to
prevent the freezing by heating clogging phenomenon. Besides pedestrian flow, this new phenomenon has
other potential applications in microfluidics systems.
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I. INTRODUCTION

Counterflowing streams of particles appear in many
situations in science and technology [1–11], such as
pedestrian dynamics, granular matter, and oppositely
charged colloidal particles on an electric field. The classical
paradigm is a channel through which one species moves in
one direction and another in the opposite direction. The
particles could be driven by gravity when there is a density
difference, by chemical gradients or by their own propul-
sion as in the case of pedestrians. As it happens, for
instance, in the London tube during rush hour, motion can
come to a standstill in narrow corridors because of mutual
hindrance at high densities. Since Boycott’s elucidating
experiments on blood sedimentation [12], it is known that
such gridlock situations can be efficiently overcome by
organizing the system into only two main streams. In the
London tube, signs saying “keep left” are intended to
impose such flow segregation. Here, we show that it is
possible to indirectly induce a “keep-left” behavior by
giving the walls an asymmetric zigzag shape. Coming

either from the left or right, objects colliding with the wall
will then encounter different inclinations and thus lose
more or less (of the horizontal component of their) velocity.
Ratchets, like those in a bicycle hub, have been used not

only in gears but also in many other physical systems. For
instance, the so-called Feynman-Smoluchowski ratchet,
also known as the “Brownian ratchet,” is a thought experi-
ment of a purported perpetual motion machine, based on
the idea of extracting work from a heat bath without a
temperature gradient [13,14]. This experimental setup was
proposed a century ago by Smoluchowski as an example of
Maxwell’s demon, although it was shown by Feynman
decades later to actually fail. In any case, today it is still one
of the most ingenious devices to supposedly defy the
second law of thermodynamics. More recent ratchet-based
experiments have been designed in many other areas, such
as the superconductivity vortex [15], silicon wafer [16],
optics [17], granular material [18–20], controlling transport
on the nanoscale [21], and particle transport in fluid flow
[22]. The main purpose to use a ratchet is to store energy in
the system to then induce coherent motion. In fact, what is
now known as the ratchet effect is the phenomenon
where directed transport emerges in a spatially periodic
system [14].
In the present work, we show that corridors with

asymmetrically profiled walls can induce organization in
the flow of pedestrians. Precisely, the key element of our
approach is to use walls having the geometry of a ratchet,
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i.e., a zigzag structure such as the one shown in Fig. 1(a).
We consider that all pedestrians (modeled here as self-
driven particles) in the channel are identical except that half
of them are downward movers, i.e., driven by a force
downward, while the other half are upward movers, i.e.,
driven by a force upward. These forces try to impose a
constant drift velocity. A repulsive potential acts between
particles and with the walls, while a stochastic force
introduces disorder. The flow orientation along the walls
strongly depends on the system’s parameters. Moreover, as
we will see later, increasing the strength of the disorder may
suppress organization. We will present simulations show-
ing the existence of a crossover between organized and
disorganized flow, as well as analytical calculations in
order to support our findings.

II. METHODS

Let us now consider N spherical particles of mass m and
radius r. The equation of motion for each particle i is
assumed to be given by

m
dvi
dt

¼ −m vi − vdei
τ

þ
X

j≠i
f ij þ f iW þ ξi; ð1Þ

where vd is the drift velocity, ei ¼ x̂ for i ¼ 1; ...; N2, and
ei ¼ −x̂ for i ¼ N

2 þ 1; ...; N, and x̂ is the unit vector in the
channel direction (x direction), as shown in Fig. 1(a). In this
Langevin-like equation, the first term on the right-hand side
corresponds to a Stokesian drag force which tends to
impose a speed vd on particle i within a characteristic
time τ. The particles interact with each other through the
repulsive forces f ij and with the walls through f iW . ξi
corresponds to an uncorrelated, normally distributed sto-
chastic force with zero mean and finite variance θ for each
component. Notice that the intensity of noise, in the case of
a pedestrian, may be related to the desire of the person to
veer other people in a crowd.
The force between particles is assumed to be given

by [7,8]

f ij ¼ ½Ae−r
0
ij=B − kr0ijuð−r0ijÞ&nij − gr0ijuð−r0ijÞΔvtijtij; ð2Þ

where r0ij ¼ rij − 2r is the perpendicular distance between
the surfaces of particles i and j, rij ¼ ∥ri − rj∥ is the
distance between the centers of these particles, nij ¼
ðn1ij; n2ijÞ ¼ ðri − rjÞ=rij is the unit vector connecting these
centers, and tij ¼ ð−n2ij; n1ijÞ is the unit vector in the
tangential direction. The Heaviside function uðxÞ ¼ 1 if
x ≥ 0 and uðxÞ ¼ 0 otherwise, so that, when particles are in
contact (rij < 2r), there are two forces added to this
interaction, one elastic and repulsive acting radially and
the other dissipative acting in the tangential direction.
These two contact forces are typically found in granular
materials [23–25]. For distances rij > 2r, uðxÞ ¼ 0, and
the particles only interact weakly. Furthermore, when the
distance between particles is above a cutoff λP, the forces
are completely neglected. Finally, Δvtij is the tangential
component of the relative velocity, and A, B, k, and g are
constants that allow for a wide range of options; e.g.,
setting g ¼ 0 restricts the interaction to radial forces, while
setting both A ¼ 0 and g ¼ 0 allows only elastic repulsion,
etc. This generality in fact also encompasses the human
interaction between pedestrians [7,8].
The interaction of a given particle with the walls is

implemented by considering that one puts a pointlike “wall
particle” at the position on the wall which is closest to the
particle. The interaction of particle i with the wall is then
given by the force

f iW ¼ ½Awe−r
0
iW=BW − kr0iWuð−r0iWÞ&niW

− gr0iWuð−r0iWÞΔvtiW tiW; ð3Þ

which is the same expression for the force between particles
in Eq. (2), but now r0iW ¼ riW − r is the perpendicular
distance between the surface of particle i and the wall, and
riW is the distance between the center of particle i and the
wall. Again, a cutoff, given by λW, limits the range of this
interaction.

(a) (b) (c) (d)

FIG. 1. Channel geometry and final configurations of pedes-
trians for different asymmetry parameters. (a) Channel, of depth
H and width W, through which a preferred flow orientation of
particles is induced. The meaning of geometric parameters is
indicated. (b–d) Typical configurations in the steady state, where
the particles are keeping left in asymmetric wall channels but are
mixed in symmetric ones. Upward movers (downward movers)
are represented by full (hollow) particles. The velocity of each
particle is indicated by arrows. The asymmetry parameter b ¼
L=2 − L1 takes the values b ¼ 8 in (b), b ¼ −8 in (c), and b ¼ 0
in (d), for H ¼ 2, vd ¼ 6, and ρ ¼ 0.6. The length unit is written
in terms of particle diameter. Noise was not included in these
simulations.
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We employ molecular dynamics to simulate the collec-
tive particle flow in the channel, using a Verlet-like method
to numerically integrate the equations of motion [26,27].
We use a time step Δt ¼ 10−3 and impose periodic
boundary conditions in the channel direction.
The formalism adopted here is similar to that used in

Refs. [7,8], where it was shown that pedestrian counterflow
in smooth channels (H ¼ 0) can split up in several lanes, as
long as noise is sufficiently small. However, that system is
intricate as it can clog when temperature increases, a
fascinating anomaly called “freezing by heating,” as
observed in Ref. [8]. Clogging due to flow of particles
was also studied in Ref. [28], but again, channels, into
which particles flow, were assumed to be smooth. We are
now interested in setting up a counterflow system where a
two-lane flow of pedestrians is established, in which
particles keep left, or right, controlled by geometrical
parameters, as depicted in Figs. 1(b) and 1(c). Moreover,
we want this system to be more resilient to noise, as
compared to the results found for a smooth corridor with
H ¼ 0, so that the “freezing by heating” phenomenon is
avoided. To achieve this, we propose channel walls built as
a zigzag pattern [see Fig. 1(a)]. Each unit cell of that zigzag
pattern has a length L and consists of two pieces, of lengths
L1 and L2, so that L1 þ L2 ¼ L, and the asymmetry of this
wall ratchet can be quantified by b ¼ L=2 − L1. The depth
of the zigzag geometry is quantified by H, and length units
are written in terms of particle diameter.

III. RESULTS AND DISCUSSION

To measure how well the pedestrians keep left, we
introduce a lane-ordering parameter Φ defined as

Φ ¼ 1

N

XN

i¼1

vi;x · yi
jvi;x · yij

; ð4Þ

where yi and vi;x are the y component of the position and
the x component of the velocity of particle i, respectively.
Since y ¼ 0 is the central line of the channel [dashed line in
Fig. 1(a)], the argument of the sum is positive when most
particles keep left, and when they mostly keep right, then
the order parameter is negative. In the limiting cases of
Φ ¼ '1, the two types of particles flow completely
separated from each other in only two lanes, displaying
what we call here ordered states. Once the system achieves
one of those configurations, and noise is small enough, no
pedestrian enters in a “collision route” with any other, and
the system is stable. It is important to note that, at the
stationary regime in which collisions are not observed
anymore (in the absence of noise), the displacement speed
of pedestrians is the same for symmetric and asymmetric
channels.
In order to achieve these two maximally organized states,

we vary some geometrical parameters, namely, the depthH

and the asymmetry parameter b of the zigzag walls. We also
vary other parameters, namely, the drift velocity vd of the
pedestrians, the particle density ρ ¼ N=Ac (where Ac is the
total area of the channel, including the space in the zigzag
part), and the noise level θ. All other parameters, given in
Ref. [29], are kept fixed throughout our simulations.
Initially, nonoverlapping particles start moving within
the channel with random velocities and positions. Then,
the system evolves during 3 × 108 time steps, so the
influence of transient states is eliminated. The final
configurations, such as those depicted in Figs. 1(b)–1(d),
for different values of b, clearly show the ratchet effect on
the particle flow. When the walls are asymmetric, such as
those shown Fig. 1(b) (for b ¼ 8) and in Fig. 1(c) (for
b ¼ −8), yielding Φ ¼ 1 and Φ ¼ −1, respectively, par-
ticles flow completely segregated in a two-lane pattern.
However, in the symmetric case of b ¼ 0, as shown in
Fig. 1(d), particles flow through multiple lanes in the same
way as they do in the case of smooth channels, yielding
Φ ≈ 0. To investigate this ratchet effect, we compute the
average order parameter hΦi, taken over up to several
thousands of realizations for each set of parameters.
In Fig. 2, we show, for different drift velocities in

systems without noise, how the degree of asymmetry b
changes the lanes and induces preferential sides of the
particle flows in the channel. Interestingly, the larger vd, the
more abrupt the change between the ordered states,
Φ ¼ '1, as b changes. For large positive values of b,
we find hΦi ¼ 1; i.e., everybody is keeping left perfectly.
For large negative values of b, we find hΦi ¼ −1, corre-
sponding to everybody keeping right. Finally, there is a
mixed state for b close to zero, where no preferred side is
observed.

-8.0 -4.0 0.0 4.0 8.0
b

-1.0

-0.5

0.0

0.5

1.0

〈Φ
〉

vd = 4

vd = 6

vd = 8

FIG. 2. Average order parameter hΦi as a function of the
asymmetry parameter b, for three different values of the drift
velocity. We see that order is only induced for jbj > 0. The slower
vd, the higher jbj should be in order to achieve a two-lane pattern.
The remaining parameters, including the lack of noise, are the
same as in Fig. 1.
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The density also has a strong influence on the ordering of
the system, as can be seen in Fig. 3(a). We observe that, for
a fixed channel geometry, complete order is obtained for
intermediate densities. Three states can be clearly distin-
guished. For low densities, pedestrians interact only weakly
with the walls, and ordering is highly dependent on the drift
velocity. For larger densities and sufficiently large vd,
pedestrians do feel the walls enforcing strong ordering,
and the flow yields a value of hΦi ¼ 1. By increasing the
density further, the two-lane state is suppressed by too
many collisions, making hΦi approach zero.
In Fig. 3(a), we also observe that the region of density

giving perfect ordering depends on the drift velocity vd. For
instance, for vd ¼ 10, two-lane flow is obtained for
0.14 ≤ ρ ≤ 0.58. The effect of the drift velocity vd on
the size of this region can be investigated by estimating the
minimum (ρmin) and maximum densities (ρmax) at which
perfect ordering is observed, for different values of vd. As
shown in Fig. 3(b), these densities can be properly
described in terms of the power-law relation, ρmin ¼
17.6v−2.03d , and the “weak” linear relation, ρmax ¼
0.919 − 0.032vd. An approximate analytical treatment
(see Sec. II of Ref. [30]) predicts ρmin ∼ v−2d and no
dependence of ρmax on vd, both in excellent agreement
with the numerical results.
In our analytical treatment, we consider first a very dilute

system where collisions are very rare, and therefore,
downward movers and upward movers should be uniformly
distributed along the width, while no particles visit the
serrated sectors of the channel. Indeed, it is observed in our
numerical results that Φ ≈ 0 for ρ ≈ 0. However, as the
density increases, between-particle collisions become more
frequent. In this case, particles move towards the serrated
sectors, where they collide elastically either with the
steeper wall or with the wall whose slope is smaller,
depending on the direction of their drift velocity. As shown

in Ref. [30], y momentum after collision is a sinusoidal
function of 2 times the angle of the wall the particles collide
with. Then, for small H, collisions with the steeper wall
result in larger y momenta (pushing particles away to the
other side of the channel) than those from collisions with
the less steep wall (keeping particles close to this side of the
channel). The aftermath of such a ratchet effect is that
particles are led to move along the wall with which they
have the smaller y momentum after collision.
The fits obtained from the numerical results in Fig. 3

suggest that complete segregation of pedestrian flow can
only be achieved for 4.67≲ vd ≲ 28.09, where the two
limits correspond to the values at which the equations
obtained from the fits to the data of ρmin and ρmax against vd
meet. This result shows that, although the range of
intermediate densities for which hΦi ¼ 1 initially increases
with vd, for vd ≳ 4.67, it eventually starts to decrease and
finally comes to a collapse at vd ≈ 28.09.

0.0 0.2 0.4 0.6 0.8
ρ
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〈Φ
〉
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vd = 4
vd = 6
vd = 8
vd = 10

(a)
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vd
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ρ ρmin
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(b)

FIG. 3. Dependence of density on drift velocity for ordered states. In panel (a), the average order parameter hΦi is shown as a function
of the density for θ ¼ 0, b ¼ 8,H ¼ 2, and several values of the drift velocity vd. In panel (b), we show the maximum (red squares) and
minimum (black circles) densities for which hΦi ¼ 1, as functions of the drift velocity. A power-law fit for the minimum density yields
ρmin ¼ 17.6v−2.03d , whereas a linear fit for the maximum density gives ρmax ¼ 0.919 − 0.032vd. The equations extracted from the fits
meet at two points, namely, vd ≈ 4.67 and vd ≈ 28.09.
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FIG. 4. Average order parameter as a function of the particle
density, for θ ¼ 0, b ¼ 8, vd ¼ 6, and various values of the depth
H of the serrated region.
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We now consider the effect of changing the parameterH,
which, as shown in Fig. 1(a), represents the depth of the
serrated region. Figure 4 shows the behavior of the order
parameter as a function of the particle density for several
values of H, with θ ¼ 0, b ¼ 8, and vd ¼ 6. The case
H ¼ 0, which corresponds to a smooth channel, leads to
hΦi ¼ 0 regardless of ρ. For H ¼ 2 (a case also depicted in
Fig. 3), complete order, hΦi ¼ 1, can be observed for a
certain range of densities. This range becomes narrower as
the depth increases from H ¼ 2 to H ¼ 4. At H ¼ 6, a
fully organized two-lane state is no longer stable for any
density.
The results in Fig. 3 are obtained for a small value of H,

namely, H ¼ 2, for which the ordered region is always
characterized by hΦi ¼ 1. As shown in Fig. 4, by varyingH
we observe four phases. For the case of smooth channels,
H ¼ 0, no order is reached and hΦi ≈ 0. For small H,
namely, 2 ≤ H < 6, hΦi ¼ 1 is obtained for a certain range
of densities, whereas atH ¼ 6, the average order parameter
hΦi is approximately zero for all densities. When H
becomes larger than W, the corridor becomes more a
sequence of rooms, and then an inversion of the flux
directions occurs, as shown analytically and numerically in
Fig. S2 and Sec. II of Ref. [30], respectively.
In order to investigate the effect of noise, we choose a set

of parameters which, for the case of θ ¼ 0, leads the system
spontaneously to an ordered state with hΦi ¼ 1 as shown in
Fig. 5. For weak noise, i.e., for θ ≲ 1, an ordered state
appears as expected. However, as θ approaches unity, order
is destroyed and hΦi abruptly decreases, being approx-
imately 0.17 at θ ¼ 2. As noise increases further, hΦi
converges systematically to zero. The transition between
the two ordered states, i.e., from hΦi ¼ −1 to hΦi ¼ 1, as
the asymmetry parameter b changes from −8 to 8, becomes
more gradual for θ ≳ 1. The role of the noise is therefore to
drive the system to a completely random configuration,

where no lanes are formed (see Fig. S1 of Ref. [30]). Notice
that Φ ≈ 0 can be obtained both from multiple lanes [as
shown in Fig. 1(d)] or from random configurations, the
difference between these two states being characterized by
the intensity of noise. The system that once presented a
two-lane or a multilane pattern, depending on b, for small
θ, can no longer support such lane structures as θ increases.
Remarkably, and differently from what was found in
Ref. [8] for smooth channels, we do not observe any
“freezing by heating effect.” Thus, the ratchet effect acts on
the system not only to keep particles on one side but also to
avoid clogging, as shown in Fig. S1 of Ref. [30].
We also investigate the effect of “stubborn” pedestrians

on the flow. This is performed by first considering a set of
parameters for which we know that the flow naturally
evolves to a stationary regime, where all pedestrians keep
left. Then, we choose a fraction c of the pedestrians to be
“stubborn keep-right.” These pedestrians always insist to
walk on the right-hand side of the channel. Half of these
stubborn pedestrians are upward movers, and the other half
are downward movers. The order parameter is computed as
in Eq. (4), but now the summation only runs over regular
(nonstubborn) pedestrians. According to these new results
(see Sec. III and Figs. S4 and S5 of Ref. [30]), the presence
of stubborn pedestrians can either completely destroy the
keep-left traffic or can impose no effect at all. It all depends
on the level of stubbornness, i.e., the willpower of a
stubborn pedestrian to walk on the right-hand side.

IV. CONCLUSIONS

Our computational and analytical results therefore show
that asymmetric zigzag walls induce pedestrians to keep on
one side. For small fluctuations, this flow pattern is stable
since few collisions between pedestrians are observed. For
high fluctuations, however, this configuration is no longer
stable. Although a two-lane pattern is no longer supported
for strong noises, pedestrians can still flow rather than clog,
in contrast to what is often observed in smooth channels.
The tendency to keep left also depends on a certain range of
asymmetry, wall depth, drift velocity, and density. We have
found, for the case without noise, that this state can only be
achieved for drift velocities in the range 4.67≲ vd ≲ 28.09
and for ratchet depths of the wall in the range 2 ≤ H < 6,
where hΦi ¼ 1, or H > 6, where hΦi ¼ −1. H ¼ 6 is a
crossover between hΦi ¼ 1 and hΦi ¼ −1. We propose
that our zigzag wall design might be used in pedestrian
corridors as well as in microfluidic applications. Finally, it
is worth mentioning that, for some conditions, the flow of
pedestrians may exhibit hysteresis behavior. For instance,
increasing and decreasing the number of pedestrians with
time, instead of starting with a random configuration as we
do here, may carry some “memory” of the state of the
system and hence produce differentΦ × ρ curves, when ρ is
increased or decreased. Besides, noise can play a role. For
instance, after a system has reached a steady state with
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FIG. 5. Average order parameter as a function of θ, for ρ ¼ 0.6,
b ¼ 8, vd ¼ 6, and H ¼ 2. The inset shows the crossover from
hΦi ¼ −1 to hΦi ¼ 1 as b changes from −8 to 8, for different
values of θ.
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Φ ¼ 1 and b ¼ 8, changing b continuously with time to −8
may eventually allow the system to be reorganized with
Φ ¼ −1, if noise is large enough. These possibilities to find
hysteresis in pedestrian dynamics will be explored in
future work.
Previous work [8] has shown that partial counterflow

organization can be disturbed by thermal noise, leading to
clogging. Here, we have demonstrated the novel concept
that by changing the geometry of the channel, not only are
clogging effects avoided but also full ordering of counter-
flow is achieved. In particular, we have shown that the
asymmetric shape of the walls allows imposing a favorite
direction, caused by the different angles with which objects
collide against the wall coming either from the left or from
the right. This has clear implications for the design of highly
efficient separation devices with potential application to a
range of situations spanning several length scales, from
pedestrian flow, to granular matter, and to microfluidics,
where, for instance, lane formation is observed for oppo-
sitely charged colloidal particles in the presence of an
electric field [10,11]. In summary, from an entirely micro-
dynamical perspective, our work unveils that exquisite
ordered states, like the two-lane formation observed here,
can emerge as a consequence of a very fine trade-off between
local geometrical details of the system and the effective
interactions among its many elementary constituents.
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