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Abstract

We solve a model of polymers represented by self-avoiding walks on a lattice which may visit

the same site up to three times in the grand-canonical formalism on the Bethe lattice. This may

be a model for the collapse transition of polymers where only interactions between monomers at

the same site are considered. The phase diagram of the model is very rich, displaying coexistence

and critical surfaces, critical, critical endpoint and tricritical lines, as well as a multicritical point.

From the grand-canonical results, we present an argument to obtain the properties of the model in

the canonical ensemble, and compare our results with simulations in the literature. We do actually

find extended and collapsed phases, but the transition between them, composed by a line of critical

endpoints and a line of tricritical points, separated by the multicritical point, is always continuous.

This result is at variance with the simulations for the model, which suggest that part of the line

should be a discontinuous transition. Finally, we discuss the connection of the present model with

the standard model for the collapse of polymers (self-avoiding self-attracting walks), where the

transition between the extended and collapsed phases is a tricritical point.
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I. INTRODUCTION

Polymers may be modelled as self-avoiding walks on a lattice. Each walk visits a sequence

of first-neighbor lattice sites and may be viewed as a chain of monomers located on the lattice

sites linked by bonds on the lattice edges. This model was already considered by Flory in

his pioneering work on polymers [1], and later De Gennes discovered a mapping between

this model and the n-vector model of magnetism in the formal limit n → 0, which allowed

him to apply the renormalization group formalism to this problem [2]. The ideas of scaling

and universality are very important in this field [3].

If the polymer is placed in a poor solvent, the interactions between the molecules

(monomer-monomer, monomer-solvent, and solvent-solvent) penalize energetically the

monomer-solvent contacts. In a lattice model, this may be studied considering an effec-

tive attractive interactions between monomers located on first-neighbor sites of the lattice

which are not consecutive along a chain. These interactions compete with the repulsive ex-

cluded volume interactions (which lead to the self-avoidance constraint), and at sufficiently

low temperatures the chain may undergo a collapse transition, from an extended to a more

compact configuration. For example, the exponent ν which describes the behavior of the

mean square end-to-end distance of the chain as a function of the molecular weight (number

of monomers) M , 〈R2〉 ≈ M2ν , changes from a larger value in the extended configuration to

1/d, where d is the dimensionality of the lattice, in the collapsed state. The temperature at

which this transition happens is called the θ-temperature [1]. It turns out to be particularly

interesting to consider this model of self-attracting self-avoiding walks (SASAW’s) in the

grand-canonical ensemble [3], since the polymerization transition in the chemical potential

× temperature phase diagram is found to change from continuous, at high temperatures

to discontinuous below the θ-temperature. This is consistent with the description of the

behavior of the exponent ν above, since at the transition the density of monomers vanishes

for T > Tθ and is finite for T < Tθ. Thus, the θ-point may be recognized as a tricritical

point. Much is known about this tricritical point in two dimensions [5] and its exact tricrit-

ical exponents were found through the study of a diluted polymerization model [6]. On the

square lattice, for a model where the attractive interactions are between bonds of the chain

on opposite edges of elementary squares, there are indications that an even richer phase

diagram is found, with an additional dense polymerized phase [7, 8].
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Some time ago, a model was introduced to study interacting polymers where only one-

site interactions are present [9], in opposition to the usual SASAW’s model, where we have

interactions between monomers at first-neighbor sites. Usually lattice models for fluids may

be viewed as a consequence of the partition of space into small cells (cellular model), of

molecular size. In the SASAW’s model, such a cell may be occupied by a single monomer

or empty. Now if the cells are larger, they may be occupied by more than one monomer (we

will call this the multiple monomers per site (MMS) model) , and the interactions may be

supposed to occur only between monomers in the same cell. If the bonds are larger than the

size of the cells, two monomers in the same cell may not be connected by a bond. Thus, in

the new model each lattice site may be either empty or occupied by 1, 2, . . . , K monomers,

and an attractive interaction exists between each pair of monomers on the same site. This

model may be viewed as a generalization of the Domb-Joyce model, where also multiple

monomers may be placed on the same lattice site [10]. In [9] two versions of the model were

studied using canonical simulations: in the RA (immediate reversals allowed) model there

are no additional restrictions on the walks, but in the RF (immediate reversals forbidden)

model configurations where the walk leaves one site, reaches a first neighbor and returns to

the original site are not allowed. The simulation lead to particularly interesting results for

the RF model on the cubic lattice, with two distinct collapse transitions present in the phase

diagram. The precise nature of these transitions, as well as the nature of the multicritical

point where the two transition lines meet, could not be found, although one of the collapse

transitions seems to be discontinuous.

Recently, the RF and RA models in the grand-canonical ensemble were solved on the

Bethe lattice [11] for the case K = 2. The parameter space for this model is defined by

the statistical weights ωi, i = 1, 2, of sites occupied by i monomers (the weight of empty

sites is equal to one). In the solution of the RF model the continuous polymerization

transition at high temperatures ended at a tricritical point, similar to what is observed for

the SASAW’s model. An additional polymerized phase (DO) appears at higher values of the

statistical weight of double occupied sites ω2, where only empty and double-occupied sites

are present. Later, the RF model, still for K = 2, was solved on the Husimi lattice [12].

It is expected that this solution should be closer to the thermodynamic behavior observed

on regular lattices. The phase diagram found is similar to the one obtained in the Bethe

lattice solution, although the region of stability of the DO phase is smaller. It is also worth
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to mention that a rather unphysical result found on the Bethe lattice, where the tricritical

collapse transition point is found for vanishing interactions between monomers, is corrected

in the Husimi lattice, where this point is located in the region of attractive interactions, as

expected.

In this paper we solve the model for K = 3 on the Bethe lattice. This generalization of the

previous work allows us to compare our results with the simulations described by Krawczyk et

al [9]. Actually, the correspondence between the canonical ensemble, in which the simulations

were done, and the grand-canonical ensemble used in this paper is not straightforward for the

polymer models, and we will discuss this matter in detail below. Basically, to compare the

grand-canonical results to the behavior of the model in the canonical situation, we consider

that when the polymers are placed in an excess of solvent (dilute situation), we actually

have them coexisting with the pure solvent phase, which corresponds to the non-polymerized

phase, stable in the grand-canonical solution for low values of the monomer activity. The

density of the coexisting polymer phase may vanish, and therefore we have a critical situation

associated to extended polymers, or may be finite, corresponding to collapsed polymers.

In the present calculations, we considered the monomers located on the same site to be

indistinguishable, as was done in the previous work [12], and in opposition to the calculations

done in [11], where the distinguishable case was treated. One of the reasons to do so is that

the simulations presented in [9] were also performed for the indistinguishable case. Another

additional point which we address is the location of coexistence surfaces in the phase diagram

of models solved on hierarchical lattices such as the Bethe lattice. In the previous calculations

of the MMS model on treelike lattices, the recursion relations were used directly to find the

coexistence loci iterating them with initial conditions defined by the parameters of the model,

a procedure proposed in [8]. Although this procedure has considerable physical appeal, it is

not granted that the results furnished by it will be consistent with the ones provided by free-

energy calculations. Actually, in more complex models the ‘natural’ initial conditions (NIC)

may not be unique and there is the possibility that different locations for the coexistence

surface are obtained for different reasonable choices of these conditions. Therefore, in the

present calculations we decided to adopt a definition for the bulk free energy per site which

was proposed some time ago by Gujrati [13] and has lead to the same results as other methods

based on more solid foundations, such as the integration over the order parameter, in models

where it is possible to perform these calculations. We found that in the present model the
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revision of the procedure to find the coexistence surfaces actually lead to qualitative changes

in the phase diagram, thus showing that the NIC method adopted before may actually lead

to results which are not close to the ones provided by more reliable calculations.

In section II the model is defined in more detail and its solution on the Bethe lattice is

obtained. The thermodynamic behavior of the model is presented in section III. In section

IV, we discuss the relation between the grand-canonical and the canonical behavior of the

model, comparing the results of the present calculation with the finding of the simulations

performed by Krawczyk et al [9]. Final discussions may be found in section V. Some

more results and discussions concerning the location of coexistence surfaces on Bethe lattice

solutions have been placed in the appendix A, and the determination of the multicritical

point in the parameter space may be found in the appendix B.

II. DEFINITION OF THE MODEL AND SOLUTION IN TERMS OF RECUR-

SION RELATIONS

We consider self- and mutually avoiding walks on a Cayley tree with arbitrary coordina-

tion number q, imposing the constraint which forbids immediate reversals. The endpoints

of the walks are placed on the surface of the tree. The grand-canonical partition function of

the model will be given by:

Y =
∑

ωN1

1 ωN2

2 ωN3

3 (1)

where the sum is over the configurations of the walks on the tree, while Ni , i = 1, 2, 3 is

the number of sites visited i times by the walks or, in other words, the number of sites with

i monomers in the configuration. Thus, ωi, i = 1, 2, 3 are the statistical weights of a site

visited i times or, in other words, with i monomers placed on them. In Fig. 1 a contribution

to the partition function is shown.

As usual, to solve the model on the Bethe lattice we start considering rooted subtrees of

the Cayley tree, defining partial partition functions for them, where we sum over all possible

configurations for a fixed configuration of the root of the subtree. We thus define four partial

partition functions gi , i = 0, 1, 2, 3, where i corresponds to the number of polymer bonds

placed on the root edge of the subtree. The subtrees are shown in Fig. 2.

Actually, it is important to discuss a point about these choice for the partial partition

functions. For the ones with multiple bonds at the root edge (g2 and g3) a distinction

6



FIG. 1: (Color online) A contribution to the partition function of the model on a Cayley tree with

q = 4 and 3 generations. The weight of this contribution will be ω6
1ω

3
2ω

4
3.

FIG. 2: Illustration of the rooted subtrees which correspond to the partial partition functions.

should be made between the situations where two or more bonds are distinguishable or not,

since this distinction is important when we will define the combinatorial coefficients in the

recursion relations below. A pair of bonds which are indistinguishable corresponds to the

situation where both chains visit the same sequence of sites since the surface of the tree.

Therefore, g2 should be split into two different partial partition functions and three cases

should be considered for g3. Thus, the total number of partial partition functions would be

equal to seven. However, we found out that it is sufficient to consider only the case where

all bonds are distinguishable, since the ratios of gi/g0 where gi is a partial partition function

of a configuration with indistinguishable bonds all vanish at the relevant fixed points of the

recursion relations defined below, which corresponds to the thermodynamic behavior of the

model. Actually, there are two fixed points where the density of edges with one polymer bond

on them vanishes, and for the phases associated to these fixed points (the DO and TO fixed

points described below) the inclusion of indistinguishable polymer bonds in the recursion
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relations leads to different results, since their density does not vanish in the thermodynamic

limit. However, we found that these phases will never be the one with lowest free energy in

any point of the parameter space, and thus if we do not include indistinguishable bonds in

our discussion this will not imply any change in the phase diagram. Therefore, we decided,

for simplicity, to restrict the discussion of the model to the case of distinguishable bonds only.

In other words, in the limit of an infinite tree, chains with indistinguishable bonds will never

reach the central region of the tree if the density of edges with single polymer bonds does

not vanish in this region. This may be understood if we notice that in the recursion relations

for partial partition functions with indistinguishable bonds there are always configurations

connecting them to other configurations without those bonds, provided single bonds are

incident at the same site, but never the opposite happens, so it is not surprising that these

contributions vanish at the fixed points. We will discuss this point in some more detail below,

when the recursion relations for the partial partition functions will be obtained. Also, we

notice that if we would adopt that the surface sites of the tree should not be occupied by

two monomers, we never would have indistinguishable bonds at any stage of the iteration,

but in treelike structures like the Bethe lattice it is not granted that such a constraint will

not influence the phase diagram of the model.

We then proceed obtaining recursion relations for the partial partition functions, by

considering the operation of attaching q − 1 subtrees with a certain number of generations

to a new root site and edge, thus building a subtree with an additional generation. Below

the recursion relations are presented. In general, we have g′
i =

∑

j g′
i,j , where the primes

denote the partial partition function on the subtree with one more generation. Whenever

appropriate, the contributions to the sums begin with a product of two numerical factors, the

first of which is the multiplicity of the configuration of the incoming bonds and the second is

the multiplicity of the connections with the monomers located at the new site. As discussed

in the introduction, we consider the monomers to be indistinguishable, in opposition to what

we did in the particular case K = 2 of the RF model we have studied before [11]. Actually, in

the recursion relations below, to obtain the results for the case of distinguishable monomers

one simply has to replace ω2 by 2ω2 and ω3 by 6ω3. The recursion relation for g0 is the sum
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of the contributions:

g′
0,1 = gq−1

0 , (2a)

g′
0,2 =

(

q − 1

2

)

× 1 ω1 gq−3
0 g2

1, (2b)

g′
0,3 =

(

q − 1

4

)

× 3 ω2 gq−5
0 g4

1, (2c)

g′
0,4 = 3

(

q − 1

3

)

× 2 ω2 gq−4
0 g2

1 g2, (2d)

g′
0,5 =

(

q − 1

2

)

× 2 ω2 gq−3
0 g2

2, (2e)

g′
0,6 =

(

q − 1

6

)

× 15 ω3 gq−7
0 g6

1, (2f)

g′
0,7 = 5

(

q − 1

5

)

× 12 ω3 gq−6
0 g4

1 g2, (2g)

g′
0,8 = 6

(

q − 1

4

)

× 10 ω3 gq−5
0 g2

1 g2
2, (2h)

g′
0,9 =

(

q − 1

3

)

× 8 ω3 gq−4
0 g3

2, (2i)

g′
0,10 = 4

(

q − 1

4

)

× 6 ω3 gq−5
0 g3

1 g3, (2j)

g′
0,11 = 6

(

q − 1

3

)

× 6 ω3 gq−4
0 g1 g2 g3, (2k)

g′
0,12 =

(

q − 1

2

)

× 6 ω3 gq−3
0 g2

3, (2l)

(2m)
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The monomials in the recursion relation for g′
1 are:

g′
1,1 = (q − 1) × 1 ω1 gq−2

0 g1, (3a)

g′
1,2 =

(

q − 1

3

)

× 3 ω2 gq−4
0 g3

1, (3b)

g′
1,3 = 2

(

q − 1

2

)

× 2 ω2 gq−3
0 g1 g2, (3c)

g′
1,4 =

(

q − 1

5

)

× 15 ω3 gq−6
0 g5

1, (3d)

g′
1,5 = 4

(

q − 1

4

)

× 12 ω3 gq−5
0 g3

1 g2, (3e)

g′
1,6 = 3

(

q − 1

3

)

× 10 ω3 gq−4
0 g1 g2

2, (3f)

g′
1,7 = 3

(

q − 1

3

)

× 6 ω3 gq−4
0 g2

1 g3, (3g)

g′
1,8 = 2

(

q − 1

2

)

× 6 ω3 gq−3
0 g2 g3 . (3h)

Let us illustrate the differences in the recursion relations when indistinguishable bonds

are included considering, for instance, the contribution 3c above. In this contribution, a

edge with two bonds and another with a single bond reach the root site from above, and

a single polymer bond proceeds to the root edge. Therefore, one of the polymer bonds

of the double bonded edges is connected to the bond at the root, while the other one is

linked to the other bond coming from above. If the bonds in the double bonded incoming

edge are distinguishable, there are two distinct linking configurations, thus leading to the

second factor 2 in the recursion relation. If the polymer bonds on the same edge were

indistinguishable, this factor would be unitary, and it is worth noting that this contribution

would end a chain of double bonds which has started at the surface of the tree, splitting it

into two edges with single bonds.
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For g′
2 we find the contributions:

g′
2,1 =

(

q − 1

2

)

× 1 ω2 gq−3
0 g2

1, (4a)

g′
2,2 = (q − 1) × 1 ω2 gq−2

0 g2, (4b)

g′
2,3 =

(

q − 1

4

)

× 6 ω3 gq−5
0 g4

1, (4c)

g′
2,4 = 3

(

q − 1

3

)

× 5 ω3 gq−4
0 g2

1 g2, (4d)

g′
2,5 =

(

q − 1

2

)

× 4 ω3 gq−3
0 g2

2, (4e)

g′
2,6 = 2

(

q − 1

2

)

× 3 ω3 gq−3
0 g1 g3 . (4f)

Finally, the contributions to the recursion relations for g′
3 are

g′
3,1 =

(

q − 1

3

)

× 1 ω3 gq−4
0 g3

1, (5a)

g′
3,2 = 2

(

q − 1

2

)

× 1 ω3 gq−3
0 g1 g2, (5b)

g′
3,3 = (q − 1) × 1 ω3 gq−2

0 g3. (5c)

The partial partition functions often grow exponentially with the number of iterations ,

so that we may now define ratios of the partial partition functions R1 = g1/g0, R2 = g2/g0.

and R3 = g3/g0, and write the recursion relations for these ratios, which usually remain
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finite in the thermodynamic limit. The results are:

R′
1 =

1

D

[

(q − 1) ω1 R1 + 3

(

q − 1

3

)

ω2 R3
1 +

4

(

q − 1

2

)

ω2 R1 R2 + 15

(

q − 1

5

)

ω3 R5
1 + 48

(

q − 1

4

)

ω3 R3
1 R2 +

30

(

q − 1

3

)

ω3 R1 R2
2 + 18

(

q − 1

3

)

ω3 R2
1 R3 + 12

(

q − 1

2

)

ω3 R2 R3

]

, (6a)

R′
2 =

1

D

[(

q − 1

2

)

ω2 R2
1 + (q − 1) ω2 R2 + 6

(

q − 1

4

)

ω3 R4
1 +

15

(

q − 1

3

)

ω3 R2
1 R2 + 4

(

q − 1

2

)

ω3 R2
2 + 6

(

q − 1

2

)

ω3 R1 R3

]

, (6b)

R′
3 =

ω3

D

[(

q − 1

3

)

R3
1 + 2

(

q − 1

2

)

R1 R2 + (q − 1) R3

]

. (6c)

where

D = 1 +

(

q − 1

2

)

ω1 R2
1 + 3

(

q − 1

4

)

ω2 R4
1 + 6

(

q − 1

3

)

ω2 R2
1 R2 +

2

(

q − 1

2

)

ω2 R2
2 + 15

(

q − 1

6

)

ω3 R6
1 + 60

(

q − 1

5

)

ω3 R4
1 R2 +

60

(

q − 1

4

)

ω3 R2
1 R2

2 + 8

(

q − 1

3

)

ω3 R3
2 + 24

(

q − 1

4

)

ω3 R3
1 R3 +

36

(

q − 1

3

)

ω3 R1 R2 R3 + 6

(

q − 1

2

)

ω3 R2
3 . (7)

The partition function of the model on the Cayley tree may be obtained if we consider

the operation of attaching q subtrees to the central site of the lattice. The result is:

Y = gq
0 +

(

q

2

)

ω1 gq−2
0 g2

1 + 3

(

q

4

)

ω2 gq−4
0 g4

1 + 6

(

q

3

)

ω2 gq−3
0 g2

1 g2 +

2

(

q

2

)

ω2 gq−2
0 g2

2 + 15

(

q

6

)

ω3 gq−6
0 g6

1, + 60

(

q

5

)

ω3 gq−5
0 g4

1 g2 +

60

(

q

4

)

ω3 gq−4
0 g2

1 g2
2 + 8

(

q

3

)

ω3 gq−3
0 g3

2 + 24

(

q

4

)

ω3 gq−4
0 g3

1 g3 +

36

(

q

3

)

ω3 gq−3
0 g1 g2 g3 + 6

(

q

2

)

ω3 gq−2
0 g2

3 . (8)

Using the partition function above, we then proceed calculating the densities at the

central site of the tree. The density of monomers is given by:

ρ = ρ1 + ρ2 + ρ3 =
P

T
+

2Q

T
+

3S

T
, (9)
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where:

T = 1 + P + Q + S, (10)

and

P = ω1

(

q

2

)

R2
1, (11a)

Q = ω2

[

3

(

q

4

)

R4
1 + 6

(

q

3

)

R2
1 R2 + 2

(

q

2

)

R2
2

]

. (11b)

S = ω3

[

15

(

q

6

)

R6
1, + 60

(

q

5

)

R4
1 R2 +

60

(

q

4

)

R2
1 R2

2 + 8

(

q

3

)

R3
2 + 24

(

q

4

)

R3
1 R3 +

36

(

q

3

)

R1 R2 R3 + 6

(

q

2

)

R2
3

]

. (11c)

III. THERMODYNAMIC PROPERTIES OF THE MODEL

A. Fixed points

The thermodynamic phases of the system on the Bethe lattice will be given by the

stable fixed points of the recursion relations, which are reached after infinite iterations and

thus correspond to the thermodynamic limit. We find five different fixed points, which are

described below:

1. Non-polymerized (NP) fixed point:

This fixed point is characterized by RNP
1 = RNP

2 = RNP
3 = 0, and therefore all

densities vanish. In order to study the stability region in the parameter space for this

fixed point, we consider the Jacobian:

Ji,j =
∂R′

i

∂Rj

∣

∣

∣

∣

R1=R2=R3=0

=





















(q − 1) ω1 0 0

0 (q − 1) ω2 0

0 0 (q − 1) ω3





















, (12)
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and the region of the parameter space for which the largest eigenvalue of the Jacobian

is smaller than one and therefore the NP phase is stable, is the one for which the

three inequalities below are simultaneously satisfied:

ω1 <
1

q − 1
; ω2 <

1

q − 1
; and ω3 <

1

q − 1
. (13)

2. Double occupancy (DO) fixed point:

In this fixed point the ratios are given by R1 = R3 = 0 and R2 = RDO
2 6= 0. The fixed

point value of R2 will be one of the solutions of the cubic equation:

8

(

q − 1

3

)

ω3 [RDO
2 ]3 + 2

(

q − 1

2

)

ω2[R
DO
2 ]2 − 4

(

q − 1

2

)

ω3 RDO
2 − (q−1) ω2 + 1 = 0.

(14)

For q = 3 the cubic term of the equation vanishes and a simple expression is found for

the fixed point value of R2:

R
(DO)
2;q=3 =

2 ω3 ±
√

(4 ω3)2 + 2 (2 ω2 − 1)ω2

2 ω2

. (15)

It is worth noticing that this fixed point does not disappear when ω2 = 0, ω3 6= 0.

Actually, in general it corresponds to a double occupancy of bonds and not necessarily

of sites. Also, it is easy to obtain the elements of the Jacobian at this fixed point, as

a function of the statistical weights and RDO
2 .

3. Triple occupancy (TO) fixed point:

At this fixed point, we have R1 = R2 = 0 ; R3 = RTO
3 6= 0, and the fixed point value

of the ratio R3 is given by:

RTO
3 =

√

(q − 1) ω3 − 1

3(q − 1)(q − 2) ω3

, (16)

The Jacobian for this fixed point will be

J
(TO)
i,j =

∂R′
i

∂Rj

∣

∣

∣

∣

TO

=























ω1

ω3

√

3 (q−2) [(q−1) ω3−1]
(q−1) ω3

0

√

12(q−2) [(q−1) ω3−1]
(q−1) ω3

ω2

ω3

0

0 0 2
(q−1) ω3

− 1























. (17)
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We found two additional fixed points which display all ratios different from zero. There

exists a region in the parameter space where both are stable, thus a coexistence surface

of both regular polymerized phases is found, as will be seen below. The two phases

are:

4. Regular polymerized (P1) fixed point:

This phase is stable in a region situated at ω1 > 1
q−1

and for small values of ω3

5. Regular polymerized (P2) fixed point:

This fixed point is stable for sufficiently large values of ω3. At the coexistence surface

of both regular polymerized phases, P1 is more anisotropic than P2, in the sense that

in the former R1, R2 ≫ R3 and ρ1 ≫ ρ2, ρ3, while in phase P2 ratios and densities are

more balanced.

In some fixed points (mainly in the last two), we were unable to perform an analytic study

of the Jacobian as a function of the statistical weights, but it is easy to obtain numerically

the matrix elements as functions of these weights and the fixed point values of the ratios. In

this way, we obtained the stability limits (spinodals) of the five fixed points (or phases), in

order, to characterize the transitions between them. As we are dealing with three parameters,

the spinodals are surfaces in the parameter space (ω1, ω2, ω3). The continuous transitions

(surfaces, lines or points) happen in the regions where the spinodals of the different phases

are coincident. The coexistence surfaces are bounded by the spinodals, but for their precise

location in the parameter space it is necessary to obtain the bulk free energy of the Bethe

lattice solution.

B. Free energy

It is useful, particularly to find the coexistence surfaces in the phase diagrams, to calculate

the free energies of the various thermodynamic phases of the model. One possibility would

be to perform the Maxwell construction, and actually this was done for similar models some

time ago [7], but this procedure would be awkward in the present case, particularly in regions

of the parameter space where more than two fixed points are stable. A simple way to find the

coexistence region [8] is just to iterate the recursion relations starting with ‘natural’ initial
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conditions, that is, using initial values for the ratios which correspond to a reasonable choice

for the configurations at the surface of the Cayley tree. Actually, we used this procedure in

our recent works on the K = 2 case of the present model [11, 12]. Although this procedure

has a considerable physical appeal, is simple and leads to reasonable results, we were not

able to justify it starting from basic principles. In particular, for more complex models, the

‘natural’ initial conditions may not be unique, and different choices for them could lead to

different results for the locus of coexistence. On the other side, the Maxwell construction

follows directly from the recursion relations, being therefore independent from the choice of

initial conditions for the iterations. So we decided to use a procedure described by Gujrati

[13] to find the free energy of the thermodynamic phases.

We will briefly discuss Gujrati’s argument, in a version appropriate for the present model.

We consider the grand-canonical free energy of the model on the Cayley tree with M genera-

tions Φ̃M = kBT ln YM , where T is the absolute temperature and kB stands for Boltzmann’s

constant. We may then define a reduced adimensional free energy ΦM = Φ̃M/kBT . It is

usual in finite size scaling arguments to consider the free energy per site on regular lattices

to be different for sites on the surface and in the bulk of the lattice. Here we will make a

similar ansatz, and suppose the reduced free energy per site to be the same for all sites of

the same generation of the Cayley tree. Let us number the generations starting at 0 for the

surface of the tree, and define φ0 as the reduced free energy per site for the q(q − 1)M−1

sites on the surface of the M-generations tree, φ1 will be the free energy per site for the

q(q − 1)M−2 sites the first generation and so on. We may then write the total free energy of

the Cayley tree as:

ΦM = q(q − 1)M−1φ0 + q(q − 1)M−2φ1 + ... + qφM−1 + φM , (18)

where φM is the reduced free energy of the central site of the tree, which is the one which

should correspond to the Bethe lattice solution of the model. We may now write a similar

expression for a tree with M +1 generations, assuming a homogeneity condition which states

the free energy per site for sites of the same generation of the two trees to be the same, so

that:

ΦM+1 = q(q − 1)Mφ0 + q(q − 1)M−1φ1 + ... + qφM + φM+1, (19)

By inspection, we may readily realize that ΦM+1 − (q − 1)ΦM = φM + φM+1. If we now
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consider that in the thermodynamic limit M → ∞ the free energies of the central sites of

both trees should be the same, that is φM+1 = φM = φb, where φb is the bulk free energy

per site which corresponds to the Bethe lattice solution, we have ΦM+1 − (q − 1)ΦM = 2φb,

so that the reduced free energy per site for the Bethe lattice is:

φb = −1

2
lim

M→∞
ln

(

YM+1

Y
(q−1)
M

)

. (20)

This result is equivalent to the expression (3) in reference [13], although here we are consid-

ering a less general situation than the original work.

Evaluating the ratio of partition functions in the expression above for the reduced bulk

free energy at the fixed point, we find that:

lim
M→∞

YM+1

Y
(q−1)
M

=
Dq

(1 + P + Q + S)q−2
(21)

and therefore we have:

φb = −1

2
[q ln D − (q − 2) ln y] (22)

where y = 1 + P + Q + S and D are calculated at the fixed point M → ∞.

C. Phase diagrams

Using the spinodals to find the continuous transitions and the free energy to determine

the coexistence surfaces we are able to build the whole phase diagram of the system. We

will show some cuts of the phase diagram for q = 4, as well as a perspective of the whole

diagram in the three-dimensional parameter space.

The diagram for ω3 = 0 (K = 2) is shown in Fig. 3. For small values of ω2 we find

a continuous transition, between the phases NP and P2, which ends at a tricritical point

(TCP) located at ωTCP
1 = 1

(q−1)
and ωTCP

2 = 1
(q−1)2

, as found in [11]. Above the tricritical

point the transition becomes discontinuous. Here it is important to stress that this particular

case (ω3 = 0) was studied in [11], considering distinguishable monomers and using the NIC

method to find the coexistence lines. There three “stable“ phases were found: NP, P and DO,

however, here (using the free energies) we find only two stable phases: NP and P2. Indeed,

the DO fixed point is stable in a region of the parameter space, but the corresponding phase

is never the one with the lowest free energy, that is, its free energy is always greater than
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FIG. 3: (Color online) Phase diagram for ω3 = 0. The dashed (red) curve is a first order transition

and the full (black) line is a continuous transition between the NP and P phases. The tricritical

point TCP, represented by a square (blue), separates the two transition lines. This and the following

diagrams were all obtained for q = 4.

that of the phases P2 or NP. In the same way, the TO phase is never the most stable in any

region of the phase diagram, although, if we use the NIC method it appears to be stable for

small values of ω1 and ω2 and large ω3. A detailed discussion of this point may be found the

appendix A.

In the ω2 = 0 plane, we found a very rich phase diagram, as is shown in Fig. 4 For

ω1 < 1
(q−1)

we find a first order transition between the phases NP and P2. At ω1 = 1
(q−1)

,

there is a continuous transition line between the phases NP em P1, this critical line ends

at a critical endpoint (CEP). In the ω1 > 1
(q−1)

region we have a discontinuous transition

between the phases P1 and P2 and this coexistence line ends at a critical point (CP).

In Fig. 5, we show several diagrams, in the (ω2, ω3) space, for different values of ω1.

For ω1 = 0 (a) there is only a single coexistence line between the NP and P2 phases.

Similar diagrams are obtained for all ω1 < 1
(q−1)

. For ω1 = 1
(q−1)

(b) we have a critical

surface (continuous transition) separating the NP and P1 phases. This surface is limited

by a critical endpoint line and a tricritical line, and these two lines meet at a multicritical

point (MCP). The multicritical point is located at ωMCP
1 = 1

(q−1)
, ωMCP

2 = 1
(q−1)2

and

ωMCP
3 = 1

(q−1)3
, its location is determined in the appendix B. The tricritical point line lies

at constant ω1 = ωMCP
1 and ω2 = ωMCP

2 , and 0 ≤ ω3 ≤ ωMCP
3 . For ω1 > 1

(q−1)
(c) we

have a discontinuous transition between the phases P1 and P2 and this coexistence surface
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FIG. 4: (Color online) Phase diagram for ω2 = 0. The dashed curve located left of the critical

endpoint (CEP) (red) is a coexistence line between the phases NP and P2, and at the dashed curve

right of the CEP (violet) phases P1 and P2 coexist. These two phases become indistinguishable

at the critical point (CP) represented by a (purple) circle. Phases NP and P1 are separated by a

continuous transition, represented by the (black) full line. This line meets the coexistence line at

a critical endpoint (CEP), represented by a (green) square.

ends at a critical line. The critical line starts at the multicritical point and the value of ω2

at the line decreases as ω1 and ω3 increase, so that the P1-P2 coexistence surface ends at

ω1 = 0.608762(1), ω2 = 0 and ω3 = 0.121132(1). Also, to illustrate the discussion of the

differences in both regular polymerized phases, we show in Fig. 6 the fixed point values of

the densities as functions of ω3 for ω1 = 0.4 and ω2 = 0.02 (dashed line in phase diagram c)

in Fig. 5).

A sketch of the whole three-dimensional phase diagram is shown in Fig. 7 and this

summarizes all the features discussed in the two-dimensional cuts of the phase diagram

presented above.

IV. COMPARISON WITH THE CANONICAL SIMULATIONS

The K = 3 version of the model were originally studied by Krawczyk et al. [9] using

Monte Carlo simulations. The simulations were performed considering a chain of constant

size placed on an infinite lattice, so that they are in the canonical ensemble. To compare

our grand-canonical results with the simulations we have to map our phase diagram to the

canonical one. In this particular case, the usual procedure does not work because in the
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FIG. 5: (Color online) Phase diagrams for: a) ω1 = 0, b) ω1 = 1/3 and c) ω1 = 0.40. The dashed

curves are discontinuous transitions between phases NP and P2 (red) in a) and phases P1 and P2

(violet) in c). At the dotted line in c) the densities shown in Fig. 6 were calculated.

canonical simulation, as well as in experiments with diluted chains in a solvent, the canonical

system is not homogeneous, but is composed by isolated chains in an excess of solvent (empty
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FIG. 6: (Color online)Densities as functions of ω3 for ω1 = 0.4 and ω2 = 0.02. Notice values at the

coexistence of phases P1 and P2.

FIG. 7: (Color online) Sketch of the three-dimensional phase diagram. The first order transition

surfaces: NP-P2 (red) and P1-P2 (violet), limited by dashed lines, are shown.

lattice sites). Therefore, we may say that in the simulations the polymer coexists with the

empty lattice, namely, we have two phases coexisting: one of them polymerized (the polymer

itself and the empty lattice sites close to it) and a non-polymerized (the remaining empty

lattice sites). It follows that in our grand-canonical calculations the canonical situation of

the simulations corresponds to the critical and coexistence surfaces limiting the NP phase,

and the critical lines and points at these surfaces must be the critical lines in the canonical

diagram.
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In the canonical simulations, Krawczyk et al. fixed the energy of a single monomer to

be equal to zero, i. e., the Boltzmann weight eβ0 = 1. The parameters in the simulations

were βℓ = −βεℓ, with ℓ = 1, 2, where β = 1/kBT and εℓ is the energy associated with sites

occupied by ℓ + 1 monomers. To relate the simulational parameters to the ones used in our

grand-canonical calculations, we notice that in our calculations the statistical weight of a

site occupied by a single monomer is ω1 = z, where z is the activity of a monomer. A energy

ε1 is associated to a site with two monomers, thus the corresponding statistical weight is

ω2 = z2 e−βε1 and for a site with three monomers, we have ω3 = z3 e−βε2. Therefore, the

parameters used in the canonical simulations relate to the parameters used here as

β1 = ln

[

ω2

ω2
1

]

, (23a)

β2 = ln

[

ω3

ω3
1

]

. (23b)
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(Collapsed)

FIG. 8: (Color online) Canonical phase diagram. The curve at β2 > 0 (green) is the CEP line and

the straight line at β2 < 0 (blue) is the tricritical line. The multicritical point, where the two lines

meet, is located on the origin and represented by a circle.

The canonical phase diagram which we found in the β1, β2 parameters is shown in Fig. 8,

for a Bethe lattice with q = 4. The multicritical point is located on the origin. The tricritical

line is placed at β1 = 0 and β2 ranging between −∞ and 0. The critical endpoint line is in the

negative β1 and positive β2 quadrant. For β1 < 0 and below the CEP curves, we have a region
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corresponding to the critical surface NP-P1 in the grand-canonical phase diagram. Thus,

in this region the polymers are formed by chains with predominance of single visited sites,

this is agreement with the simulations results. The other region corresponds to coexistence

surface between NP and P2 phases, thus in this region sites with two or three monomers are

more frequent, characterizing a “collapsed” phase. Indeed, a dense polymerized phase, in the

grand-canonical ensemble, is characterized by the lattice completely occupied by monomers

(ρ = 1), and, in our solution method, this would appear as a fixed point with one or more

diverging ratios Ri. In this model we do not find any collapsed phase in this sense, such a

phase may be present in SASAW’s with attractive interactions between bonds in elementary

squares on the square lattice [7]. Nevertheless, as the density of the polymerized phases at

the coexistence loci is nonzero, this already sets ν = 1/d and therefore it is appropriate to

call this a collapsed phase.

The location of the multicritical point in the Bethe lattice solution (β1 = β2 = 0) is

not physically reasonable because it corresponds to non-interacting monomers. We expect

that the transition to the collapsed phase occurs in a attractive region for at least one of

the parameters (β1, β2), but for β2 < 0 the transition line is along the β2 axis (β1 = 0)

and this it is not reasonable. But, it is important to keep in mind that our solution is a

mean-field approximation, which generally overestimates the domain of the ordered phase.

Actually, this inconsistency was already noted in the solution of the case K = 2 [11], and was

one of the motivation to perform a calculation of this model on the Husimi lattice, which

is expected to lead to results closer to the ones on regular lattices. This solution, which

corresponds to the particular case ω3 = 0 and β2 = −∞ of the model considered here, on

the Husimi lattice build with squares (a second order approximation for the square lattice)

displays a tricritical point located at ω1 = 0.3325510(6) and ω2 = 0.120544(4), which in

the canonical variables corresponds to β1 ≈ 1.09 and β2 = −∞. Thus, within this (better)

approximation, at least in β2 = −∞ limit, we find the transition in the expected region

(β1 > 0). This suggests that the whole tricritical line may be at positive values of β1, as

found in the simulations, and therefore, the multicritical point may not be at the origin.

Finally, there is the question of the order of the transitions. In the simulations, Krawczyk

et al. suggest, by estimating the fluctuations of the order parameter in their simulations, that

for β1 < 0 the transition is continuous and for β2 < 0 it becomes of first-order one, and this

lines match at a tricritical point. In our phase diagram, all transitions are continuous but we
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have a tricritical line in β2 < 0 and a CEP line in β1 < 0 region. Although both transitions

are always continuous the critical exponents should be different in the two lines, due to the

fact that the transitions are of a different nature (critical endpoints and tricritical points).

Actually, since in the canonical conditions the tricritical line is always approached in the

weak direction [14], that is, staying on the coexistence surface, the weak tricritical exponents

will be found. In particular, in three dimensions, the tricritical exponents will be classical,

apart from logarithmic corrections [15]. In particular, as in the simulations Krawczyk et al.

have estimated the fluctuations of order-parameter like variables, for the tricritical line the

expected exponent would be γ = 2. The critical endpoint line, however, is characterized

by regular critical exponents, and estimates of γ for the polymerization transition in three

dimensions are around 1.158 [16], while the classical value is equal to unity. The estimates

from the simulations have lead Krawczyk et al. to suggest that the transition line which

corresponds to the tricritical line in our approximate calculations should be of first order.

They also remark that this transition appears to be stronger than the one which corresponds

to our critical endpoint line. It remains an open question if the stronger singularity observed

in the former transition could not be due to the larger exponent for the singularity in the

fluctuations of the order parameter.

V. FINAL DISCUSSIONS AND CONCLUSION

Although, as discussed above, there are some differences between the canonical simula-

tional estimates and our present Bethe lattice calculations, they have many similarities. It

is worth mentioning that in the simulations no transitions were found for the RF model on

the square lattice [9]. It is possible that actually the model shows a qualitatively different

behavior on two-dimensional lattices than the one found here, since the Bethe lattice may

be regarded as an infinite dimensional lattice [17].

Another question which is worth to be considered is the relation of the model with

multiple monomers per site with the problem of the collapse transition for polymers in a

poor solvent. As mentioned above, one of the simplest models used to study these transition

is the SASAW’s model, so that it is interesting to find a relation between both models. We

may notice that the real situation of a polymer in a poor solvent may be discretized by

supposing the volume to be composed by cells of roughly the size of a monomer, so that
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each cell will be either occupied by a monomer (full) or by a solvent molecule (empty).

For simplicity, we are assuming the solvent molecules to have roughly the same size as the

monomers. Now if we require the cells to form a regular lattice, we end up with a lattice

gas model. The monomer-monomer, monomer-solvent and solvent-solvent interactions may

then be considered effectively by introducing an attractive interaction between monomers

in first-neighbor sites which are not connected by a polymer bond. Now we could imagine

larger cells, composed by K of the original cells, so that each of them may be occupied by up

to K monomers. If we now add the constraint that no polymer bond may be formed between

monomers in the same cell and that attractive interactions only between monomers in the

same cell will be considered we end up essentially with the MMS model. The parameters

in the grand-canonical SASAW’s models are the activity of a monomer z and the attractive

interaction −ǫ (ǫ > 0) between monomers. Considering the correspondence of this model

with the MMS model, we notice that the total contribution of a site with i monomers to the

internal energy will be −ǫ i(i − 1)/2, so that we may relate the parameters of both models

as follows:

ωi = ziωe(i), i = 1, 2, . . . , K, (24)

where the exponent e(i) = i(i − 1)/2 and ω = exp(−ǫ/kBT ). Therefore, we notice that the

MMS model with up to K monomers per site corresponds to a grand-canonical SASAW’s

model with constraints in a two-dimensional subspace of its original K-dimensional param-

eter space. If we consider the canonical situation, the dimensionality of the parameter space

is reduced by one in both models.

In the particular case of the K = 3 MMS model, we have the relations ω1 = z, ω2 = z2ω,

and ω3 = z3ω3. Thus, recalling the definitions of the canonical parameters βi of the model

Eq. (23), it will correspond to the canonical SASAW’s model with constraints for β2 = 3β1.

For the Bethe lattice solution presented here, the multicritical point is located at the origin

in the (β1, β2) space, and this point belongs to the SASAW’s subspace. However, as discussed

above, this unphysical localization of the multicritical point may be due to the approximate

character of the solution. In the simulations by Krawczyk et al. of the RF model on the

cubic lattice the multicritical point is located in the first quadrant of the (β1, β2) space (Fig.

2 of reference [9]). Unfortunately the precision in the estimated location of the multicritical

point in the simulations seems not to be sufficient to determine its situation with respect to

the β2 = 3β1 line. It would be very interesting to find out if the multicritical point is located
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above the SASAW’s line, in which case the collapse transition can be identified with the

point where the line crosses the tricritical line of the MMS model. In this case, the collapse

transition in the MMS model would be a tricritical point, which is consistent with the well

established result for this transition.

Finally, we notice that we have not studied the RA model here, where immediate reversals

are allowed. In the simulations of the K = 3 case of this model on the cubic lattice, no

transition to the collapsed phase was found [9], suggesting that the RF constraint is essential

to produce this transition. One possible explanation of the reason for the effect of the RF

constraint on the MMS model is that without this constraint contributions are possible that

actually correspond to extended chainlike structures. Let us illustrate this by an example

for the K = 2 model on a square lattice. If we have ω2 ≫ ω1, beside the DO phase, where

a pair of parallel bonds starts on the surface and crosses the lattice, if immediate reversals

are allowed other chainlike structures, with a much higher entropy, are possible with double

occupied sites only, as may be seen in Fig.9. Such a contribution has an exponent ν which

correspond to extended polymers, and if these contributions dominate in the polymerized

phase no extended-collapsed transition will occur. Of course, this argument is speculative

and should be verified by simulations or approximate calculations for the RA model. As a

final remark, we notice that no transition was found in the simulations of the K = 3 model

on the square lattice [9]. Although mean-field like calculations such as the one presented here

become less reliable as the dimension is lowered, thus making it possible that e transition

found in those approximations is actually absent in the two-dimensional case, it is worth

remaining that the model of SASAW’s on the square lattice is well studied and shows a

tricritical collapse transition [5], and therefore it is interesting to further investigate the

MMS model on two-dimensional lattices.

Acknowledgements

TJO acknowledges doctoral grants by CNPq and FAPERJ JFS acknowledges travel sup-

port of the Argentinian agencies SECYTUNC and CONICET, and thanks the Universidad

Nacional de Córdoba for hospitality, he is also grateful to CNPq for partial financial support.

PS acknowledges SECYT-UNC, CONICET and FONCyT for partial financial support.

26



FIG. 9: (Color online) Contribution for the K = 2 RA model on a square lattice, with a chainlike

structure where all sites visited by the polymer are occupied by two monomers. The numbers

correspond to the sequence of monomers in the chain.

APPENDIX A: COEXISTENCE SURFACES IN BETHE LATTICE CALCULA-

TIONS

The determination of the coexistence loci for solutions on hierarchical lattices such as

the Bethe and Husimi lattices presents some difficulties, which may be related to the fact

that in such lattices one may readily obtain mean values in the central region, but it is not

straightforward to obtain the free energy (particularly the entropy) as a mean value. One

possibility is to integrate the state equations to obtain the free energy, this may be even

performed analytically for some simple models such as the Ising model [17]. In other cases

it is possible to perform the integration numerically, using a Maxwell construction to locate

the discontinuous transition. A detailed discussion of this point was presented by Pretti

[18], analyzing particularly the proposals of Gujrati to obtain the bulk free energy which

was presented above [13] and the one of Monroe, based on the Jacobian of the recursion

relations at the fixed point [19]. Also, a simple recursive criterion was used to find the

coexistence locus for a model of SASAW’s on the Husimi lattice, which consists in iterating

the recursion relations imposing ‘natural’ initial conditions on the ratios. In the region of

the parameter space where the coexistence locus is located, there are at least two stable fixed

points, and the coexistence surface is proposed to be the boundary of the basins of attraction

of the fixed points when the iteration is started with the ‘natural’ initial conditions. In the

previous studies of the MMS model on Bethe and Husimi lattices, the recursive procedure
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was used, but as shown above it lead to results which are even qualitatively different from

the ones obtained using the more controlled approach by Gujrati. Here we will discuss these

questions for a simpler model than the one above: SASAW’s on the Bethe lattice, which

was studied some time ago [20].

The model is defined in the grand-canonical ensemble, so that z will be the activity of a

monomer incorporated in the chains. The endpoints of the chains are constrained to be on

the surface of the tree. A Boltzmann factor ω > 1 is associated to each pair of monomers

in first neighbor sites of the tree which are not connected by a polymer bond, to take care

of the attractive interactions. As usual, we define partial partition functions for subtrees.

The subtrees have a edge at the root which is connected to the root site, to which q − 1

subtrees of the previous generation are attached. We call g0 the partial partition functions

for a subtree with no monomer on its root site, g1 will be the partial partition functions for

a tree with a monomer on the root site and no bond on the root edge, while g2 stands for

the partial partition functions of a subtree with a monomer on the root site and a bond on

the root edge. The recursion relations for these partial partition functions are easily found

to be:

g′
0 = ( g0 + g1 )q−1, (A1a)

g′
1 =

(

q − 1

2

)

z g2
2 (g0 + ω g1)

q−3 , (A1b)

g′
2 = (q − 1) z g2(g0 + ω g1)

q−2, (A1c)

Proceeding as usual, we may define the ratios R1 = g1/g0 and R2 = g2/g0, and the recursion

relations for them are:

R′
1 =

(

q − 1

2

)

z R2
2

(1 + w R1)
q−3

(1 + R1)q−1
. (A2a)

R′
2 = (q − 1) z R2

(1 + w R1)
q−2

(1 + R1)q−1
, (A2b)

We should remark that the model was defined in a different but equivalent way in the

earlier calculation [20], where an activity x was associated to each bond of the chains. Since

all chains are long, as they are constrained to start at the surface of the tree, these two
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formulations are equivalent. For example, the recursion relations (3.8) in this reference

correspond to the ones presented here if we relate the ratios used in both calculations as

A =
√

zR2 and B = R1, with x = (q − 1)z.

The partition function of the model on the Cayley tree may be obtained if we consider

the operation of attaching q subtrees to the central site of the lattice:

Y = (g0 + g1)
q +

(

q

2

)

z g2
2 (g0 + ωg1)

q−2, (A3)

and, following Gujrati’s prescription Eq. (22), the reduced bulk free energy per site is

φb = −1

2

{

q ln (1 + R∗
1)

q−1 − (q − 2) ln

[

(1 + R∗
1)

q +

(

q

2

)

zR∗2
2 (1 + ωR∗

1)
q−2

]}

, (A4)

where (R∗
1, R

∗
2) correspond to a fixed point values of the recursion relations Eqs.(A2).

Non-polymerized fixed point

In the non-polymerized phase we have RNP
1 = 0 and RNP

2 = 0, the eigenvalues of the

Jacobian are:

λ1 =
∂ R′

2

∂ R2

∣

∣

∣

∣

NP

= (q − 1) z ; λ2 =
∂ R′

1

∂ R1

∣

∣

∣

∣

NP

= 0. (A5)

Therefore, the stability limit of the non-polymerized fixed point will be zNP
sl = 1/(q − 1).

Using Eq.(A4) we see the free energy vanishes for this phase, φNP
b = 0, as expected.

Polymerized fixed point

In this phase RP
i 6= 0, and RP

1 can be obtained from Eq. (A2b), which in this case takes

the form

(1 + RP
1 )q−1 − (q − 1) z (1 + ω RP

1 )q−2 = 0 . (A6)

For the particular case q = 3 the fixed point equation above is quadratic, and a simple

expression may be found for the fixed point value of R1:

RP
1 = ωz − 1 +

√

(ωz − 1)2 − 1 + 2z. (A7)

The other root of the equation corresponds to an unstable fixed point. Once RP
1 is obtained,

RP
2 may be found using the other fixed point equation, related to the recursion relation Eq.
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(A2a), and is given by

(RP
2 )2 =

2

q − 2
RP

1 (1 + ω RP
1 ) . (A8)

The stability limit of this phase may be found by requiring the largest eigenvalue of the

Jacobian of the recursion relations Eqs. A2 to be equal to one. In general, the equation

defining this limit of stability has to be solved numerically, but for q = 3 it is simple to find

the result:

zP
SL =

1

2
, for ω < 2, (A9a)

zP
SL =

2(ω − 1)

ω2
, otherwise. (A9b)

The tricritical point is obtained as the point on the critical line x = 1/(q − 1) where

R1 = 0 is a double root of Eq.(A6):

zTC =
1

q − 1
ωTC =

q − 1

q − 2
(A10)

The first-order line

For ω > ωTC the first-order transition line can be obtained using the condition φP
b (x, ω) =

φNP
b = 0, which gives

(1 + RP
1 )2 (q−1) =

[

1 + RP
1 +

q

q − 2
(1 + ω RP

1 ) RP
1

]q−2

, (A11)

In general, this equation has to be solved numerically, but for q = 3 it is straightforward to

obtain an analytical solution, which is:

RFO
1 =

√
3 ω − 2 − 2 , (A12)

and, from Eq. (A7) we obtain,

zFO(ω) =
(
√

3 ω − 2 − 1)2

2(ω
√

3 ω − 2 − 2 ω + 1)
; ω ≥ ωTC = 2. (A13)

The first order line calculated above does coincide with the one obtained in the earlier

calculation [20] using the equal area rule. This is expected, since the densities of monomers

and of interactions in the central region of the Cayley tree, calculated directly from the

partition function Eq. (A3) are equal to the ones obtained from the bulk free energy per

site Eq. (A4). Let us now consider the iterative prescription suggested by Pretti in [8]. One
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FIG. 10: (Color online) Phase diagram for SASAW’s on a Bethe lattice with coordination q = 3.

Full (black) line is a continuous polymerization transition. Dotted lines are the limits of stability of

the non-polymerized (right) and polymerized (left) phases. The dashed (red) line is the coexistence

locus between both phases obtained from the free energy, while the dash-dotted (blue) line is the

coexistence locus estimated using the recursive procedure.

iterates the recursion relations Eqs. (A2) starting with ‘natural’ initial conditions for the

partial partition functions g
(0)
0 = 1, g

(0)
1 = 0, and g

(0)
2 = z, so that the initial values for

the ratios are R
(0)
1 = 0 and R

(0)
2 = z. One then estimates the coexistence line to be at the

point in the (z, ω) parameter space where the fixed point reached iterating the recursion

relations switches between the non-polymerized and polymerized phases. The results of all

calculations for a lattice with q = 3 are displayed in the phase diagram in Fig. 10. The

NIC method leads to a first order line which is clearly different from the one obtained using

the bulk free energy. Actually, in more complex models, the ‘natural’ initial conditions

may not be unique, and different choices for them could lead to different results for the

coexistence locus. The other methods to define the coexistence locus are defined solely by

the recursion relations and the partition function. Also, despite the intuitive physical appeal

of the method, its justification based on more solid arguments is still lacking.

Although in the SASAW’s model discussed here the iterative procedure has lead only to

a quantitative error in the location of the first order line, qualitative differences can result

in more involved models. An example is the MMS model. The DO and TO fixed points, do

not appear in the phase diagram despite the fact that the fixed points associated to them are

actually stable in regions of the parameter space. This is due to the fact that the free energy
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of the P1 and P2 phases is smaller in those regions. If, however, the iterative procedure is

used, this will be no longer the case and those phases actually appear in the phase diagram,

as may be seen in the particular case ω3 = 0 in reference [11]. For K = 3 both DO and TO

phases appear in the phase diagram if the recursive procedure is used.

Finally, we will briefly discuss the suggestion by Monroe [19] that at the coexistence

the leading eigenvalues of the Jacobian of both phases should be equal. We may consider

points on the coexistence line Eq. (A13) for q = 3. If the eigenvalue which corresponds to

the polymerized phase would be equal do the one associated to the non-polymerized phase

λNP = 2z, then the expression:

∆ = (J1,1 − 2z)(J22 − 2z) − J1,2J2,1, (A14)

where Ji,j are the elements of the Jacobian calculated at the polymerized fixed point, should

vanish on the coexistence line. It may be shown that this expression does not vanish for

ω > 2, thus showing that the Monroe criterium is not equivalent to the free-energy criterium

for this particular model. It is interesting to remark that in other models this equivalence

was found [18].

APPENDIX B: LOCATION OF THE MULTICRITICAL POINT

To find the location of the multicritical point in the parameter space of the model, we look

for higher order roots with vanishing ratios of the fixed point equations which follow if we set

R′
i = Ri in the recursion relations Eqs. 6. An inspection of the fixed point equations suggests

the following ansatz for the ratios close to the non-polymerized fixed point: R2 = aR2
1 and

R3 = bR3
1. We then substitute these leading order terms into the fixed point equations and

require them to be satisfied up to order 4 in R1. This furnishes five equations: from the first

recursion relation Eq. (6a) we get one equation for order R1 and another for order R2
1. The

second recursion relation Eq. (6b) furnishes two equations, one for order R2
1 and the other

for order R4
1. Finally, recursion relation Eq. (6c) provides an additional equation for order
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R3
1. In the sequence adopted above, the equations are:

1 = (q − 1)ω1, (B1a)
(

q − 1

2

)

ω1 = 3

(

q − 1

3

)

ω2 + 4

(

q − 1

2

)

ω2a, (B1b)

a =

(

q − 1

2

)

ω2 + (q − 1)ω2a, (B1c)

(

q − 1

2

)

ω1a = 6

(

q − 1

4

)

ω3 + 15

(

q − 1

3

)

ω3a + 4

(

q − 1

2

)

ω3a
2 +

6

(

q − 1

2

)

ω3b, (B1d)

b =

(

q − 1

3

)

ω3 + 2

(

q − 1

2

)

ω3a + (q − 1)ω3b. (B1e)

These equations may easily be solved, leading to ω1 = 1/(q − 1), ω2 = 1/(q − 1)2, ω3 =

1/(q−1)3, a = 1/2, and b = 1/6. The behavior of the ratios in the vicinity of the multicritical

point has been verified numerically.
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