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Athermal lattice gases of particles with first neighbor exclusion have been studied for a long time as
simple models exhibiting a fluid-solid transition. At low concentration the particles occupy randomly
both sublattices, but as the concentration is increased one of the sublattices is occupied preferentially.
Here, we study a mixed lattice gas with excluded volume interactions only in the grand-canonical
formalism with two kinds of particles: small ones, which occupy a single lattice site and large ones,
which, when placed on a site, do not allow other particles to occupy its first neighbors also. We solve
the model on a Bethe lattice of arbitrary coordination number ¢. In the parameter space defined by
the activities of both particles, at low values of the activity of small particles (z;) we find a continuous
transition from the fluid to the solid phase as the activity of large particles (z,) is increased. At higher
values of z; the transition becomes discontinuous, both regimes are separated by a tricritical point.
The critical line has a negative slope at z; = 0 and displays a minimum before reaching the tricritical
point, so that a re-entrant behavior is observed for constant values of z, in the region of low density
of small particles. The isobaric curves of the total density of particles as a function of the density
or the activity of small particles show a minimum in the fluid phase. © 2011 American Institute of

Physics. [doi:10.1063/1.3658045]

. INTRODUCTION

While attractive interactions between molecules were
found to be essential to produce the liquid-gas transition in
models for fluids, it was later realized that even if only hard
core repulsive interactions are considered, interesting effects
arise. Since in this case all allowed microscopic configura-
tions of the system have the same energy, such models are
athermal, and all thermodynamic effects are of entropic ori-
gin. Much is known about the continuous version of these
models, usually called hard sphere systems. They were stud-
ied by a variety of techniques,' and a fluid-solid phase transi-
tion is found. It is worth recalling that in the pioneering work
on the Monte Carlo simulational procedure,” the physical sys-
tem studied was a fluid of hard disks.

The fluid model with excluded volume interactions only
may also be defined on a lattice, so that the positions occu-
pied by the particles are restricted to sites of a lattice. In the
simplest version of such models, the only constraint is that
if a site is occupied by one particle, no other particles may
be placed on it. In the grand-canonical ensemble, this model
reduces to the Ising model without the interaction term, and
is therefore trivially solved. No singularities are found in the
thermodynamic functions, as expected. More interesting re-
sults are obtained if the range of excluded volume interactions
is increased. This leads to a variety of models, and we refer to
arecent paper where some of these models were studied using
simulations for a comprehensive survey of the literature.” If a

®Electronic mail: tiago @ufv.br.
Y)Electronic mail: jstilck @if.uff.br.

0021-9606/2011/135(18)/184502/7/$30.00

135, 184502-1

particle placed on a site excludes this site and its first neigh-
bors, indeed a fluid-solid continuous transition is found. For
bipartite lattices, such as the hypercubic lattices, at lower den-
sities the particles occupy the lattice sites randomly, but above
a critical density one of the two sublattices is occupied pref-
erentially by the particles, so that the order parameter may be
defined as

¥ =2(lpa — psl), (1)

where py4 p is the number of particles in sublattice A or B,
respectively, divided by the number of sites in the lattice,
thus assuming a maximum value equal to 1/2. This model
has a long history, it has been mentioned in the classical
review by Domb,* and has been studied using the virial
expansion and the Bethe approximation by Burley shortly
after.’ Since then, the thermodynamic behavior of the model
has been investigated using a variety of analytical and nu-
merical methods, which indicate a continuous phase tran-
sition in the Ising universality class. On the square lattice,
precise estimates for the critical chemical potential fi,
~ 1.33401510027774(1) and the density of particles at the
transition p, =~ 0.3677429990410(3) were obtained using
transfer matrix and finite size scaling extrapolation tech-
niques, and the Ising critical exponents were verified with
high precision.® A recent simulational study of this model
on the square and cubic lattices may be found in Ref. 7.
On the triangular lattice, this model is known as the hard
hexagon model, and was solved exactly by Baxter.® A contin-
uous transition was found at the critical activity z, = exp(u.)
=11+ 5«/5)/5. The critical exponents are in the 3-state
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FIG. 1. Two molecules of type 1 (hatched) and two of type 2 (cross-hatched)
placed on sites of a square lattice. The first may be represented as squares
of side a and the second as tilted squares of side aﬁ, where a is the lattice
parameter.

Potts universality class, as would be expected considering that
in the high density phase the hexagons occupy preferentially
one of the three sublattices.

An interesting generalization of the model is to consider
a gas with both small and large particles, where the small par-
ticles occupy a single site and the large ones exclude the site
they occupy and its first neighbors. Let the activity of small
(large) particles be z; (z2). On a square lattice, we may rep-
resent both particles as squares, as is shown in Fig. 1. Since
a continuous transition occurs when only large particles are
present and no transition is found for small particles only, one
may ask what happens in intermediate situations, with both
types of particles on the lattice. This model was studied on
the square lattice by Poland'® using high density series ex-
pansions in the grand-canonical formalism, and evidence was
found that a tricritical point should be present in the phase di-
agram. In this paper we solve the model on a Bethe lattice of
arbitrary coordination number ¢ > 2 in the grand-canonical
ensemble. As the fugacity of the small particles is increased
starting from zero, the fluid-solid transition remains continu-
ous up to a certain value, above which it becomes discontinu-
ous. Therefore, we find a tricritical point in the phase diagram
of the model.

It is worth mentioning that a slight modification of the
two-particle model on the square lattice makes it exactly solv-
able in a particular case, by allowing it to be mapped on the
Ising model for which the exact solution is known for zero
magnetic field. This particular case corresponds to (1 + z;)?
= 2,.° In this lattice gas, the large particles are placed on the
centers of the elementary squares of the lattice defined by the
sites where the small particles are located, as is illustrated in
Fig. 2. Both models are equivalent in the absence of small
particles, but we notice that when z; = 0 we know the exact
solution only for z; = 1.

In Sec. II we define the model and solve it on the Bethe
lattice. The thermodynamic properties of the model are dis-
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FIG. 2. Configuration of a model similar to that of Fig. 1, which was solved
in a particular case on the square lattice.® The possible locations of the large
particles are dislocated with respect to those of the small particles.

cussed in Sec. III, and final discussions and the conclusion
may be found in Sec. IV.

Il. DEFINITION OF THE MIXED LATTICE GAS MODEL
AND ITS SOLUTION ON THE BETHE LATTICE

We study the grand-canonical version of the mixed lat-
tice gas model defined on a lattice. In this model, two types of
particles are present, and only excluded volume interactions
between them are considered, so that the model is athermal.
The particles of type 1 (small) are such that, when placed on
a lattice site, they occupy this single site only, excluding other
particles from it. A particle of type 2 (large) prevents other
particles, of types 1 or 2, to be placed on its own site and any
of the sites which are first neighbors to it. Figure 1 shows this
model on a square lattice and the generalization to other hy-
percubic lattices is straightforward. While no phase transition
is found for the case where only small particles are present,
it is well established that for a pure system of large particles
a continuous phase transition in the Ising universality class
occurs.’

Here, we will solve the model with both particles present
in the grand-canonical ensemble on the Bethe lattice. The pa-
rameters of the model are the activities of small particles z;
= exp (u1), where p is the chemical potential of a small par-
ticle divided by kgT, and of large particles z, = exp (u2). We
proceed defining the model on a Bethe lattice, which is the
core of a Cayley tree with general coordination number g. We
then consider partial partition functions (ppf’s) of the model
on subtrees with fixed configurations of the root site, which
may be empty (0), occupied by a small particle (1), or by a
large one (2). Considering the operation of connecting g — 1
subtrees with a certain number of generations of sites to a new
root site, we may build a subtree with an additional generation
and write down recursion relations for the ppf’s. If we call g;
the partial partition function of a subtree with root site config-
uration i = 0, 1, 2, we have the following recursion relations
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for the ppf’s:
g =(go+ g +g) ", (2a)
g =z1(g0+g)" ", (2b)
g =z807". (2¢)

The prime denotes subtrees with an additional generation. Let
us define ratios of the ppf’s as R; = g/go, where now the con-
figuration index 7 assumes the values 1 and 2. From the re-
cursion relations for the ppf’s, we may obtain the ones for the
ratios, which are

, (14 Ryt

R =g M 3
TR + Ry Ga)
, 1

R) (3b)

=p—.
(T+ Ry + Ryyi!

The thermodynamic behavior of the model is defined by
the values of the ratios after a large number of iterations of the
recursion relations equations (3). We find that, depending on
the values of the activities, the recursion relations converge
either to a fixed point or to a limit cycle of period 2. When
the recursion relations converge to a limit cycle, the values
of the ratios in the core of the tree will display a layered
structure, so that the ratios in sites in consecutive generations
assume alternate values. It is convenient, in this case, to
define two sublattices (A and B), whose sites are associated to
the two values of the pair of variablesx = 1+ Rjand y =1
4+ R; + R,. The equations defining this limit cycle values
are

ca—yg ' —zxg ' =0, (4)
(4 —xA)y§ ' —22=0, (4b)
p—Dy§ ' —zixf ' =0, (4c)
(vs —xp)ys ' —22=0, (4d)

when a fixed point is reached, we have x4 = xz and yu
= yp. Although we were not able to find general solutions for
these equations, it is not difficult to solve them numerically.
This set of equations may be reduced to finding the roots of
a polynomial in the variable g = x/y, given by

W) =10—-gd+zg" ' +2f™) ! —uf=0 (&)
where f = 1/y is given by
Z _ _
f=g—$(1—g)(1+mgq a1, (6)

The fixed points or limit cycles will correspond to roots of
this polynomial in the range g € [0, 1] with non-negative
values for f. Both stable and unstable fixed points will be
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found. Another numerical procedure to find the thermo-
dynamic properties of the model is to iterate the recursion
relations equations (3) directly, this will lead only to the
stable fixed points. To study the stability of the fixed points, it
is useful to obtain the 2 x 2 Jacobian matrix of the recursion
relations, whose elements, calculated at the fixed point, are
Ji,j(x,y) = 0R!/OR;. The stability limit of the fixed point
may then be found requiring the dominant eigenvalue of this
matrix to have a unitary modulus. The Jacobian for the limit
cycle J, will be the product of two Jacobian matrices defined
above, calculated at the pair of variables at the limit cycle, so
that Jo = J(xa, ya) x J(xp, yB).

The grand-canonical partition function of the model on
the Cayley tree is obtained considering the operation of at-
taching g subtrees to the central site of the tree. If the central
site is in sublattice A, this leads to the following expression:

Ya = g5 5(vg + 2155 + 22), %

and a similar expression with the sublattice indexes inter-
changed is obtained for sublattice B. It is easy then to write
down expressions for the densities of sites with small and
large particles in the center of the tree. They are

q
Zl-xB
A= > (8a)
pra yh+zxh+ 2
22
2.4 (8b)

= 9
Vi +axp + 2

and the densities on sublattice B are obtained permuting the
sublattice indexes.

The free energy in the core of the Cayley tree, which cor-
responds to the Bethe lattice, may be obtained by a general-
ization of Gujrati’s argument,'!' which may be found for a par-
ticular model in Ref. 12. Here, we present a simple derivation
generalizing the one which is found in Ref. 13. On the Cayley
tree, we admit that the reduced free energy per site (which cor-
responds to the grand-canonical free energy divided by kgT
and the number of sites in the lattice, which is proportional
to its volume) of sites in the mth generation of the tree will
be ¢ For a tree with M generations, starting to count at the
surface (m = 0), we may then write the total free energy as

M—1

oM — ¢(M) +gq Z(q _ 1)i¢(M—i—l). )
i=0

For a tree with one more generation, the free energy in terms
of the free energies per site will be

M

M = M g Y (g — 1M, (10)
i=0

Now we notice that
WM+ _ (g — l)q)(M) — ¢(M+l) 4 q¢(M) —(q — 1)¢(M)
= ¢!V 4 ¢!, (in

In the thermodynamic limit M — oo, the recursion relations
reach either a fixed point or a limit cycle of period 2. In the
first case, in the core of the tree we have ¢M+D = ¢@™
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= ¢, where ¢, is the free energy per site of the Bethe lat-
tice. When the limit cycle is reached, the free energies in the
layers of the core of the tree will have different values in adja-
cent layers, represented by the subscripts A and B in the limit
cycle equations (4), so that in this case the free energy per site
in the core of the tree will be ¢p;, = (¢4 + ¢p)/2. In conclusion,
in both cases the bulk free energy per site is given by

yM+1D)

1 1
¢ =5@ba+¢p)=—5In (12)

[YD]@=D"
Using Eq. (7) and the fixed point equations (4), after some
algebra, we find the following result:

1 (yayg)?™!
¢p=—=1In 3
2 (ya —xa+yp —xp +xaxp)1~

We notice that this expression is invariant under permutation
of the sublattice indexes, as expected. For z, = 0, where the
model is solved trivially, the Bethe lattice calculation fur-
nishes the exact solution. The fixed point value in this case
is simply R = z1, the reduced free energy per site will be ¢,
= —In (1 + z;), and the density of particles becomes

21 0y

- - 14
ol 14+ : 021 (19

:|. (13)

lll. THERMODYNAMIC BEHAVIOR OF THE MODEL

For simplicity, we will start the study of the thermody-
namic properties of the model in the limit z; < 1, where
the density of small particles is very small. In this region, the
fluid-solid transition is continuous, and the stability limits of
both phases are coincident. To obtain the critical line, we may
consider the fixed point equations (4) and require the leading
eigenvalue of the Jacobian to be equal to —1. Now we solve
these three equations up to first order in z;, supposing that z;
=a+ bz, x=1+4 bjz;, and y = a; + byz;. We are lead
to the following values of the expansion coefficients defined
above: a = (q — 1)~ Y(qg —2)9, b= —1,b; =[(qg — (g
DI La= (g — D/(g — 2), and b, = 0. For the particular
case z; = 0, this solution has been obtained a long time ago.’
We also notice that the critical line has a negative initial slope.
This may be understood physically realizing that the presence
of few small particles does lead to an effective entropic attrac-
tive interaction between the large particles, thus favoring their
ordering.'* At higher values of z; the slope becomes positive,
and finally the transition becomes discontinuous, the critical
line meets the coexistence line at a tricritical point.

We may also study the phase diagram in the limit z; > 1.
In the fluid phase, we have the asymptotic fixed point values
x~ z; and y = z). In the solid phase we have x4 ~ 1, y4 ~ 1,
xpg &~ z1, and yg ~ z; + z. From these expressions, we may
find the behavior of the coexistence line in this limit by re-
quiring the free energies, Eq. (13), of both phases to be equal,
and this leads us to the asymptotic behavior z, & z% for the
coexistence line for large values of z;.

The phase diagram in the (z}, z;) plane is shown in Fig. 3
for a Bethe lattice with ¢ = 4, similar diagrams are found
for other values of ¢ > 2. For z; larger than the tricritical
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0.0 0.2 0.4 0.6 0.8 1.0
z,/(14z)

FIG. 3. Phase diagram of the model in the plane defined by the activity frac-
tions z1/(1 + z1) and z2/(1 + z3). For a given value of zj, the fluid phase is
stable for lower values of z;, and the solid phase becomes stable at higher
values. The transition may be continuous or discontinuous, both regimes are
separated by a tricritical point, represented by a circle (blue). The full line
(red) corresponds to the continuous transition and the coexistence of both
phases happens at the dashed line. In the inset the same diagram is shown
with the axes defined by the activities. The dotted line (green) corresponds
to the minima of the isobaric curves of the total density of particles p = p;
+ 2p2, as discussed in the text. Bethe lattice with ¢ = 4.

value, there is an interval of values of z, where both fixed
points are stable, thus characterizing a coexistence of both
phases, at a value of z, for which both free energies are
equal. The coexistence line is located between both stability
limit lines, as expected. The numerical determination of the
coexistence line has to be done carefully, particularly close
to the tricritical point, where the range of values of z, for
which both fixed points are stable becomes very narrow. The
precise calculation of the localization of the tricritical point
also demands some care. It is quite easy to calculate the
stability limit of the symmetric fixed point, since the problem
may be reduced to finding the solution of an equation in
one variable. Once this line is found precisely, we solve the
asymmetric fixed point equation on it, starting at a value of z;
larger than the tricritical value. As the value of z; is lowered,
the largest eigenvalue of the Jacobian A; increases and the
values of the variables x4 and xz which solve the fixed point
equations (4) become closer, as do the variables y4 and yg.
At the tricritical point, the dominant eigenvalue is unitary
and x4 = xp. Table I presents the locations of the tricritical
point for several values of the coordination number ¢, as well
as the values of the densities at this point. An alternative
procedure for determining the location of the tricritical point
will be presented below. In all cases we studied, the critical
value of z, for z; = 0, z;, = a given above, is smaller than
7 at the tricritical point; therefore, for z; below z; . and
above the minimum critical value of z,, the solution displays
a re-entrant behavior as z; is increased, starting in the fluid
phase, then getting into the solid phase, and finally ending in
the fluid phase again, with two continuous transitions.

The phase diagram in the plane defined by the densities
of small and large particles is presented in Fig. 4. Again, we
may obtain the asymptotic behavior in the limits z; <« 1 and
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TABLE 1. Values of the activities and densities at the tricritical point for
Bethe lattices with different coordination numbers g. The error in the activity
values is £1 in the last decimal place.

q Z1 2 L1 P2

3 2.74598 11.9231 0.3937(8) 0.1476(5)
4 1.16956 3.02938 0.2985(7) 0.1117(5)
5 0.734355 1.539662 0.2407(3) 0.0894(3)
6 0.533384 0.995756 0.2013(3) 0.0746(3)
7 0.418259 0.725526 0.1729(2) 0.0641(3)
8 0.343861 0.566972 0.1515(2) 0.0561(2)
9 0.291885 0.463718 0.1349(2) 0.0499(2)
10 0.253531 0.391509 0.1215(2) 0.0450(2)

z1 > 1 using the results for these limits presented above. In
the limit of low density of small particles, we find that the
densities are given by p; ~ (¢ — 2)7z1/[qg(g — 1)? ~ '] and p,
~ 1lg — (g — 2)7z1/[qg(g — 1)7~ '], the critical line for p;
<« 1 shows a linear behavior p; & 1/qg — p,. In the high den-
sity limit, we find the following densities on the coexistence
line: for the fluid phase p; ~ 1 — 1/z; and p, = l/z(ffl, )
that for this phase we find p; ~ 1 — pzl/ @=n, Therefore, the
line reaches the point p; = 1, p, = 0 with infinite slope. For
the solid phase, we get p; = (P14 + p18)/2 =~ 1/(2z1) and p;
~ 1/2 — 1/(2zy), so that p; = 1/2 — p,. Qualitatively, these
features of the phase diagram are similar to the ones in Fig. 3
of the paper by Poland.'?

In general, the fixed point or limit cycle may be obtained
solving Eq. (5) for the variable g. For a given value of z, at
small values of z, we find a single root for the equation in
the interval [0, 1]. For values of z; below the tricritical value,
above the critical value of z,, two roots are found, one of them
being a double root. They correspond to the fixed point vari-
ables x and y at sublattices A and B. If z; > zj 1¢, for z;
above the limit of stability of the solid phase and below the
limit of stability of the fluid phase, five roots are found, such
that the smaller and the larger ones correspond to the fixed

0.5

FIG. 4. Phase diagram in the plane defined by the densities of particles p;
and py. The critical line (red) ends at the tricritical point represented by a
circle (blue). The densities of the coexisting fluid (black) and solid (green)
phases with the same free energies in the two-phase region are connected by
tielines. Bethe lattice with ¢ = 4.
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points associated to the solid phase, while the intermediate
root corresponds to the fluid phase. Between the extremal and
the central roots, there are two additional roots, which are un-
stable. Finally, in the region where only the solid phase is sta-
ble, three roots are found, the intermediate one being unsta-
ble. These findings lead to an alternative procedure to locate
the tricritical point, since there the polynomial A(g), its first,
and second derivatives vanish. This is discussed in some more
detail in the Appendix.

Another interesting feature of the Bethe lattice solution
of this model is that the isobaric curves of the total density of
particles as a function of one of the fugacity z; or the density
of small particles p; shows a non-monotonical behavior in
the fluid phase. Let us define the total density of particles as
p = p1 + 2p2, so that it will be in the interval [0, 1]. If we
recall that the grand-canonical free energy per site is related
to the pressure by

Pvo

-, 15
inT s)

by =
where vo = V/N is the volume per site, so that we may define
IT = —¢,, to be the reduced pressure. For a fixed value of the
pressure, we may now obtain the density of particles p as a
function of p;. Some resulting curves may be seen in Fig. 5.
We notice that the curves are not monotonic, starting with
a negative slope at p; = 0. The minima in the isobars are
located on the dotted lines in the phase diagrams of Figs. 3
and 5. We notice that this line starts at a particular point of the
z; axis and ends at the tricritical point. Some aspects of these
minima may be discussed analytically. To find the point of
the zo = 0 axis where the minimum of the isobars is located,
we may obtain a solution of the model for z; < 1, since we
can solve it exactly for z; = 0. The fixed point values of the

0.0 0.2 0.4 0.6 0.8 1.0
p,/P

FIG. 5. Total density of particles p = p1 4 2p2 as a function of p/p for fixed
values of the pressure IT (thin full lines) . The starting points of the isobars
correspond to large particles only and at the endpoints only small particles
are present. The full line (red) is the critical condition and the two dashed
lines are the densities of the coexisting phases. For isobars which cross the
coexistence lines, the minimum is located on the coexisting fluid phase. The
loci of the minima of the isobars is represented by the dotted line (green).
From lower to higher starting densities, the isobars correspond to reduced
pressures IT = 0.3,0.4,0.5,0.6,0.7,0.86062 (the isobar with the minimum at
the tricritical point), and 1.0. Bethe lattice with ¢ = 4.
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ratios are, up to linear terms in z;:

R <1 q—1 )
~ull- ——2n],
1 1 (1+Z])q 2

N 2
(1 +z)e

(16a)

R, (16b)
Using these approximate solutions and Egs. (8) for the
densities, we may then find an approximate expression for
the total density of particles:

a_ _G-Du-2
1+2z; (1 +z)42 .

p=p1+2m=~ (17)

The minimum of the isobars correspond to the condition

ap .
(3_Zl>n =0. (18)

This derivative may be calculated at z, = 0 noticing that

0 0 0 0
() —(2) +(2) (=) w
821 mn 8Z1 2 822 2 azl mn

and since d¢, = —p1dzi/z1 — padzy/z,, the last derivative in
the expression above is
Bl
(ﬁ) = _fz2 (20)
0z1 /) P221

Finally, we get

ap (g —Dz -1
ol =z = - 2
<3Z1>¢b (I42z? 7 @D

so that in the limit z; — O the minimum of the isobars is
located at z; = 1/(g — 1), which corresponds to p; = 1/g. A
similar analysis may be done close to p; = 0, showing that
the slope of the isobars is negative there. Isobars which start
in the solid phase, at (0, p,) with p, > 1/g, will cross either
the critical line or the coexistence line before they end in the
fluid phase. In the first case we notice a discontinuity in the
slope of the isobars. Since p; is a monotonically increasing
function of z;, the minima in the isobars are also present if p
is plotted as a function of z;.

It is worth mentioning that such non-monotonic behav-
ior of the density of particles for constant pressure as a func-
tion of a field-like variable is found in nature, one of the most
studied examples of this kind is the density anomaly of lig-
uid water, where a maximum is found in the isobaric curves
of density as a function of the temperature close to the freez-
ing point.”> In many studies in the literature, simple models
were proposed which show such anomalies, and it is believed
that an interparticle potential with two length scales may be
the source of the thermodynamic anomalies. A recent work of
this kind, where also many earlier studies are referenced, may
be found in Ref. 16. For such models, the solution on tree-like
lattices may also be useful,'® and in this particular example
both maxima and minima of the isobaric curves of density as
a function of temperature were obtained. Although, of course,
the present model is very different from the lattice gases re-
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lated to water, it is interesting that here also two length scales
are present in the interparticle interactions.

IV. CONCLUSION

The Bethe lattice solution of the athermal lattice gas with
two kinds of particles, a small one occupying a single site and
the larger one which, if placed on one site, does not allow
other particles to occupy first neighbor sites as well, shows a
phase transition between a fluid phase, at low values of the
activity of the large particles z, and a solid phase, which ap-
pears at higher values of z, and where one of the sublattices
is preferentially occupied by the large particles. The results
of the Bethe approximation for the particular case where no
small particles are present (z; = 0) are recovered.’

The critical line in the plane defined by the activities
of the particles z; and z, starts with a negative slope at z;
= 0 and, after passing through a minimum, ends at a tricrit-
ical point. One may understand the change of the fluid-solid
transition from continuous to discontinuous considering the
limit of the full lattice, where one or both activities diverge.
As was already discussed above, in this limit the solid phase
is composed by large particles only, coexisting with the fluid
phase of small particles, and the coexistence happens for z;
— 00 with zp = z2. It is clear that since p = p; + 2p2 = 1
in this limit, both phases segregate. Therefore, the transition
is continuous for small values of z; and discontinuous as z;
— 00, both regimes being separated by the tricritical point.
The re-entrant behavior observed for the transition line can be
understood noting that its slope is negative for small values of
zq and that it will end at z;, z, — o0.

The behavior of the densities of particles, as shown in
Fig. 4, may be compared with similar results obtained using
series expansions for the model defined on the square lattice,
shown in Fig. 3 in Ref. 10 by Poland. Besides the expected
quantitative differences, we notice, in general, a qualitative
agreement of both diagrams. A significant difference is that
in our calculation the lines corresponding to the fluid and
the solid phases meet at the tricritical point forming an
angle, while in the diagram by Poland a smooth junction is
suggested. Since the dotted lines in Poland’s diagram are the
result of an extrapolation, it seems that this aspect may be
worth to be studied in more detail using other techniques.
However, it may be possible that the angle we find here is
a characteristic of the mean field approximation implicit in
Bethe lattice calculations.
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APPENDIX: DETERMINATION OF THE TRICRITICAL
POINT

As mentioned in the text, one way to determine the
tricritical point is to solve the set of three equations for the
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polynomial X(g, z1, zp) defined in Eq. (5):

h =0, (Ala)
oh

— =0, (Alb)
ag

h _ 0 (Alc)
ag2

Although it seems to be a rather simple task to solve this
system of nonlinear algebraic equations for g, z;, and zp,
standard numerical methods, based on Newton-Raphson
procedures, often do not converge to the expected (physical)
solution. This may be due to the fact that the first and second
derivatives of h with respect to g vanish at the solution.
Therefore, we used another procedure, taking advantage of
the fact that 4 is a polynomial in the variable g:

N
h(g,21,22) = Y _ hi(z1, 22)¢', (A2)

i=0
where N =1+ (¢ — D?[1 + (¢ — 1)*]. Now go, the value of
g at the tricritical point, is a triple root of the polynomial, so
that we may write

N N-3
h(g,z1,22) = Zhi(Zh 22)8' = (g — g’ Z fi(z1,22)8"
i=0 i—=0

(A3)

Comparing terms with the same powers of g in the equation
above, we may solve for the N — 2 coefficients f; in terms of
the coefficients 4; and go. The result is

i
h

fi(go, 21, 22) = _ch*"j——{-&-S
Jj=0 80

(A4)
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fori=0,1,2,...,N — 3, and
(G+DG+2)
Cj=—"T—.
2
The remaining equations, corresponding to the powers g" ~ 2,

gN’l, andgN, are

(A5)

hnia — fnv-s —380fv-4 — 38 fv-3 =0, (A6a)
hy-1— fn—4a —380fn-3 =0, (A6b)
hy — fn-3 =0. (A6c)

The solution of these equations leads to the activities and the
value of the variable g at the tricritical point.
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