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Abstract

A one-dimensional non-Hermitian PT symmetric Hamiltonian, characterized by
position-dependent masses, defines a Schrödinger equation in terms of a field Ψ(x,
t). Based on an exact classical field theory, the necessity of an extra field Φ(x, t)
(which satisfies a conjugate equation and in general different is from Ψ∗(x, t)) is
shown. Simple applications are investigated by solving analytically both equations
and it is shown that the effective masses proposed lead to a probability density
characterized by a finite norm, typical of the physical situation that occurs with the
concentration of electrons in some semiconductor heterojunctions. An extension to
a three-dimensional space is also presented.

Keywords  Non-homogeneous Schrödinger equation – Non-hermitian hamiltonian
– Solutions of wave equations – Localized states – Classical field theory – Non-
extensive thermostatistics

1 Introduction

Quantum mechanics represents one of the most successful theories in physics,
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leading to an appropriate description of an incredibly amount of physical
phenomena [1]. However, many of its fundamental concepts are often remote from
our daily experience, such as the single plane-wave solution, used for representing a
free particle. Since this solution presents a nonzero amplitude over all space, its
norm diverges, so that it is not appropriate for describing wave pulses of wave
trains. However, the linear aspect of the Schrödinger equation (SE) ensures that one
can add many solutions such as to still have a solution. In this way, a localized
solution may be constructed by defining a superposition of plane waves, i.e., a
Fourier series, leading to the so-called wave-packet concept.

Proposals for overcoming the above-mentioned difficulty, and also motivated by an
adequate understanding of several phenomena related to complex systems, have
appeared in the latest years, based on modifications of the SE. For this purpose,
attempts have occurred, and one of them consists in turning the SE into a nonlinear
equation. In this case, one should mention two schemes: (i) Introduction of an extra
cubic term in the wave function that becomes responsible for the modulation of
some particular type of solution [2, 3]; (ii) modification of exponents of existing
linear terms. This second scheme was applied in Refs. [4–7], and it is currently
employed within non-extensive statistical mechanics [8]. As immediate
consequences, analytical treatments may become hard, in such a way that simple
properties in the linear case, like conservation of probability by means of a
continuity equation, may become rather nontrivial subjects (see, e.g., Refs. [5, 7]).
Hence, very frequently, one has to make use of numerical procedures, so that the
latest advances in computer technology have stimulated the study of generalized
equations, leading to considerable progresses. Particularly, many areas of physics
have benefited from such studies, like nonlinear optics, superconductivity, plasma
physics, and non-equilibrium statistical mechanics.

Although nonlinear equations may be suitable for describing many natural
phenomena, other physical systems, e.g., those associated with non-homogeneous
media, may require equations characterized by position-dependent coefficients; in
several cases, one may still keep the linear character of such equations. This
happens to be the case in the proposals of Refs. [9–17], which considered linear
SEs, but with position-dependent masses. One main motivation concerns a proper
description of some semiconductor heterostructures [18, 19].

Very frequently, within the context of nonlinear and/or nonhomogeneous SEs, one
has to deal with non-Hermitian Hamiltonians [20]. Nowadays, it is known that
hermiticity is not a necessary condition for a consistent quantum theory, since it has
been demonstrated in the literature that non-Hermitian Hamiltonians may also
present real energy eigenvalues, leading to a well-defined quantum theory [14, 17,
20–27]. Particularly, among the non-Hermitian Hamiltonians, a great interest has
been dedicated to those characterized by a PT symmetry, i.e., symmetric under both
P (parity, or space-reflection operator, which reverses position and momentum, x →
−x, p → −p) and T (time reversal operator, which reverses time and momentum, t →
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−t, p → −p, also requiring the reverse of the sign of the complex number, i → −i).
Hence, the resulting PT operation changes x → −x, t → −t, and i → −i. Recently, an
alternative formulation of quantum mechanics has appeared, in which the

requirement of Hermiticity of the Hamiltonian  was replaced by the condition of

space-time reflection; consequently, if  presents an unbroken PT symmetry, then
its associated energy spectrum should be real [20, 22–27].

Another fundamental issue when dealing with non-Hermitian Hamiltonians
concerns the positivity and finiteness of the norm of states. Eventually, one may end
up with states leading to a negative norm, which prevents its use in the probabilistic
interpretation of quantum mechanics. In some of these cases, an operator has been
introduced (called C operator), in terms of which a time-independent inner product
is constructed, yielding a positive-definite norm. Essentially, the operator C
contributes with a factor −1 whenever it acts on states with negative norm [20].

In the present work, we introduce a one-dimensional non-Hermitian PT symmetric

Hamiltonian , characterized by position-dependent masses, whichdefines a
Schrödinger equation associated with the field Ψ(x, t). By applying an exact
classical field theory, we show that one needs to introduce an extra field Φ(x, t) for
consistency; this field satisfies a conjugate equation, written in terms of the

Hamiltonian conjugate . In the next section, we define the Hamiltonian and its
associated Schrödinger equation, characterized by a particular form for the position-
dependent masses. It is argued that the dependence introduced herein might be
relevant for physical systems presenting interfaces along which the chemical
composition varies, like in semiconductor heterostructures, where such changes do
not occur abruptly, but instead, they are graded over some specified distance, and
consequently, the effective mass becomes a continuous function of the position. In
the present proposal, the particular form of mass dependence leads to a maximum
probability density at the origin, decreasing continuously away from the origin,
representing typically the physical situation that occurs with the concentration of
electrons in pnp junctions. Hence, a classical field theory is constructed, by
introducing a Lagrangian density, in such a way to obtain the Schrödinger equation,
as well as its conjugate equation, associated with the extra field. Moreover, defining
an appropriate probability density in terms of the two fields, the continuity equation
is demonstrated. In Section 3, we consider two simple applications, namely, the free
particle in open space and the particle confined in an infinite square well (−L ≤ x ≤
L), solving analytically the equations for the fields Ψ(x, t) and Φ(x, t). We show that
the energy spectrum is quantized in both applications, and more interestingly, that
the free-particle solution presents a finite norm in full open space. In Section 4, a
three-dimensional proposal is also presented, in terms of the two fields  and 

; it is shown that all results obtained in the one-dimensional analysis may
be extended to three dimensions. Finally, in Section 5, we present our conclusions.

Ĥ
Ĥ

Ĥ

Ĥ
†

Ψ( , t)x ⃗ 
Φ( , t)x ⃗ 
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(1)

(2)

(3)

2 The Hamiltonian and Its Conjugate

Let us consider the following SE,

where V(x) denotes a potential and  is a deformed derivative in space [28]. This
equation may be written also in terms of a one-dimensional, non-Hermitian PT

symmetric Hamiltonian ,

where

The above Hamiltonian is characterized by position-dependent masses, m e ≡ m e (x),
interpreted as the particle’s position-dependent effective mass, found in real
systems, like in semiconductors of nonuniform chemical composition [9], and
semiconductor heterostructures [18, 19]. In the definition above for m e , γ
represents a real non-negative parameter (with dimensions [L]−2) that may vary
according to the physical system considered; moreover, m e follows parity
symmetry, x → −x, which should also be obeyed by the potential, i.e., V(−x) = V(x).

A heterostructure is defined as a semiconductor structure in which the chemical
composition changes with position; hence, an electron moving in such a structure
presents an effective mass that varies with its position. The simplest heterostructure
consists of a single heterojunction, represented by an interface across which the
chemical composition changes. Usually, a heterojunction is made between two
materials for which there exists a continuum of solid solutions, so that the chemical
variation does not occur abruptly, but instead, it drops continuously with the
position, and consequently, leading to a similar behavior for the effective mass.
Such heterojunctions present desirable properties for some applications. The
proposal for an effective mass m e = m/(1 + γ x)2, considered in Refs. [14–17], is
expected to be relevant for a some types of np junctions, where a gradual decrease
in the concentration of electrons is verified for x > 0. In the present framework, the
effective-mass form of (3) is symmetric around its maximum value at x = 0 and
decreases for increasing values of |x|, so that m e ∼ |x|−4, when . Hence,
this proposal should be applicable for pnp junctions, where the parameter γ would

iℏ ∂Ψ(x, t)
∂t

= − Ψ(x, t) + V(x)Ψ(x, t)ℏ2

2m
D̂

2
γ

( = (1 + γ ) ) ,D̂γ x 2 ∂
∂x

D̂γ

Ĥ

iℏ = Ψ(x, t) ,∂Ψ(x, t)
∂t Ĥ

Ĥ = −  − [ ( )] + V(x)ℏ2

2me

∂2

∂x 2
ℏ2

4
d
dx

1
me

∂
∂x

= .
⎛
⎝
⎜⎜me

m

(1 + γ )x 2 2

⎞
⎠
⎟⎟

x ≫ 1γ√
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(4)

(5)

(6)

(7)

(8)

depend on the particular types of materials used in the associated junctions.

Recently, it was shown that for some class of Schrödinger equations, defined in
terms of non-Hermitian Hamiltonians [like the one of (3)], one needs to deal with
an extra equation assigned to the Hermitian conjugate of the corresponding
Hamiltonian [5, 7, 17]. Herein, we follow closely the procedure carried in Ref. [17],
where a classical-field theory was developed by introducing a Lagrangian density, 

, depending on two dimensionless fields Ψ(x, t) and Φ(x, t), on their time
derivatives, as well as spatial derivatives,

with ∂ x ≡ ∂/∂ x, , and ∂ t ≡ ∂/∂ t. One should call the attention to the
fact that the Lagrangian density defined above presents a dependence up to first
spatial derivative in the field Φ(x, t) and up to the second one in the field Ψ(x, t);
this represents an important requirement for obtaining the correct Euler-Lagrange
equations for these two fields [29, 30]. Therefore, in the first case, one has a
standard Euler-Lagrange equation

whereas in the later, one should take into account the contribution from its second-
derivative term

Herein, we propose the following Lagrangian density

which will be shown to be appropriate in what follows. Substituting the above
Lagrangian density in (5), one obtains the SE of (2); furthermore, the Euler-
Lagrange equation of (6) leads to the equation for the field Φ(x, t),

where  is the Hermitian conjugate of the Hamiltonian operator defined in (2).
One has that



 ≡ (Ψ, Ψ, Ψ, Ψ, Φ, Φ, Φ,∂x ∂2
x ∂t ∂x ∂t

, , , , , , ) ,Ψ∗ ∂xΨ∗ ∂2
x Ψ∗ ∂t Ψ∗ Φ∗ ∂xΦ∗ ∂t Φ∗

≡ /∂∂2
x ∂2 x 2

− [ ] − [ ] = 0 ,∂
∂Φ ∂x

∂
∂( Φ)∂x

∂t
∂

∂( Φ)∂t

− [ ] − [ ] + [ ] = 0 .∂
∂Ψ ∂x

∂
∂( Ψ)∂x

∂t
∂

∂( Ψ)∂t
∂2

x
∂

∂( Ψ)∂2
x

+

−

+

 =  Φ(x, t) Ψ(x, t) + [ ( )]Φ(x, t) Ψ(x, t)iℏ
2 ∂t

ℏ2

8
d
dx

1
me

∂x

 Φ(x, t) Ψ(x, t) − V(x)Ψ(x, t)Φ(x, t)ℏ2

4me
∂2

x
1
2

 (x, t) (x, t) + [ ( )] (x, t) (x, t)iℏ
2 Φ∗ ∂t Ψ∗ ℏ2

8
d
dx

1
me

Φ∗ ∂xΨ∗

 (x, t) (x, t) − V(x) (x, t) (x, t) ,ℏ2

4me
Φ∗ ∂2

x Ψ∗ 1
2 Ψ∗ Φ∗

−iℏ = Φ(x, t) ,∂Φ(x, t)
∂t Ĥ

†

Ĥ
†

†
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(9)

(10)

(11)

(12)

One should notice that only for a constant mass, m e = m (i.e., γ = 0), is that one has

a Hermitian Hamiltonian, , and (2) and (8) are related by a conjugate
operation, with Φ(x, t) = Ψ∗(x, t). For γ > 0, these two equations are not simply
related, so that both Hamiltonians and fields should be considered in a complete
analysis. Indeed, γ represents a deformation parameter, associated with the non-

Hermiticity of the Hamiltonian operator, in the sense that , if γ > 0,
whereas Hermiticity is recovered for γ = 0. One should notice the close analogy

with nonextensive statistical mechanics [8]; in fact, the Hamiltonian  of (2) and
(3) was originally based on a deformed-derivative operator, which was shown to be
very useful for performing calculations in such a theory [28].

Considering these two fields, one can define a probability density

The consistency of the procedure above is reinforced by the continuity equation

where the current density is given by

It should be mentioned that (11) holds for general m e (x) and V(x), ensuring the
conservation of probability for all times. In order to achieve continuity, the
introduction of the extra field Φ(x, t) and its associated equation [(8)] becomes
essential; this result is not possible by considering only the SE of (2) and its
complex conjugate.

Based on the above results, we define the inner product involving these two fields

Ĥ
†

= −  − [ ( )]ℏ2

2me

∂2

∂x 2
3ℏ2

4
d
dx

1
me

∂
∂x

− [ ( )] + V(x) .ℏ2

4
d 2

dx 2
1

me

=Ĥ
†

Ĥ

≠Ĥ
†

Ĥ

Ĥ

ρ(x, t) = [Ψ(x, t)Φ(x, t) + (x, t) (x, t)] .1
2 Ψ∗ Φ∗

+ = 0 ,∂ρ(x, t)
∂t

∂j(x, t)
∂x

j(x, t) = − { [ ]Ψ(x, t) −ℏ
4i

∂
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Φ(x, t)
me

Φ(x, t)
me

∂Ψ(x, t)
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− [ ( )]Φ(x, t)Ψ(x, t)1
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− [ ] (x, t) +∂
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(x, t)Φ∗

me
Ψ∗ (x, t)Φ∗

me

∂ (x, t)Ψ∗

∂x

+ [ ( )] (x, t) (x, t)} .1
2

d
dx

1
me

Φ∗ Ψ∗

dx[Ψ(x, t)Φ(x, t) + (x, t) (x, t)]1 ∫
∞

∗ ∗
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(13)

(14)

(15)

(16)

(17)

(18)

(19)

so that, by definition

Now, (2) and (8) indicate that Ψ(x, t) and Φ(x, t) should be the right and left

wavefunctions of , respectively, whereas the order should be inverted for . In
this way, one can write the expectation values,

as well as,

Therefore, in general, one has that , whereas these expectation
values become equal only in the limit γ = 0. In what follows, we will show that,
considering a particular stationary-state solution, the standard procedure for finding
the adjoint of a differential operator by means of integrations by parts, and using
appropriate boundary conditions [1], does also apply for the present case.

For a general potential V(x), (2) and (8) present the following type of solutions

leading to the set of time-independent equations

(Ψ(x, t), Φ(x, t)) =

=

dx[Ψ(x, t)Φ(x, t) + (x, t) (x, t)]1
2 ∫

∞

−∞
Ψ∗ Φ∗

dxρ(x) ,∫
∞

−∞

(Ψ(x, t), Φ(x, t) = (Ψ(x, t), Φ(x, t)) .)∗

Ĥ Ĥ
†

⟨ ⟩Ĥ =

=

=

 dx Φ(x, t) Ψ(x, t) +1
2 ∫

∞

−∞
Ĥ 1

2 [  dx Φ(x, t) Ψ(x, t)]∫
∞

−∞
Ĥ

∗

 dx Φ(x, t) Ψ(x, t) +  dx (x, t)1
2 ∫

∞

−∞
Ĥ 1

2 ∫
∞
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Φ∗ [ Ψ(x, t)]Ĥ
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 dx [Φ(x, t) − (x, t) ] ,iℏ
2 ∫

∞
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†
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2 ∫

∞

−∞
Ĥ

† 1
2 [ dxΨ(x, t) Φ(x, t)]∫

∞

−∞
Ĥ
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2 ∫
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†

Ψ(x, t) = exp(− )ψ(x) ,
i tEψ

ℏ

Φ(x, t) = exp( )ϕ(x) ,
i tEϕ

ℏ

ψEψ =

−
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2m (1 + γ )x 2 2 ψd 2
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 x(1 + γ ) + V(x)ψ  ,γℏ2
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−  −  x(1 + γ )ℏ2 2 ϕd 2 3 γℏ2
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(20)

(21)

(22)

(23)

(24)

The solution proposed in (17) and (18) is very general, with E ψ = (E ϕ )∗. However,
the PT symmetry should lead to a real energy spectrum, i.e., E ψ = E ϕ = E, yielding
in (10) a time-independent probability density at the stationary state. Hence, one has
the pair of time-independent equations

where the operators  and  are defined in (19) and (20), respectively. Now, at
the stationary state, a somewhat lengthy (but straightfoward) calculation by
considering a sequence of two integrations by parts and assuming the conditions
that ψ(x), ϕ(x), (d ψ(x)/d x), and (d ϕ(x)/d x) should go to zero faster than x −2, in

the limit |x| → ∞, than one can find  of (20) from the operator  of (19) in the
usual way [1],

The equation above confirms that ϕ(x) corresponds to the left eigenstate of the

operator , or to the right eigenstate of ; moreover, considering the present

solutions, (15) and (16) yield .

In the next section, we will work with (19) and (20) for some standard choices of
the potential V(x).

3 Simple Applications

3.1 Particle in a Constant Potential

As a first example, let us consider a constant potential, V(x) = V 0 ≥ 0 (−∞ < x < ∞).
Hence, one has a pair of solutions

where  . The case V 0 = 0, to be called herein as the
“free-particle solution”, comes naturally from the above equations, as expected, and
will be discussed below. One remarkable aspect of these solutions corresponds to

ϕEϕ =

−

−  −  x(1 + γ )ℏ2

2m (1 + γ )x 2 2 ϕd 2

dx 2
3 γℏ2

m
x 2 dϕ

dx

(1 + 3γ )ϕ + V(x)ϕ .γℏ2

m x 2

Eψ(x) = ψ(x) ; Eϕ(x) = ϕ(x) ,Ĥ Ĥ
†

Ĥ Ĥ
†

Ĥ
†

Ĥ

 dx ϕ(x) ψ(x) =  dx ψ(x) ϕ(x) .∫
∞

−∞
Ĥ ∫

∞

−∞
Ĥ

†

Ĥ Ĥ
†

⟨ ⟩ = ⟨ ⟩ = EĤ Ĥ
†

ψ(x) = exp[ arctan( x)] ,C1
ik

γ√
γ√

ϕ(x) = exp[  arctan( x)] ,C2
1 + γx 2

−ik
γ√

γ√

k = [2m(E − ) /ℏV0 ]1/2

http://link.springer.com/article/10.1007/s13538-014-0277-8/fulltext.html#Equ17
http://link.springer.com/article/10.1007/s13538-014-0277-8/fulltext.html#Equ18
http://link.springer.com/article/10.1007/s13538-014-0277-8/fulltext.html#Equ10
http://link.springer.com/article/10.1007/s13538-014-0277-8/fulltext.html#Equ19
http://link.springer.com/article/10.1007/s13538-014-0277-8/fulltext.html#Equ20
http://link.springer.com/article/10.1007/s13538-014-0277-8/fulltext.html#Equ20
http://link.springer.com/article/10.1007/s13538-014-0277-8/fulltext.html#Equ19
http://link.springer.com/article/10.1007/s13538-014-0277-8/fulltext.html#CR1
http://link.springer.com/article/10.1007/s13538-014-0277-8/fulltext.html#Equ15
http://link.springer.com/article/10.1007/s13538-014-0277-8/fulltext.html#Equ16
http://link.springer.com/article/10.1007/s13538-014-0277-8/fulltext.html#Equ19
http://link.springer.com/article/10.1007/s13538-014-0277-8/fulltext.html#Equ20
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(25)

(26)

(27)

(28)

(29)

the finiteness of the integral of the probability density defined in (10) for γ > 0

from which one considers  for normalization. From
now on, we will restrict ourselves to real coefficients, so that ,
leading to a Lorentzian probability density

Therefore, within the present proposal, one does not need to confine the particle in a
box for normalizability; as expected, the usual nonintegrability of the free-particle
solution with a constant mass, m e (x) = m, is recovered in full space (−∞ < x < ∞) in
the limit γ → 0. For γ > 0, the solutions of (23) and (24) represent a localized
particle around the origin, since .

The next important point concerns the quantization of the energy spectrum; we will
show below that this property comes directly from the orthogonality of these
solutions. For that, we consider (23) and (24) with wave vectors k and k′, to be
denoted by ψ k (x) and  respectively, such as to define the integral,

Introducing the variable , the integral above becomes

Since the imaginary part of the integral defined in (27) does not contribute, the inner
product defined in (13) is precisely this integral

An important property of the eigenfunctions of an Hermitian operator is their
orthogonality [1]. This property can be shown by considering the integral

 dx ρ(x)∫
∞

−∞
=

=

 dx ∫
∞

−∞

+C1C2 C ∗
1 C ∗

2
2(1 + γ )x 2

( + ) ,π
2 γ√

C1C2 C ∗
1 C ∗

2

+ = 2 /πC1C2 C ∗
1 C ∗

2 γ√
= /(π )C2 γ√ C1

ρ(x) =  .
γ√

π(1 + γ )x 2

⟨x⟩ =  dx xρ(x) = 0∫ ∞
−∞

(x)ϕk ′

k,k ′ =

=

 dx (x) (x)∫
∞

−∞
ψk ϕk ′

 exp[  arctan( x)]
γ√

π ∫
∞

−∞

dx
1 + γx 2

i(k − )k ′

γ√
γ√

y = (1/ )arctan( x)γ√ γ√

k,k ′ =

=

 dy exp[i(k − )y]
γ√

π ∫
π/(2 )γ√

−π/(2 )γ√
k ′

sin[ ] .
γ√

π
2

k − k ′
(k − )πk ′

2 γ√

( (x), (x))ψk ϕk ′ =

=

=

 dx [ (x) (x) + (x) (x)]1
2 ∫

∞

−∞
ψk ϕk ′ ψ ∗

k ϕ∗
k ′

 cos[  arctan( x)]
γ√

π ∫
∞

−∞

dx
1 + γx 2

(k − )k ′

γ√
γ√

 .k,k ′

dx (x) (x) = dx (x) (x) ,∫
∞

′ k k ∫
∞

′ k

http://link.springer.com/article/10.1007/s13538-014-0277-8/fulltext.html#Equ10
http://link.springer.com/article/10.1007/s13538-014-0277-8/fulltext.html#Equ23
http://link.springer.com/article/10.1007/s13538-014-0277-8/fulltext.html#Equ24
http://link.springer.com/article/10.1007/s13538-014-0277-8/fulltext.html#Equ23
http://link.springer.com/article/10.1007/s13538-014-0277-8/fulltext.html#Equ24
http://link.springer.com/article/10.1007/s13538-014-0277-8/fulltext.html#Equ27
http://link.springer.com/article/10.1007/s13538-014-0277-8/fulltext.html#Equ13
http://link.springer.com/article/10.1007/s13538-014-0277-8/fulltext.html#CR1
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(30)

(31)

(32)

(33)

(34)

(35)

(36)

(37)

which becomes, after an integration by parts,

Since these two integrals are equal, one has that

with a similar result applying to the corresponding complex-conjugate eigenstates.
Since the eigenstates ϕ k (x) and ψ k (x) are normalized, one has the orthogonality
condition, , and consequently

By considering this, one is left with a discretization for the wave vectors

where one notices the case j = 0, i.e., k = k′, corresponding to the normalization
condition considered in (25).

Hence, in order to satisfy (34), one notices that the free particle should present a
discrete energy spectrum, , where the set of wave vectors {k n }
may be taken from either one of the following series

with n = 0, ±1, ±2, � . From both series above, one sees that the quantum of
momentum is , leading to a physical interpretation
for the deformation parameter γ. One should stress that δ p → 0, when γ → 0, i.e.,
the continuous spectrum of the free-particle within the standard SE is recovered.
The energy spectra corresponding to these two types of solutions are

where one sees that in the later series the zero of energy is shifted by a constant, 
 . The quantum of energy depends on n, ε(n) = E n + 1 − E n , being

given by

dx (x) (x) = dx (x) (x) ,∫
∞

−∞
ϕk ′ Ĥψk Ek ∫

∞

−∞
ϕk ′ ψk

dx (x) (x) = dx (x) (x) .∫
∞

−∞
Ĥ

†
ϕk ′ ψk Ek ′ ∫

∞

−∞
ϕ k ′ ψk

( − ) dx (x) (x) = ( − ) = 0 ,Ek Ek ′ ∫
∞

−∞
ψk ϕk ′ Ek Ek ′ k,k ′

=k,k ′ δk,k ′

( (x), (x)) =  .ψk ϕk ′ δk,k ′

k − = 2j (j = 0, ±1, ±2, ⋯) ,k ′ γ√

= /(2m)En ℏ2k 2
n

Even series: kn = 2n  ,γ√

Odd series: kn = (2n + 1)  ,γ√

δp = ℏ( − ) = 2ℏkn+1 kn γ√

= = {En
ℏ2k 2

n
2m

2 γ/m ,ℏ2n2

(2n + 1 γ/2m ,ℏ2 )2
even series ,
odd series ,

= γ/2mE0 ℏ2

( − )ℏ2

http://link.springer.com/article/10.1007/s13538-014-0277-8/fulltext.html#Equ25
http://link.springer.com/article/10.1007/s13538-014-0277-8/fulltext.html#Equ34
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(38)

(39)

(40)

(41)

(42)

(43)

(44)

(45)

One notices that ε(n) presents significant differences from one series to the other for
low values of n, e.g., the gap ε(0) = E 1 − E 0 is given by  (even
series) and  (odd series); however, in the limit n → ∞ such
differences disappear.

As usual, the pair of solutions in (23) and (24) may be written also in the form

which may be more appropriate when dealing with boundary-condition problems,
like in the next application.

3.2 Particle in an Infinite Square Well Potential

As a second illustration, we consider a particle described by (19) and (20) under the
potential of an infinite square well, i.e., infinite for x < −L and x > L, and zero in the
interval −L < x < L. Like the standard SE [1], we impose the wave functions ψ(x)
and ϕ(x) to be zero when the potential is infinite, ψ(−L) = ψ(L) = ϕ(−L) = ϕ(L) = 0.
Considering the simplest case where E ψ = E ϕ = E, possible solutions of the form
presented in (39) and (40) are

if −L < x < L, and ψ n (x) = ϕ n (x) = 0, otherwise. Imposing the boundary conditions
above, the wave vectors become quantized

leading to the following energy eigenvalues

The coefficient A n that appears in (42) and (43) is a normalization factor and is
computed by imposing . In this case, one uses the probability

ε(n) =

=

( − )ℏ2

2m
k 2

n+1 k 2
n

{ 2 (2n + 1)γ/m , even \ series ,ℏ2

4 (n + 1)γ/m ,  odd \ series .ℏ2

ε(0) = 2 γ/mℏ2

ε(0) = 4 γ/mℏ2

(x)ψk = cos[ (x)] + sin[ (x)] ,a1 αk a2 αk

ϕ(x) = { cos[ (x)] + sin[ (x)]},1
1 + γx 2 b1 αk b2 αk

(x)αk =  arctan( x) ,k
γ√

γ√

(x) = sin[ arctan( x)] ,ψn An
kn

γ√
γ√

(x) = sin[  arctan( x)] ,ϕn
An

(1 + γ )x 2
kn

γ√
γ√

=  ; (n = 0, ±1, ±2, ⋯) ,kn
nπ γ√

arctan( L)γ√

=  ; (n = 0, ±1, ±2, ⋯) .En
γℏ2n2π 2

2m ( L)arctan 2 γ√

 dxρ(x) = 1∫ L
−L

http://link.springer.com/article/10.1007/s13538-014-0277-8/fulltext.html#Equ23
http://link.springer.com/article/10.1007/s13538-014-0277-8/fulltext.html#Equ24
http://link.springer.com/article/10.1007/s13538-014-0277-8/fulltext.html#Equ19
http://link.springer.com/article/10.1007/s13538-014-0277-8/fulltext.html#Equ20
http://link.springer.com/article/10.1007/s13538-014-0277-8/fulltext.html#CR1
http://link.springer.com/article/10.1007/s13538-014-0277-8/fulltext.html#Equ39
http://link.springer.com/article/10.1007/s13538-014-0277-8/fulltext.html#Equ40
http://link.springer.com/article/10.1007/s13538-014-0277-8/fulltext.html#Equ42
http://link.springer.com/article/10.1007/s13538-014-0277-8/fulltext.html#Equ43
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(46)

(47)

(48)

(49)

density of (10) to obtain

One should notice that in the limit γ → 0 one gets , which diverges in
the limit L → ∞, as expected. However, for γ > 0, the normalization factor is always
finite, and particularly in the limit L → ∞ one gets . This result is in
agreement with the previous analysis of the free particle in open space [cf. (25)],
where one identifies , as one goes from the plane-wave
forms of (23) and (24) to those in (39) and (40). Moreover, in limit L → ∞, one
verifies that the discretization of wave vectors of (44) recovers the even series of
(35). In the present case, the above quantization of wave vectors leads naturally to
the orthogonality of the solutions, i.e., .

We will now discuss a second pair of solutions for the infinite square well, which in
the limit L → ∞ should yield the odd series of (36). One sees that an equivalent pair
of solutions in this case is obtained by replacing sin[..] → cos[..] in (42) and (43).
For this solution to satisfy the boundary conditions, one should have

leading to the following energy eigenvalues

This second pair of solutions corresponds precisely to the odd series of (36), in the
limit L → ∞.

It is important to stress the two different procedures used herein to obtain the
quantization of wave vectors: (i) Imposing the orthogonality of solutions, as done
for the free-particle in full space (−∞ < x < ∞); (ii) Considering appropriate
boundary conditions for a particle in an infinite square well (−L < x < L). These two
procedures were shown to be equivalent in the limit L → ∞.

4 Three-Dimensional Case

Herein, we will generalize the previous results to three dimensions; in this case, (2)
becomes

−L

=  .A2
n

γ√
arctan( L)γ√

= 1/LA2
n

= 2 /πA2
n γ√

= 2 = 2 /πA2
n C1C2 γ√

( , ) =ψn ϕn′ δn,n′

=  ; (n = 0, ±1, ±2, ⋯) ,kn
(n + 1/2)π γ√
arctan( L)γ√

=  ; (n = 0, ±1, ±2, ⋯) .En
(n + 1/2 γℏ2 )2π 2

2m ( L)arctan 2 γ√

iℏ ∂Ψ( , t)x ⃗ 
∂t =

=

+

Ψ( , t)Ĥ x ⃗ 

− Ψ( , t)− [ ( )] ⋅ Ψ( , t)ℏ2

2 D̂
2
m x ⃗ ℏ2

4 ∇⃗ 1
me

∇⃗ x ⃗ 

V( )Ψ( , t) ,x ⃗ x ⃗ 

http://link.springer.com/article/10.1007/s13538-014-0277-8/fulltext.html#Equ10
http://link.springer.com/article/10.1007/s13538-014-0277-8/fulltext.html#Equ25
http://link.springer.com/article/10.1007/s13538-014-0277-8/fulltext.html#Equ23
http://link.springer.com/article/10.1007/s13538-014-0277-8/fulltext.html#Equ24
http://link.springer.com/article/10.1007/s13538-014-0277-8/fulltext.html#Equ39
http://link.springer.com/article/10.1007/s13538-014-0277-8/fulltext.html#Equ40
http://link.springer.com/article/10.1007/s13538-014-0277-8/fulltext.html#Equ44
http://link.springer.com/article/10.1007/s13538-014-0277-8/fulltext.html#Equ35
http://link.springer.com/article/10.1007/s13538-014-0277-8/fulltext.html#Equ36
http://link.springer.com/article/10.1007/s13538-014-0277-8/fulltext.html#Equ42
http://link.springer.com/article/10.1007/s13538-014-0277-8/fulltext.html#Equ43
http://link.springer.com/article/10.1007/s13538-014-0277-8/fulltext.html#Equ36
http://link.springer.com/article/10.1007/s13538-014-0277-8/fulltext.html#Equ2
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(50)

(51)

(52)

(53)

(54)

(55)

(56)

(57)

which defines the Hamiltonian

In the equations above  and we consider

with  for i = 1, 2, 3. The proposal above corresponds to
a very general type of particle’s position-dependent effective mass, following parity
symmetry [ ] and characterized by a spatial anisotropy.
Moreover, one should have as well .

The classical field theory introduced above for the one-dimensional case may be
extended to three dimensions. In this case, the Euler-Lagrange equation for the field 

 yields (49), whereas the one for the field  leads to the equation for
the extra field , namely,

corresponding to

Considering the fields  and  above, one defines the probability
density

which follows a continuity equation in three dimensions

where the current-density vector  is given by a three-dimensional
generalization of the form in (12). Like in the one-dimensional case, the above
continuity equation applies for general  and , ensuring the conservation
of probability for all times.

= − − [ ( )] ⋅ + V( ) .Ĥ
ℏ2

2 D̂
2
m

ℏ2

4 ∇⃗ 1
me

∇⃗ x ⃗ 

≡ ( , , )x ⃗ x1 x2 x3

D̂
2
m ≡ + +  ,1

me1

∂2

∂x12
1

me2

∂2

∂x22
1

me3

∂2

∂x32

( )∇⃗ 1
me

≡ [ ( ), ( ), ( )] ,∂
∂x1

1
me1

∂
∂x2

1
me2

∂
∂x3

1
me3

( )∇⃗ 2 1
me

≡ [ ( ), ( ), ( )] ,∂2

∂x12
1

me1

∂2

∂x2 2
1

me2

∂2

∂x3 2
1

me3

( ) = m/(1 + γmei xi x 2
i )2

(− ) = ( )mei xi mei xi
V(− ) = V( )x ⃗ x ⃗ 

Φ( , t)x ⃗ Ψ( , t)x ⃗ 
Φ( , t)x ⃗ 

−iℏ ∂Φ( , t)x ⃗ 
∂t =

=

−

Φ( , t)Ĥ
†

x ⃗ 

−  Φ( , t) − [ ( )] ⋅ Φ( , t)ℏ2

2 D̂
2
m x ⃗ 3ℏ2

4 ∇⃗ 1
me

∇⃗ x ⃗ 

[ ( )]Φ( , t) + V( )Φ( , t) ,ℏ2

4 ∇⃗ 2 1
me

x ⃗ x ⃗ x ⃗ 

= −  − [ ( )] ⋅ − [ ( )] + V( ) .Ĥ
† ℏ2

2 D̂
2
m

3ℏ2

4 ∇⃗ 1
me

∇⃗ ℏ2

4 ∇⃗ 2 1
me

x ⃗ 

Ψ( , t)x ⃗ Φ( , t)x ⃗ 

ρ( , t) = [Ψ( , t)Φ( , t) + ( , t) ( , t)] ,x ⃗ 1
2 x ⃗ x ⃗ Ψ∗ x ⃗ Φ∗ x ⃗ 

+ ⋅ ( , t) = 0 ,∂ρ( , t)x ⃗ 
∂t ∇⃗ j ⃗ x ⃗ 

( , t)j ⃗ x ⃗ 

( )me x ⃗ V( )x ⃗ 

http://link.springer.com/article/10.1007/s13538-014-0277-8/fulltext.html#Equ49
http://link.springer.com/article/10.1007/s13538-014-0277-8/fulltext.html#Equ12
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(58)

(59)

(60)

(61)

(62)

(63)

By writing (49) and (54) in terms of Cartesian components, one obtains

Solutions similar to those of (17) and (18) hold herein also,

where for the present case, one has

Substituting these solutions into (58) and (59) one obtains, respectively,

iℏ ∂Ψ( , t)x ⃗ 
∂t = − [(1 + γ  ]ℏ2

2m ∑
i=1,2,3

x 2
i )2 Ψ( , t)∂2 x ⃗ 

∂xi 2

− [ (1 + γ ) ]γℏ2

m ∑
i=1,2,3

xi x 2
i

∂Ψ( , t)x ⃗ 
∂xi

+V( )Ψ( , t) ,x ⃗ x ⃗ 

iℏ ∂Φ( , t)x ⃗ 
∂t = −  [  ]ℏ2

2m ∑
i=1,2,3

(1 + γ )x 2
i

2 Φ( , t)∂2 x ⃗ 
∂xi 2

−  [ (1 + γ ) ]3 γℏ2

m ∑
i=1,2,3

xi x 2
i

∂Φ( , t)x ⃗ 
∂xi

− [(1 + 3γ )Φ( , t)]γℏ2

m ∑
i=1,2,3

x 2
i x ⃗ 

+V( )Φ( , t) .x ⃗ x ⃗ 

Ψ( , t)x ⃗ = exp(− )ψ( ) ,iEt
ℏ

x ⃗ 

Φ( , t)x ⃗ = exp( )ϕ( ) ,iEt
ℏ

x ⃗ 

ψ( ) = ( ) ( ) ( ) ; ϕ( ) = ( ) ( ) ( ) .x ⃗ ψ1 x1 ψ2 x2 ψ3 x3 x ⃗ ϕ1 x1 ϕ 2 x2 ϕ3 x3

−

−

[ ]ℏ2

2m ∑
i=1,2,3

(1 + γ )x 2
i

2 1
( )ψi xi

( )∂2ψi x i

∂xi 2

[ (1 + γ ) ]γℏ2

m ∑
i=1,2,3

xi x 2
i

1
( )ψi xi

∂ ( )ψi xi

∂xi

= E − V( ) ,x ⃗ 

http://link.springer.com/article/10.1007/s13538-014-0277-8/fulltext.html#Equ49
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(64)

(65)

(66)

(67)

(68)

(69)

From now on, we restrict ourselves to a constant potential, .
Hence, one has the following pair of solutions for each Cartesian component i,

with . Next, we discuss the simple case of
a free particle.

4.1 Free Particle

Like in the one-dimensional case, a free particle will be considered as the particular
limit V 0 = 0; the solutions above lead to

with .

Like before, within the present proposal, one has a free-particle solution
characterized by a finite norm,

−
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(70)

(71)

(72)

(73)

(74)

which requires a b = γ 3/2/π 3 for normalization. Consequently, this solution
represents a particle localized around the origin (since 〈x i 〉 = 0 for each
component), with the probability density  presenting two important
ingredients: (i) A finite norm; (ii) It follows a continuity equation [cf. (57)] for all
times. Considering the solutions in (67)–(69), one has

representing the three-dimensional extension of (26). As expected, in the limit γ →
0, one recovers the constant-mass free-particle solution with  and 

, characterizing a nonintegrability in full space.

Similarly to the one-dimensional case, the quantization comes by imposing
orthogonality of the solutions above [cf. (27)]

leading to two set of quantized wave vectors for each Cartesian component, namely
[cf. (35)],

with n i = 0,±1,±2,� (i = 1,2,3) . The quantum of momentum in each component is
given by , showing that the deformation
parameter γ is directly related to the quantization, i.e., δ p i → 0, when γ → 0.

Hence, we have shown in the present section that the anisotropy introduced herein
in the effective mass, characterized by independence in the Cartesian directions, 
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=

×
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 for i = 1,2,3, allows to extend the one-dimensional
results of the previous sections to three-dimensions. From the results above, the
formulation of the problem for an arbitrary number of dimensions becomes
straightforward.

5 Conclusions

To conclude, we have introduced a non-Hermitian PT symmetric Hamiltonian ,
characterized by position-dependent masses, from which a linear Schrödinger

equation, , was defined. This equation emerged
through a deformed differential operator, characterized by a positive deformation
parameter γ. Such a deformation is very similar to those used frequently on
nonextensive statistical mechanics, such that the standard differential operator is

recovered when γ → 0. Within the present proposal, one has  for γ > 0,
whereas Hermiticity is recovered only in the limit γ → 0. Previous approaches,
based on an exact classical field theory, have shown the necessity of an extra field
Φ(x, t) for these classes of equations, where the field Φ(x, t) becomes Ψ∗(x, t) only

when , i.e., γ = 0. This extra field satisfies the conjugate equation, 

.

Considering an appropriate probability density, defined in terms of both fields Ψ(x,
t) and Φ(x, t), a continuity equation follows, guaranteeing the preservation of
probability. The introduction of the extra field Φ(x, t) is mandatory for a continuity
equation, and consequently, for a consistent definition of a probability density that is
conserved. For this class of mass-dependent Schrödinger equations, this result is not
possible (as far as we know) by considering only the Schrödinger equation and its
complex conjugate; however, by introducing the extra field Φ(x, t), following the
corresponding conjugate equation, the continuity equation follows for a general
effective mass m e (x) and external potential V(x). It is also shown that the new field

Φ(x, t) corresponds to the left eigenstate of the operator , or to the right eigenstate

of .

The equations for the two fields were solved analytically in simple cases, namely, a
free particle in full space, and a particle in an infinite square well (−L < x < L). For
the free particle, the quantization of momenta was obtained by imposing the
orthogonality of solutions, yielding a quantum of momentum 

, providing a physical interpretation for the
deformation parameter γ within the present approach. For the particle in the square
well the standard procedure was considered, i.e., imposing boundary conditions.
These two schemes for quantization were shown to be equivalent in the limit L →

( ) = m/mei xi (1 + γ )x 2
i

2

Ĥ

iℏ, [∂Ψ(x, t)/∂t] = Ψ(x, t)Ĥ

≠Ĥ
†

Ĥ

=Ĥ
†

Ĥ

−iℏ, [∂Φ(x, t)/∂t] = Φ(x, t)Ĥ
†

Ĥ

Ĥ
†

δp = ℏ( − ) = 2ℏkn+1 kn γ√
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1.

2.

∞. The free-particle solution studied herein has exhibited the remarkable property of
integrability in full space, being characterized by a finite norm. This result is to be
contrasted with the free-particle within the standard Schrödinger equation, for
which the plane-wave solution does not present a well-defined norm.

A three-dimensional proposal was also presented, in terms of the two fields 
and , being characterized by an anisotropic form for the position-dependent
masses. It was shown that all results obtained in the one-dimensional analysis
should hold for each Cartesian component independently. Particularly, the
quantization and normalizability of the free-particle solution in full open space were
demonstrated, identifying a particle localized around the origin. Hence, analogously
to what happens in the standard Schrödinger equation, the wave packet procedure,
where a localized wave is obtained by a superposition of plane waves, may be also
used herein; however, as we have shown above, a localized wave appears naturally
through the solutions of the nonlinear equations associated to the fields  and 

.

For the purposes of the present work, physical systems characterized by interfaces
where changes in the chemical composition exist should be relevant. Particularly,
good candidates are semiconductor heterostructures, which are composed by sets of
such interfaces (i.e., heterojunctions) and are well known to produce position-
dependent effective masses. In these heterojunctions, the chemical changes do not
occur abruptly, but instead, they are graded over some specified distance, and
consequently, the effective mass should be a continuous function of the position.
Hence, for an electron moving inside such a structure, its mass varies continuously
with the position, and so it should be describable by a mass-dependent Schrödinger
equation. The present proposal for effective mass, m e (x) = m/(1 + γ x 2)2, leads to a
maximum probability density at the origin, decreasing continuously for increasing
values of |x|, and represents typically the physical situation that occurs with the
concentration of electrons in pnp junctions. The parameter γ should be adjusted
from measurements and is expected to depend on the particular types of materials
used in the junctions.

Acknowledgments

We thank C. Tsallis for fruitful conversations. The partial financial supports from CNPq and

FAPERJ (Brazilian agencies) are acknowledged.

References

R.L. Liboff. Introductory Quantum Mehanics, 4th edn. (Addison Wesley, San Francisco, 2003)

C. Sulem, P.-L. Sulem. The Nonlinear Schrödinger Equation: Self-Focusing and Wave Collapse (Springer,

Ψ( , t)x ⃗ 
Φ( , t)x ⃗ 

Ψ( , t)x ⃗ 
Φ( , t)x ⃗ 



15/11/14 08:05Non-Hermitian PT Symmetric Hamiltonian with Position-Dependent Mas…sociated Schrödinger Equation and Finite-Norm Solutions - Springer

Page 19 of 21http://link.springer.com/article/10.1007/s13538-014-0277-8/fulltext.html

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

New York, 1999)
MATH

A.C. Scott. The nonlinear universe (Springer, Berlin, 2007)

F.D. Nobre, M.A. Rego-Monteiro, C. Tsallis, Phys. Rev. Lett. 106 (2011)

F.D. Nobre, M.A. Rego-Monteiro, C. Tsallis, Europhys. Lett. 97, 41001 (2012)
ADS CrossRef

A.R. Plastino, C. Tsallis, J. Math. Phys. 54, 041505 (2013)
ADS CrossRef MathSciNet

M. A. Rego-Monteiro, F. D. Nobre, J. Math. Phys. 54, 103302 (2013)
ADS CrossRef MathSciNet

C. Tsallis. Introduction to nonextensive statistical mechanics (Springer, New York, 2009)
MATH

O. von Roos, Phys. Rev. B. 27, 7547 (1983)
ADS CrossRef

J.-M. Lévy-Leblond, Phys. Rev. A. 52, 1845 (1995)
ADS CrossRef MathSciNet

A. R. Plastino, A. Rigo, M. Casas, F. Garcias, A. Plastino, Phys. Rev. A. 60, 4318 (1999)
ADS CrossRef

S.-H. Dong, M. Lozada-Cassou, Phys. Lett. A. 337, 313 (2005)
ADS CrossRef MATH MathSciNet

C. Quesne, J. Phys. A. 40, 13107 (2007)
ADS CrossRef MATH MathSciNet

R.N. Costa Filho, M.P. Almeida, G.A. Farias, J.S. Jr. Andrade, Phys. Rev. A. 84, 050102(R) (2011)
ADS CrossRef

S.H. Mazharimousavi, Phys. Rev. A. 85, 034102 (2012)
ADS CrossRef

R.N. Costa Filho, G. Alencar, B.-S. Skagerstam, J.S. Andrade Jr., Europhys. Lett. 101, 10009 (2013)
ADS CrossRef

M.A. Rego-Monteiro, F.D. Nobre, Phys. Rev. A. 88, 032105 (2013)
ADS CrossRef

G. Bastard. Wave mechanics applied to semiconductor heterostructures (Les Editions de Physique Les Ulis,
France, 1988)

http://www.emis.de/MATH-item?$0928.35157
http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2012EL.....9741001N
http://dx.doi.org/10.1209/0295-5075/97/41001
http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2013JMP....54d1505P
http://dx.doi.org/10.1063/1.4798999
http://www.ams.org/mathscinet-getitem?mr=3088217
http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2013JMP....54j3302R
http://dx.doi.org/10.1063/1.4824129
http://www.ams.org/mathscinet-getitem?mr=3134599
http://www.emis.de/MATH-item?$1172.82004
http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=1983PhRvB..27.7547V
http://dx.doi.org/10.1103/PhysRevB.27.7547
http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=1995PhRvA..52.1845L
http://dx.doi.org/10.1103/PhysRevA.52.1845
http://www.ams.org/mathscinet-getitem?mr=1350032
http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=1999PhRvA..60.4318P
http://dx.doi.org/10.1103/PhysRevA.60.4318
http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2005PhLA..337..313D
http://dx.doi.org/10.1016/j.physleta.2005.02.008
http://www.emis.de/MATH-item?$1136.81353
http://www.ams.org/mathscinet-getitem?mr=2134441
http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2007JPhA...4013107Q
http://dx.doi.org/10.1088/1751-8113/40/43/018
http://www.emis.de/MATH-item?$1127.81008
http://www.ams.org/mathscinet-getitem?mr=2385230
http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2011PhRvA..84e0102C
http://dx.doi.org/10.1103/PhysRevA.84.050102
http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2012PhRvA..85c4102M
http://dx.doi.org/10.1103/PhysRevA.85.034102
http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2013EL....10110009C
http://dx.doi.org/10.1209/0295-5075/101/10009
http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2013PhRvA..88c2105R
http://dx.doi.org/10.1103/PhysRevA.88.032105


15/11/14 08:05Non-Hermitian PT Symmetric Hamiltonian with Position-Dependent Mas…sociated Schrödinger Equation and Finite-Norm Solutions - Springer

Page 20 of 21http://link.springer.com/article/10.1007/s13538-014-0277-8/fulltext.html

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

C. Weisbuch, B. Vinter. Quantum semiconductor structures: Fundamentals and applications (Academic
Press, New York, 1991)

C.M. Bender, Rep. Prog. Phys. 70, 947 (2007)
ADS CrossRef

F.G. Scholtz, H.B. Geyer, F.J.W. Hahne, Ann. Phys. 213, 74 (1992)
ADS CrossRef MATH MathSciNet

C.M. Bender, S. Boettcher, Phys. Rev. Lett. 80, 5243 (1998)
ADS CrossRef MATH MathSciNet

F. Cannata, G. Junker, J. Trost, Phys. Lett. A. 246, 219 (1998)
ADS CrossRef MATH MathSciNet

C.M. Bender, D.C. Brody, H.F. Jones, Phys. Rev. Lett. 89, 270401 (2002)
CrossRef MathSciNet

A. Mostafazadeh, J. Math. Phys. 43, 2814 (2002)
ADS CrossRef MATH MathSciNet

J. da Providência, N. Bebiano, J.P. da Providência, Braz. J. Phys. 41, 78 (2011)
ADS CrossRef

S. Dey, A. Fring, Phys. Rev. D. 86, 064038 (2012)
ADS CrossRef

E.P. Borges, Physica A. 340, 95 (2004)
ADS CrossRef MathSciNet

C.G. Bollini, J.J. Giambiagi, Braz. J. Phys. 17, 14 (1987)

J. Barcelos-Neto, N.R.F. Braga, Acta Phys. Pol. B. 20, 205 (1989)

Over 8.5 million scientific documents at your fingertips
© Springer, Part of Springer Science+Business Media

http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2007RPPh...70..947B
http://dx.doi.org/10.1088/0034-4885/70/6/R03
http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=1992AnPhy.213...74S
http://dx.doi.org/10.1016/0003-4916(92)90284-S
http://www.emis.de/MATH-item?$0749.47041
http://www.ams.org/mathscinet-getitem?mr=1144600
http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=1998PhRvL..80.5243B
http://dx.doi.org/10.1103/PhysRevLett.80.5243
http://www.emis.de/MATH-item?$0947.81018
http://www.ams.org/mathscinet-getitem?mr=1627442
http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=1998PhLA..246..219C
http://dx.doi.org/10.1016/S0375-9601(98)00517-9
http://www.emis.de/MATH-item?$0941.81028
http://www.ams.org/mathscinet-getitem?mr=1644146
http://dx.doi.org/10.1103/PhysRevLett.89.270401
http://www.ams.org/mathscinet-getitem?mr=1950305
http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2002JMP....43.2814M
http://dx.doi.org/10.1063/1.1461427
http://www.emis.de/MATH-item?$1060.81022
http://www.ams.org/mathscinet-getitem?mr=1893701
http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2011BrJPh..41...78P
http://dx.doi.org/10.1007/s13538-011-0010-9
http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2012PhRvD..86f4038D
http://dx.doi.org/10.1103/PhysRevD.86.064038
http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2004PhyA..340...95B
http://dx.doi.org/10.1016/j.physa.2004.03.082
http://www.ams.org/mathscinet-getitem?mr=2088328


15/11/14 08:05Non-Hermitian PT Symmetric Hamiltonian with Position-Dependent Mas…sociated Schrödinger Equation and Finite-Norm Solutions - Springer

Page 21 of 21http://link.springer.com/article/10.1007/s13538-014-0277-8/fulltext.html

http://googleads.g.doubleclick.net/aclk?sa=L&ai=BraehBCVnVOrsJsW_fMiVgfAG55OuhAYAAAAQASDv-PseOABYh7jr7d4BYM3A54CcA7IBEWxpbmsuc3ByaW5nZXIuY29tugEJZ2ZwX2ltYWdlyAED2gFIaHR0cDovL2xpbmsuc3ByaW5nZXIuY29tL2FydGljbGUvMTAuMTAwNy9zMTM1MzgtMDE0LTAyNzctOC9mdWxsdGV4dC5odG1smALAuALAAgLgAgDqAhs2MzEzL2Nhc3Blci9qb3VybmFsL2FydGljbGX4AoHSHpAD2ASYA6QDqAMByAOdBOAEAZAGAaAGFA&num=0&cid=5GikWszwCxC3HhTvKY8MkIgx&sig=AOD64_01ioAusSJrDTIjI4CRfun-C9KQkg&client=ca-pub-2518741494447397&adurl=http://goo.gl/ndQvy0

