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Role of the nature of noise in the thermal conductance of mechanical systems

Welles A. M. Morgado
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Focusing on a paradigmatic small system consisting of two coupled damped oscillators, we survey the role
of the Lévy-Itô nature of the noise in the thermal conductance. For white noises, we prove that the Lévy-Itô
composition (Lebesgue measure) of the noise is irrelevant for the thermal conductance of a nonequilibrium
linearly coupled chain, which signals the independence of mechanical and thermodynamical properties. In
contrast, for the nonlinearly coupled case, the two types of properties mix and the explicit definition of the noise
plays a central role.
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I. INTRODUCTION

The law of heat conduction, or Fourier’s law, i.e., the
property by which the heat flux density is equal to the
product of the thermal conductivity by the negative tem-
perature gradient [1], is a paradigmatic manifestation of the
ubiquitous laws of thermodynamics [2]. Recently, it has stoked
a significant amount of work on its explicit derivation for
large Hamiltonian systems [3–5]. In this context, models with
anharmonic coupling succeed in diffusing energy, but the
analytic solutions thereto are very demanding, even for the few
cases where that is possible. Since they allow a larger number
of exactly solvable cases, small systems are worthwhile [6] and
particularly relevant in chemical physics and nanosystems [7].
In the scope of analytical methods, we highlight the time
averaging of observables that endure a stationary state [8,9].
This account has several advantages, namely, compared with
the Fokker-Planck approach, which cannot be applied to
those cases where cumulants of the noise higher than second
order are nonvanishing and also significant. This comprises
Poissonian [10–12] and other non-Gaussian massive particles
[13] as well as other cases where the interaction with a
reservoir is described by a process with a nonzero singular
part of the measure when a Lévy-Itô (LI) decomposition is
applied [14].

Stemming from these facts, we perform a time-averaging
study of a small nonequilibrium system composed of two
damped coupled oscillators at distinct temperatures and
determine the explicit formula of Fourier’s law for linear
and nonlinear cases. In spite of its simplicity, the former
has relevant traits: (i) It is a nonequilibrium system, (ii) its
heat flux definition is well known, (iii) it is adjustable to
different kinds of reservoirs, (iv) it can be expanded into an
infinite chain with a nearly direct application of the results
of an N = 2 block, (v) it represents the result of Langevin
colored noises by a renormalization of the masses [8], and (vi)
linearity is still a source of important results in many areas
[15–18].

II. MODEL

Our problem focuses on solving the set of equations

m
dvi(t)

dt
= −kxi(t) − γ vi(t) −

2∑

l=1

k2l−1[xi(t) − xj (t)]2l−1

+ ηi(t), (1)

with vi(t) ≡ dxi (t)
dt

, where (i,j ) ∈ {1,2} and k1 and k3 are the
linear and nonlinear coupling constants, respectively. The
system is decoupled (linear) for k1 (3) = 0. The transfer flux
j12(t) between the two particles reads

j12(t) ≡ −
2∑

l=1

k2l−1

2
[x1(t) − x2(t)]2l−1[v1(t) + v2(t)]. (2)

The term ηi(t) represents a general uncorrelated Lévy class
stochastic process with cumulants

〈ηi1 (t1) · · · ηin(tn)〉c = A(t1,n)δi1i2 · · · δin−1inδ(t1 − t2)

· · · δ(tn−1 − tn). (3)

From Ref. [19] we have either two or an infinite number of
nonzero cumulants. The former corresponds to the case in
which the measure is absolutely continuous, characterizing
a Brownian process. In Eq. (3), A(t,n) is described by the
noise; if it is Wiener-like W (t) ≡

∫ t

t0
η(t ′)dt ′, A(t,n) is time

independent and equal to σ 2 for n = 2 and zero otherwise (σ
is the standard deviation of the Gaussian function). Among
the infinite nonzero cumulant noises, we can include the
Poissonian process for which A(t,n) equals %nλ(t) [20], with
% being the p(%) independent and identically distributed
magnitude and λ(t) the rate of shots. Herein A is time
independent without loss of generality. For k1 = k3 = 0,
Eq. (1) is totally decoupled and the solutions to the problem of
homogeneous and sinusoidal heterogeneous Poissonian noises
can be found in Ref. [10].
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III. RESULTS

Laplace transforming xi(t) and vi(t) we obtain

x̃i(s) = k1

R(s)
x̃j (s) + η̃i(s)

R(s)
+ k3

R(s)

× lim
α→0

∫∫∫ ∏3
n=1

dqn

2π [x̃i(iqn + α) − x̃j (iqn + α)]

s − (iq1 + iq2 + iq3 + 3α)
,

sx̃i(s) = ṽi(s) (4)

[Re(s) > 0], with R(s) ≡ (ms2 + γ s + k + k1). The solutions
to Eq. (4) are obtained by considering the relative position
r̃D(s) ≡ x̃1(s) − x̃2(s), the midpoint position r̃S(s) ≡ [x̃1(s) +
x̃2(s)]/2, and the respective noises η̃D(s) ≡ η̃1(s) − η̃2(s) and
η̃S(s) ≡ [η̃1(s) + η̃2(s)]/2. After some algebra it yields [21]

r̃D(s) = η̃D(s)
R′(s)

− 2k3

R′(s)
lim
α→0

∫ ∞

−∞

∏3
l=1

dql

2π r̃D(iql + α)

s −
∑3

l=1(iql + α)
r̃S

= η̃S(s)
R′′(s)

, (5)

with R′(s) ≡ (ms2 + γ s + k + 2k1) and R′′(s) ≡ (ms2 +
γ s + k). Reverting to Eq. (5), we get x̃1(s) and x̃2(s).
Concomitantly, we must compute the Laplace transforms of
η1 and η2,

〈η̃i1 (z1) · · · η̃in(zn)〉c =
∫ ∞

0

n∏

j=1

dtij exp



−
n∑

j=1

zij tij





×〈ηi1 (t1) · · · ηin(tn)〉c

= A(n)∑n
j=1 zij

δi1i2 · · · δin−1in , (6)

which are employed in the averages over time [8]
〈
xm

a vn
b

〉
c

= lim
z→0

z

∫∫∫
δ(t − t1)δ(t − t2)e−zt

×
〈
xm

a (t1)vn
b (t2)

〉
c
dt1dt2dt

= lim
z,ε→0

∫ ∞

−∞

m+n∏

l=1

× dql

2π
z

∏n
l′=1(iql′ + ε)

〈∏m+n
l=1 x̃(iql + ε)

〉
c

z −
(∑m+n

l′=1 iql′ + (m + n)ε
) . (7)

Allowing for a contour that goes along the straight line
from −ρ + iε to ρ + iε and then counterclockwise along a
semicircle centered at 0 + iε from ρ + iε to −ρ + iε (ρ → ∞
and ε → 0), we realize that one of two situations occurs: The
calculation of the residues leads us to either a term such as

z
z−w

u, with (u,w) *= 0, which vanishes in the limit z → 0, or
z
z
u, which is nonzero. The problem solving now resumes with

an expansion of Eq. (2) in powers of k3; actually the expansion
is carried out in powers of k3T/k2

1 [22]. Hereinafter, besides the
results of the Brownian thermostats, which correspond to pure
continuous measures, we make explicit the conductance for
the Poissonian reservoirs, the epitome of singular measures.
Nevertheless, the results for other non-Gaussian noises can
be obtained following our methodology, yielding the same
qualitative results. In first order the transfer flux reads

〈j12〉 =
〈
j

(0)
12

〉
+

〈
j

(1)
12

〉
+

〈
j

(s)
12

〉
+ O

(
k2

3

)
, (8)

with

〈
j

(0)
12

〉
= −k2

1

4
[A1(2) − A2(2)]
mk2

1 + γ 2(k + k1)
,

(9)
〈
j

(1)
12

〉
= −3

8
γ k1k3

(2k + k1)[A1(2)2 − A2(2)2]

(k + 2k1)
[
γ 2(k + k1) + mk2

1

]2 ,

and

〈
j

(s)
12

〉
= −27

2
γ 2 k1k3

λ

N
D

{[A1(2)2 − A2(2)2]} (10)

for the Poissonian case and 〈j (s)
12 〉 = 0 for the Brownian case

[21]. For the Poissonian case, when λ−1 + 1 (keeping the
temperature fixed), the weight of the singularity of the noise

measure dwindles and 〈j (s)
12 〉 → 0. The coefficients in Eq. (10)

are

N ≡ γ 2(5k + 3k1) + m
(
3k2

1 + 4k2 + 11kk1
)
, (11)

D ≡ [γ 2(k + k1)][m(4k + 9k1)2 + 6γ 2(2k + 3k1)]

×
[
3γ 4 + m2k2

1 + 4mγ 2(k + k1)
]
. (12)

Thence, we are finally in the position to compute the thermal
conductance

κ ≡ − ∂

∂-T
〈j12〉-T , κ = − 〈j12〉

T1 − T2
. (13)

Resorting to single-particle results and the equipartition theo-
rem [10], we relate the cumulants of the noise and the proper
temperature Ti , namely, Ai(2) = 2γTi , yielding a thermal
conductance κ = κ (0) + κ (1) + κ (s) + O(k3

3). Equations (8)–
(10) pave the way to the following assertion: When interacting
particles are subject to white reservoirs and coupled in a
linear form, the explicit thermal conductance is independent
of the specific nature of the noise, namely, the outcome of
their Lévy-Itô decomposition, whereas for nonlinear coupling
the nature of the measure of the noise (its decomposition)
is pivotal. In other words, the linear case is heedless of the
measure of the reservoirs and it only takes into consideration
their temperatures. Hence κ (0) is exactly the same: We have
either a Wiener noise (continuous measure), which is the
standard noise in fundamental statistical mechanics studies
[9,23], or a Poisson noise (paradigmatic case of singular
measure). Although the linear coupling result has only been
explicitly proved for two particles, it is valid for general N .
In fact, for a linear chain, the local energy flow 〈ji,i+1〉 can be
written as a function of the cumulants 〈ηi(z)η1(z′)〉c = 2γTi

and 〈ηi+1(z)ηi+1(z′)〉c = 2γTi+1, wherein the dependence on
the specific nature of the noise is eliminated, except for the
respective temperatures. In contrast, if the nature of the noise
affects the conductance of the simplest coupling element, the
conductance for generic chains is also changed. This result
is unexpected since, contrary to single-particle linear cases,
wherein the LI nature is already relevant [10,13], for coupled
systems the LI composition becomes significant only when the
interaction between the elements of the system happens in a
nonlinear way. Only in this case do higher-order cumulants of
the noise, which can be understood as higher-order sources of
energy, influence the result. For the same (k1,k3), in decreasing
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FIG. 1. (Color online) Average exchange flux 〈j12〉 of a two-
massive-particle system for different combinations of paradigmatic
types of noise with T1 = 10, T2 = 121/10, m = 10, γ = k = 1, k1 =
1/5, k3 = 0, and λ = 10 for Poissonian particles. After the transient,
κ agrees with the theoretical value, κ = 21/800 = 0.026 25, with the
fitting curves lying within the line thickness. The averages have been
obtained by averaging over 850 × (5 × 105) points. The discretization
used is δt = 10−5 with snapshots at every -t = 10−3.

the singularity by soaring λ, the two thermal conductances
tally.

To further illustrate these results we have simulated cases of
equally massive particles subject to Wiener and Poisson noises
at different temperatures T . For the former we have T = σ 2/2,
whereas for the latter we have assumed a homogeneous
Poissonian process with a rate of events λ, with a random
amplitude % exponentially distributed p(%) ∼ exp[−%/%̄],
which yields T = λ0%̄

2/γ [10]. In Fig. 1 we depict linear
coupling. It is visible that after a transient time t∗ the system
reaches a stationary state and 〈j12〉 becomes equal to 〈j12〉,
whatever the reservoirs. In fact, even more complex models,
such as linear chains of oscillators, verify the κ = κ (0) property.
Still, this is valid when each particle is perturbed by different

FIG. 2. (Color online) Comparison between numerically obtained
values (symbols) and the first-order approximation of thermal
conductance from Eqs. (8)–(10) for different temperature pairs,
namely, A = {10, 169

10 }, B = {10, 225
10 }, and C = {10, 289

10 } with m =
10, γ = k = 1, k1 = 1/5, and λ = 1 for Poissonian particles.

types of noise, e.g., a Brownian particle coupled with a
Poissonian particle. The instance where the noises are of
different nature gives rise to an apparent larger value of the
standard deviation.1

In turning k3 *= 0 the composition of the measure of the
reservoirs comes into play. In Fig. 2 we show the difference be-
tween equivalent Brownian and Poissonian particles with good
agreement between the averages over numerical realizations
and the respective (first-order) approximation. For the same
temperature, the larger the value of k3, the larger the value
of the correction on k2

3, which explains the 10% difference
between numerical values of the approximation.

IV. CONCLUSION

To summarize, we have studied the thermal conduction in
a paradigmatic mechanical system composed of two coupled
damped harmonic oscillators subject to generic noises, which
can be understood as a concise way to describe nonequilibrium
problems. By averaging in the Laplace space, we have been
able to determine the conductance of a linearly coupled
system and approximate formulas for nonlinearly coupled
particles. We have shown that the conductance of the former
is independent of the nature of the (white) noise, namely, its
Lévy-Itô decomposition structure. This result is unexpected
since the measure of the thermal bath plays a major role
for single-particle properties. The dependence on the noise
emerges only when there is a transfer of energy in a nonlinear
way and higher-order cumulants of the noise enter in the
calculations. In the case of Poissonian noises, we show that
the difference from Brownian noises becomes negligible when
the ratio between the coupling constants and the rate of events
is small. Our calculations evidence the independence of the
thermodynamical properties of the system from the nature of
the reservoirs in linearly coupled systems. In contrast, when
the coupling is nonlinear, the nature of the reservoirs affects
the conductance, which represents a mixture of mechanic and
thermodynamical properties of the system.

Our results have direct implication for the study of the
thermal conductance of systems under the influence of noises
other than Wiener, for instance, (i) solid state problems wherein
shot (singular measure) noise is related to the quantization of
the charge [24]; (ii) resistor-inductor-capacitor circuits with
injection of power at some rate resembling heat pumps [11];
(iii) surface diffusion and low vibrational motion with adsor-
bates, e.g., Na/Cu(001) compounds [25]; (iv) biological motors
in which shot noise mimics the nonequilibrium stochastic
hydrolysis of adenosine triphosphate [12]; and (v) molecular
dynamics when the Andersen thermostat is applied. Actually,
in molecular dynamics [26], the Langevin reservoir is just one
in a large collection of baths represented by our definition of
noise (3). In these problems, for nonlinearly coupled elements,
the experimentally measured energy flux will be greater than
the energy flux given by Langevin reservoirs at the same

1Although the computation of σ 2
j12

≡ 〈j 2
12〉 − 〈j12〉2 is possible, we

have omitted it as it demands a mathematical tour de force likely to
yield a lengthy formula with little usable information.
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temperatures and equal if coupling is linear. At the theoretical
level, the method is worth using to shed light on nonlinear
chains as well. Within this context, the feasible approach
is once again to consider a perturbative expansion of the
nonlinearities in the problem.

Note added. It came to our attention recently that Kanazawa
and Coworkers, using a different technique for the noise
analysis [27], present an equivalent claim regarding the role of
the noise in the conductance of mechanical systems [28].
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