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Universal patterns in sound amplitudes of songs and music genres
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We report a statistical analysis of more than eight thousand songs. Specifically, we investigated the probability
distribution of the normalized sound amplitudes. Our findings suggest a universal form of distribution that agrees
well with a one-parameter stretched Gaussian. We also argue that this parameter can give information on music
complexity, and consequently it helps classify songs as well as music genres. Additionally, we present statistical
evidence that correlation aspects of the songs are directly related to the non-Gaussian nature of their sound
amplitude distributions.
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In recent years, studies of complex systems have become
widespread among the scientific community, especially in
statistical physics [1–5]. Many of these investigations deal with
data records ordered in time or space (i.e., time series), trying
to extract some features, patterns, or laws that may be present
in the systems studied. This approach has been successfully
applied to a variety of fields, from physics and astronomy [6] to
genetics [7] and economics [8]. Moreover, this framework has
been used to investigate and model interdisciplinary fields,
such as religion [9], elections [10], vehicular traffic [11],
tournaments [12], and many others. These few examples and
social phenomena in general [13] illustrate that physicists have
gone far from their traditional domain of investigations.

Music is a well-known worldwide social phenomenon
linked to the human cognitive habits, modes of consciousness,
as well as historical developments [14]. In exploring music’s
social role, some authors investigated collective listening
habits. For instance, Lambiotte and Ausloos [15] analyzed
data from people’s music libraries, finding that audience
groups with size distribution follow a power law. They also
investigated correlations among these music groups, reporting
nontrivial relations [16]. In another work, Silva et al. [17]
studied the network structure of composers and singers of
Brazilian popular music (mpb). There is also interest in
studying the patterns of music sales [18] and the success of
particular musicians [19–21].

Despite these cultural aspects, songs form a highly
organized system presenting very complex structures and
long-range correlations. All these features have attracted the
attention of statistical physicists. In a seminal paper, Voss and
Clarke [22] analyzed the power spectrum of radio stations
and observed a 1/f noise-like pattern. They also showed that
the correlation can extend to longer or shorter time scales,
depending on the music genre. Hsü and Hsü [23] investigated
the changes of acoustic frequency in Bach’s and Mozart’s
compositions, finding self-similarity and fractal structures. In
contrast, they report no resemblance to fractal geometry [24]
for modern music. Fractal structures have also been reported
in the study of sequences of music notes [25], and Su and
Wu [26] suggested that the multifractal spectrum could be used

*hvr@dfi.uem.br

to distinguish different styles of music. By using sound ampli-
tudes of songs, Bigerelle and Iost [27] achieved a classification
based on fractal dimension using the entire frequency range.
However, as discussed by Ro and Kwon [28], the 1/f analysis
in the region below 20 Hz might not classify music genres.
Gündüz and Gündüz [29] reported analysis of several Turkish
songs using many techniques. Beltrán del Rı́o et al. [30]
evaluated the rank distribution of music notes of a large
selection, finding good agreement with a two-parameter β

distribution. Dagdug et al. [31] investigated a specific piece
of Mozart with detrended fluctuation analysis (DFA) [32].
Applying DFA in a volatility-like series, Jennings et al. [33]
found quantitative differences in the Hurst exponent depending
on the music genre.

In this brief literature review, we see that special attention
was paid to the fractal structures of music, correlations, and
power spectrum analysis. However, much less attention has
been paid to understanding amplitude distribution. This last
point has been noted by Diodati and Piazza [34]. In their work,
they investigated the distribution of times and sound ampli-
tudes larger than a fixed value. By using this kind of return
interval analysis [35], they found Gaussian distributions in the
amplitudes for jazz, pop, and rock music, while non-Gaussians
emerge for classical pieces. Here, we directly investigate the
amplitude distributions of songs of several genres without em-
ploying a threshold value as considered by Diodati and Piazza.
Moreover, our analysis goes toward finding patterns in the
amplitude sound distribution by using a suitable one-parameter
probability distribution function (PDF). In the following, we
present the dataset used in our investigation, the analysis of
the shape of the resulting distributions, and our conclusions.

Not all sound is music, but certainly music is made by
sounds. The sounds that we hear are a consequence of pressure
fluctuations traveling in the air and hitting our ears. These
audible pressure fluctuations can be converted into a voltage
signal ut using a record system and stored, for instance, in
a compact disk (CD). Our analysis is focused on this time
series ut , which we call sound amplitude. In the case of songs
stored on CDs, ut has a standard sampling rate of 44.1 kHz
and encompasses the full audible human range (approximately
between 20 and 20 kHz).

As a database, we have 8115 songs of nine different music
genres: classical (907), tango (992), jazz (700), hip-hop (876),
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FIG. 1. The normalized sound amplitude of (a) a classical piece
and (b) a heavy-metal song (labeled in the figure). Note that the signals
are quite different; the first one presents a more complex structure
characterized by “bursts” while the second resembles Gaussian
noise.

mpb (580), flamenco (524), pop (998), techno (900), and heavy
metal (1638). The songs were chosen as to cover a large
number of composers and singers. For instance, for classical
music, we have taken pieces from Bartók, Beethoven, Berlioz,
Brahms, Bruch, Chopin, Dvorak, Fauré, Grieg, Malher, Mar-
cello, Mozart, Rachmaninov, Strauss, Schuber, Schumann,
Scriabin, Shostakovich, Sibelius, Stravinsky, Tchaikovsky,
Verdi, Vivaldi, and others.

When a time series is analyzed, a way to view its variability
(complexity) is at least in part by investigating its PDF. In the
case of music, the mean amplitude is approximately zero since
a vibration essentially occurs around this value. In addition,
the mean (global) intensity is not relevant to the variability
(complexity) of a song. Motivated by these facts, our research
is based on the PDF of recorded data regardless of their mean
value and their real amplitudes. In other words, we consider
that the complexity of a song is not related to its mean intensity
but to the relative variability of the amplitudes. Thus, instead
of employing the amplitude ut in different time instants t ,
we focus attention on ut subtracted from its mean value μ

and divided by its standard deviation σ . This corresponds
to using zt = (ut − μ)/σ instead of ut . Figure 1 illustrates
the behavior of zt for two songs, a classical piece and a
heavy-metal song. This figure is enough to reveal qualitative
differences between these two songs. In the classical piece, we
can observe some kind of bursts giving rise to a non-Gaussian
distribution. However, for the heavy-metal song, the signal
is very similar to Gaussian noise—no complex structure is
perceptible.

Motivated by these distinct behaviors, we investigated the
distribution of zt for all the songs in our data set. In Fig. 2,
we show the PDF for some representative songs. As we can
verify from this figure, the shape of distributions goes from
a long tail to Laplace to Gaussian distribution. A family of
functions that has the Gaussian and the Laplace distributions
as a particular case is given by the stretched Gaussian [36,37]
p(z) = N exp(−b|z|c), where N is the normalization constant,

b is directly related to the standard deviation, and c is a positive
parameter. Since the distribution p(z) is normalized to unity
and the variable z is defined in such a way that its standard
deviation is equal to 1, the parameters N and b become
functions exclusively of c, leading to

p(z) = c

2

(
�(3/c)

�(1/c)3

)1/2

exp

(
−

(
�(3/c)

�(1/c)

)c/2

|z|c
)

, (1)

with �[w] being the Euler γ function. Also in Fig. 2, the least
square fits to the data of the function are shown. Observe that
we find a good agreement between the data and the model for
the songs represented in this figure, and a similar agreement
has been found for the others (at least in the central part of the
distribution).

The only model parameter is c, and it may give useful
information about music complexity. First note that for values
of c smaller than 1, heavy tail distributions emerge. In some
sense, these heavy tails reflect the complex structures that
we see in Fig. 1(a), that is, larger fluctuations. Increasing c

makes the tails shorter and recovers some known distributions
(Laplace for c = 1 and Gaussian for c = 2). In this context,
a shorter tail indicates that larger fluctuations become rare,
leading to music signals very similar to Gaussian noise
[see Fig. 1(b)]. From the musical point of view, the word
complexity may be related to several aspects of the song
or even to music taste. In the present context, it should be
viewed a comparative measurement, that is, a measure of
how the empirical distributions differs from the Gaussian
one.

Based on this discussion, we may use c to sort the songs
and music genres in a kind of complexity order (smaller c is
related to a large complexity). In order to construct this rank for
music genres, we evaluate the mean value of c over all songs
of each music genre considered here as shown in Fig. 3(a).
Our findings agree with other works in the sense that there is
a quantitative difference between classic and light or dancing
music [33,34]. However, it is interesting to note that music
genres are not well defined [40]. Thus, any taxonomy may
be controversial, representing an open problem of automatic
classification like other problems of pattern recognition. To
take a glance at this complicated problem, we also evaluated
the probability distribution of c for each music genre as shown
in Fig. 3(b). We can see that there are overlapping regions for
all genres, reflecting the fuzzy boundaries existent in the music
genre definitions.

Despite the complex situation that emerges in the prob-
lem of automatic genre classification [41–44], our model
is very simple. From the qualitative point of view, the
characteristics of songs and music genres are related with
multidimensional aspects such as timber, melody, harmony,
and rhythm, among others. Thus, as a minimalist model,
the classification presented here must be viewed as a kind
of global measure for these qualitative aspects. In addition,
we have to note that correlation aspects are lost when we
consider only the histogram as presented in Fig. 2. In the
same way, information is also lost when someone considers
only some correlations. However, we remark that the results
concerning the genre classification, here obtained by using
only the PDF of sound amplitude, are in statistical agreement
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FIG. 2. (Color online) Histograms of some representative songs (labeled in the figure) in comparison with the stretched Gaussian, Eq. (1).
The squares (circles) are in the right (left) channel of the stereo audio. As we see, the two channels are quite similar in the sense that the
statistical results do not dramatically change when considering the right or left channel.
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FIG. 3. (Color online) (a) In ascending order, the mean values of the parameter c corresponding to the stretched Gaussians employed for
each music genre considered here. (b) The distribution of the parameter c for each genre. (c) Scatter plot of the parameter c vs the Hurst
exponent, h, obtained via detrended fluctuation analysis (DFA) [38,39] of sound intensity z2

t . The dashed line is a guide for our eyes.
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with the results of other methods based on correlation analysis.
This fact suggests a kind of coupling between the correlation
aspects and the non-Gaussian PDFs. Aiming to highlight
this feature, we evaluated the Hurst exponent (h) of the
time series z2

t and plotted it versus the PDF parameter c in
Fig. 3(c). The data presented in this figure suggest an approxi-
mate linear relation between c and h (Pearson correlation about
−0.7), providing statistical evidence that the non-Gaussian
nature of the PDFs are directly related to the correlations in
songs. Therefore, these two complementary aspects and others
compose the multidimensional nature of music quantification
and classification.

To sum up, we investigated the probability distribution of
the normalized sound amplitudes for more than 8000 musical

pieces. The empirical findings suggest a universal form of
distribution, which agreed well with a stretched Gaussian.
Because of the normalization and the standard deviation fixed
as 1, our distribution has only one parameter, c. We argue
that this parameter goes toward quantifying the complexity of
songs as well as music genres. In addition to this universal
feature, we presented empirical evidences that non-Gaussian
nature of sound amplitude PDF is related to the correlation
aspects. As an application, we also hope that the distribution
of sound amplitudes presented here may have implications for
stochastic music compositions.

We thank CNPq/CAPES for the financial support and the
local university radio for kindly providing the songs.
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