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a b s t r a c t

Herewe show that a particular one-parameter generalization of the exponential function is
suitable to unify most of the popular one-species discrete population dynamic models into
a simple formula. A physical interpretation is given to this new introduced parameter in the
context of the continuous Richards model, which remains valid for the discrete case. From
the discretization of the continuous Richards’ model (generalization of the Gompertz and
Verhulstmodels), one obtains a generalized logisticmap andwebriefly study its properties.
Notice, however that the physical interpretation for the introducedparameter persists valid
for the discrete case. Next, we generalize the (scramble competition) θ-Ricker discrete
model and analytically calculate the fixed points as well as their stabilities. In contrast to
previous generalizations, from the generalized θ-Rickermodel one is able to retrieve either
scramble or contest models.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Recently, the generalizations of the logarithmic and exponential functions have attracted the attention of researchers.
One-parameter logarithmic and exponential functions have been proposed in the context of non-extensive statistical
mechanics [1–5], relativistic statistical mechanics [6,7] and quantum group theory [8]. Two- and three-parameter
generalizations of these functions have also been proposed [9–11]. These generalizations are currently in use in awide range
of disciplines since they permit the generalization of special functions: hyperbolic and trigonometric [12], Gaussian/Cauchy
probability distribution function [13] etc. Also, they permit the description of several complex systems [14–19], for instance
in generalizing the stretched exponential function [20].
As mentioned above, the one-parameter generalizations of the logarithm and exponential functions are not univoquous.

The q̃-logarithm function lnq̃(x) is defined as the value of the area underneath the non-symmetric hyperbola, fq̃(t) = 1/t1−q̃,
in the interval t ∈ [1, x] [21]:

lnq̃(x) =
∫ x

1

dt
t1−q̃
= lim
q̃′→q̃

xq̃
′

− 1
q̃′

. (1)

This function is not the ordinary logarithmic function in the basis q̃, namely [logq̃(x)], but a generalization of the natural
logarithmic function definition, which is recovered for q̃ = 0. The area is negative for 0 < x < 1, it vanishes for x = 1 and
it is positive for x > 1, independently of the q̃ values.
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Given the area x underneath the curve fq̃(t), for t ∈ [0, y], the upper limit y is the generalized q̃-exponential function:
y = eq̃(x). This is the inverse function of the q̃-logarithmic eq̃[lnq̃(x)] = x = lnq̃[eq̃(x)] and it is given by:

eq̃(x) =

{
0 for q̃x < −1
lim
q̃′→q̃

(1+ q̃′x)1/q̃
′

for q̃x ≥ −1. (2)

This is a non-negative function eq̃(x) ≥ 0, with eq̃(0) = 1, for any q̃. For q̃→ ±∞, one has that e−∞(x) = 1, for x ≤ 0 and
e∞(x) = 1, for x ≥ 0. Notice that letting x = 1 one has generalized Euler’s number:

eq̃(1) = (1+ q̃)1/q̃. (3)
Instead of using the standard entropic index q in Eqs. (1) and (3), we have adopted the notation q̃ = 1 − q. The latter

notation permits us to write simple relations as: lnq̃(x) = − ln−q̃(x) or e−q̃(−x) = 1/eq̃(x), bringing the inversion point
around q̃ = 0. These relations lead to simpler expressions in population dynamics problems [22] and the generalized
stretched exponential function [20] contexts. Also, they simplify the generalized sum and product operators [21], where
a link to the arithmetical and geometrical averages of the generalized functions is established.
This logarithm generalization, as shown in Ref. [23, p. 83], is the one of non-extensive statistical mechanics [2]. It turns

out to be precisely the form proposed by Montroll and Badger [24] to unify the Verhulst (q̃ = 1) and Gompertz (q̃ = 0)
one-species population dynamics model. The q̃-logarithm leads exactly to Richards’ growth model [25,22]:

d ln p(t)
dt

= −κ lnq̃ p(t), (4)

where p(t) = N(t)/N∞, N(t) is the population size at time t , N∞ is the carrying capacity and κ is the intrinsic growth
rate. The solution of Eq. (4) is the q̃-generalized logistic equation p(t) = 1/eq̃[lnq̃(p−10 )e

−κt
] = e−q̃[− lnq̃(p−10 )e

−κt
] =

e−q̃[ln−q̃(p0)e−κt ].
The competition among cells drive to replicate and inhibitory interactions, that are modeled by long range interaction

among these cells. These interactions furnish an interesting microscopic mechanism to obtain Richards’ model [26,27]. The
long range interaction is dependent on the distance r between two cells as a power law rγ . These cells have a fractal structure
characterized by a fractal dimension Df .
Here we call the attention to Eq. (7) of Ref. [26], namely ṅ(t) = n(t){〈G〉 − JI[n(t)]}, where I(n(t)) =

ω
{
[Df n(t)/ω]1−γ /Df − 1

}
/[Df (1 − γ /Df )]. Here, ω is a constant related to geometry of the problem, 〈G〉 is the mean

intrinsic replication rate of the cells and J is the interaction factor. Using Eq. (1), one can rewrite it simply as: d ln n(t)/dt =
〈G〉/n(t) − Jω lnq̃[Df n(t)/ω]/Df . Calling, p = Df n/ω, κ = Jω/Df and q̃ = 1 − γ /Df , this equation is Richard’s model
[Eq. (4)] with an effort rate 〈G〉/n(t). In this context the parameter q̃ acquires a physical meaning related to the interaction
range γ and fractal dimension of the cellular structure Df . If the interaction does not depend on the distance, γ = 0, and it
implies that q̃ = 1. This physical interpretation of q̃ has only been possible due to Richards’ model underlying microscopic
description.
Introduced by Nicholson in 1954 [28], scramble and contest are types of intraspecific competition models that differ

between themselves in the way that limited resources are shared among individuals. In scramble competition, the resource
is equally shared among the individuals of the population as long as it is available. In this case, there is a critical population
sizeNc , abovewhich, the amount of resource is not enough to assure population survival. In the contest competition, stronger
individuals get the amount of resources they need to survive. If there is enough resources to all individuals, population grows,
otherwise, only the strongest individuals survive (strong hierarchy), and the populationmaintains itself stable with sizeN∞.
From experimental data, it is known that other than the important parameter κ (and sometimes N∞), additional

parameters in more complex models are needed to adjust the model to the given population. One of the most general
discrete model is the θ-Ricker model [29,30]. This model describes well scramble competition models but it is unable to
put into a unique formulation the contest competition models such as Hassel model [28], Beverton–Holt model [31] and
Maynard-Smith–Slatkin model [32].
Our main purpose is to show that Eq. (2) is suitable to unify most of the known discrete growth models into a simple

formula. This is done in the following way. In Section 2, we show that Richards’ model [Eq. (4)], which has an underlying
microscopicmodel, has a physical interpretation to the parameter q̃, and its discretization leads to a generalized logisticmap.
We briefly study the properties of this map and show that some features of it (fixed points, cycles etc.) are given in terms
of the q̃-exponential function. Curiously, the map attractor can be suitably written in terms of q̃-exponentials, even in the
logistic case. In Section 3, using the q̃-exponential function, we generalize the θ-Ricker model and analytically calculate the
model fixed points, as well as their stability. In Section 4, we consider the generalized Skellammodel. These generalizations
allow us to recover most of the well-known scramble/contest competitionmodels. Final remarks are presented in Section 5.

2. Discretization of Richards’ model

To discretize Eq. (4), call (pi+1 − pi)/1t = −kpi(p
q̃
i − 1)/q̃, ρ

′

q̃ = 1+ k1t/q̃ and xi = pi[(ρq̃ − 1)/ρq̃]
q̃, which leads to:

xi+1 = ρ ′q̃xi(1− x
q̃
i ) = −ρq̃xi lnq̃(xi), (5)

where ρq̃ = q̃ρ ′q̃. We notice that q̃ keeps its physical interpretation of the continuous model.



2924 A. Souto Martinez et al. / Physica A 388 (2009) 2922–2930

In Eq. (5), if q̃ = 1 and ρ1 = ρ ′1 = 4a, with a ∈ [0, 1], one obtains the logistic map, xi+1 = 4axi(1 − xi), which is the
classical example of a dynamic system obtained from the discretization of the Verhulst model. Although simple, this map
presents a extremely rich behavior, universal period duplication, chaos etc. [33].
Let us digress considering Feigenbaum’s map [34]: yi+1 = 1 − µy

q̃+1
i , with q̃ > 0, 0 < µ ≤ 2 and −1 ≤ yi ≤ 1.

Firstly, let us consider the particular case q̃ = 1. If one writes yi = ỹi − b, with b being a constant, then: ỹi+1 =
−µb2 + b + 1 + 2µbỹi[1 − ỹi/(2b)]. Imposing that −µb2 + b + 1 = 0 leads to b± = (1 ∓

√
1+ 4µ)/(2µ) and calling

xi = ỹi/(2b), one obtains the logistic map with ρ1 = ρ ′1 = 4a = 1+
√
1+ 4µ, so that 0 < ρ1 ≤ 4. One can easily relate the

control parameter of these two maps, making the maps equivalent. For arbitrary values of q̃, there is not a general closed
analytical form to expand |ỹi − b|q̃+1 and one cannot simply transform the control parameters of Eq. (5) to Feigenbaum’s
map. Here, in general, these twomaps are not equivalent. It would then be interesting, to study the sensitivity of Eq. (5) with
respect to initial conditions as it has been extensively studied in Feigenbaum’s map [35–38].
Returning to Eq. (5), in the domain 0 ≤ x ≤ 1, f (xi) = −ρq̃xi lnq̃(xi) ≥ 0 (non-negative), for ρq̃ > 0. Since eq̃(x) is real

only for q̃x > −1, f̃ is real only for q̃ > −1. The maximum value of the function is

f̃ = f (x̃) =
ρq̃

e1(q̃)eq̃(1)
, (6)

which occurs at

x̃ =
1
eq̃(1)

, (7)

i. e., the inverse of the generalized Euler’s number eq̃(1) [Eq. (3)]. For the generalized logistic map, 0 ≤ x ≤ 1, so that
0 ≤ f̃ ≤ 1, it leads to the following domain for the control parameter 0 ≤ ρq̃ ≤ ρmax:

ρmax = eq̃(1)e1(q̃) = (1+ q̃)1+1/q̃. (8)
The map fixed points [x∗ = f (x∗)] are

x∗1 = 0, (9)

x∗2 = eq̃(−1/ρq̃). (10)

The fixed point x∗1 is stable for 0 ≤ ρq̃ < q̃ and x
∗

2 is stable for q̃ ≤ ρq̃ < ρpd, where

ρpd = q̃+ 2. (11)

Notice the presence of the q̃-exponentials in the description of the attractors, even for the logistic map q̃ = 1.
The generalized logistic map also presents the rich behavior of the logistic map as depicted by the bifurcation diagram

of Fig. 1. The inset of Fig. 1 displays the Lyapunov exponents as function of the central parameter ρq̃.
In Fig. 2 we have scaled the axis to ρq̃[−(q̃+2)/q̃]/(ρmaxq̃), where ρmax is given by Eq. (8) and we plotted the bifurcation

diagram for q̃ = 1/10, 1 and 10. We see that the diagrams display the same structure but each one has its own scaling
parameters. The role of increasing q̃ is to lift the bifurcation diagram to relatively anticipating the chaotic phase. The period
doubling region starts at x∗2(q̃) = eq̃[−1/(q̃ + 2)] = [1 − 1/(1 + 2/q̃)]

1/q̃, so that for x∗2(1/10) = (20/21)10 ≈ 0.61,
x∗2(1) = 2/3 ≈ 0.67 and x

∗

2(10) = (1/6)
1/10
≈ 0.84.

When ρq̃ = eq̃(1)e1(q̃), then xi ∈ (0, 1). In Fig. 3 we show the histograms of the distribution of the variable xi. We see
that as q̃ increases, the histograms have the same shape as the logistic histogram has, but it is crooked in the counter clock
sense around x = 1/2.

3. The generalized θ-Ricker model

The θ-Ricker model [29,30] is given by:

xi+1 = xier[1−(xi/κ)
θ
], (12)

where θ > 0.
Notice that x̃ = r1/θx/κ is the relevant variable, where κ1 = er > 0. In this way Eq. (12) can be simply written as

x̃i+1 = k1x̃ie−x̃
θ
i . For θ = 1, one finds the standard Ricker model [39]. For arbitrary θ , expanding the exponential to the first

order one obtains the generalized logistic map [Eq. (5)] which becomes the logistic map, for θ = 1. The θ-Ricker, Ricker and
quadratic models are all scramble competition models.
If one switches the exponential function for the q̃-generalized exponential in Eq. (12), one gets the generalized θ-Ricker

model:

xi+1 = κ1xie−q̃

[
−r

(xi
κ

)θ]
=

κ1xi[
1+ q̃r

( xi
κ

)θ]1/q̃ . (13)

To obtain standard notation, write c = 1/q̃ and k2 = r/(kc), so that xi+1 = k1xi/(1+ k2xi)c [40].
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Fig. 1. Bifurcation diagram of Eq. (5) for q̃ = 2, where we see that the period doubling starts at ρ = (q̃+2)/q̃ = 2 [Eq. (11)] and the chaotic phase finishes
at ρmax = e2(1)e1(2)/q̃ =

√
27/2 ≈ 2.6 [Eq. (8)]. Inset: Lyapunov exponents as functions of ρq̃ for q̃ = 2.
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Fig. 2. Bifurcation diagram of Eq. (5) for q̃ = 1/2, q̃ = 1 (logistic) and q̃ = 2. The fixed points are given by Eqs. (9) and (10).

The generalizedmodelwith θ = 1, leads to theHasselmodel [28], which can be a scramble or contest competitionmodel.
Onewell-known contest competitionmodel is the Beverton–Holt model [31], which is obtained taking q̃ = c = 1. For q̃ = 0,
one recovers the Ricker model and for q̃ = −1, one recovers the logistic model.
It is interesting to mention that the Beverton–Holt model [31] is one of the few models that have the time evolution

explicitly written: x̃i = κ i1x̃0/[1 + (1 − κ
i
1)x̃0/(1 − κ1)]. From this equation, one sees that xi(�1) = 0, for κ1 ≤ 1 and

xi(�1) = κ1 − 1 for κ1 ≥ 1.
Using arbitrary values of θ in Eq. (13), for q̃ = 0 one recovers the θ-Ricker model, and for q̃ = 1, the Maynard-

Smith–Slatkin model [32] is recovered. The latter is a scramble/contest competition model. For q̃ = −1, one recovers the
generalized logistic map. The trivial linear model is retrieved for q̃→−∞.
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Table 1
Summary of the parameters to obtain discrete growthmodels from Eq. (14). In the competition type column, s and c stand for scramble and contestmodels,
respectively. The symbol * stands for arbitrary values.

Model q̃ θ Competition type

Linear −∞ >0
Logistic −1 1 s
Generalized logistic −1 >0 s
Ricker 0 1 s
θ-Ricker 0 >0 s
Hassel * 1 s (q̃ < 1/2) or c (q̃ ≥ 1/2)
Maynard–Smith–Slatkin 1 >0 s (θ > 2) or c (θ ≤ 2)
Beverton–Holt 1 1 c

In terms of the relevant variable x̃, Eq. (13) is rewritten as:

x̃i+1 = κ1x̃ie−q̃(−x̃θi ), (14)

where x̃i ≥ 0 and we stress that the important parameters are κ1 > 0, q̃ and θ > 0. Eq. (14) is suitable for data analysis
and the most usual known discrete growth models are recovered with the judicious choice of the q̃ and θ parameters as it
shown in Table 1. Some typical bifurcation diagrams of Eq. (14) are displayed in Fig. 4.
Now, let us obtain some analytical results for the map of Eq. (14), which we write as x̃i+1 = fgtr(x̃i), with

fgtr(x̃) = κ1x̃e−q̃(−x̃θ ) =
κ1x̃

(1+ q̃x̃θ )1/q̃
. (15)

The x̃-domain is unbounded (x̃ ≥ 0), for q̃ ≥ 0. However, for q̃ < 0, fgtr(x̃) = κ1x̃(1−|q̃|x̃θ )1/|q̃| and the x̃-domain is bounded
to the interval: 0 ≤ x̃ ≤ x̃m, with

x̃m =
1

(−q̃)1/θ
, (16)

so that for |q̃| < 1, x̃m > 1; for |q̃| = 1, with x̃m = 1 (for q̃ = −1, it is the generalized logistic case [Eq. (5) in θ instead of q̃]
and for q̃ = 1, the Maynard-Smith–Slatkin model) and for |q̃| > 1, x̃m < 1.
The derivative of fgtr with respect to x̃ is: f ′gtr(x̃) = κ1[1+ (q̃− θ)x̃

θ
]/(1+ q̃x̃θ )1+1/q̃. Imposing f ′gtr(x̃max) = 0, one obtains

the maximum of Eq. (15),

f̃gtr = fgtr(x̃max) =
κ1x̃meq̃(−1/θ)
eθ (−1/q̃)

. (17)



A. Souto Martinez et al. / Physica A 388 (2009) 2922–2930 2927

14

X
*

X
*

X
*

12

10

8

6

4

2

0
0 5 10 15

κ1

κ1

κ1

20 25 30

q~=1/2

θ=2

50

40

30

20

10

0
0 20 40 60 80 100

q~=1

θ=3

q~=2
θ=5

200

180

160

140

120

100

80

60

40

20

0
0 50 100 150 200 250 300

a

b

c

Fig. 4. Typical bifurcation diagrams of Eq. (14). (a) q̃ = 1/2 and θ = 2, (a) q̃ = 1 and θ = 3 and (a) q̃ = 2 and θ = 5.

at

x̃max =
1

(θ − q̃)1/θ
=

x̃m
eθ (−1/q̃)

. (18)

The control parameter κ1 is unbounded (κ1 > 0), for q̃ ≥ 0, but for q̃ < 0, since f̃gtr ≤ x̃m, it belongs to the interval
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by Eq. (19).

0 < κ1 ≤ κm, where:

κm =
eθ (−1/q̃)
eq̃(−1/θ)

= eθ (−1/q̃)e−q̃(1/θ). (19)

From Eq. (18), one sees that for θ < q̃, fgtr(x̃) does not have a hump, it is simply a monotonically increasing function of
x̃, which characterizes the contest models. At the critical θ = q̃ value, the function fgtr(x̃) starts to have a maximum value
at infinity. For θ > q̃, the function fgtr(x̃) has a hump, with maximum value at xmax [Eq. (18)] such that as θ → ∞ then
xmax → 1.
The map fixed points [x̃∗ = fgtr(x̃∗)] are:

x̃∗1 = 0 (20)

x̃∗2 = [lnq̃(κ1)]
1/θ
≥ 0. (21)

These fixed points are show as function of κ1 in Fig. 5.
The fixed point x̃∗1 represents the species extinction and is stable, for 0 < κ1 < 1. Both fixed points x̃∗1 and x̃

∗

2 are
marginal, for κ1 = 1. For 1 < κ1 < e−q̃(2/θ), x̃∗1 becomes unstable and x̃

∗

2 > 0 is stable and represents the species survival.
For κ1 = e−q̃(2/θ), x̃∗2 becomes unstable and as κ1 increases, a stable cycle-2 appears. For q̃ < 0, as κ1 increases further,
the cycle-2 becomes unstable at some value of κ1 giving rise to a route to chaos as in the logistic map, via period doubling.
Nevertheless, for q̃ ≥ 0, several scenarios may take place. Even though q̃ > 0 and θ > q̃, if q̃ < θ < 2q̃, the map fgtr has a
hump, but it is not thin enough to produce periods greater than unity. In this case, fgtr produces only the two fixed points
x̃∗1 and x̃

∗

2 , which characterize the context models. Nevertheless, scramble models (θ > 2q̃) have maps with a hump thin
enough to produce stable cycles with period greater than unity. Thus, in scramble models one has more complex scenarios
such as period doubling, as a route to chaos, as κ1 > e−q̃(2/θ). We have not being able to obtain analytically the behavior
of the system q̃ > 0 and θ > 2q̃. The θ × q̃ diagram is depicted in Fig. 6.
For q̃ = θ = 1, one retrieves the Beverton–Holt model, with the fixed points x̃∗1 = 0 and x̃

∗

1 = ln1(κ1) = κ1 − 1. For q̃,
one retrieves the generalized logistic map.

4. Generalized Skellammodel

All the contest competition models generalized by Eq. (13) are power-law-like models for q̃ 6= 0. However, the Skellam
contest model cannot be obtained from this approach. It is the complement of an exponential decay xi+1 = κ(1−e−rxi) [41].
Nevertheless, it is interesting to replace the exponential function to the q̃-exponential in thismodel: xi+1 = k[1−e−q̃(−rxi)]
and write x̃ = rx and κ = rk, which leads to:

x̃i+1 = κ
[
1− e−q̃(−x̃i)

]
. (22)

For q̃→−∞, Eq. (22) leads to the constant model, for q̃ = −1, the trivial linear growth is found. If q̃ = 0, one recovers the
Skellam model and finally, q̃ = 1 leads to the Beverton–Holt contest model (see Table 2).
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x̃ ≥ 0 and the behavior of the system is driving by the θ values. For θ ≥ 2q̃, we do no have analytical results. Numerical simulation indicate regions with
finite order of period doubling. For θ < 2q̃, the system represent context models, with only two fixed points given by Eqs. (20) and (21). The map presents
a hump, for θ > 2q̃, but for θ ≤ q̃, the map is a monotonically increasing function.

Table 2
Summary of the parameters to obtain contest competition discrete growth models from Eq. (22).

Model q̃

Constant −∞

Linear −1
Skellam 0
Beverton–Holt 1

5. Conclusion

Wehave shown that the q̃-generalization of the exponential function is suitable to describe discrete growthmodels. The q̃
parameter is related to the range of a repulsive potential and the dimensionality of the fractal underlying structure. From the
discretization of Richard’s model, we have obtained a generalization for the logistic map and briefly studied its properties.
An interesting generalization is the one of θ-Ricker model, which allows us to have several scramble or contest competition
discrete growth models as particular cases. Eq. (14) allows the use of softwares to fit data to find the most suitable known
model throughout the optimum choice of q̃ and θ . Furthermore, one can also generalize the Skellam contest model. Only
a few specific models mentioned in Ref. [40] are not retrieved from our generalization. Actually, we propose a general
procedure where we do not necessarily need to be tied to a specific model, since one can have arbitrary values of q̃ and θ .
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