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We present a molecular-dynamics study of discharges in a granular pile evincing a catastrophic regime
depending on the outlet size. The avalanche size distribution function suggests a phase transition where the
height of the remaining pile is taken as the order parameter. Our results indicate that there is a critical outlet
size beyond which discharges become catastrophic and the initial pile is split in two minor piles. As the system
size increases, finite-size analysis indicates that the critical orifice width converges to a finite value.
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I. INTRODUCTION

In the last three decades, there was a great impulse in the
granular matter research field as a variety of peculiar phe-
nomena have been observed. In particular, there has been an
intense effort to verify the existence of self-organized criti-
cality �SOC� in real granular systems since Bak, Tang, and
Wiesenfeld �1� proposed a model that resembles the behavior
of a stack of macroscopic grains. The search for SOC in
granular systems has been carried out either by means of
experiments or numerical simulations.

Jaeger, Liu, and Nagel �2� put forward experiments on a
rotating drum filled with granular matter. They have not ob-
served scale invariance either in space or in time for the
avalanches, the signature of SOC. One year later, Held et al.
�3� published conflicting experimental results from very
slowly evolving sand piles, showing the existence of critical
behavior for small piles. A study of avalanches on rice piles
�4� corroborated the SOC point of view and raised other
issues in the discussion of the problem. In a recent paper,
Ramos, Altshuler, and Måløy �5� showed very strong evi-
dence of SOC in two-dimensional �2D� piles. Some people
tried to explain these observations using finite-size effect ar-
guments �6� or distinguishing the dynamics of small from big
avalanches �7�. Another cause for these discrepancies,
pointed out by Buchholtz and Pöschel �8�, is the method used
to measure the avalanches.

Motivated by the work of Frette et al. �4�, some research-
ers adopted a different strategy, changing focus to internal
avalanches, i.e., rearrangement of grains in the bulk of the
pile in response to some external perturbation �5�. Lattice
and pseudodynamic models were proposed in order to inves-
tigate numerically the discharge of grains through an orifice
at the bottom of a bidimensional silo and a power law was
found for the internal avalanche size distribution �9–11�. In
opposition, the experiments of Zuriguel et al. �12� and Janda
et al. �13� have shown an exponential tail both in 2D and
three-dimensional �3D�.

They were also concerned about the jamming transition,
that is, the passage from a state where the flow of granular
particles eventually gets blocked to a state in which the flow
continues forever. Janda et al. �13� concluded, in response to

the work of Perez �14�, that there is not a critical outlet size
beyond which the probability of jamming becomes zero. In
this paper, we study avalanches in open boundary piles and
the results seem to contradict this statement.

We present here a molecular-dynamics study of the dis-
charging process through a single orifice in the substrate of a
granular sandpile. Besides the main task of providing addi-
tional data for the SOC debate, we address the jamming tran-
sition issue in order to shed some light on this subject. This
paper is organized as follows: first, we present the model and
a detailed description of the numerical simulation; next, we
show the results obtained for several system sizes and make
a discussion; finally, we present some conclusions and sketch
our perspectives out.

II. SIMULATION DESCRIPTION

We shall describe here a simulation of the discharge from
an orifice localized at the bottom of a two-dimensional
granular pile consisting of frictional disks, using the
molecular-dynamics method. The numerical simulations can
be divided in two steps. First, we prepare the pile by pouring
grains on a substrate constituted of small fixed grains; after-
wards we open a hole at the substrate through which the
grains may flow.

The simulation method used was the velocity-verlet mo-
lecular dynamics algorithm �15� and the particles interact
only when they are in contact. A spring-dashpot model is
used to simulate the contact in the normal direction, and a
spring simulates Coulomb friction in tangential direction-
Cundall and Strack model �16�. The particles are subject to a
constant gravitational field g that points downward in the
vertical direction. Thus, the normal and tangential forces
upon the particle i due to the particle j are given, respec-
tively, by

F� i
�n� = H��ij��kn�ij − �v� ij · n� ij�n� ij , �1�

F� i
��� = H��ij�min��f�r�,��F� i

�n���sgn�f�r · ��ij�t�ij , �2�

where H is the step function, i.e., H�x�=1 if x�0 and
H�x�=0 otherwise, and
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�ij = di/2 + dj/2 − �r�i − r� j� �3�

is the penetration depth. The tangential spring restoration
force at the instant t, f�r�t�, evolves following the equation:

f�r�t + �t� = f�r�t� + kt�t�di�i

2
−

dj� j

2
− v� ij · ��ij���ij . �4�

The other parameters and variables are the normal and tan-
gential spring stiffnesses kn and kt, the normal damping con-
stant �, the friction coefficient �, the particle diameter di, the
normal and tangential unitary vectors n� ij and ��ij, the particle
position r�i, the relative velocity vector v� ij, the angular veloc-
ity �i, and the integration time step �t. As previously stated,
the particles are homogeneous disks whose masses are de-
fined in terms of their areas, mi=di

2 /dmax
2 , where dmax stands

for the diameter of the largest grain. The diameter is uni-
formly distributed around the average grain diameter d with
5% dispersion.

Based on Mindlin �17�, who demonstrated that 2 /3
	kt /kn	1 for elastic bodies in contact, we used kn=1000,
kt=750; we also chose �=�c �critical dumping� in order to
speed up the equilibrating process and �=0.9 a typical value
for metallic surfaces �18�. The integration time step is much
lower than the lowest collision time between two grains, tc

=�mmin /kn, where mmin is the mass of the lightest particle.
The units for the quantities mentioned above as well the
other dynamical variables, such as position and force, are
normalized following the scheme used by Atman et al. �19�.
In the present case, because the lateral boundaries are open,
the total weight is normalized by a complete stack ordered in
a triangular lattice constituted of equally massive grains with
m=mmax.

We start the preparation procedure by defining a flat
granular monolayer made of fixed juxtaposed grains whose
diameters are equal to one tenth of the average diameter of

the pile grains, d̄. Then, the deposition process begins: the
particles are released from rest, from a height equal to the
base length, layer by layer, and are free to leave the pile
through the open lateral boundaries. In each layer, the par-

ticles are randomly disposed and cover half of the substrate
length. The deposition frequency is the maximum possible in
order to avoid particle superposition, f =�g /2dmax, mimick-
ing a dense rain.

The end of the deposition process occurs when a station-
ary state for the total number of particles is reached. After the
deposition process, we wait for the pile to reach an equilib-
rium state, and then its final configuration is recorded. An
equilibrium state is achieved when the pile satisfies the fol-
lowing conditions: mechanical stability, slipping absence,
vertical force balance, and vanishingly small kinetic energy
�20�.

Once equilibrium is reached, we initiate the second step,
that is, we open an outlet of width w at the center of the
substrate by removing a certain amount of grains from the
substrate and wait until another equilibrium state is reached.
The grains that fall out of the pile are eliminated from the
system. We compute the number of grains that pass through
the orifice as one realization to measure the discharge ava-
lanche size. After that, we perform the same procedure with
another pile sample from the set deposited in the first step,
discarding the pile after an outlet was opened. This same set
of deposited piles is used to perform all discharge realiza-
tions for different outlet sizes.

In Fig. 1, we show the equilibrium configurations of the
pile before and after the discharge process for three different
values of the parameter w. The panel �a� is the configuration
of a sample just after the deposition process. The subsequent
panels, �b�–�d�, represent the final states after the discharging
process is over. In �b� and �c�, the opening of the orifice does
not affect too much the shape of the pile. The initial flux of
grains is soon ceased by the formation of an arch right above
the orifice. When the orifice is large enough, as in panel �d�,
a quite different scenario arises, where almost all particles
flow through the orifice destroying completely the pile. Thus,
there are two well distinct phases for the discharged pile, i.e.,
the remaining pile after the discharge has ceased, depending
on the orifice width which could be characterized by the
average height at the center of the pile.

III. RESULTS AND DISCUSSION

In order to verify the existence of SOC state and to inves-
tigate the role of the outlet width on discharge properties, we

FIG. 1. A granular pile before �top� and after the discharge
process for w=2.2d, w=4.2d, and w=5.2d in sequence. The base
length is L=75d. We show the blockage arch isolated and amplified
for the two cases where the grain flux was interrupted.

FIG. 2. Accumulated distribution functions of the discharge ava-
lanche size for various w values on L=75d piles. The distributions
were built from a set of 5000 samples.
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have made discharge simulations on piles with five different
substrate sizes: L=25d ,50d ,75d ,100d ,125d. The average
number of particles remaining in the pile after the deposition
is, respectively: N25= �3
1��10, N50= �1.9
0.3��102,
N75= �5.0
0.5��102, N100= �9.5
0.7��102, and N125
= �1.6
0.1��103. The parameter w ranges from 1.0d to
7.0d, in steps of 0.2d. In Fig. 2, we show the graphs of the
accumulated distribution for discharge avalanche sizes, F�s�,
for some values of w on L=75d piles. The function F�s�
represents the probability that a discharge of size s or greater
than s will occur. The graphs are in semilogarithmic scale to
emphasize their exponential tail, a result that agrees with
experimental data �13�. Examining the function F�s�, we can
clearly identify three different regimes. Below w=2.9d, the
distribution follows a single exponential law over the entire
range of the simulational data. From w=2.9d to w=4.0d, the
distribution starts to flatten for middle values of s but keeps

its exponential shape, revealing the existence of two charac-
teristic sizes for the avalanches. In this intermediate regime,
the pile either collapse or the granular flow is readily blocked
by an arch after a few grains passed through the orifice.
Above w=4.0d, the flatten region extends to the left, and the
first exponential decay is no longer observed. This indicates
the existence of a single characteristic avalanche size, which
is big enough to systematically destroy the pile realizations.

We identify this abrupt change as a transition to a cata-
strophic regime. A good order parameter seems to be the
average height of the discharged pile at its center 	h
. For
small w, when generally just a few particles pass through the
orifice, the pile height will hardly be modified and 	h
 is
essentially the height of the unperturbed pile. On the other
hand, for large values of w, when in most cases the pile is
split in two, 	h
 is nearly zero. Therefore, the two extremes
we are concerned about are well captured by this parameter.
In Fig. 3, we plot 	h
 versus w and the two regimes are
evident. It can be noted that the graphs approximate to the
step function as the system size increases, which points to-
ward the existence of a flowing regime and indicates that
there is a finite critical arch size. By flowing regime, we
mean a state of continuous flow through the orifice without
arching formation. The transition from one regime to the
other occurs within a finite interval, in which there is a co-
existence of the two phases, as shown in Fig. 2. The coex-
istence of these two phases indicates that the transition could
be better described in first order phase transition framework.

In Fig. 4, we present the order parameter fluctuations—
defined as the root mean square of the deviations—as a func-
tion of w for the different system sizes. The fluctuations
present a peak around the value wc, which depends on the
system size. As the system size increases, the peak center
moves to the right but tends to a finite value, as shown in
Fig. 4. We observe that the wc grows with L and assumes the
value of wc= �5.0
0.1�d when L tends to infinity, as shown
in Fig. 5. It suggests the existence of a finite value for wc as
the system approaches the thermodynamic limit. This con-
clusion is the opposite of that stated by Janda et al. �13�. The
difference might be only due to geometry but we wonder

FIG. 3. The order parameter as a function of the orifice width
for various system sizes. The order parameter is defined as the
average height of the discharged pile at its center. The function is
generated from a set of 10k samples for L=25d and L=50d, from
5k for the L=75d and L=100d, and from 1k samples for the L
=125d. The variable 	h
 is normalized by the substrate size.

FIG. 4. Fluctuation of the order parameter as a function of the
orifice width. The symbols represent the fluctuations obtained from
a set of 10k �L=25d ,50d�, 5k �L=75d ,100d�, or 1k �L=125d�
samples. The lines are peak function fits of these data. As well as
the variable 	h
 in graph 3, �h is normalized by the substrate size.

FIG. 5. Critical outlet size dependence on system size. The
square symbol represents the simulational data and the line is a
linear fit. As L→
 the critical outlet size tends to some limiting
value near wc= �5.0
0.1�d.
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whether there is a kind of crystallization effect due to low
size dispersion; we intend investigate this point in a future
work. In fact, the nonexistence of jamming transition in the
thermodynamic limit is quite a counterintuitive idea since it
requires unrealistically long arches to block the flux through
large orifices. To �21� investigated the arches formed in hop-
pers and found that their size decays exponentially with the
outlet size, i.e., long arches is very improbable to occur. Be-
sides, the probability of an arch to be created may depend on
the intensity of the flow.

IV. CONCLUSION

In this paper, we have shown that there is no evidence of
SOC in the statistics of discharge avalanches on granular

piles. Instead, we found that the discharge avalanches have a
characteristic size which depends on the orifice width. Nev-
ertheless, there is a transition, as the parameter w varies,
which we have characterized by the average height of the
discharged pile at its center 	h
. Beyond a threshold value wc,
the pile, in most cases, is completely destroyed after the
opening of an orifice. Our data show that wc tends to a finite
value as the system size increases, which made us doubt the
nonexistence of a flowing state.
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