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Abstract – We consider 16 representative financial records (stocks, indices, commodities, and
exchange rates) and study the distribution PQ(r) of the interoccurrence times r between daily
losses below negative thresholds −Q, for fixed mean interoccurrence time RQ. We find that in
all cases, PQ(r) follows the form PQ(r) ∝ 1/[(1 + (q − 1)βr]1/(q−1), where β and q are universal
constants that depend only on RQ, but not on a specific asset. While β depends only slightly on
RQ, the q-value increases logarithmically with RQ, q = 1 + q0 ln(RQ/2), such that for RQ → 2,
PQ(r) approaches a simple exponential, PQ(r) ∼= 2−r. The fact that PQ does not scale with RQ is
due to the multifractality of the financial markets. The analytic form of PQ allows also to estimate
both the risk function and the value-at-risk, and thus to improve the estimation of the financial
risk.

The identification of the laws that govern the dynamical
evolution of financial markets is one of the central issues in
economy since understanding the laws allows a better es-
timation of the financial risk. Due to the pioneering work
of Granger [1] and Mandelbrot [2] it is well accepted that
the financial markets are extraordinary complex and show
quite complex multifractal temporal behavior [3–11]. Here
we show that despite this complexity universal empirical
laws that have a remarkably simple form can be found for
the dynamical behavior of the markets. These laws reflect
the non-linear memory in the markets and can be used to
improve the risk estimation.

In our analysis, we consider the returns Xi of an asset af-
ter the i-th unit trading period which might range between
seconds and years. The returns are the central quantities
in the financial markets and related to the price Pi of an
asset by

Xi = (Pi − Pi−1)/Pi−1. (1)

By definition, positive returns are gains and negative re-
turns are losses. Here we focus on daily closing prices Pi

where i − 1 and i now denote subsequent trading days.
It is well known that the returns Xi are linearly uncorre-
lated such that the autocorrelation function vanishes for

time lags s above the order of minutes (see, e.g [12, 13]).
But the volatility which can be defined as absolute value
of the returns, shows long-term persistency, reflecting the
nonlinear memory and the multifractality [2–11] of the fi-
nancial markets.

The time evolution of the markets can be characterized
by the set of interoccurrence times ri between losses be-
low a negative threshold −Q, in particular by their mean
interoccurrence time RQ and their distribution function
PQ(r) [14] (see also [15]). For each record, there is a one-
by-one correspondence between −Q and RQ ,

1
RQ

=
∫ −∞

−Q

D(r)dr, (2)

where D(r) is the distribution of the returns. It has been
shown recently by Bogachev and Bunde [14,16] when an-
alyzing 16 assets in 4 asset classes (stocks, stock indices,
commodities, currencies) that the interoccurrence times
ri are long-term correlated with an autocorrelation func-
tion that decays by a power law, reflecting the nonlinear
memory in the market. It has been further shown that for
(fixed) interoccurrence times RQ ≥ 10 (in units of trad-
ing days), the distribution function PQ(r) only depends on
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Fig. 1: Illustration of the relative daily price returns Xi of
the IBM stock between (a) January 2000 and June 2010 and
(b) August 27 and October 23, 2002. The red line shows the
threshold Q ≃ −0.037, which corresponds to an average inte-
roccurrence time of RQ = 70. In (b) the interoccurrence times
are indicated by arrows.

RQ but not on the considered asset, and decays asymp-
totically by a power law, with an RQ-dependent exponent
that reflects the multifractality in the market.

In this Letter we re-analyze the functional form of
PQ(r), for nearly the same assets as in [16] but updated
[17], now also including the current financial crises. The
financial records were obtained from [18–20]. We show ex-
plicitly that in all cases the functional form of PQ(r), in the
whole range of accessible r and RQ values, can be very well
approximated by q-exponentials known from nonextensive
statistical mechanics [21, 23], see eq. (3). The q-value in-
creases logarithmically with RQ, such that for large RQ,
PQ(r) follows a power law, while for RQ = 2, PQ(r) be-
comes a simple exponential. Using the q-exponential form
of PQ(r), we can derive also an analytical form for the risk
function WQ(t;∆t), which is defined as probability that at
least one event below −Q will occur in the next time in-
terval ∆t if the last event occurred t days ago [14]. The
risk function plays a major role in the estimation of the
value-at-risk which is perhaps the most common tool in
evaluating financial risk [26].
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Fig. 2: The mean interoccurrence time RQ versus the absolute
value of the loss threshold −Q, for the exchange rate US Dollar
against British Pound, the index S&P500, the IBM stock , and
crude oil (WTI), from left to right.

Figure 1a shows the returns of the IBM record, between
January 2000 and June 2010. The red horizontal line
marks the daily losses below −Q ∼= −0.037 where the
mean interoccurrence time RQ is 70 trading days. Fig-
ure 1b shows, for the time window between August 27
and October 23, 2002 the interoccurrence times. The in-
teroccurrence times reflect the dynamics of the asset. In
the ’quiet’ area between April 2005 and September 2008
daily losses below -0.037 did not occur, i.e. the interoc-
currence time is about 2.5 years while in the following
volatile period they occurred with high frequency, with
interoccurrence times of the order of days and weeks. Fig-
ure 2 shows how RQ depends on Q for one example from
each of the assets classes considered here. Since at large
losses D(x) decays by a power law [2], the mean interoc-
currence times RQ increase by a power law for large Q.
When comparing different records, it is essential to keep
RQ fixed. Figure 3a shows, again for the IBM record, the
distribution function PQ(r) of the interoccurrence times,
for five mean interoccurrence times RQ = 2, 5, 10, 30, and
70. The numerical results are the circles. The lines are
the best fits by a q-exponential [29],

PQ(r) =
A

(1 + (q − 1)β r)1/(q−1)
, (3)

where A is the normalization constant. In the mathemat-
ical literature, this distribution is usually referred to as
”generalized Pareto” distribution [27]. Occasionally it is
also referred to as ”Zipf-Mandelbrot” distribution. Given
the poor statistics of the data, the fit is excellent. Figure
3b shows the dependence of β (squares) and q (circles)
on RQ. The semilogarithmic plot shows that β first de-
creases slightly with increasing RQ and then above RQ = 6
reaches a plateau with β ∼= 0.23. The figure shows also
that the q-value decreases logarithmically with RQ,
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Fig. 3: (a) The distribution function of the interoccurrence
times for the relative daily price returns Xi of IBM in the
period 1962-2010. The data points belong to RQ = 2, 5, 10,
30, and 70 (in units of days), from bottom to top. The full
lines show the fitted q-exponentials. The dependence of the
parameters β (squares, lower curve) and q (circles, upper curve)
on RQ in the q-exponential is shown in fig. 3b. Figure 3c
confirms that for RQ = 2 the distribution function is a simple
exponential. The straight line is 2−r.

q = 1 + q0 ln(RQ/2) , (4)

with q0 ≃ 0.168. Accordingly, for RQ → 2 (where Q ∼= 0)
we have q → 1, and the q-exponential tends to a simple
exponential, PQ(r) ∝ exp(−βr), with β ∼= ln 2, i.e. P (r) =
2−r. To show explicitly that for RQ = 2 the distribution
of the interoccurrence times has exactly this surprisingly
simple form, we have plotted, in fig. 3c, lnPQ(r) as a
function of r. The figure shows that all symbols are close
to a straight line, confirming the simple exponential decay
[28].

We like to note that q-exponentials play a central role
in nonextensive statistical mechanics. In the last years
q-exponentials have been found to describe successfully
distributions in many complex systems where long range
dependencies play some role [23–25]. The q-exponentials
extremize, under simple constraints, the nonadditive en-
tropy which generalizes that of Boltzmann-Gibbs [21–23].
It is interesting to note that a related functional form that
also appears in the nonextensive statistical mechanics, a
q-Gaussian where the argument r in eq. (3) has been sub-
stituted by r2, has been used before [30,31] to approximate
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Fig. 4: The distribution function of the interoccurrence times
(as in fig. 3a) for the relative daily price returns of 16 ex-
amples of financial data, taken from different asset classes
(stocks, indices, currencies, commodities). The assets are
(i) the stocks of IBM, Boeing (BA), General Electric (GE),
Coca-Cola (KO), (ii) the indices Dow Jones (DJI), Financial
Times Stock Exchange 100 (FTSE), NASDAQ, S&P 500, (iii)
the commodities Brent Crude Oil, West Texas Intermediate
(WTI), Amsterdam-Rotterdam-Antwerp gasoline (ARA), Sin-
gapore gasoline (SING), and (iv) the exchange rates of the fol-
lowing currencies versus the US Dollar: Danish Crone (DKK),
British Pound (GBP), Yen, Swiss Francs (SWF). The full lines
show the fitted q-exponentials, which are the same as in fig.
3a.

the probability density function of the returns Xi. In the
mathematical literature, q-Gaussians are usually referred
to as ”Student distribution”. This analytic description al-
lowed Borland to generalize and considerably improve the
Black-Scholes option pricing equation by reproducing e.g.,
the volatility smile [32].

Figure 4 shows, now for all 16 records considered, the
distribution function of the interoccurrence times for the
same RQ values as in fig. 3. The figure confirms the earlier
finding [16] that for large RQ values the distribution func-
tion behaves in the same universal fashion, for all assets
in the four asset classes. The figure shows that the same
is true for small RQ values. The q-exponential fit is the
same as in fig. 3. For the same RQ value, due to finite-size
effects the data scatter more for large r values, but still
are described remarkably well by the q-exponential fit.

The distribution function of the interoccurrence times
is an important tool in risk estimation since it is directly
related to the risk function (hazard function) WQ(t, ∆t).
The risk function is defined as probability that at least
one event below Q will occur in the next time interval ∆t
if the last event occurred t days ago. It can be shown [14]
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Fig. 5: Universal risk function WQ(t, ∆t) from eq. 6a for the
interoccurrence time RQ = 100, and for the intervals ∆t =
1, 5, 20, 100 days (from bottom to top).

that WQ is related to PQ by

WQ(t;∆t) =

∫ t+∆t

t
PQ(r)dr∫ ∞

t
PQ(r)dr

. (5)

Since the PDF follows a q-exponential, the cumulated
distribution and thus the risk function is easy to obtain.
The simple integration yields

WQ(t; ∆t) = 1 −
(

1 +
β(q − 1)∆t

1 + β(q − 1)t

) q−2
q−1

. (6a)

Figure 5 shows the graph of the risk function for RQ = 100
and ∆t = 1, 5, 20, and 100. It is easy to show that also
WQ(t;∆t) can be expressed in terms of q-exponentials (see
[29]),

WQ(t;∆t) = 1 −
e
−(β/q̃)(t+∆t)
q̃

e
−(β/q̃) t
q̃

, (6b)

with q̃ = 1/(2 − q). It is easy to see that for exponen-
tially decaying distribution functions, WQ is a constant
WQ(t;∆t) = 1 − exp(−β∆t), while for distributions de-
caying by a power law, WQ(t, ∆t) ∝ ∆t/t for ∆t ≪ t.

We like to emphasize again that WQ(t;∆t) is universal
and can be used for all assets in risk estimation. A promi-
nent example is the Value-at-Risk (VaR). The VaR can be
defined as the relative loss −Q that, in a given time unit,
can only be exceeded with a certain small probability p.
That means, the expected returns are, with probability
1 − p, greater than −Q. Typical values of 1 − p are 0.95
and 0.99, and typical time units are 1 and 10 days. In the
following we consider as time unit 1 day. In a zero-th order

Fig. 6: Value-at-Risk estimate for the IBM stock between 2002-
2008 for two confidence probabilities (a) 1 − p = 0.99 (upper
green curves) and (b) 1 − p = 0.95 (lower red curves). The
lowest (black) curve shows the absolute value of the daily losses.
Only losses exceeding −0.01 are shown. The two horizontal
lines show the zero-th order VaR, when memory effects are
being neglected.

approximation, when memory effects are being neglected,
the VaR can be simply determined from the distribution
D(r) of the daily returns,∫ −∞

−Q

D(r)dr = p. (7)

To obtain the VaR from eq. (6) we follow the algo-
rithm suggested by Bogachev and Bunde [16] and proceed
iteratively:

(i) In the first step, we choose p and determine from
eq. (7) the corresponding loss −Q. Next, we determine
the time t that has elapsed after the last return below −Q
and use eq. (6) to determine a new probability W−Q. If
W−Q is within a certain error interval p±∆p the algorithm
is stopped.

(ii) If W−Q is above p+∆p, we multiply −Q by (1+∆Q)
and determine the new elapsed time t after the last event
below −Q(1 + ∆Q). If W is still above p + ∆p we repeat
this step until, in the n-th step , W−Q(1+∆Q)n is below
p + ∆p . Then we stop the algorithm and choose as the
estimate of the VaR, −Q = −Q(1 + ∆Q)n.

(iii) If W−Q is below p − ∆p, we proceed as in (ii) but
with a negative increment ∆Q < 0 until we are above
p − ∆p.

Figure 6 shows the VaR of the IBM stock for two confi-
dence probabilities, p = 0.05 and p = 0.01. To determine
the VaR, we have chosen ∆p = 0.0001 and |∆Q| = 0.02.
The figure shows that the estimation of the VaR has been
improved by taking into account the non linear memory
effects. The VaR is strongly enhanced after large losses
and decreases with increasing time after the last big loss.

In summary we have studied the distribution of the inte-
roccurrence times between daily losses below some thresh-
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old −Q that are characterized by a certain mean interoc-
currence time RQ. We have shown that for fixed RQ, the
distribution is universal (independent of the considered
asset) and described by q-exponentials. The q-value in-
creases logarithmically with RQ/2, such that for RQ = 2
we have q = 1 when the q-exponential reduces to a simple
exponential. q-exponentials occur naturally in nonexten-
sive statistical mechanics and are known to describe well
a large number of distribution in complex systems with
long range dependencies. We consider it as a challenge to
understand the common underlying mechanisms for this
behavior, which then may also lead to a deeper under-
standing of the financial markets.

In a practical application, we have shown that, the an-
alytic form of the distribution function allows to calculate
the related risk function analytically and how it can be
used to improve estimations of the value-at-risk. More-
over, the analytic form of the distribution function repre-
sents a non-trivial test for market models.
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