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Green function for a non-Markovian Fokker-Planck equation: Comb-model and anomalous
diffusion
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We investigate solutions, by using the Green function approach, for a system governed by a non-Markovian
Fokker-Planck equation and subjected to a Comb structure. This structure consists of the axis of structure as
the backbone and fingers which are attached perpendicular to the axis. For this system, we consider an arbitrary
initial condition, in the presence of time dependent diffusion coefficients and spatial fractional derivative, and
analyze the connection to the anomalous diffusion.
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1. INTRODUCTION

The existence of several diffusive processes in which the
mean-square displacement is not asymptotically linear in time
such as micelles dissolved in salted water [1], surface growth
and transport of fluid in porous media [2], two dimensional
rotating flow[3], subrecoil laser cooling [4], diffusion on frac-
tals [5], enhanced diffusion in active intracellular transport
[6], particle diffusion in a quasi-two-dimensional bacterial
bath [7] has motivated the study of several approaches, in par-
ticular, the fractional diffusion equations [8–14] due to the
broadness of applications. They have been used to inves-
tigate, for example, anomalous transport in disordered sys-
tems [15], diffusion on fractals [16], and in non-Markovian
dynamical processes in protein folding [17]. This variety of
applications of the fractional diffusion equations have stimu-
lated the study of several formal aspects such as the behav-
ior at the origin [18], the connection with generalized master
equation [19], their solutions[20–31] by taking external force
and spatial dependent diffusion coefficient into account, the
effect produced by reaction terms [32–34], solutions in con-
fined regions with spatial and time dependent boundary con-
ditions [35, 36], and the relation between the fractional dif-
fusion equations and comb-model [37–42]. In this point, it is
also interesting to mention that the comb-model is applied to
investigate porous medium related to exploration of low di-
mensional percolation clusters, the problem of flow transfer
in disordered systems [43], electrophoresis process and tu-
mor development [44]. From the above discussion, we note
the relevance of these investigations concerning the fractional
diffusion equations and the importance of extending these
cases to open the wide range of scenarios. In this direction,
we dedicated this work to investigate the solutions for an ex-
tension of the comb-model which is based on the following
non-Markovian diffusion equation:

∂
∂t

ρ(x,y; t) =
∫ t

0
dt ′Dy(t− t ′)

∂2

∂y2 ρ(x,y; t ′)

+ δ(y)
∫ t

0
dt ′Dx(t− t ′)

∂µ

∂|x|µ ρ(x,y; t ′) (1)

where Dy(t) and Dx(t) are time dependent diffusion coeffi-
cients and the fractional derivative applied to the spatial vari-
able is the Riesz-Weyl operator [45].

The plan of this work is to investigate Eq. (1) by taking the
boundary conditions ρ(±∞,y, t) = 0 and ρ(x,±∞, t) = 0 and
the initial condition ρ(x,y,0) = ρ̂(x,y) into account, where
ρ̂(x,y) is how the system is initially distributed and it is nor-
malized, i.e.,

∫ ∞
−∞ dx

∫ ∞
−∞ dyρ̂(x,y) = 1. We first consider the

case given by Dy(t) = Dyδ(t), Dx(t) = Dxδ(t) and µ = 2. The
result obtained for this case permits us to show the effect pro-
duced by an arbitrary initial condition on the solution. In par-
ticular, the spreading of the distribution for initial times where
the influence of the initial condition is important. Following,
we incorporate a power law dependence for the diffusion co-
efficients, i.e., Dy(t) = Dytγy−2/Γ(γy− 1) (Dy(s) = Dys1−γy

and 0 < γy < 1), Dx(t) = Dxtγx−2/Γ(γx−1) (Dx(s) = Dxs1−γx

and 0 < γx < 1). This time dependence for the diffusion coef-
ficients may be related to the fractional time derivatives and it
makes possible to obtain the inverse Laplace transform. An-
other time dependence for the diffusion coefficients is possi-
ble, however may lead us to cumbersome calculations. Af-
terwards, we incorporated spatial fractional derivatives, i.e.,
µ 6= 2, in our analysis. For these cases, we obtain the exact
solution by using the Green function approach [46] and the
dispersion relation when it is defined. These developments
are presented in Sec. II and in Sec. III we present our discus-
sion and conclusion about the results found here.

2. NON-MARKOVIAN FOKKER PLANCK EQUATION

Let us start by considering Eq.(1) with Dy(t) = Dyδ(t),
Dx(t) = Dxδ(t) and µ = 2. For this case, it is given by

∂
∂t

ρ(x,y, t) = Dy
∂2

∂y2 ρ(x,y, t)+Dxδ(y)
∂2

∂x2 ρ(x,y, t) . (2)

The singular term in Eq.(2) indicates the diffusion of the sys-
tem on x-direction only occurs in the line y = 0 which im-
plies that the diffusion coefficient Dx differs from zero only
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in y = 0. A direct consequence of this restriction on the sys-
tem is the presence of an anomalous diffusion (subdiffusion)
in this direction. This feature may be verified by evaluating
the mean square displacement of the solution on the variable
x.

We analyze Eq.(2) by accomplishing the boundary con-
ditions ρ(±∞,y, t) = 0 and ρ(x,±∞, t) = 0 and the initial
condition ρ(x,y,0) = ρ̂(x,y) with

∫ ∞
−∞ dx

∫ ∞
−∞ dyρ(x,y,0) =∫ ∞

−∞ dx
∫ ∞
−∞ dyρ̂(x,y) = 1, i.e., the distribution is initially nor-

malized. Note that solutions for this equation are obtained
by taking a general initial condition into account, in contrast
to the cases worked out, for example, in [39–42] which con-
sider particular forms for the initial condition. In order to
perform this analysis and obtain the solution for this case, we
use integrals transforms (Laplace and Fourier) and use the
Green function approach. Applying the Fourier transform
on the x variable (F {...} =

∫ ∞
−∞ dxe−ikxx... and F −1{...} =

1
2π
∫ ∞
−∞ dkxeikxx...) and the Laplace transform on t variable

(L{...} =
∫ ∞

0 dte−st ... and L−1{...} = 1
2πi
∫ i∞+c
−i∞+c dsest ...) in

Eq.(2), we obtain

Dy
d2

dy2 ρ(kx,y,s) −
(
s+Dxk2

xδ(y)
)

ρ(kx,y,s)

= −ρ(kx,y,0) . (3)

This equation may be solved by using the Green function ap-

proach [46] which leads us to obtain

ρ(kx,y,s) =−
∫ ∞

−∞
dyρ̂(kx,y)G(kx,y,y,s) (4)

with the Green function governed by equation

Dy
d2

dy2 G(kx,y,y,s) −
(
s+Dxk2

xδ(y)
)

G(kx,y,y,s)

= δ(y− y) (5)

and subjected to the boundary condition G(kx,±∞,y,s) = 0.
After some calculation, it is possible to show that the solution
of Eq.(5) is given by

G(kx,y,y,s) = − 1
2
√

sDy

×
(

e
−
√

s
Dy
|y−y|− e

−
√

s
Dy

(|y|+|y|)
)

− e
−
√

s
Dy

(|y|+|y|)

2
√

sDy−Dxk2
x

. (6)

By performing the inverse of Laplace and Fourier transforms
in Eq.(6), we have that

G(x,y,y, t) = − δ(x)√
4πDyt

(
e
− (y−y)2

4Dyt − e
− (|y|+|y|)2

4Dyt

)

− 1√
8Dx

√
Dy

(
|y|+ |y|√

4πDy

)∫ t

0
dt

e
− (|y|+|y|)2

4Dy(t−t)

[
(t− t) t

1
2

] 3
2

H1,0
1,1



√

2
√

Dy

Dx
√

t
|x|
∣∣∣∣
( 1

4 , 1
4 )

(0,1)


 (7)

where Hm,n
p,q

[
x
∣∣∣(a1,A1),··· ,(ap,Ap)
(b1,B1),··· ,(bq,Bq)

]
is the Fox H function [47].

The presence of this function in Eq. (7) indicates that the
system subjected to the comb structure exhibits anomalous
diffusion. This anomalous behavior of the system in the x-
direction may be evidenced by analyzing the dispersion rela-

tion σ2
x = 〈x2〉−〈x〉2 which manifests a subdiffusive behavior

(see Eq. (9)). By applying inverse Fourier transform in Eq.(4)
and using Eq.(7) it is possible to find the distribution ρ(x,y; t)
and show that

ρ(x,y; t) =
∫ ∞

−∞
dy

ρ̂(x,y)√
4πDyt

(
e
− (y−y)2

4Dyt − e
− (|y|+|y|)2

4Dyt

)

−
∫ ∞

−∞
dx
∫ ∞

−∞
dy
∫ t

0
dt

ρ̂(x,y)√
8Dx

√
Dy

(
|y|+ |y|√

4πDy

)
e
− (|y|+|y|)2

4Dyt

[
(t− t) t

1
2

] 3
2

H1,0
1,1



√

2
Dx

√
Dy

t
|x− x|

∣∣∣∣
( 1

4 , 1
4 )

(0,1)


 . (8)

Note that the first term in Eq.(8) is essentially due to the ar-
bitrary form of the initial condition and depending on the

choice of the initial condition it vanishes recovering the re-
sults presented in [42]. This additional term for ρ(x,y; t)
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ρ(x,y; t) =
∫ ∞

−∞
dy

ρ̂(x,y)√
4πDyt

(
e
− (y−y)2

4Dyt − e
− (|y|+|y|)2

4Dyt

)

−
∫ ∞

−∞
dx
∫ ∞

−∞
dy
∫ t

0
dt

ρ̂(x,y)√
8Dx

√
Dy

(
|y|+ |y|√

4πDy

)
e
− (|y|+|y|)2

4Dyt

[
(t− t) t

1
2

] 3
2

H1,0
1,1



√

2
Dx

√
Dy

t
|x− x|

∣∣∣∣
( 1

4 , 1
4 )

(0,1)


 . (8)

Note that the first term in Eq.(8) is essentially due to the ar-
bitrary form of the initial condition and depending on the
choice of the initial condition it vanishes recovering the re-
sults presented in [42]. This additional term for ρ(x,y; t)
may also play an important role to investigate situations char-
acterized by the system not initially localized at the point
(x,y) = (0,0), for example, in drug deliver, flow transfer in
disordered systems, tumor development or contaminant diffu-
sion in a heterogeneous media. By using the above equation
it is possible to find the dispersion relation for x and y di-
rections which are useful to understand the diffusive process
produced by the comb-model. By taking the initial condition
ρ(x,y;0) = δ(x− x̃)δ(y− ỹ) into account, we can to show that
the dispersion relation for x-direction is

σ2
x = 2Dx

√
t

πDy
e
− ỹ 2

4Dyt + |ỹ|Dx

Dy
erfc

(
|ỹ|

2
√

Dyt

)
(9)

and the dispersion relation for the y variable is σ2
y = 2 Dy t

indicating that we have usual diffusive behavior in this direc-
tion.

Now, we analyze Eq.(1) with Dy(t) = Dytγy−2/Γ(γy − 1)
(Dy(s) = Dys1−γy and 0 < γy < 1), Dx(t) = Dxtγx−2/Γ(γx−1)
(Dx(s) = Dxs1−γx and 0 < γx < 1), and µ = 2. Notice that this
choice for the time dependence of the diffusion coefficients is
related to the fractional time derivatives employing to analyze
the subdiffusive processes. Other choice for the time depen-
dence of diffusion coefficients are possible, however may lead
us to a cumbersome calculations to obtain the inverse Laplace
transform. For this case Eq. (1) can be written as

∂
∂t

ρ(x,y; t) =
∫ t

0
dt ′Dy(t− t ′)

∂2

∂y2 ρ(x,y; t ′)

+ δ(y)
∫ t

0
dt ′Dx(t− t ′)

∂2

∂x2 ρ(x,y; t ′) . (10)

with Dy(t) and Dx(t) defined above. By taking the previous
boundary and initial conditions into account one can show that
the solution in the Laplace space is given by

ρ(x,y,s) =−
∫ ∞

−∞
dx
∫ ∞

−∞
dyρ̂(x,y)G̃(x,x,y,y,s) (11)

with the Green function satisfying the equation

Dy(s)
∂2

∂y2 G̃(x,x,y,y,s)+δ(y)Dx(s)
∂2

∂x2 G̃(x,x,y,y,s)

− sG̃(x,x,y,y,s) = δ(y− y)δ(x− x) (12)
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FIG. 1: Behavior of σ2
x versus t for the initial condition ρ̂(x,y) =

δ(x− x̃)δ(y− ỹ) is illustrated for typical values of x̃ and ỹ. Note that
the spreading of the solution may exhibit an initial transient depend-
ing on the choice of initial condition, i.e., x̃ and ỹ, due to the structure
of the system.

and subjected to the conditions G(x,y,±∞,s) = 0 and
G(±∞,y,y,s) = 0. After some calculations, the solution for
above equation can be written as follows

G̃(x,x,y,y;s) = − δ(x− x)
2
√

sDy(s)

×
(

e
−
√

s
Dy(s) |y−y|− e

−
√

s
Dy(s) (|y|−|y|)

)

− e
−
√

2
√

sDy(s)
Dx(s) |x−x|

√
8Dx(s)

√
sDy(s)

e
−
√

s
Dy(s) (|y|+|y|) .(13)

By using Eq.(11) and Eq.(13), one can find the dispersion rela-
tions σx and σy in the Laplace space by considering the initial
condition ρ̂(x,y) = δ(x− x̃)δ(y− ỹ). For σ2

x(s) we have that

σ2
x(s) =

Dx(s)√
s3Dy(s)

e
−
√

s
Dy(s) |ỹ| (14)
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x versus t for the initial condition ρ̂(x,y) =

δ(x− x̃)δ(y− ỹ) is illustrated for typical values of x̃ and ỹ. Note that
the spreading of the solution may exhibit an initial transient depend-
ing on the choice of initial condition, i.e., x̃ and ỹ, due to the structure
of the system.

may also play an important role to investigate situations char-
acterized by the system not initially localized at the point
(x,y) = (0,0), for example, in drug deliver, flow transfer in
disordered systems, tumor development or contaminant diffu-
sion in a heterogeneous media. By using the above equation
it is possible to find the dispersion relation for x and y di-
rections which are useful to understand the diffusive process
produced by the comb-model. By taking the initial condition
ρ(x,y;0) = δ(x− x̃)δ(y− ỹ) into account, we can to show that
the dispersion relation for x-direction is

σ2
x = 2Dx

√
t

πDy
e
− ỹ 2

4Dyt + |ỹ|Dx

Dy
erfc

(
|ỹ|

2
√

Dyt

)
(9)

and the dispersion relation for the y variable is σ2
y = 2 Dy t

indicating that we have usual diffusive behavior in this direc-
tion.

Now, we analyze Eq.(1) with Dy(t) = Dytγy−2/Γ(γy− 1)
(Dy(s) = Dys1−γy and 0 < γy < 1), Dx(t) = Dxtγx−2/Γ(γx−1)
(Dx(s) = Dxs1−γx and 0 < γx < 1), and µ = 2. Notice that this
choice for the time dependence of the diffusion coefficients is
related to the fractional time derivatives employed to analyze
the subdiffusive processes. Other choices for the time depen-
dence of diffusion coefficients are possible, however may lead
us to a cumbersome calculations to obtain the inverse Laplace
transform. For this case Eq. (1) can be written as

∂
∂t

ρ(x,y; t) =
∫ t

0
dt ′Dy(t− t ′)

∂2

∂y2 ρ(x,y; t ′)

+ δ(y)
∫ t

0
dt ′Dx(t− t ′)

∂2

∂x2 ρ(x,y; t ′) . (10)

with Dy(t) and Dx(t) defined above. By taking the previous
boundary and initial conditions into account one can show
that the solution in the Laplace space is given by

ρ(x,y,s) =−
∫ ∞

−∞
dx
∫ ∞

−∞
dyρ̂(x,y)G̃(x,x,y,y,s) (11)

with the Green function satisfying the equation

Dy(s)
∂2

∂y2 G̃(x,x,y,y,s)+δ(y)Dx(s)
∂2

∂x2 G̃(x,x,y,y,s)

− sG̃(x,x,y,y,s) = δ(y− y)δ(x− x) (12)

and subjected to the conditions G(x,y,±∞,s) = 0 and
G(±∞,y,y,s) = 0. After some calculations, the solution for
above equation can be written as follows

G̃(x,x,y,y;s) = − δ(x− x)
2
√

sDy(s)

×
(

e
−
√

s
Dy(s) |y−y|− e

−
√

s
Dy(s) (|y|−|y|)

)

− e
−
√

2
√

sDy(s)
Dx(s) |x−x|

√
8Dx(s)

√
sDy(s)

e
−
√

s
Dy(s) (|y|+|y|) .(13)

By using Eq.(11) and Eq.(13), one can find the dispersion
relations σx and σy in the Laplace space by considering the
initial condition ρ̂(x,y) = δ(x− x̃)δ(y− ỹ). For σ2

x(s) we have
that

σ2
x(s) =

Dx(s)√
s3Dy(s)

e
−
√

s
Dy(s) |ỹ| (14)

and for σ2
y(s) we obtain that σ2

y(s) = 2Dy(s)/s2. These re-
sults obtained for σ2

x(s) and σ2
y(s) show that, depending on

the choice of Dx(s) and Dy(s), the spreading of the distribu-
tion may exhibit different diffusive behaviors. By performing
the inverse Laplace transform in σ2

x(s) and σ2
y(s) and taking

the time dependence required above for the diffusion coeffi-
cients into account we obtain that

σ2
x(t) =

Dxtγx

√
Dytγy

H1,0
1,1

[
|y|√
Dytγy

∣∣∣∣
(1+γx− γy

2 ,
γy
2 )

(0,1)

]

σ2
y(t) =

2Dytγy

Γ(1+ γy)
. (15)

Note that the dispersion relations obtained for this case in-
dicate that the solution has an anomalous dispersion in both
directions and depend on the parameters γx and γy. It is also
interesting to mention that the dispersion relation obtained
for the y-direction is the same as the ones obtained for the
fractional diffusion equations and the asymptotic behavior of
σ2

x(t) is tγx−γy/2 for long time. In addition, the inverse Laplace
of the Green function is given by
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G̃(x,x,y,y; t) = − δ(x− x)√
4πDytγy

(
H1,0

1,1

[
(y− y)2
√

Dytγy

∣∣∣∣
(1− γy

2 ,
γy
2 )

(0,1)

]
−H1,0

1,1

[
(|y|+ |y|)2
√

Dytγy

∣∣∣∣
(1− γy

2 ,
γy
2 )

(0,1)

])

−
∫ t

0

dt

(t− t)

√
8Dxt

γx
√

Dyt
γy

H1,0
1,1

[√
2

Dxt
γx

√
Dyt

γy |x− x|
∣∣∣ (β,ξ)

(0,1)

]
H1,0

1,1


 |y|+ |y|√

Dyt
γy

∣∣∣∣
(0,

γy
2 )

(0,1)


 (16)

with β = 1− γx/2− γy/4 and ξ = γx/2− γy/4.
Let us consider Eq.(1) with µ 6= 2. Applying the previ-

ous procedure one can show that the solution is given by

ρ(x,y; t) =
∫ ∞
−∞ dx

∫ ∞
−∞ dyρ̂(x,y)G(x−x,y,y; t) with the Green

function given by

G(x,y,y, t) = − δ(x)√
4πDytγy

(
H1,0

1,1

[
(y− y)2
√

Dytγy

∣∣∣∣
(1− γy

2 ,
γy
2 )

(0,1)

]
−H1,0

1,1

[
(|y|+ |y|)2
√

Dytγy

∣∣∣∣
(1− γy

2 ,
γy
2 )

(0,1)

])

− 1
π|x|

∫ t

0

dt

(t− t)t
γy
2

H2,1
2,3




2
√

Dyt
γy

Dxt
γx
|x|µ
∣∣∣∣
(1,1),(β,ξ)
( 1

2 , µ
2 ),(1,1),(1, µ

2 )


H1,0

1,1

[
|y|+ |y|√
Dy(t− t)γy

∣∣∣∣
(0,

γy
2 )

(0,1)

]
(17)

with β = 1− γy/2 and ξ = γx− γy/2.

3. DISCUSSION AND CONCLUSION

We worked out a non-Markovian Fokker-Planck by taking
different scenarios into account, focusing on the comb-like
structure. The solutions of this Fokker-Planck equation were
obtained by considering the presence of time dependent dif-
fusion coefficients, fractional spatial derivatives, and a gen-
eral initial condition, which may be regarded as an interesting
contribution in this context of comb-like structure. We start
our analysis with the case characterized by the diffusion coef-
ficients Dy(t) = Dyδ(t) and Dx(t) = Dxδ(t) with µ = 2. This
case is essentially the cases analyzed, for example, in Refs.
[41, 42] for a particular initial condition. Here we consider a
general initial condition for this case and show that if the sys-
tem is not initially localized on the line y = 0 the mean square
displacement, variance, of the distribution in x-direction has
an initially transient before recovering the subdiffusive be-
havior characterized by t1/2. In addition, the solution has an
addition term which is directly related to the choice of the

initial condition. Following, we incorporate a time depen-
dence on the diffusion which may be related to time fractional
derivatives. For this case, we also work out in the Laplace
space - as general as possible - the solution and the variance
in x and y directions. The results show that, depending on the
choice of the diffusion coefficients, we may have different
diffusive behaviors which remind us of the fractional diffu-
sion equations of distributed order [48–50]. Afterwards, we
consider µ 6= 2, i.e., we incorporate a spatial fractional time
derivative on x-direction. The presence of this spatial frac-
tional derivative on the x indicates that the solution in this di-
rection is characterized by power law distribution which may
be related to the Lévy distributions. For this case, as for the
cases analyzed before, we obtain the exact solution. Finally,
we expect that the results obtained here may be useful to in-
vestigate systems where a comb- like structure is present.
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