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Abstract. Geometric properties of polymixtures after a sudden quench in temperature are
studied through the g-states Potts model on a square lattice, and their evolution with Monte
Carlo simulations with non-conserved order parameter. We analyse the distribution of hull
enclosed areas for different initial conditions and compare with exact and numerical findings for
the ¢ = 2 (Ising) case.

1. Introduction

Curvature-driven ordering processes, in non conserved scalar order parameter systems, underlie
many interesting cellular growth processes and are of both theoretical and technological
importance, applications including foams [1], cellular tissues [2], superconductors [3], magnetic
domains [4,5], liquid crystals [6], adsorbed atoms on surfaces, etc. These systems are spatially
divided in many coexisting domains, in which one of the ¢ possible spin orientations dominates,
separated by interfaces whose local velocity is ruled by the Allen-Cahn equation, thus being
proportional to the local curvature, v = —(\/27)k, where X is a temperature and g-dependent
dimensional constant related with the surface tension and mobility of a domain wall and & is
the local curvature. The sign is such that the domain wall curvature is diminished along the
evolution. In d = 2 the time dependence of the area contained within any finite domain interface
(the hull) on a flat surface is obtained by integrating the velocity around the hull and using the
Gauss-Bonnet theorem:

dA, —A g=2

dt %(n—G), q>2 (1)

where n is the number of sides (or, equivalently, vertices). At each one of these vertices the
tangent vector to the surface has a turning angle, that are absent for ¢ = 2 (since in this case
each domain is surrounded by a single neighbour). Notice that in both cases, the rate is size
independent [7,8], while for ¢ = 2 it does not depend on the number of sides.

For ¢ = 2, the growth law is homogeneous and all hull enclosed areas decrease with the same
rate, what has led us to exactly obtain [8] the number of hull-enclosed areas per unit system
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area, in the interval (A, A + dA). For example, if one takes as initial states (¢t = 0), equilibrium
configurations at T, whose distribution is exactly known for ¢ = 2 [9], nx(A,0) = cg) /A% with
cf) = 81/3, the distribution at any t > 0 is

(2)

(A ) = o 2)

that compares extremely well with simulation data for the Ising model on a square lattice [8,
10,11]. Moreover, the above equation scales as n(A,t) = t~2f(A/t), in accordance with the
scaling hypothesis. Although this is usually only a hypothesized, but well-established feature,
for the ¢ = 2 model it can be obtained from first principles [8]. For a quench from infinite
temperature, on the other hand, the initial distribution corresponds to the one of the critical
random continuous percolation [8,10]. This observation is an essential ingredient to understand
the fact that, and obtain the probability with which, the system attains a striped frozen state at
zero temperature (see [12] and references therein). Interestingly, on a square lattice, the initial
state does not correspond to the random percolation critical point but the coarsening evolution
gets very close to it after one or two Monte Carlo steps. Therefore, although the analytical results
of Ref. [8] were obtained with a continuous description, a priori not guaranteed to apply on a
lattice, they do describe the coarsening dynamics of the discrete Ising model with remarkable
accuracy.

For g > 2, whether a cell grows, shrinks or remains with constant area depends on its number
of sides being, respectively, larger than, smaller than or equal to 6, what is known as the von
Neumann’s law. Therefore, one cannot write a simple relation to link the area distribution at
time ¢ to the one at the initial time ¢ = 0 and the distribution might get scrambled in a non-
trivial way during the coarsening process (for example, when a domain disappears, the number
of sides of the neighboring domains changes, along with their growth rate) [13]. Nonetheless,
the system again evolves to a scaling state in which the domain morphology is statistically the
same at all times when lengths are measured in units of R(¢), a single characteristic growing
length scale, in accordance with the scaling hypothesis.

In this paper we briefly compare the cases ¢ = 2 and ¢ > 2, in particular when the initial
state was equilibrated at T = T,.. We first present the d = 1 case and then the much richer
two dimensional one, reviewing some of the results already published in Refs. [8,13]. Besides
completeness, it is interesting to compare the uni and two dimensional cases as they strongly
differ.

2. Coarsening in d =1
The Hamiltonian in this case is

H= _Jzési,sun (3)

where s; = 0,...,¢g — 1 and J > 0. We measure the domain length distribution at time ¢, n(¢,t)
(1 < ¢ < L) after quenching the system from Ty — oo to the final, working temperature, 7' = 0.
There is no finite static critical temperature and the system orders ferromagnetically only at
T = 0. The completely disordered initial condition starts evolving in a coarsening regime in
which regions of finite length order. Differently from the higher dimensional case where domain
growth is driven by interfacial tension, in d = 1 coarsening is driven by the diffusion of domain
walls and annihilation when they meet. At this point when a domain disappears, the two
neighboring domains always coalesce if ¢ = 2. This may not be the case for ¢ > 2 and becomes
less probable as ¢ increases. Thus, the average length size of the domains, (¢), grows faster the
smaller the value of g. Indeed, the growth law is (¢) = qv/mt/(q — 1) [14,15], where the t!/2
behaviour is expected from the diffusive interface motion.
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Figure 1. Cluster length distribution for the unidimensional Potts model with ¢ = 2, 3 and
8 versus the rescaled length, ¢/(¢). The qualitative behaviour is the same, linear for small
lengths and exponential at large ones. The (red) lines are analytical predictions of Derrida and
Zeitak [15], eq. (5) with (Ag, By) equal to (1.306,0.597), (1.500,0.963) and (1.993,1.876) for
g =2, 3 and 8, respectively. The system is 10° large and averages were taken over 1000 samples.
Data corresponds to times from ¢t = 22 to 2°.

During the coarsening regime, the distribution of domain sizes obeys the scaling behaviour

n(t.) = (0 (777 ) ()

At zero working temperature the universal function f(x) is given by [14-17]

ﬂ r<<1
flz)=q 2(¢—1) ’ ()
exp(—Aqx +B;) x>1,

where the constants are known exactly [15]. In Fig. 1 we show, for ¢ = 2, 3 and 8, that the
above equations fully agree with numerical simulations (the ¢ = 2 case was previously presented
in Ref. [10]). In all cases the initial state has null correlations, all spins being fully uncorrelated,
what seems to be the key ingredient for the exponential tail in the distribution. As we will see
in the next section, the ¢ = 2 case, starting from infinite temperature, is an exception to such
behaviour.

3. Coarsening in d = 2

The detailed evolution of the system during the coarsening dynamics depends on the correlations
already present in the initial state. Below we show the behaviour when such correlations are
either absent (Ty — o0) or long-ranged (Ty = T, for ¢ < 4). In the latter case, since the
thermodynamic transition also corresponds to a percolation transition in 2d, the initial state
already presents one spanning cluster at ¢ = 0. On the other hand, for short-range initial
correlations, such spanning domains are either formed very fast (e.g. in the case ¢ = 2
with Ty — o0), or not formed at all. We should emphasize the exceptionality of the ¢ = 2
case: having the highest concentration of a single species at Ty — oo, the proximity with the
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percolation critical point strongly affects the system’s evolution [8]. Indeed, the hull-enclosed
area distribution (geometric domains present an analogous behaviour [10]) becomes power-law
in a couple of steps, and the effective initial condition is given by np(A,0) = 2622) /A2 [9]. Power-
laws are also the initial distributions for Ty = T, for ¢ < 4 and generally given by (the prefactor
is different from the previous case)

o C(q)
(A, 0) = %. (6)

Notice that, unless for ¢ = 2, the value of cl(lq) is not known exactly, although they are all close

to each other.

For 2 < ¢ < 4, the Potts model presents a continuous transition, and one could imagine that
their non equilibrium coarsening phenomenology would be similar as well. Indeed, the equal
time correlation function seems to share the same universal scaling function and the related
correlation length grows with the same power of time, t'/2. There are, however, fundamental
differences. Differently from the ¢ = 2 case, that presents a percolating domain with probability
almost one as early as t = 2 after the quench [8,10], the ¢ > 2, Ty — oo initial condition is
sufficiently far from critical percolation that the system remains, at least in the time window of
our simulations, distant from the percolation threshold (in spite of the largest domain steadily,
but slowly, increasing with time). In this regard, the ¢ = 2 case is the exception, while the ¢ = 3
and 4 are similar. As the system evolves after the quench, the distribution keeps memory of
the initial state, that corresponds to random percolation with occupation probability p = 1/q.
And, by not getting close to a critical point, the distributions do not become critical and, as a
consequence, do not develop a power law tail, as illustrated in Fig. 2 for ¢ = 3 and Ty — oo.
There is, however, an A~2 envelope that is a direct consequence of dynamical scaling, present
also for other values of ¢ [13].
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Figure 2. Hull-enclosed area distribution at several times (given in the key) after a quench from
equilibrium at Ty — oo to Ty = T¢/2 in the ¢ = 3 case. Analogous distributions are obtained
for ¢ > 4 and Ty — oo (not shown). The declivity of the envelope is —2 as a consequence of the
scaling obeyed by the distribution. Figure from Ref. [13].

The collapsed distribution of hull-enclosed areas after a quench from Ty = T¢. to Ty = T¢./2
for ¢ = 3 is shown in Fig. 3. Although for ¢ = 2 this distribution conserves its form during
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the coarsening regime due to an overall advection to the right as domains increase in size, for
q > 2 there is a dependence on the number of sides in von Neumann’s equation, some domains
increase while other decrease in size, and thus there is no obvious reason for the distribution at
t > 0 to keep its initial power-law form, eq. 6. Remarkably, the general behavior is similar to
the ¢ = 2 case, in which the collapse of curves for different times onto a single universal function
demonstrates the existence of a single length scale that, moreover, follows the Allen-Cahn growth
law, R(t) ~ t1/2. We can make a mean-field-like approximation and replace the number of sides
in the von Neumann equation (1) by a constant mean, n — (n). Using Eq. (6) and the results
in Refs. [8,10], the hull-enclosed area distribution for ¢ < 4 becomes

o C(q)
nh(A’t) = (qilz)hQa (7)
(A+27t)

that fits very accurately the data using )‘23) ~ 1.4. The deviations present at small values of A/t
are due to thermal fluctuations that are visible in the inset (see [10] for details). In order to test
the above approximation, we measured the average change in area, dA/dt, that is, the number
of spins included or excluded in those domains that survived during a given time interval. The
above rate, from von Neumann’s equation, depends on n — 6 (both in absolute value and sign),
and is different for domains with different numbers of neighbours (except for ¢ = 2 where it is
constant). However, upon average, there is an effective, constant A.s. Similarly, only those that
have A.g < 0 present a power law distribution. Thus, there seems to be a net difference between
cases that give a power law distribution function from the ones that do not.
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Figure 3. Collapsed hull-enclosed area distributions at several times after a quench from
equilibrium at Ty = T, to Ty = T/2, for ¢ = 3. The line is Eq. (7) with A§L3) ~ 1.4. The
points at A/t < 1 that deviate from the scaling function are due to thermal fluctuations. These
fluctuations have been independently measured and are depicted as a continuous black line in
the inset (notice that their distribution is time independent). Figure from Ref. [13].

4. Conclusions
We studied the Potts model during the coarsening dynamics after a sudden quench in
temperature, emphasizing the cases ¢ = 2 and 3 that present a continuous transition. Although
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the theory developed in Refs. [8,10] for the Ising model (¢ = 2) cannot be easily extended to
q > 2, our numerical results show the existence of similarities between both cases. Besides
the equilibrium continuous transition, there is a dynamical length scale that grows with ¢1/2
after a sudden quench in temperature and the same universal scaling function for the rescaled
correlation function in both cases. Nonetheless, very different are the distributions of dynamic
hull-enclosed areas (and geometric domains) evolved from initial states with zero correlation
lengths, as those obtained in equilibrium at Ty — oo. One expects that the scaling functions of
the dynamic distributions will be reminiscent of the disordered state at the initial temperature,
with an exponential tail. This is indeed what happens in d = 1 and, in d = 2, for ¢ > 2. The
remarkable exception is ¢ = 2 (in d = 2): the proximity from the percolation critical point,
and the subsequent flow to it after the temperature quench, develops a power-law tail in the
distribution. For ¢ = 3 the initial state is no longer close to any critical point and this does not
occur. A further surprise occurs for the distributions after a quench from Ty = T,.. Despite von
Neumann’s law showing that differently sided domains could either grow or shrink, scrambling
the distribution, it still shows a power law, in analogy with the Ising case but without a complete
explanation up to now besides a simple mean-field-like argument. Alongside, many questions
are still unanswered for this long studied, classic problem and surely many surprises are still
awaiting.
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