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Abstract. In this work we study, under the Stratonovich definition, the problem
of the damped oscillatory massive particle subject to a heterogeneous Poisson
noise characterized by a rate of events, λ(t), and a magnitude, Φ, following
an exponential distribution. We tackle the problem by performing exact time
averages over the noise in a similar way to previous works analysing the problem of
the Brownian particle. From this procedure we obtain the long-term equilibrium
distributions of position and velocity as well as analytical asymptotic expressions
for the injection and dissipation of energy terms. Considerations on the emergence
of stochastic resonance in this type of system are also set forth.

Keywords: rigorous results in statistical mechanics, stochastic processes
(theory)

ArXiv ePrint: 1105.3877

c©2011 IOP Publishing Ltd and SISSA 1742-5468/11/P06010+21$33.00

mailto:welles@fis.puc-rio.br
mailto:sdqueiro@gmail.com
mailto:diogo.osp@ursa.ifsc.usp.br
http://stacks.iop.org/JSTAT/2011/P06010
http://dx.doi.org/10.1088/1742-5468/2011/06/P06010
http://arxiv.org/abs/1105.3877


J.S
tat.M

ech.
(2011)

P
06010

On exact time averages of a massive Poisson particle

Contents

1. Introduction 2

2. Exactly solvable model 3
2.1. Laplace transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3. Averaged steady state 7

4. General steady state distribution 7

5. Injection and dissipation of energy 10
5.1. Energetic considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.2. Power considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

6. Concluding remarks 18

Acknowledgments 19

Appendix. Numerical calculations 19

References 20

1. Introduction

Stochastic processes have long surpassed the limits of a mere probability theory subject
establishing itself as a topic of major importance in various disciplines which go from
molecular motors to internet traffic analysis [1]–[3]. In what concerns statistical mechanics,
we owe its introduction to the study of Brownian motion by means of the Langevin
equation [4]. Explicitly, a random term was added to the classical laws of movement in
order to emulate the collisions between the particle under study and the particles of the
supporting medium assuming that the jolts between particles cannot be deterministically
written down [5, 6]. This approach was promptly adopted in other problems, particularly
those coping with systems that exhibit a large number of degrees of freedom. Hence, the
allocation to the noise of the microscopic features and playing interactions of the system
has become a common practice. Due to the accurate descriptions of diverse systems, the
use of the Wiener process (driftless Brownian motion) [7, 8] has assumed a leading role
in widespread fields. However, this corresponds to a very specific sub-class in the wider
Lévy class of stochastic processes [9]. Specifically, the Wiener process corresponds to the
case of a stochastic process for which the increments are independent, stationary (in the
sense that the distribution of any increment depends only on the time interval between
events) associated with a Gaussian distribution, thus having all statistical moments finite.
Moreover, its intimate relation to the Fokker–Planck equation has put the Wiener process
and its adaptive processes in the limelight.

Despite the ubiquity of the Wiener process, several other processes, either in Nature
or man-made, are quite distinct [10]–[12]. In particular, they can be associated with
(compound) Poisson processes in which the independent increments fall at a rate λ(t)
with its magnitude related to a certain probability density function. For this kind of
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noise, it was previously shown that the traditional Fokker–Planck approach cannot be
applied because the Kramers–Moyal moments from the third order on do not vanish [13].
Consequently, the equation for the evolution of the probability density function cannot be
exactly written as a second-order differential equation, but it maintains its full (infinite)
Kramers–Moyal form instead [13]. As it turns out, a complete solution is quite demanding
for most of the cases.

In this paper we study a damped harmonic oscillator subjected to a random force
described by a heterogeneous compound Poisson process which can be replicated by means
of an RLC circuit with random injections of power, or several other dynamical processes at
the so-called complex system level. Moreover, such kinds of problems are often conducive
to the emergence of stochastic resonance [14, 15], which is found in diverse problems
spanning from neuroscience and Parkinson’s disease [16] to micromechano-electronics [17].
Although this specific system (and its variants) has been studied by different authors [1],
in this paper we survey the problem assuming a very fundamental and different approach.
Explicitly, we make direct averages over the noise for different quantities of interest, in
the reciprocal spacetime (Fourier–Laplace) domain, by a method that can be applied to
the treatment of coloured noise [18], multiple types of noise [19], thermal conductance
problems [20] or work fluctuation theorems for small mechanical models [21]. Namely,
within the Stratonovich definition, we first focus our efforts on the evaluation of the
steady state probability density function (PDF). Afterwards, we study the evolution of
the injected (dissipated) power into (out of) the system as well as the total energy of the
system and the emergence of stochastic resonance.

2. Exactly solvable model

Our system can be described by two coupled stochastic differential equations:

ẋ(t) = v(t), (1)

Mv̇(t) = −k0x(t) − γv(t) + η(t), (2)

where η is a compound heterogeneous Poisson noise:

η(t) =
∑

�
Φ(t)δ(t − t�), (3)

for which the shots (events) occur at a rate λ(t). Specifically, we will study the following
time dependence:

λ(t) = λ0[1 + A cos(ωt)], (0 ≤ A < 1). (4)

The case A = 0 yields the standard homogeneous case. We have opted for a sinusoidal
dependence of the rate λ(t) because of its ubiquity in a wide range of phenomena [22].

The Poisson process, P, is a continuous-time stochastic process belonging to the class
of independently distributed random variables whose generating function between t and
t + Δt is

Gt,t+Δt(z) = exp

[
(z − 1)

∫ t+Δt

t

λ(t′) dt′
]

, (5)

which is defined by the rate of events, λ(t), such that

〈n(t)〉 =

∫ t

0

λ(t′) dt′, (6)
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(we use the notation 〈(. . .)〉 to represent averages over samples whereas (. . .) symbolize
averages over time). According to its definition, it is only possible to have a single event at
instant t. Therefore, from equation (5) and considering the limit Δt → 0, one can compute

the probability that an event occurs is given by
∫ t+Δt

t
λ(t) dt, while 1 −

∫ t+Δt

t
λ(t) dt is

the probability of zero events. Again, from equation (5), we can analyse the probability
distribution of the inter-arrival time PDF, T (τ). The probability that having an event at
time t the next event occurs at t + τ is given by

p(τ |t) =
d

dτ

(
1 − exp

[
−
∫ t+τ

t

λ(t′) dt′
])

. (7)

For a heterogeneous Poisson process, one must still pay attention that each instant has
a different weight in the calculation, exactly because of the time dependence of λ. This
weight, f(t), is defined by

f(t) = λ(t)
/∫ T

0

λ(t′) dt′, (8)

for a heterogeneous Poisson process taking place in the time interval from 0 to T . Thence,
combining equations (7) and (8) and integrating over time one obtains

T (τ) =

∫ T−τ

0

f(t) p(τ |t) dt. (9)

Concerning the amplitude, Φ, despite being possible to consider several distribution
functions, we will restrict our study to the classical exponential probability density
function for white shot noise:

P (Φ) = Φ̄−1 exp

[
−Φ

Φ̄

]
,

whose nth-order raw moment is Φn = n! Φ̄n.
Going back to equation (3), we can define the Poisson patch, I, between t and t + τ :

I(τ) ≡ P(t + τ) − P(t) =

∫ t+τ

t

dP =

∫ t+τ

t

η(t′) dt′,

from which we can set out
∫

dI(τ ′) =

∫
dP =

∫
η(t′) dt′,

where we have omitted the time dependence of the patch for the sake of simplicity. The
average of the Poisson patch is

〈I(τ)〉c = 〈I(τ)〉 = Φ̄

∫ t+τ

t

λ(t′) dt′.

and its covariance

I(τ1)I(τ2) =

∫ t+τ1

t

η(t′) dt′
∫ t+τ2

t

η(t′′) dt′′.
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which yields after averaging

〈I(τ1) I(τ2)〉c = Φ2

∫ t+τ1

t

∫ t+τ2

t

λ(t′′) δ(t′′ − t′) dt′′ dt′

= Φ2

∫ t+min(τ2,τ1)

t

λ(t′) dt′.

These moments can be straightforwardly generalized to

I(t)n =

∫ t+τ

t

dt1 . . .

∫ t+τ

t

dtn η(t1) . . . η(tn).

The noise cumulant averages are

〈I(t)n〉c =

∫ t+Δt

t

dt1 . . .

∫ t+Δt

t

dtn 〈η(t1) . . . η(tn)〉c = λ(t) Φn Δt.

This implies that the noise cumulant correlations are identified as [13]

〈η(t1) . . . η(tn)〉c = λ(t1) Φn δ(t1 − t2) . . . δ(tn−1 − tn). (10)

Accordingly

∫ t+Δt

t

n∏

i=1

dti 〈η(t1) . . . η(tn)〉c =

∫ t+Δt

t

n∏

i=1

dti λ0(1 + A cos(ω t1))Φ
n

n−1∏

j=1

δ(tj − tj+1)

= λ0 Φn

∫ t+Δt

t

dt1(1 + A cos(ω t1))

= λ0 Φn

[
Δt + 2

A

ω
sin

(
ω

Δt

2

)
cos(ωt)

]
. (11)

Taking into account the limit, Δt → 0, the previous expression tends to λ0ΦnΔt(1 +
A cos(ωt)) and thus
∫ t+Δt

t

dt1 . . .

∫ t+Δt

t

dtn 〈η(t1) . . . η(tn)〉c = λ0 Φn [1 + A cos(ωt)]Δt = λ(t) Φn Δt. (12)

In the case n = 1, equation (12) satisfies the relation 〈I(t)〉 = λ(t)Φ̄Δt, as expected.
Throughout this paper we employ the Stratonovich representation for the noise:

〈∫ t+Δt

t

I dI

〉

c

=

〈∫ t+Δt

t

dI2

2

〉

c

= λ(t) Φ2
Δt

2
,

where the effective noise in a interval dt is computed as the average of the noise at t and
t + dt.

2.1. Laplace transformations

Taking the Laplace transformations of equations (1) and (2) (with Re(s) > 0) we obtain5

sx̃(s) = ṽ(s). (13)

5 In the Laplace transform we have assumed that both the initial position and the initial velocity are equal to
zero. We are interested in asymptotic effects and the initial memory terms vanish in that limit.
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Defining

R(s) ≡ s2 +
γ

M
s +

k0

M
= (s − κ+)(s − κ−), (14)

we can write

x̃(s) =
η̃(s)

MR(s)
, (15)

the singularities of which (the zeros of R(s)) are located at

κ± = −θ ± iΩ. (16)

with θ = γ/2M , ω2
0 = k0/M and Ω =

√
ω2

0 − θ2.

For the Poisson process with a time-dependent rate, equation (4), the Laplace
transform of the noise averages yields

〈η̃(z1) . . . η̃(zn)〉c =

∫ ∞

0

n∏

i=1

dti exp

{
−

n∑

l=1

zltl

}
〈η(t1) . . . η(tn)〉c

= λ0Φn

∫ ∞

0

n∏

i=1

dti δ(t1 − t2) . . . δ(tn−1 − tn)

× [1 + A cos(ωt1)] exp

{
−

n∑

l=1

zltl

}
, (17)

for which we can separate out its homogeneous and heterogeneous parts. For the former,
we obtain

I1 = λ0 Φn

∫ ∞

0

dt1 exp

{
−t1

n∑

l=1

zl

}

=
λ0 Φn

∑n
l=1 zl

, (18)

whereas the latter is given by

I2 = λ0 Φn A

∫ ∞

0

dt1 cos(ωt1) exp

{
−t1

n∑

l=1

zl

}

= λ0 Φn
A

2

(
1∑n

l=1 zl − iω
+

1∑n
l=1 zl + iω

)
. (19)

The Laplace transform for the noise cumulants is thus given by

〈η̃(z1) . . . η̃(zn)〉c = I1 + I2. (20)

doi:10.1088/1742-5468/2011/06/P06010 6
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3. Averaged steady state

Instead of equilibrium conditions, a periodically forced system reaches a periodically
driven state that is characterized by periodic variations of the averages and cumulants of
its variables [23]. This behaviour can now be explicitly obtained by the method previously
mentioned [18], which we shall use to study the Poisson process. However, taking the time
average for the distribution function does make sense given that important quantities,
such as the injected and dissipated energies, are well understood when represented by
their time-averaged values. In the following, we develop the techniques needed for the
exact solution of equations (1) and (2) at long times. Our results are comparable with
those obtained from the analysis of a single (and sufficiently long) run of the process in
which all the values of the observable are treated as equally distributed.

We average the probability distribution over time to obtain the cumulant
expansion [1, 18, 19]

pss(x, v) =

∞∑

n,m=0

∫ +∞

−∞

dQ

2π

dP

2π
ei(Qx+Pv) (−iQ)n

n!

(−iP )m

m!
〈xnvm〉

=

∫ +∞

−∞

dQ

2π

dP

2π
ei(Qx+Pv) exp

⎧
⎨

⎩

∞∑

n,m=0:(m+n>0)

(−iQ)n

n!

(−iP )m

m!
〈xnvm〉c

⎫
⎬

⎭ .

Let us work out the exact form of the cumulants in terms of the Laplace transforms
of the noise. Applying our definition for computing averages we have

〈xnvm〉c = lim
z→0

z

∫ ∞

0

dt e−zt 〈xn(t) vm(t)〉c

= lim
z→0

lim
ε→0

∫ +∞

−∞

n∏

h=1

dqh

2π

∫ +∞

−∞

m∏

j=1

dpj

2π

z

z −
[∑n

h=1(iqh + ε) +
∑m

j=1(ipj + ε)
]

×
n∏

h=1

1

[MR(iqh + ε)]

m∏

j=1

(ipj + ε)

[MR(ipj + ε)]

〈
n∏

h=1

η̃(iqh + ε)
m∏

j=1

η̃(ipj + ε)

〉

c

,

where the integration path for the variables in complex space is the same as in [18, 19].

4. General steady state distribution

Following the previous section, the Poisson steady state distribution exactly yields

pss(x, v) =

∫ +∞

−∞

dQ

2π

dP

2π
eiQx+iPv exp

⎧
⎨

⎩

∞∑

n+m=0:(n+m>0)

(−iQ)n

n!

(−iP )m

m!
Pn,m

⎫
⎬

⎭ . (21)

We may then split equation (21) into two parts: the term P(1) which arises from the
time-independent contribution:

P(1)
n,m =

∫ +∞

−∞

m+n−1∏

h=1

dph

2π

∏m
h=1(iph + ε)

∏m+n−1
h=1 R(iph + ε)

1

R
(
−
∑m+n−1

h=1 (i ph + ε)
) , (22)

doi:10.1088/1742-5468/2011/06/P06010 7
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and the remaining terms arising from the periodic forcing term:

P(±)
n,m = lim

z→0

λ0 A

2

∫ +∞

−∞

n+m−1∏

h=1

dph

2π

z

z ± iω

∏m
h=1(iph + ε)

∏n+m−1
h=1 R(iph + ε)

1

R
(
±i ω −

∑n+m
h=1 (iph + ε)

) .

Unrolling equation (22), we can determine the different contributions that are allowed
to emerge by taking into consideration the different powers of x and v in the cumulant.
Accordingly, the term Ψ1 represents cumulants of zeroth order in the velocity, 〈xn〉c:

Ψ1x =

n−1∑

j=0

(
n − 1

j

)
(−1)n−j−1

[1,−1]n−1[j, (n − j)][(j + 1), (n − j − 1)]
, (23)

and in the position, 〈vm〉c:

Ψ1v =
m−1∑

j=0

(
m − 1

j

)
im(−1)m−jkj

+km−j−1
− [j, (m − j − 1)]

[1,−1]m−1[j, (m − j)][(j + 1), (m − j − 1)]
, (24)

The term Ψ2 describes cumulants which are such as 〈xn−1v〉c:

Ψ2 =

n−2∑

j=0

(
n − 2

j

)
i(−1)n−j−1

[1,−1]n−2

[j, (n − j − 2)]

[j, (n − j − 1)][(j + 1), (n − j − 2)]
, (25)

and the last term Ψ3 represents the remaining combinations of powers of xl and vm with
l + m = n and l ≥ 2:

Ψ3(m) =

m∑

j=0

n−m−1∑

l=0

(
m
j

)(
n − m − 1

l

)
(−1)n−m+j

[1,−1]n−m−1

im+1 kj
+ km−j

− [j, (m − j)]

[1,−1]m

× 1

[(j + l + 1), (n − m − j − l − 1)][(j + l), (n − m − j − l)]
, (26)

in which we have the used the following curtailed notation:

(aκ+ + bκ−) ≡ [a, b].

Therefore, bearing in mind the last definition of the cumulant part of the probability
distribution, equation (22), we can write it as

pss(x, v) = Fx,v

⎡

⎣exp

⎧
⎨

⎩

∞∑

n,m=0:(m+n>0)

λ0(n + m)!
Qn

n!

P m

m!
(iΦ̄)n+m

×
(

Ψ1x δm,0 + Ψ1v δn,0 + Ψ2 δm,1 +

n+m−1∑

m=2

Ψ3 (m)

)⎫⎬

⎭

⎤

⎦ , (27)

where F(x,v)[f(Q, P )] represents the two-dimensional Fourier transform into position–
velocity real space, (x, v).

Owing to the factor z/(z∓i ω) in terms P(±) we are able to verify that after performing
integrations following the appropriate contour, the z terms hold on up to the end, so that
when we finally compute the limit of z → 0 both contributions vanish. Therefore, for
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this type of heterogeneity, the steady state distribution bears out the same result as the
homogeneous Poisson process with constant rate λ0. This is quite understandable since
we are making a long time average in which the contribution of the periods whose rate
is larger than λ0 kills off the contribution arising from the periods in which the rate is
smaller than λ0 because of the symmetry of the rate around λ0.

Regarding the marginal steady state distributions

pss(x) =

∫
pss(x, v) dv, (28)

and

pss(v) =

∫
pss(x, v) dx, (29)

we start with the probability distribution of the position and following our procedure we
obtain

pss(x) = Fx

[
exp

{ ∞∑

n>0

λ0Q
n Φ̄n Ψ1x

}]
, (30)

whence we can identify the cumulants

κn ≡ 〈xn〉c = n!λ0 (iΦ̄)n Ψ1x. (31)

Using the property of Pascal triangles
(

n
j

)
=

(
n − 1
j − 1

)
+

(
n − 1

j

)
, (32)

we can write the sum in equation (23) over the index j as

n−1∑

j=0

[. . .] = n! [1,−1]n−1 1

Dn
, (33)

where

Dn =
n∏

j=0

[j, n − j]. (34)

Accordingly, the cumulants of pss(x) are

κ(x)
n = λ0

(
Φ̄

M

)n

(−1)n−1 (n!)2

Dn
(n ≥ 1). (35)

Allowing for equation (35), we explicit the average

〈x〉 = Φ̄
λ0

k0
,

and the second-order moment

〈x2〉 − 〈x〉2 = Φ̄2 λ0

γ k0

.

We have implemented a computational procedure to numerically compute the
probability density function of the position at the steady state. Our exhibited numerical
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results were obtained for different values of M , k0 and γ and fixed values of λ0 = 10, Φ̄ = 1
and ω = π following the implementation described in the appendix. From cases A and B
(see the values in the figure caption), we can understand that the mass does not impact in
both the average and standard deviation and that B and C tally, although each is based
on a homogeneous and a heterogeneous process, respectively. Comparing cases A, B and
C we verify that the lighter the particle, the more skewed the distribution pss(x). The
results of cases B, C and E help us show that γ does not affect the average and finally
case F sketches the influence of k0. Case D permits us to follow the dependence on the
mass. Lighter particles have a more skewed distribution. The results are clearly different
if we consider a symmetric noise with Φ̄ = 0. As we will see in section 5, the positive
total injection of power associated with this case is replaced by a zero average injection
of power related to the steady state average position being zero.

The picture is very much the same for the marginal distribution of the velocity.
Namely, from equation (29) we get

pss(v) = Fv

[
exp

{ ∞∑

m>0

λ0 P m Φ̄m Ψ1v

}]
,

and consequently the cumulants are

κ(v)
m ≡ 〈v m〉c = m! λ0 (iΦ̄)m Ψ1v. (36)

For the cumulants of the marginal velocity distribution, the calculation turns out much
harder and haplessly we have not managed to write it in a compact form as equation (30).
Nevertheless, we can still write some of them explicitly, such as the first

κv
1 ≡ 〈v〉 = 0,

and the second cumulants

κv
2 ≡ 〈v2〉 =

λ0 Φ̄2

M γ
.

In figure 2, we plot the results of pss(v) for the same numerical implementation of figure 1.
Once more, we can understand the independence of the probability distribution regarding
the amplitude A in equation (4). We can also notice the influence of the mass: lighter
particles are more sensitive to the noise and thus, for the same noise intensity, they achieve
larger positive values of the velocity. Moreover, it is seen that pss(v) might be strongly
positively skewed for light particles. On the other hand, if we consider an average over
samples the effect of the amplitude A and frequency ω of the Poisson noise will emerge.

5. Injection and dissipation of energy

An interesting element of study, especially in practical applications such as presented
in [14, 17], concerns the time evolution of energy (related) quantities. This can be checked
by heeding the fact that variations of energy in an isolated system equals the total work
done by the external forces acting on it, in this case the fluctuating force η and the
dissipative one −γv:

∑
WFext,i

= ΔEm

∫
η dx − γ

∫
v dx = 1

2
M v(t)2 + 1

2
k0 x(t)2. (37)
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Figure 1. Numerically obtained probability density function pss(x) versus
position x for various cases with λ0 = 10, Φ̄ = 1 and the noise defined by
equation (4) with ω = π. Following the legend in the figure we have the respective
cases, A: M = 1, k0 = 1, γ = 1, A = 0, B: M = 10, k0 = 1, γ = 1, A = 0,
C: M = 10, k0 = 1, γ = 1, A = 1/2, D: M = 0.1, k0 = 1, γ = 1, A = 0, E:
M = 1, k0 = 1, γ = 2, A = 0 and F: M = 1, k0 = 10, γ = 1, A = 0.

Figure 2. Numerically obtained probability density function pss(v) versus scalar
velocity v for the same parameter sets of figure 1.

The injection of the energy balance can also be analysed by determining the evolution
of the total energy of the particle:

∫ τ

0

[η(t) v(t) − γv(t)2] dt = 1
2
Mv(t)2|t=τ

t=0 + 1
2
k0x(t)2|t=τ

t=0. (38)
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In what follows, we shall omit transient terms, keeping the more interesting
asymptotic ones whenever possible.

5.1. Energetic considerations

The average values of [v(t)]2 and [x(t)]2 that we use in the computation of the total energy
can be obtained once more using the Laplace representation:

v(t)2 =

∫ ∫
v(t1)v(t2)δ(t − t1) δ(t − t2) dt1 dt2

= lim
ε→0

∫ ∫
e(i q1+i q2+2ε)t ṽ(i q1 + ε)ṽ(i q2 + ε)

dq1

2π

dq2

2π
,

whence by averaging and taking into account the second cumulant definition:

〈v(t)2〉 − 〈v(t)〉2 = lim
ε→0

1

M2

∫ ∫
e(i q1+i q2+2ε)t (i q1 + ε)(i q2 + ε)

× 〈η̃(i q1 + ε) η̃(i q2 + ε)〉c
R (i q1 + ε) R (i q2 + ε)

dq1

2π

dq2

2π
,

and
〈
x(t)2

〉
− 〈x(t)〉2 = lim

ε→0

1

M2

∫ ∫
e(i q1+i q2+2ε)t 〈η̃ (i q1 + ε) η̃ (i q2 + ε)〉c

R (i q1 + ε) R (i q2 + ε)

dq1

2 π

dq2

2π
,

where the asymptotic solutions are

〈
v(t)2

〉
asy

− 〈v(t)〉2asy =
λ0Φ̄

2

γM
+ 8

A [4 (ω2θ3 + θ ω0
4) cos (ω t) + ω3θ2 sin(ωt)] λ0Φ̄

2

M2 (4 θ2 + ω2) ((ω2
0 − ω2)2 + 4 θ2ω2)

+ 4
A [2 θ (ω4 − 3 ω2

0ω
2) cos (ω t) − 3 ω2

0ω
3 sin (ω t)] λ0Φ̄

2

M2 (4 θ2 + ω2) ((ω2
0 − ω2)2 + 4 θ2ω2)

+ 2
A (ω5 + 8 ω0

4ω ) λ0Φ̄
2 sin (ω t)

M2 (4 θ2 + ω2) ((ω2
0 − ω2)2 + 4 θ2ω2)

,

and

〈x(t)2〉asy − 〈x(t)〉2asy = Φ̄2 λ0

γ k0
+

4ω (ω2 − 4 ω0
2 − 8 θ2) A Φ̄2λ0 sin(ωt)

(ω4 − 8 ω2
0ω

2 + 16 θ2ω2 + 16 ω0
4) (4 θ2 + ω2)M2

+
8 (3 θ ω2 − 2 θ ω0

2) A Φ̄2λ0 cos(ωt)

(ω4 − 8 ω2
0ω

2 + 16 θ2ω2 + 16 ω0
4) (4 θ2 + ω2)M2

.

We must now take into account the squared values of 〈v(t)〉asy and 〈x(t)〉asy, which,
for all times, are given by

〈x(t)〉 = lim
ε→0

1

M

∫
dq1

2π
e(i q1+ε)t 〈η̃ (i q1 + ε) 〉

R (i q1 + ε)

= lim
ε→0

λ0 Φ̄

M

∫
dq1

2 π

e(i q1+ε)t

R (i q1 + ε)

{
1

i q1 + ε
+

A

2

(
1

i q1 + ε − i ω
+

1

i q1 + ε+i ω

)}
,

and

〈v(t)〉 = lim
ε→0

λ0 Φ̄

M

∫
dq1

2 π

e(i q1+ε)t

R (i q1 + ε)

{
1 +

A

2

(
i q1 + ε

i q1 + ε − i ω
+

i q1 + ε

i q1 + ε + i ω

)}
.
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Figure 3. Upper panel:
√

〈x(t)〉2asy versus amplitude of the heterogeneous part,
A, and frequency, ω, with M = 1, γ = 1, k0 = 1, λ0 = 10, Φ̄ = 1. The maximum,
characterizing a stochastic resonance phenomenon, occurs at ωres =

√
ω2

0 − 2 θ2

that defines the grey dashed line in the lower panel containing the plane cuts for
A = 0 (black line), A = 1

2 (dashed red line) and A = 1 (dotted green line). For
this case the maximum occurs at 1/

√
2.

After integrating over the poles above, we obtain the asymptotic behaviour:

〈v(t)〉asy =
A [(ω2 − ω2

0) sin(ωt) + 2 ω θ cos (ω t)] ω λ0Φ̄

M
[
(ω2

0 − ω2)
2
+ 4 θ2ω2

] ,

〈x(t)〉asy =
Φ̄ λ0

ω2
0M

− A [(ω2 − ω2
0) cos (ω t) − 2 θ ω sin (ω t)] λ0Φ̄

M
[
(ω2

0 − ω2)
2
+ 4 θ2ω2

] ,

where it can be easily seen that

〈v(t)〉asy =
d

dt
〈x(t)〉asy.

We observe that the results above are those expected when we interpret the oscillating
rate Poisson process as a periodic forcing acting upon a damped harmonic oscillator. As
expected, the amplitude of motion shows the typical resonant behaviour. In order to
illustrate this behaviour, we plot in figure 3 the quantity

√
〈x(t)〉2asy =

Φ̄ λ0

ω2
0 M

√√√√1 + A2
ω4

0

2
[
4θ2ω2 + (ω2

0 − ω2)
2
] , (39)
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as a function of the amplitude of the oscillating contribution, A, and the frequency of
these oscillations, ω. In both panels the emergence of a maximum at a frequency of the
heterogeneous Poisson rate λ(t) equal to

√
ω2

0 − 2θ2 is evident.
Adding all the terms and taking the limit t → ∞, we obtain the equilibrium energy

of the system. The energy is composed of an oscillating term, with time zero average, and
a constant term Ec

M :

Ec
M = 1

2
M〈v(t)2〉asy + 1

2
k0 〈x(t)2〉asy = λ0

Φ̄2

γ
+

λ0
2Φ̄2

2 M ω2
0

+
λ0

2Φ̄2A2 (ω2 + ω2
0)

4 M
[
(ω2

0 − ω2)
2
+ 4 θ2ω2

] . (40)

It is worth mentioning that in this case we have made explicit the asymptotic time
dependence so that our averages are computed over samples and not over time in a single
sample as we have done in the previous section.

5.2. Power considerations

Going back to equation (38), we can define the two following quantities:

JI = v(t) η(t), (41)

and

JD = −γ v2(t). (42)

Physically, both rates, JI and JD, constitute changes of energy due to the interactions
with the thermal bath. Within this context, the study is particularly important of the
cumulative changes of energy in the system up to a time t = τ , namely the injected total:

JIT =

∫ τ

0

dt v(t)η(t), (43)

and the dissipated total:

JDT = −γ

∫ τ

0

dt v2(t). (44)

in which we will apply the same Laplace transform operation in order to better handle
the noise averages [18]–[21]. The dissipation of energy flux can be written as

JDT = −γ

∫ τ

0

dt

∫ ∞

0

dt1 δ(t − t1)

∫ ∞

0

dt2 δ(t − t2) v(t1) η(t2),

= lim
ε→0

∫ ∞

−∞

dq1

2π

∫ ∞

−∞

dq2

2π

e(i q1+i q2+2ε)τ − 1

(i q1 + i q2 + 2ε)
ṽ(i q1 + ε) ṽ(i q2 + ε),

= lim
ε→0

∫ ∞

−∞

dq1

2π

∫ ∞

−∞

dq2

2π

e(i q1+i q2+2ε)τ − 1

(i q1 + i q2 + 2ε)

×
[

(i q1 + ε)

M R(i q1 + ε)

(i q2 + ε)

M R(i q2 + ε)
η̃(i q1 + ε)η̃(i q2 + ε)

]
,
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which becomes, after taking the thermal average,

〈JDT〉 =

(
−2γλ0Φ̄

2

M2

)
lim
ε→0

∫ ∞

−∞

dq1

2π

∫ ∞

−∞

dq2

2π

e(i q1+i q2+2ε)τ − 1

(i q1 + i q2 + 2ε)

(i q1 + ε)

R(i q1 + ε)

(i q2 + ε)

R(i q2 + ε)

×
[

1

i q1 + i q2 + 2 ε
+

A

2

(
1

i q1 + i q2 + 2 ε − i ω
+

1

i q1 + i q2 + 2 ε + i ω

)

+
λ0

2

{
1

i q1 + ε
+

A

2

(
1

i q1 + ε − i ω
+

1

i q1 + ε + i ω

)}

×
{

1

i q2 + 2 ε
+

A

2

(
1

i q2 + ε − i ω
+

1

i q2 + ε + i ω

)}]

≡ JDT0(τ) + JD,osc(τ).

Under the condition τθ � 1 (transient terms are negligible), we can explicitly write
the results for the integration above as a sum of three contributions: a term proportional
to τ :

JDT0(τ) = −
(

Φ̄2λ0

M
+

A2ω2Φ̄2λ2
0θ

[ω2 (ω2 − 2 ω2
0 + 4 θ2) + ω2

0] M

)
τ,

an oscillating term:

JD,osc(τ) = 8
A (3 θ ω2 ω0

2 − 4 θ ω4
0 − 2 θ ω4 − 4 θ3 ω2) Φ̄2λ2

0γ sin (ω τ)

M2ω (4 θ2 + ω2)
(
ω4 + 16 θ2ω2 + 16 ω4

0 − 8 ω2ω2
0

)

+ 2
A (8 ω ω0

4 + 4 θ2ω3 + ω5 − 6 ω3ω2
0) Φ̄2λ2

0γ cos (ω τ)

M2ω (ω2 + 4 θ2) (ω4 + 16 ω2θ2 + 16 ω4
0 − 8 ω2ω2

0)

− 2
A2
[
ω θ2 sin (2 ω τ) + ( ω2

0 − ω2) cos (2 ω τ)
]
Φ̄2λ2

0θ
2ω2

M [ω2 (ω2 − 2ω2
0 + 4 θ2) + ω2

0]
2

+
A2 [ω2 (ω2 − 2 ω0

2) + ω0
4] Φ̄2λ0

2θ ω sin (2 ω τ)

2 M [ω2 (ω2 − 2 ω2
0 + 4 θ2) + ω2

0]
2 , (45)

and a constant term:

JDTc =
Φ̄2 λ0

γ
− Φ̄2λ2

0

2 M ω2
0

+
AΦ̄2λ2

0 (ω2 − ω2
0)

M [ω2 (ω2 − 2 ω2
0 + 4 θ2) + ω2

0]

+
A2 [[2 ω2 (ω2

0 + 2 θ2) − ω4
0] ω

2
0 + 8 ω4 (θ2 − ω2

0)] Φ̄
2 λ2

0

2 M [ω2 (ω2 − 2 ω2
0 + 4 θ2) + ω2

0]
2 , (46)

where JDT = JDT0(τ) + JD,osc(τ) + JDTc.
The injection of energy can be written in a similar way:

JIT =

∫ τ

0

dt

∫ ∞

0

dt1 δ(t − t1)

∫ ∞

0

dt2 δ(t − t2) v(t1) η(t2),

= lim
ε→0

∫ ∞

−∞

dq1

2π

∫ ∞

−∞

dq2

2π

e(i q1+i q2+2ε)τ − 1

(i q1 + i q2 + 2ε)
ṽ(i q1 + ε) η̃(i q2 + ε),

= lim
ε→0

∫ ∞

−∞

dq1

2π

∫ ∞

−∞

dq2

2π

e(iq1+iq2+2ε)τ − 1

(iq1 + iq2 + 2ε)

[
(iq1 + ε)

MR(iq1 + ε)
η̃(iq1 + ε)η̃(iq2 + ε)

]
,

doi:10.1088/1742-5468/2011/06/P06010 15

http://dx.doi.org/10.1088/1742-5468/2011/06/P06010


J.S
tat.M

ech.
(2011)

P
06010

On exact time averages of a massive Poisson particle

where, after taking the thermal average, gives

〈JIT〉 =

(
λ0 Φ2

M

)
lim
ε→0

∫ ∞

−∞

dq1

2π

∫ ∞

−∞

dq2

2π

e(i q1+i q2+2ε)τ − 1

(i q1 + i q2 + 2ε)

(i q1 + ε)

R(i q1 + ε)

×
[

1

i q1 + i q2 + 2 ε
+

A

2

(
1

i q1 + i q2 + 2 ε − i ω
+

1

i q1 + i q2 + 2 ε + i ω

)

+
λ0

2

{
1

i q1 + ε
+

A

2

(
1

i q1 + ε − i ω
+

1

i q1 + ε + i ω

)}

×
{

1

i q2 + 2 ε
+

A

2

(
1

i q2 + ε − i ω
+

1

i q2 + ε + i ω

)}]

≡ JIT0(τ) + JIT,osc(τ) + JITc.

An important part of the injection of energy flux has to be carefully obtained since

〈JIT0(τ)〉1 =
λ0 Φ2

M
lim
ε→0

∫ ∞

−∞

dq1

2π

∫ ∞

−∞

dq2

2π

e(iq1+iq2+2ε)τ − 1

(i q1 + i q2 + 2ε)2

(i q1 + ε)

R(i q1 + ε)

=
λ0 Φ2

M
τ lim

ε→0

∫ ∞

−∞

dq1

2π

(
(i q1 + ε)

(i q1 + ε − κ+)(i q1 + ε − κ−)

)
,

=
λ0 Φ

2

M
τ,

where the last term in the rhs contains the integration over the upper arch, because the
reduction lemma is not valid in this case, and using the relations between raw moments
of Φ as well.

Then finally, we write the contributions for the injection of energy as

JIT0(τ) =

(
λ0 Φ̄2

M
+

A2ω2 θ λ2
0 Φ̄

2

M [ω2 (ω2 − 2 ω2
0 + 4 θ2) + ω4

0]

)
τ,

and

JIT,osc(τ) =
λ0Φ̄

2A sin(ω τ)

Mω
+

A [A (ω0
2 − ω2) cos (2 ω τ) + 4 ω0

2 cos(ω τ)] λ2
0 Φ̄

2

4 M [ω2 (ω2 − 2 ω2
0 + 4 θ2) + ω4

0]

+
A [2ωθ (A sin (2 ω τ) + 4 sin (ω τ)) − 4 ω2 cos(ω τ)] λ2

0 Φ̄
2

4 M [ω2 (ω2 − 2 ω2
0 + 4 θ2) + ω4

0]
, (47)

and

JITc =
λ2

0Φ̄
2

Mω2
0

+
Aλ2

0Φ̄
2
(ω2

0 − ω2)

M [ω2 (ω2 − 2 ω2
0 + 4 θ2) + ω4

0]

+
[ω4(ω2 − 12 θ2) + ω2

0(3 ω4
0 − 5 ω2

0 ω
2
+ ω4 − 4 θ2)] A2λ2

0 Φ̄
2

4 M [ω2 (ω2 − 2 ω2
0 + 4 θ2) + ω4

0]
2 . (48)

For the total energy flux JE = JIT+JDT it can be easily seen that the linear term on τ
cancels out, while the constant term becomes exactly the average energy of equation (40).
The non-oscillating part of the energy is

Jno
E =

Φ̄2λ0 (2 Mω0
2 + λ0γ)

2γ Mω2
0

+
(ω2 + ω2

0) A2Φ̄2λ0
2

4 M [ω2 (ω2 − 2 ω2
0 + 4 θ2) + ω4

0]
, (49)
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Figure 4. Upper panel: total injected and (symmetric) dissipated power,
JIT(−JDT) versus time, τ , according to the definitions in the legend. Lower
panel: total energy, EM , versus time, τ . The dashed (green) line represents the
asymptotic limit given by equation (40). In both cases we have used the following
values: M = 10, k0 = 1, γ = 1 Φ̄ = 1, λ0 = 10 and A = 0. Note: the difference
between the values of JIT and −JDT in the upper panel are exactly equal to the
total energy, EM , which is shown in the lower panel and equals the theoretical
value given by equation (40) as well.

coinciding perfectly with equation (40). The oscillating term JIT,osc + JDT,osc does not
contribute if the time average is taken. Thus, the average energy will be in the form of
an oscillation around the mean.

As expected, in the long term the magnitudes of the injected and dissipated energy
fluxes are exactly the same, signalling the emergence of equilibrium. All of our calculations
are compatible with the plots in figure 4 whereby we depict the evolution of the injected
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Figure 5. Upper panel: total injected, JIT, and dissipated power, JDT, versus
time, τ , according to the definitions in the legend for the heterogeneous case
M = 10, k0 = 1, γ = 1 Φ̄ = 1, λ0 = 10 and A = 1/2. Lower panel: comparison
of JIT for this heterogeneous process with a homogeneous process (A = 0) under
the same remaining parameters. The impact of the oscillations in the noise is
clearly visible.

and dissipated power total (mechanical) energy of an oscillator following our dynamical
equations. We compare the cases A = 0 and A �= 0 in figure 5, whereby two oscillations
of frequency ω and ω0 can be noticed.

6. Concluding remarks

In this work we have revisited the problem of the damped harmonic oscillator subjected
to a heterogeneous Poisson process. Our approach, which is carried out by averaging over
the noise in the Fourier–Laplace space, allowed us to obtain the long-term distributions
of the position and distributions (joint and marginal). Moreover, we have surveyed the
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interaction between the system and the thermal bath by computing the rates of energy that
are dissipated from the system and injected into it. As expected, after a transient time,
both rates balance so that the system achieves a steady state. The application of time
averages over the position and velocity of the massive particle has allowed us to obtain the
long-term distributions of the two quantities, which are independent of the heterogeneous
character of the noise. This last feature will only have an impact when averages over
samples, instead of averages of the time, are implemented. Notwithstanding, we have
been able to find the effect of the heterogeneity of the rate of events to be the emergence
of resonance effects linking the ‘natural’ frequency of oscillation and the frequency of the
time-dependent part of the rate of events. This impact is also visible when the total
injected and dissipated powers have been surveyed. Considerations regarding Jarzynski’s
equalities as well as modifications on the inter-event rule of the noise are addressed in
future work.
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Appendix. Numerical calculations

In order to solve in a numerical way our main equations (1) and (2) we have considered
a trapezoidal approximation which is reminiscent of the Stratonovich approach to noise
phenomena:

x(t2) − x(t1) =

∫ t2

t1

v(t) dt ≈ (t2 − t1)
v(t2) + v(t1)

2
,

and the same for the deterministic part of the velocity:

Δvdet(t2, t1) ≡ M−1

∫ t2

t1

[−k0x(t) − γv(t)] dt

≈ (t1 − t2)
γ[v(t2) + v(t1)] + k0[x(t2) + x(t1)]

2M
,

for small enough dt.
With respect to the stochastic part [24], its calculation can be at least made threefold.

The first part concerns the inter-event time which is given by equation (9). Accordingly,
starting from t0 we would randomly select a certain time interval, δt, following PDF
in equation (9) and we would let deterministic equations evolve up to t0 + δt when we
would add the value of the kick, M−1Φ(t0 + δt), to Δvdet with Φ chosen from the specific
distribution P (Φ). Despite its accuracy this procedure is not the most hard-headed when
it comes to simulating heterogeneous Poisson processes, since we are obliged to constantly
update the distribution in a rather grinding way.
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The second method is a shrewd procedure of carrying out the numerical simulation
without having to pay heed to a very tiny value of the mesh δt or also to problems with a
very high rate of occurrence of events λ(t). In this case we can determine the (expected)
number of events that take place within δt:

n(t) =

∫ t+δt

t

λ(t′) dt′,

and consider that the overall effect of the noise in that time interval is equivalent to
the occurrence of a single kick, the intensity of which is given by the convolution of
n(t) distributions P (Φ). Bearing in mind that the events are uncorrelated the resulting
distribution is given by

Pn(Φ) = F−1
Φ [Fφ[P (Φ)]n].

However, it must be stressed that this procedure is half-averaged since it already assumes
the mean number of events in its implementation, thus leaving all the randomness to
the resulting amplitude of the added noise. Although we have not tested the following
assertion, we believe that its application reduces the number of samples needed to obtain
the same dispersion in the sample set.

The third way corresponds to our main option, particularly for the figures in the text.
Specifically, we were intentionally careless about optimizing the computational time, as
we have preferred a very conservative approach and a very tight grid. Since we did not
opt for depicting examples with very high event rates, we went ahead by picking a random
number uniformly distributed between 0 and 1 and compared it with the probability of

having an event according with the Poisson distribution with parameter
∫ t+δt

t
λ(t′) dt′,

which is similar to equation (12). If the random number is the smaller of both numbers,
then a kick takes place and therefore we need to select the noise intensity as described
for the first approach. In all the cases we have shown δt = 10−4. The distributions were
obtained from a total of 5 × 108 records (103 samples) made at intervals of 10−3 time
units. To ensure equilibrium we have set apart the first 105 (100 time units) logs of each
sample.
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[23] Reimann P, Bartussek R, Häussler R and Hänggi P, Brownian motors driven by temperature oscillations,

1996 Phys. Lett. A 215 26
[24] Kim C, Lee E K, Hänggi P and Talkner P, Numerical method for solving stochastic differential equations

with Poissonian white shot noise, 2007 Phys. Rev. E 76 011109

doi:10.1088/1742-5468/2011/06/P06010 21

http://dx.doi.org/10.1103/PhysRevE.81.051124
http://dx.doi.org/10.1016/0378-4371(81)90028-5
http://dx.doi.org/10.1088/0305-4470/14/11/006
http://dx.doi.org/10.1063/1.3155698
http://dx.doi.org/10.1093/brain/awp079
http://dx.doi.org/10.1103/PhysRevB.73.172302
http://dx.doi.org/10.1016/j.physa.2006.01.063
http://dx.doi.org/10.1103/PhysRevE.77.011103
http://dx.doi.org/10.1103/PhysRevE.79.051116
http://dx.doi.org/10.1103/PhysRevE.82.021112
http://dx.doi.org/10.1016/0375-9601(96)00222-8
http://dx.doi.org/10.1103/PhysRevE.76.011109
http://dx.doi.org/10.1088/1742-5468/2011/06/P06010

	1. Introduction
	2. Exactly solvable model
	2.1. Laplace transformations

	3. Averaged steady state
	4. General steady state distribution
	5. Injection and dissipation of energy
	5.1. Energetic considerations
	5.2. Power considerations

	6. Concluding remarks
	Acknowledgments
	Appendix. Numerical calculations
	References

