q-moments remove the degeneracy associated with the inversion of the q-Fourier transform

M Jauregui ${ }^{1}$, C Tsallis ${ }^{1,2}$ and EM F Curado ${ }^{1,3}$
${ }^{1}$ Centro Brasileiro de Pesquisas Fisicas and National Institute of Science and Technology for Complex Systems, Rua Xavier Sigaud 150, 22290-180 Rio de Janeiro, Brazil
${ }^{2}$ Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
${ }^{3}$ Laboratoire APC, Université Paris Diderot, 10 rue A. Domon et L. Duquet, F-75205, Paris, France
E-mail: jauregui@cbpf.br, tsallis@cbpf.br and evaldo@cbpf.br

Received 15 August 2011
Accepted 18 September 2011
Published 17 October 2011

Online at stacks.iop.org/JSTAT/2011/P10016
doi:10.1088/1742-5468/2011/10/P10016

Abstract

It was recently proven (Hilhorst 2010 J. Stat. Mech. P10023) that the q-generalization of the Fourier transform is not invertible in the full space of probability density functions for $q>1$. It has also been recently shown that this complication disappears if we dispose of the q-Fourier transform not only of the function itself, but also of all of its shifts (Jauregui and Tsallis 2011 Phys. Lett. A 375 2085). Here we show that another route exists for completely removing the degeneracy associated with the inversion of the q-Fourier transform of a given probability density function. Indeed, it is possible to determine this density if we dispose of some extra information related to its q-moments.

Keywords: rigorous results in statistical mechanics, exact results, diffusion

Contents

1. Introduction 2
2. Hilhorst's examples 4
2.1. First example 4
2.2. Second example 7
3. Conclusions 11
Acknowledgments 11
References 11

1. Introduction

Nonextensive statistical mechanics [1], a current generalization of the Boltzmann-Gibbs theory, is actively studied in diverse areas of physics and other sciences [2,3]. This theory is based on a nonadditive entropy, commonly denoted by S_{q}, that depends, in addition to the probabilities of the microstates, on a real parameter q, which is inherent to the system and makes S_{q} extensive. In the limit $q \rightarrow 1$, nonextensive statistical mechanics yields the Boltzmann-Gibbs theory. This new theory has successfully described many physical and computational experiments. Such systems typically are nonergodic ones, with long-range interactions, long memory and/or other nontrivial ingredients: see, for example, [4]-[12].

The development of nonextensive statistical mechanics introduced, in addition to the generalization of some physical concepts like the Boltzmann-Gibbs-Shannon-von Neumann entropy, the generalization of some mathematical concepts. Remarkable ones are the generalizations of the classical central limit theorem and the Lévy-Gnedenko one. These extensions are based on a generalization of the Fourier transform (FT), namely the q-Fourier transform $(q$-FT) $[13,14]$. These generalized theorems respectively establish, for $q>1, q$-Gaussians and (q, α)-stable distributions as attractors when the considered random variables are correlated in a special manner.

If $1<q<3$, a q-Gaussian is a generalization of a Gaussian defined as a function $G_{q, \beta}: \mathcal{R} \rightarrow \mathcal{R}$ such that

$$
\begin{equation*}
G_{q, \beta}(x)=\frac{\sqrt{\beta}}{C_{q}\left[1+(q-1) \beta x^{2}\right]^{1 /(q-1)}} \equiv \frac{\sqrt{\beta}}{C_{q}} \exp _{q}\left(-\beta x^{2}\right) \tag{1}
\end{equation*}
$$

where $\beta>0$ and C_{q} is a normalization constant given by

$$
\begin{equation*}
C_{q}=\frac{\sqrt{\pi} \Gamma((3-q) / 2(q-1))}{\sqrt{q-1} \Gamma(1 /(q-1))} . \tag{2}
\end{equation*}
$$

A q-Gaussian is not normalizable for $q \geq 3$. Its variance is finite for $q<5 / 3$; above this value, it diverges. When correlations can be neglected, $q \rightarrow 1$ and $G_{q, \beta}(x) \rightarrow$ $(\beta / \pi)^{1 / 2} \exp \left(-\beta x^{2}\right)$, which is a Gaussian.

The q-FT of a non-negative measurable function f, denoted by $F_{q}[f]$, is defined, for $1 \leq q<3$, as

$$
\begin{equation*}
F_{q}[f](\xi)=\int_{\operatorname{supp} f} f(x) \exp _{q}\left(\mathrm{i} \xi x[f(x)]^{q-1}\right) \mathrm{d} x \tag{3}
\end{equation*}
$$

where supp f stands for the support of f, and $\exp _{q}(\mathrm{i} x)=\mathrm{pv}[1+(1-q) \mathrm{i} x]^{1 /(1-q)}$ for any real number x, pv being the notation for principal value. This is a nonlinear integral transform when $q>1$. Its relevance in [13] is that it transforms a q-Gaussian into another one. Hence the q-FT is invertible in the space of q-Gaussians [15]. However, it was recently proven, by means of counterexamples, that the q-FT is not invertible in the full space of probability density functions (pdf's) [16]. In connection with this problem, it is worth mentioning that it has been found an interesting property of the q-FT which enables the determination of a given pdf from the knowledge of the q-FT of an arbitrary translation of such pdf's [17].

Here we will discuss the counterexamples given in [16], and we will show that it is possible to determine the pdf's considered in the counterexamples from the knowledge of their q-FT and some extra information related with their q-moments, defined here below.

Let Q be a real number and f be a pdf of some random variable X such that the quantity

$$
\begin{equation*}
\nu_{Q}[f]=\int_{\operatorname{supp} f}[f(x)]^{Q} \mathrm{~d} x \tag{4}
\end{equation*}
$$

is finite. Then, we can define an escort pdf [18] for X, denoted by f_{Q}, as follows:

$$
\begin{equation*}
f_{Q}(x)=\frac{[f(x)]^{Q}}{\nu_{Q}[f]} \tag{5}
\end{equation*}
$$

The moments of f_{Q}, which are called Q-moments of f, are given by

$$
\begin{equation*}
\Pi_{Q}^{(n)}[f]=\int_{\operatorname{supp} f} x^{n} f_{Q}(x) \mathrm{d} x=\frac{\mu_{Q}^{(n)}[f]}{\nu_{Q}[f]} \tag{6}
\end{equation*}
$$

where $\mu_{Q}^{(n)}[f]$ is the unnormalized nth Q-moment of f, defined as follows:

$$
\begin{equation*}
\mu_{Q}^{(n)}[f]=\int_{\operatorname{supp} f} x^{n}[f(x)]^{Q} \mathrm{~d} x \tag{7}
\end{equation*}
$$

n being a positive integer.
The characteristic function of X is basically given by the Fourier transform of $f, F[f]$. It is well known that all the moments of f can be obtained from the successive derivatives of the characteristic function of X at the origin. It was shown that the successive derivatives of the q-FT of f at the origin are related to specific unnormalized Q-moments of f by the following equation [19]:

$$
\begin{equation*}
\left.\frac{\mathrm{d}^{n} F_{q}[f](\xi)}{\mathrm{d} \xi^{n}}\right|_{\xi=0}=\mathrm{i}^{n}\left\{\prod_{j=0}^{n-1}[1+j(q-1)]\right\} \mu_{q_{n}}^{(n)}[f], \tag{8}
\end{equation*}
$$

where $q_{n}=n q-(n-1)$. We can see from this relation that, if the q-FT of f does not depend on a certain parameter that appears in f, then the unnormalized nth q_{n}-moments

Figure 1. Representation of $h_{q, \lambda, a}$ for $\lambda=1.1$ and different values of q and a.
also do not depend on such a parameter. Therefore, these unnormalized moments are unable to identify the pdf f from its q-FT. As will soon become clear, this difficulty does not exist for the set of $\left\{\nu_{q}\right\}$, which will then provide the desired identification procedure.

2. Hilhorst's examples

We discuss in this section two examples proposed by Hilhorst [16], where the pdf depends on a certain real parameter, which disappears when we take its q-FT. Therefore, at the step of looking at the inverse q-FT, we face an infinite degeneracy. Next we illustrate, in both examples, how the degeneracy is removed through the values of the $\left\{\nu_{q}\right\}$.

2.1. First example

Let us consider the function $h_{q, \lambda, a}: \mathcal{R} \rightarrow \mathcal{R}$ such that [16]

$$
\begin{equation*}
h_{q, \lambda, a}(x)=\left(\frac{\lambda}{|x|}\right)^{1 /(q-1)} \tag{9}
\end{equation*}
$$

if $a<|x|<b$, where $q>1$, and (a, b, λ) are positive real numbers; otherwise $h_{q, \lambda, a}(x)=0$ (see figure 1). We can impose the following normalization condition for this function:

$$
\begin{equation*}
\int_{-\infty}^{+\infty} h_{q, \lambda, a}(x) \mathrm{d} x=1 . \tag{10}
\end{equation*}
$$

From this, it follows that one parameter among q, λ, a, b depends on the other ones. Choosing b as the dependent parameter, we get

$$
\begin{align*}
b & =\left[\frac{q-2}{2(q-1)} \lambda^{1 /(1-q)}+a^{(q-2) /(q-1)}\right]^{(q-1) /(q-2)} & & q \neq 2 \tag{11a}\\
& =a \mathrm{e}^{1 / 2 \lambda} & & q=2 . \tag{11b}
\end{align*}
$$

Figure 2. The dependence on a of $F_{Q}\left[h_{1.7,1.1, a}\right](1)$ for different values of Q.

Given Q such that $1 \leq Q<3$, the Q-FT of $h_{q, \lambda, a}$ can be easily reduced to the following expression:

$$
\begin{equation*}
F_{Q}\left[h_{q, \lambda, a}\right](\xi)=2 \int_{a}^{b}\left(\frac{\lambda}{x}\right)^{1 /(q-1)} \cos _{Q}\left(\xi x\left(\frac{\lambda}{x}\right)^{(Q-1) /(q-1)}\right) \mathrm{d} x \tag{12}
\end{equation*}
$$

where $\cos _{q}$ is the q-generalization of the trigonometric function cos which is defined by [20] $\cos _{q} x=\Re\left(\exp _{q}(\mathrm{i} x)\right)$. When $q \neq 1$, we have that

$$
\begin{equation*}
\cos _{q} x=\left[1+(1-q)^{2} x^{2}\right]^{1 / 2(1-q)} \cos \left(\frac{\arctan ((1-q) x)}{1-q}\right) . \tag{13}
\end{equation*}
$$

It is easy to notice from (12) that the Q-FT of $h_{q, \lambda, a}$ depends on a if $Q \neq q$. However, it does not depend on a when $Q=q$ (see figure 2), when it is given by $F_{q}\left[h_{q, \lambda, a}\right](\xi)=\cos _{q}(\xi \lambda$).

Consequently, there exist infinite functions $h_{q, \lambda, a}$ with the same q and λ but different a, which have the same q-FT. Therefore, it is not possible to determine $h_{q, \lambda, a}$ just from the knowledge of its q-FT. However, it may be possible to obtain $h_{q, \lambda, a}$ from its q-FT and some extra information. For example, we would be able to determine $h_{q, \lambda, a}$ if we knew the q-FT of an arbitrary translation of $h_{q, \lambda, a}[17]$. Here we will give another approach to this problem.

As $h_{q, \lambda, a}$ is a non-negative function, which obeys the normalization condition (10), it can be interpreted as a pdf of some random variable. Moreover, for any real number Q, we have that

$$
\begin{align*}
\nu_{Q}\left[h_{q, \lambda, a}\right] & =2 \lambda^{Q /(q-1)}\left[b^{1-Q /(q-1)}-a^{1-Q /(q-1)}\right] \frac{(q-1)}{q-1-Q} & & Q \neq q-1 \tag{14a}\\
& =2 \lambda \ln (b / a) & & Q=q-1 \tag{14b}
\end{align*}
$$

is finite. With n being an even positive integer, we have also that the unnormalized nth Q-moment of $h_{q, \lambda, a}$ is given by

Figure 3. The dependence on a of the quantities (a) $\mu_{Q}^{(2)}\left[h_{1.7,1.1, a}\right]$ and (b) $\mu_{Q}^{(2)}\left[h_{2,1.1, a}\right]$ for different values of Q.

$$
\begin{array}{rlrl}
\mu_{Q}^{(n)}\left[h_{q, \lambda, a}\right]=2 \lambda^{Q /(q-1)}\left[b^{n+1-Q /(q-1)}-a^{n+1-Q /(q-1)}\right] \frac{(q-1)}{(n+1)(q-1)-Q} & & Q \neq(n+1)(q-1) \\
& =2 \lambda^{n+1} \ln (b / a) & & Q=(n+1)(q-1) .
\end{array}
$$

Then, finally, the nth Q-moment of $h_{q, \lambda, a}$ is given by

$$
\begin{align*}
\Pi_{Q}^{(n)}\left[h_{q, \lambda, a}\right] & =\frac{b^{n}-a^{n}}{n \ln (b / a)} & & Q=q-1 \tag{16a}\\
& =\frac{n a^{n} b^{n}}{b^{n}-a^{n}} \ln (b / a) & & Q=(n+1)(q-1) \\
& =\left[\frac{b^{n+1-Q /(q-1)}-a^{n+1-Q /(q-1)}}{b^{1-Q /(q-1)}-a^{1-Q /(q-1)}}\right] \frac{(q-1-Q)}{(n+1)(q-1)-Q} & & \text { otherwise. } \tag{16b}
\end{align*}
$$

It is clear that $\mu_{Q}^{(m)}\left[h_{q, \lambda, a}\right]=0$ and $\Pi_{Q}^{(m)}\left[h_{q, \lambda, a}\right]=0$ for any odd positive integer m, since $h_{q, \lambda, a}(x)$ is an even function.

As the q-FT of $h_{q, \lambda, a}$ does not depend on a, then, according to (8), the nth q_{n}-moment of $h_{q, \lambda, a}$ does not depend on a either, where $q_{n}=n q-(n-1)$. In fact, if $q \neq 2$, we have that

$$
\begin{equation*}
\mu_{q_{n}}^{(n)}\left[h_{q, \lambda, a}\right]=\frac{2(q-1)}{q-2} \lambda^{n+1 /(q-1)}\left[b^{(q-2) /(q-1)}-a^{(q-2) /(q-1)}\right] . \tag{17}
\end{equation*}
$$

Then, using (11a), we obtain that $\mu_{q_{n}}^{(n)}\left[h_{q, \lambda, a}\right]=\lambda^{n}$. If $q=2$, we have that $\mu_{n+1}^{(n)}\left[h_{q, \lambda, a}\right]=$ $2 \lambda^{n+1} \ln (b / a)$ and, using (11b), we obtain that $\mu_{n+1}^{(n)}\left[h_{q, \lambda, a}\right]=\lambda^{n}$.

While the unnormalized Q-moments of $h_{q, \lambda, a}$ may not depend on a (see figure 3), we can straightforwardly verify from (14a) and (14b) that the quantity $\nu_{Q}\left[h_{q, \lambda, a}\right]$ depends
q-moments remove the degeneracy of the inverse q-Fourier transform

Figure 4. The dependence on a of the quantities (a) $\nu_{Q}\left[h_{1.7,1.1, a}\right]$ and (b) $\nu_{Q}\left[h_{2,1.1, a}\right]$ for different values of Q.

Figure 5. The dependence on a of the quantities (a) $\Pi_{Q}^{(2)}\left[h_{1.7,1.1, a}\right]$ and (b) $\Pi_{Q}^{(2)}\left[h_{2,1.1, a}\right]$ for different values of Q.
monotonically on a for any $Q \neq 1$ (see figure 4). The same is true for the normalized Q-moments (see figure 5). Hence, the knowledge of the q-FT of $h_{q, \lambda, a}$ and the value of some $\nu_{Q}\left[h_{q, \lambda, a}\right]$ with $Q \neq 1$ (extra information) is sufficient to determine the pdf $h_{q, \lambda, a}$. We should notice that $\nu_{1}\left[h_{q, \lambda, a}\right]=1$ (it does not depend on a), then the extra information in this case is trivial.

2.2. Second example

Let us consider now the function $f_{q, A}: \mathcal{R} \rightarrow \mathcal{R}$ such that [16]

$$
\begin{equation*}
f_{q, A}(x)=\frac{\left[\alpha_{q, A}(x)\right]^{1 /(1-q)}}{C_{q}\left\{1+(q-1) x^{2}\left[\alpha_{q, A}(x)\right]^{-2}\right\}^{1 /(q-1)}} \tag{18}
\end{equation*}
$$

Figure 6. Representation of $f_{5 / 4, A}$ for different values of A.

Figure 7. The dependence on A of $F_{Q}\left[f_{1.4, A}\right](1)$ for different values of Q.
if $|x|^{(q-2) /(q-1)}>A$, where $1<q<2, A \geq 0$:

$$
\begin{equation*}
\alpha_{q, A}(x)=\left[1-A|x|^{(2-q) /(q-1)}\right]^{(q-1) /(2-q)}, \tag{19}
\end{equation*}
$$

and C_{q} is the normalization constant of a q-Gaussian given by (2); otherwise $f_{q, A}(x)=0$ (see figure 6). We can easily notice that $f_{q, 0}(x)=G_{q, 1}(x)$, where $G_{q, \beta}(x)$ is defined in (1).

Let $1<Q<3$ and $A>0$. The Q-FT of $f_{q, A}$ is given by (see figure 7)

$$
\begin{equation*}
F_{Q}\left[f_{q, A}\right](\xi)=\int_{-A^{(q-1) /(q-2)}}^{A^{(q-1) /(q-2)}} f_{q, A}(x) \exp _{Q}\left(\mathrm{i} \xi x\left[f_{q, A}(x)\right]^{Q-1}\right) \mathrm{d} x . \tag{20}
\end{equation*}
$$

In order to compute this integral in the particular case $Q=q$, we should notice first that

$$
\begin{align*}
& \exp _{q}\left(\mathrm{i} \xi x\left[f_{q, A}(x)\right]^{q-1}\right)=\exp _{q}\left(\frac{\mathrm{i} \xi x\left[\alpha_{q, A}(x)\right]^{-1}}{C_{q}^{q-1}\left\{1+(q-1) x^{2}\left[\alpha_{q, A}(x)\right]^{-2}\right\}}\right) \\
&= \operatorname{pv}\left\{1+(q-1) x^{2}\left[\alpha_{q, A}(x)\right]^{-2}\right\}^{1 /(q-1)} \\
& \times\left\{1+(1-q)\left\{\frac{-x^{2}}{\left[\alpha_{q, A}(x)\right]^{2}}+\frac{\mathrm{i} C_{q}^{1-q} \xi x}{\alpha_{q, A}(x)}\right\}\right\}^{1 /(1-q)} \\
&=\left\{1+(q-1) x^{2}\left[\alpha_{q, A}(x)\right]^{-2}\right\}^{1 /(q-1)} \exp _{q}\left(\frac{-x^{2}}{\left[\alpha_{q, A}(x)\right]^{2}}+\frac{\mathrm{i} C_{q}^{1-q} \xi x}{\alpha_{q, A}(x)}\right) \tag{21}
\end{align*}
$$

Then

$$
\begin{align*}
F_{q}\left[f_{q, A}\right](\xi)= & \frac{1}{C_{q}} \int_{-A^{(q-1) /(q-2)}}^{A^{(q-1) /(q-2)}} \frac{1}{\left[\alpha_{q, A}(x)\right]^{1 /(q-1)}} \exp _{q}\left(\frac{-x^{2}}{\left[\alpha_{q, A}(x)\right]^{2}}+\frac{\mathrm{i} C_{q}^{1-q} \xi x}{\alpha_{q, A}(x)}\right) \mathrm{d} x \\
= & \frac{1}{C_{q}} \int_{-A^{(q-1) /(q-2)}}^{A^{(q-1) /(q-2)}} \frac{1}{\left[\alpha_{q, A}(x)\right]^{1 /(q-1)}} \\
& \times \exp _{q}\left(-\left[\frac{x}{\alpha_{q, A}(x)}-\frac{\mathrm{i} C_{q}^{1-q} \xi}{2}\right]^{2}-\frac{C_{q}^{2(1-q)} \xi^{2}}{4}\right) \mathrm{d} x \tag{22}
\end{align*}
$$

Finally, using the change of variables

$$
\begin{equation*}
y=\frac{x}{\alpha_{q, A}(x)}-\frac{\mathrm{i} C_{q}^{1-q} \xi}{2} \tag{23}
\end{equation*}
$$

we obtain that

$$
\begin{equation*}
F_{q}\left[f_{q, A}\right](\xi)=\frac{1}{C_{q}} \int_{-\infty-\mathrm{i} \mathrm{C}_{q}^{1-q} \xi / 2}^{+\infty-\mathrm{i} C_{q}^{1-q} \xi / 2} \exp _{q}\left(-y^{2}-\frac{C_{q}^{2(1-q)} \xi^{2}}{4}\right) \mathrm{d} y \tag{24}
\end{equation*}
$$

which does not depend on A. Moreover, the RHS of (24) is equal to the q - FT of the q-Gaussian $G_{q, 1}$ (see details in [13]), which, naturally, does not depend on A. Then, the knowledge of only the q-FT of $f_{q, A}$ would not be sufficient information to determine $f_{q, A}$. Hence, as in the first example, extra information is needed.

Let Q be a real number. Considering $f_{q, A}$ as a pdf of some random variable, we have that

$$
\begin{align*}
\nu_{Q}\left[f_{q, A}\right]= & \int_{-A^{(q-1) /(q-2)}}^{A^{(q-1) /(q-2)}} \frac{\left[\alpha_{q, A}(x)\right]^{Q /(1-q)}}{C_{q}^{Q}\left\{1+(q-1) x^{2}\left[\alpha_{q, A}(x)\right]^{-2}\right\}^{Q /(q-1)}} \mathrm{d} x \\
& =\frac{1}{C_{q}^{Q}} \int_{-A^{(q-1) /(q-2)}}^{A^{(q-1) /(q-2)}} \frac{1}{\left[\alpha_{q, A}(x)\right]^{Q /(q-1)}}\left[\exp _{q}\left(-\frac{x^{2}}{\left[\alpha_{q, A}(x)\right]^{2}}\right)\right]^{Q} \mathrm{~d} x, \tag{25}
\end{align*}
$$

which is finite and depends on A when $Q \neq 1$ (see figure 8). The unnormalized nth Q moment of $f_{q, A}$ for any positive integer n is given by
$\mu_{Q}^{(n)}\left[f_{q, A}\right]=\frac{1}{C_{q}^{Q}} \int_{-A^{(q-1) /(q-2)}}^{A^{(q-1) /(q-2)}} \frac{x^{n}}{\left[\alpha_{q, A}(x)\right]^{Q /(q-1)}}\left[\exp _{q}\left(-\frac{x^{2}}{\left[\alpha_{q, A}(x)\right]^{2}}\right)\right]^{Q} \mathrm{~d} x$,

Figure 8. The dependence on A of the quantity $\nu_{Q}\left[f_{1.4, A}\right]$ for different values of Q.

Figure 9. The dependence on A of the unnormalized fourth Q-moment of $f_{1.4, A}$ for different values of Q.
which depends on A except when $Q=q_{n}=n q-(n-1)$ (see figure 9). In this case, using the change of variables $y=x / \alpha_{q, A}(x)$, we obtain that

$$
\begin{equation*}
\mu_{q_{n}}^{(n)}\left[f_{q, A}\right]=\int_{-\infty}^{+\infty} y^{n}\left[\frac{1}{C_{q}} \exp _{q}\left(-y^{2}\right)\right]^{n q-(n-1)} \mathrm{d} y \tag{27}
\end{equation*}
$$

which is equal to the unnormalized nth q_{n}-moment of the q-Gaussian $G_{q, 1}$. Therefore, we see that, as in the first example, the knowledge of any $\nu_{Q}\left[f_{q, A}\right]$ with $Q \neq 1$ enables the determination of the pdf $f_{q, A}$ from its q-FT.

3. Conclusions

Both functions $h_{q, \lambda, a}$ and $f_{q, A}$ show that the q-FT is not invertible in the full space of pdf's, since their q-FT's do not depend on a and A, respectively. However, if $Q \neq q$, this problem would not occur for the Q-FT of both functions (see figures 2 and 7). In other words, the Q-FT of both functions with $Q \neq q$ would, in principle, be invertible. Furthermore, in the case $Q=q$, figures 4 and 8 show that the quantities $\nu_{Q}\left[h_{q, \lambda, a}\right]$ and $\nu_{Q}\left[f_{q, A}\right]$ depend monotonically on a and A, respectively, which removes the degeneracy. Therefore, the knowledge of the q-FT of both functions and a single value of $\nu_{Q}\left[h_{q, \lambda, a}\right]$ and $\nu_{Q}\left[f_{q, A}\right]$ is sufficient to determine the functions $h_{q, \lambda, a}$ and $f_{q, A}$.

If we were in the case that a $\operatorname{pdf} f$ depends on two or more parameters and its q FT does not depend on more than one such parameter, we would expect this method of identification of the inverse q-FT to work as well as in the case of the functions considered in this paper. However, it might be possible that more than one value of ν_{Q} is needed.

Acknowledgments

We acknowledge very fruitful remarks from H J Hilhorst, F D Nobre, S Umarov and M N Vrahatis. Partial financial support from CAPES, CNPq and Faperj (Brazilian agencies) is acknowledged as well.

References

[1] Tsallis C, 1998 J. Stat. Phys. 52479
[2] Gell-Mann M and Tsallis C (ed), 2004 Nonextensive Entropy-Interdisciplinary Applications (New York: Oxford University Press)
[3] Tsallis C, 2009 Introduction to Nonextensive Statistical Mechanics-Approaching a Complex World (New York: Springer)
[4] Douglas P, Bergamini S and Renzoni F, 2006 Phys. Rev. Lett. 96110601
[5] Liu B and Goree J, 2008 Phys. Rev. Lett. 100055003
[6] Pickup R M, Cywinski R, Pappas C, Farago B and Fouquet P, 2009 Phys. Rev. Lett. 102097202
[7] DeVoe R G, 2009 Phys. Rev. Lett. 102063001
[8] CMS Collaboration, 2010 Phys. Rev. Lett. 105022002
[9] ALICE Collaboration, 2011 Eur. Phys. J. C 711594
[10] Sotolongo-Grau O, Rodriguez-Perez D, Antoranz J C and Sotolongo-Costa O, 2010 Phys. Rev. Lett. 105158105
[11] Andrade J S Jr, da Silva J F T, Moreira A A, Nobre F D and Curado E M F, 2010 Phys. Rev. Lett. 105260601
[12] Nobre F D, Rego-Monteiro M A and Tsallis C, 2011 Phys. Rev. Lett. 106140601
[13] Umarov S, Tsallis C and Steinberg S, 2008 Milan J. Math. 76307
[14] Umarov S, Tsallis C, Gell-Mann M and Steinberg S, 2008 J. Math. Phys. 51033502
[15] Umarov S and Tsallis C, 2008 Phys. Lett. A 3724874
[16] Hilhorst H J, 2010 J. Stat. Mech. P10023
[17] Jauregui M and Tsallis C, 2011 Phys. Lett. A 3752085
[18] Beck C and Schlogl F, 1993 Thermodynamics of Chaotic Systems (Cambridge: Cambridge University Press)
[19] Tsallis C, Plastino A R and Alvarez-Estrada R F, 2009 J. Math. Phys. 50043303
[20] Borges E P, 1998 J. Phys. A: Math. Gen. 315281

