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We present a generalization of the representation in plane waves of Dirac delta,
��x�= �1 /2���−�

� e−ikxdk, namely, ��x�= ��2−q� /2���−�
� eq

−ikxdk, using the non-
extensive-statistical-mechanics q-exponential function, eq

ix��1+ �1−q�ix�1/�1−q�

with e1
ix�eix, x being any real number, for real values of q within the interval �1,2�.

Concomitantly, with the development of these new representations of Dirac delta,
we also present two new families of representations of the transcendental number
�. Incidentally, we remark that the q-plane wave form which emerges, namely, eq

ikx,
is normalizable for 1�q�3, in contrast to the standard one, eikx, which is not.
© 2010 American Institute of Physics. �doi:10.1063/1.3431981�

I. INTRODUCTION

Dirac delta is a distribution that is used in almost all branches of physics. Various represen-
tations of it have been discovered along the time. For example, it can be represented as a limit of
a Gaussian or as a linear combination of plane waves, being the last one strongly related to the
Fourier transform �FT�, as we will show later.

Dirac delta, ��x�, obeys the following fundamental property:

�
−�

�

f�x���x�dx = f�0� , �1�

where f :R→C is a well-behaved function. From the above equation, we can see that if f�x�
=1 ∀x�R, we get the normalization condition

�
−�

�

��x�dx = 1. �2�

Also, choosing f�x�= f�0�eikx in �1�, we obtain

�
−�

�

��x�eikxdx = 1, �3�

i.e., the FT of ��x� equals 1. Therefore, using the expression of the inverse FT, we obtain the
following representation of Dirac delta:
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��x� =
1

2�
�

−�

�

e−ikxdk , �4�

which can be interpreted as a linear combination of plane waves. We can rewrite the above
expression as

��x� =
1

2�
lim
L→�

�
−L

L

e−ikxdk , �5�

then, Dirac delta also can be represented as the following improper limit:

��x� = lim
L→�

sin�Lx�
�x

. �6�

In 1988, a possible generalization of Boltzmann–Gibbs statistical mechanics was proposed.1

This new theory, sometimes referred to as nonextensive-statistical mechanics,2 has been satisfac-
torily applied to handle a large number of physical phenomena �usually, metastable or quasista-
tionary states of systems that are not consistent with the ergodic hypothesis; for example, systems
in which long-range interactions or strong correlations exist�.3–17 Furthermore, the elaboration of
nonextensive-statistical mechanics required the generalization of some mathematical functions
�exponential, logarithm, etc.�, operators �sum, product, FT, etc.�, and theorems �central limit
theorem�.18 Particularly, the generalization of the exponential function, namely, the q-exponential
function, is defined by

eq
x � �1 + �1 − q�x�+

1/�1−q� �e1
x � ex� �7�

for any x�R, where the symbol �y�+ means that �y�+=y if y�0 and �y�+=0 if y�0. For pure
imaginary ix, eq

ix can be defined to be the principal value of

eq
ix � �1 + �1 − q�ix�1/�1−q� �e1

ix � eix� . �8�

The main purpose of the present paper is to generalize the representation in plane waves of
Dirac delta, introduced in Eq. �4�, using the q-exponential function defined above.

II. REPRESENTATION OF DIRAC DELTA IN q-PLANE WAVES

A. Proposition

Let us introduce the following quantity:

�q�x� �
1

c�q��−�

�

eq
−i�xd� with q � �1,2� , �9�

which can be interpreted as a linear combination of q-plane waves, where c�q� is a constant that
may depend on q. We intend to show later that �q�x�=��x� for all 1�q�2.

Analogous to �5�, we may write

�q�x� =
1

c�q�
lim

�→�
�

−�

�

eq
−i�xd� with q � �1,2� , �10�

therefore, by integrating, we can represent �q�x� as the following improper limit:

�q�x� =
2

�2 − q�c�q�
lim

�→�

sin�2 − q

q − 1
arctan��q − 1��x�	

x�1 + �q − 1�2�2x2��2−q�/2�q−1� with q� �1,2�. �11�

.
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B. The normalization constant 1/c„q… and the transcendental number �

The constant c�q� must be equal to 2� at the q→1+ limit. Furthermore, c�q� can be found
from the normalization condition �2�. Thus, we have

c�q� =
2

�2 − q�
lim

�→�
�

−�

� sin�2 − q

q − 1
arctan��q − 1��x�	

x�1 + �q − 1�2�2x2��2−q�/2�q−1� dx . �12�

Using the change of variables z= �q−1��x, we obtain

c�q� =
2

�2 − q�
lim

�→�
�

−�

� sin
2 − q

q − 1
arctan z�

z�1 + z2��2−q�/2�q−1� dz . �13�

As the integral does not depend on �, the limit symbol can be omitted. Therefore, we can write

c�q� =
2

�2 − q��−�

� sin�2	�q�arctan z�
z�1 + z2�	�q� dz , �14�

where

	�q� �
2 − q

2�q − 1�
. �15�

We easily verify that 	 : �1,2��R→R+ is a monotonically decreasing function of q.
In order to solve analytically the integral in �14�, let us restrict to integer or half-integer values

for 	�q�, more precisely, 1 /2,1 ,3 /2, . . .. This implies that q will be allowed to assume just certain
rational values within the interval �1,2�, namely, q=3 /2,4 /3,5 /4, . . .. Using the change of vari-
ables z=tan 
 in Eq. �14�, we obtain

c�q� =
4

2 − q
�

0

�/2 sin�2	�q�
��cos 
�2	�q�−1

sin 

d
 . �16�

By using now the relation �A4� proved in the Appendix, the above expression yields

c�q� =
4

2 − q
�
k=0

�	�q�+1/2�−1

�− 1�k
2	�q�
2k + 1

��
0

�/2

d
�cos 
�4	�q�−2k−2�sin 
�2k. �17�

We recall that the beta function, B�x ,y�, is defined by

B�x,y� � �
o

�/2

d�2�cos ��2x−1�sin ��2y−1 with x � 0 and y � 0, �18�

which is related to the gamma function by

B�x,y� =
�x��y�
�x + y�

. �19�

Therefore, using the expressions of beta function shown above, Eq. �17� can be written as

c�q� =
4	�q�
2 − q

�
k=0

�	�q�+1/2�−1

�− 1�k
�2	�q� − k − 1

2��k + 1
2�

�2k + 2��2	�q� − 2k�
. �20�

Let us rewrite now the above expression as

063304-3 New representations of � and Dirac delta J. Math. Phys. 51, 063304 �2010�

Downloaded 30 Jun 2010 to 152.84.50.242. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



c�q� =
2

2 − q
Snq

, �21�

where

Snq
� nq �

k=0

��nq+1�/2�−1

�− 1�k
�nq − k − 1

2��k + 1
2�

�2k + 2��nq − 2k�
with nq � 2	�q� � N . �22�

When nq=1 �which corresponds to q=3 /2�, we obtain straightforwardly that S1=�. Also, it is
straightforward to verify that S2, S3, and S4 are equal to �. Using a symbolic computation soft-
ware, we also verified that from nq=1 to nq=5000�q=5002 /5001�, Snq

=�. Hence, we state the
following hypothesis:

� = n �
k=0

��n+1�/2�−1

�− 1�k
�n − k − 1

2��k + 1
2�

�2k + 2��n − 2k�
∀ n � N . �23�

We thus found a countable infinite family of representations of the transcendental number � �see
also Ref. 19�.

Using relation �23� in �21�, the expression of c�q� becomes

c�q� =
2�

2 − q
. �24�

In addition to the above, this relation has been checked numerically to be correct not only for
certain rational values of q within the interval �1,2� but also for all real numbers within that
interval �see Fig. 1�. Therefore, we conjecture that the integral that appears in �14� equals � for
any value of q within that interval. Consistently, we obtain another infinite family of representa-
tions of the number �, namely,

� = �
−�

� sin�2r arctan z�
z�1 + z2�r dz ∀ r � R+. �25�

This family is noncountable and contains Eq. �23� as a particular case.
Finally, expressions �9� and �11� of �q�x� become, respectively,

�q�x� =
2 − q

2�
�

−�

�

eq
−i�xd� with q � �1,2� �26�

and

��������������������
�������������

����������
�������

������
�����
����
���
���
��
��
��
��
�
�
�
�
�
�
�
�

�

�

�

�
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FIG. 1. �Color online� The dots were numerically obtained using expression �14�, whereas the continuous curve is the plot
of c�q� given by Eq. �24�.
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�q�x� = lim
�→�

sin�2 − q

q − 1
arctan��q − 1��x�	

�x�1 + �q − 1�2�2x2��2−q�/2�q−1� with q � �1,2�. �27�

C. Dirac delta behavior of the distribution �q„x…

Let us define the following distribution:

�q�x,�� �
sin�2 − q

q − 1
arctan��q − 1��x�	

�x�1 + �q − 1�2�2x2��2−q�/2�q−1� with q � �1,2�, �28�

which is related to �q�x� through

�q�x� = lim
�→�

�q�x,�� . �29�

The plot of such a distribution �see Fig. 2� indicates that in the limit �→�, �q�x ,�� will present
a divergence at the origin and will be zero for all x�0, i.e., at first glance, �q�x� appears to be a
representation of Dirac delta.

Let us now consider an analytic function, f :dom f �R→C, which can be expanded in Taylor
series around the origin such that the expression

f�x� = �
k=0

�
f �k��0�

k!
xk �30�

is valid for all x�dom f . Then we have

�
−�

�

f�x��q�x�dx = �
dom f

f�x��q�x�dx . �31�

Replacing f�x� by its Taylor series, this expression yields

�
dom f

f�x��q�x�dx = lim
�→�

�
k=0

�
f �k��0�

k!
�

dom f

xk−1 sin�2 − q

q − 1
arctan��q − 1��x�	

��1 + �q − 1�2�2x2��2−q�/2�q−1� dx , �32�

in which we must remark that q belongs to the interval �1,2�. If dom f is a bounded interval of R,
i.e., dom f = �a ,b�, with a�b, then using the change of variables z= �q−1��x, we obtain

�0.4 �0.2 0 0.2 0.4
x0

10

20

30

40
�3�2�x,��

��10
��100

��1000

FIG. 2. �Color online� Plot of �3/2�x ,�� for different values of �. Similar results are obtained for any value of q
� �1,2�.
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�
dom f

f�x��q�x�dx = lim
�→�

�
k=0

�
f �k��0�

�q − 1�k�kk!
�

�q−1��a

�q−1��b zk−1 sin
2 − q

q − 1
arctanz�

��1 + z2��2−q�/2�q−1� dz . �33�

The first term of the sum that appears above is

f�0� lim
�→�

�
�q−1��a

�q−1��b sin
2 − q

q − 1
arctan z�

�z�1 + z2��2−q�/2�q−1�dz . �34�

If 0�a�b or a�b�0, we straightforwardly see that the above expression is equal to zero. If
a�0�b, then using relation �25� we obtain that expression �34� is equal to f�0�. Finally, if we
have either a=0 or b=0 �with a�b�, then, also using relation �25�, we obtain that expression �34�
is equal to f�0� /2.

In order to analyze the next terms of the sum given in �33�, let us first rewrite them as

lim
�→�

f �k��0�Jk�q,�� with k � N , �35�

where

Jk�q,�� �
1

�q − 1�k�kk!
�

�q−1��a

�q−1��b zk−1 sin
2 − q

q − 1
arctan z�

��1 + z2��2−q�/2�q−1� dz with k � N . �36�

Here, Jk�q ,�� is a rapidly decreasing function of k �see Fig. 3�, which makes the sum given in �33�
converge, consistently with the finiteness of the domain of f in integral in Eq. �31�. Moreover,
from Fig. 3, we can infer that, in the limit �→�, Jk�q ,��→0. Therefore, Eq. �33� implies that

�
a

b

f�x��q�x�dx =  f�0� if a � 0 � b

f�0�/2 if either a = 0 � b or a � 0 = b

0 if 0 � �a,b� .
� �37�

In the case when dom f is unbounded, i.e., if dom f = �a ,��, or dom f = �−� ,b�, or dom f
=R, a similar analysis yields once again relation �37�. Moreover, we numerically tested the
validity of the mentioned relation using some types of functions and distributions �for example,
the Gaussian and the Lorentzian�. Hence, it seems reasonable to conjecture that, for a wide class
of functions, �q�x� indeed is a representation of Dirac delta. Thus, we can finally write

��x − x�� =
2 − q

2�
�

−�

�

eq
−i��x−x��d� �q � �1,2�� . �38�

2 5 10 20 50 100
10�190
10�158
10�126
10�94
10�62
10�30

k

Jk�q,��

FIG. 3. �Color online� The k-dependence of Jk�q ,��, numerically obtained, considering b=−a=1 for q=1.4 and different
values of �. From top to bottom: �=10, �=1010, and �=1020.
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III. SQUARE INTEGRABILITY OF q-PLANE WAVES

Let us consider the following function:

��x� = Neq
i�x = N�cosq��x� + i sinq��x�� with q � �1,3�, �39�

which can be interpreted as a stationary q-plane wave, where the q-generalized trigonometric
functions are defined, for any x�R, by �see also Ref. 20�

cosq x � Re�eq
ix� =

cos� 1

q − 1
arctan��q − 1�x�	

�1 + �q − 1�2x2�1/2�q−1� �40�

and

sinq x � Im�eq
ix� =

sin� 1

q − 1
arctan��q − 1�x�	

�1 + �q − 1�2x2�1/2�q−1� . �41�

We illustrate these functions in Fig. 4.
We will determine now the value of the constant N using the normalization condition given by

�
−�

�

���x���x�dx = 1. �42�

Thus, we have

1

N2 = �
−�

�

eq
−i�xeq

i�xdx , �43�

which, using the definition of the q-exponential function given in �8�, can be written as

1

N2 = �
−�

� 1

�1 + �q − 1�2�2x2�1/�q−1�dx . �44�

Using the change of variables tan 
= �q−1��� �x, this relation yields

1

N2 =
1

�q − 1�����−�/2

�/2

�cos 
��4−2q�/�q−1�d
 . �45�

Therefore, we obtain that the normalization constant is given by

�10 �5 0 5 10 15
x

�1.0

�0.5

0.5

1.0
cos1.1x

�10 �5 0 5 10 15
x

�1.0

�0.5

0.5

1.0
sin1.1x

(b)(a)

FIG. 4. �Color online� �a� cos1.1 x �continuous curve� and cos x �dashed curve�. �b� sin1.1 x �continuous� and sin x �dashed�.
For 1�q�3, cosq x �sinq x� is an even �odd� function of x. For 1�q�3, both functions cosq x and sinq x quickly decay
when �x�→�, in contrast to cos x and sin x.
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N = � �q − 1����
 1

q − 1
�

��
 3 − q

2�q − 1�� �
1/2

. �46�

Let us emphasize that the function ��x�=e1
ikx �plane wave� cannot be normalized, whereas q-plane

waves, with q� �1,3�, have a finite norm �see Fig. 5�.

IV. CONCLUSIONS

From the analytical and numerical results shown in Sec. II, we conjecture Eq. �38�, i.e., that
�q�x� is indeed a generalization of the standard representation of Dirac delta in plane waves.
Further research is welcome in order to establish which precise class of functions satisfies relation
�37�.

Concomitantly, we found two new families of representations, namely, expressions �23� and
�25�, of the transcendental number �. We tested the validity of such expressions for a set of values
n�N and 	�R. A demonstration is still required in order to formally establish these new families
of representations of �.

A generalization of FT, namely, the so-called q-Fourier transform �q-FT� was developed in
order to generalize the central limit theorem. The possible analytic expression of the inverse q-FT
remains to be found. It is known that, using the representation in plane waves of Dirac delta
together with the expression of the direct FT, it is possible to find the expression of the inverse FT.
Consequently, we suppose that the present q-generalization of the representation in plane waves of
Dirac delta might be helpful in searching for an analytic expression of the inverse q-FT. Moreover,
the present new representations of Dirac delta could be useful to handle some integrals that may
appear in the analysis of certain physical phenomena.

Finally, we prove a physically appealing property, namely, that the q-plane wave form eq
ikx is

square integrable �in other words, normalizable� for 1�q�3, in contrast to the standard form,
eikx, which is not.
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APPENDIX: TRIGONOMETRIC IDENTITY

We establish here an expression for sin�2	�q�
�, with 2	�q��N and 
�R, written in terms
of sin 
 and cos 
. First, we have

1.0 1.5 2.0 2.5 3.0
0

0.2

0.4

0.6

q

������������������
N
����������� Ξ �

FIG. 5. The normalization constant N as a function of q. N goes to zero in the q→1 limit, thus recovering the well known
non-normalizability of the plane waves.
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sin�2	�q�
� = Im��cos 
 + i sin 
�2	�q�� , �A1�

then, using binomial expansion, we have

sin�2	�q�
� = Im� �
k=0

2	�q� 
2	�q�
k

��cos 
�2	�q�−k�sin 
�k�i�k� �A2�

=− �
k=1

�odd�

2	�q�

�i�k+1
2	�q�
k

��cos 
�2	�q�−k�sin 
�k. �A3�

Finally, this expression can be rewritten as follows:

sin�2	�q�
� = �
k=0

�	�q�+1/2�−1

�− 1�k
2	�q�
2k + 1

��cos 
�2	�q�−2k−1�sin 
�2k+1, �A4�

where we have used the floor function � �, defined, for any real number x, by �x�=n such that n
�x�n+1, with n�Z.
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