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Abstract. Extremization of the Boltzmann-Gibbs (BG) entropy SBG = −k
∫

dx p(x) ln p(x) under ap-
propriate norm and width constraints yields the Gaussian distribution pG(x) ∝ e−βx2

. Also, the basic
solutions of the standard Fokker-Planck (FP) equation (related to the Langevin equation with additive
noise), as well as the Central Limit Theorem attractors, are Gaussians. The simplest stochastic model
with such features is N → ∞ independent binary random variables, as first proved by de Moivre and
Laplace. What happens for strongly correlated random variables? Such correlations are often present
in physical situations as e.g. systems with long range interactions or memory. Frequently q-Gaussians,
pq(x) ∝ [1− (1− q)βx2]1/(1−q) [p1(x) = pG(x)] become observed. This is typically so if the Langevin equa-
tion includes multiplicative noise, or the FP equation to be nonlinear. Scale-invariance, e.g. exchangeable
binary stochastic processes, allow a systematical analysis of the relation between correlations and non-
Gaussian distributions. In particular, a generalized stochastic model yielding q-Gaussians for all (q �= 1)
was missing. This is achieved here by using the Laplace-de Finetti representation theorem, which embod-
ies strict scale-invariance of interchangeable random variables. We demonstrate that strict scale invariance
together with q-Gaussianity mandates the associated extensive entropy to be BG.

PACS. 05.20.-y Classical statistical mechanics – 02.50.Cw Probability theory – 05.90.+m Other topics
in statistical physics, thermodynamics, and nonlin. dyn. systems – 05.70.-a Thermodynamics

One of the cornerstones of statistical mechanics is the
functional connection of the thermodynamic entropy with
the set of probabilities {pi} of microscopic configurations.
For the celebrated Boltzmann-Gibbs (BG) theory, this
functional is given by

SBG = −k
W∑

i=1

pi ln pi, (1)

where W is the total number of microscopic states which
are compatible with the information available about the
system. This powerful connection is in principle applicable
to a vast class of relevant systems, including (classical) dy-
namical ones whose maximal Lyapunov exponent is posi-
tive warranting strong chaos, hence mixing in phase space,
hence ergodicity (Boltzmann, in some sense, embodied all
these features in his molecular chaos hypothesis). Within
this theory exponential distributions, i.e. exponential sta-
tistical factors, emerge naturally.
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In particular, the Gaussian distribution pG ∝ e−βx2

with β > 0 is found to be the velocity (Maxwell) distri-
bution of any classical many-body Hamiltonian system in
thermal equilibrium with a thermostat i.e., if the inter-
actions between its elements are sufficiently short-ranged,
or inexistent. Furthermore, this important probabilistic
form maximizes the (continuous version of the) entropy
SBG = − ∫

dx p(x) ln[p(x)] under the basic constraints of
normalizability and finite width; The Gaussian constitutes
the exact solution of the simplest form of the (linear)
Fokker-Planck equation (i.e. corresponding to Langevin
equations with purely additive noise); the Gaussian is
further the N → ∞ attractor of the appropriately cen-
tered and scaled sum of N independent (or weakly cor-
related in an appropriate sense) discrete or continuous
random variables whose second moment is finite (Cen-
tral Limit Theorem). The simplest probabilistic model
which realizes these paradigmatic features is a set of N
independent equal binary random variables (each of them
taking, say the values 0 and 1, with probability 1/2).
The probability of having, for fixed N , n 1’s is given by

http://www.epj.org
http://dx.doi.org/10.1140/epjb/e2009-00330-1


264 The European Physical Journal B

N !
n! (N−n)! 2−N . Its limiting distribution is, after centering
and scaling, a Gaussian (as first proved by de Moivre and
Laplace), and its (extensive) entropy is the one of BG,
since SBG(N) = Nk ln 2.

What happens with the above properties when these
binary random variables are not independent and the cor-
relations between those variables (homogeneously spread
over the system) are strong enough? There is in principle
no reason for expecting the relevant limiting distribution
to be a Gaussian, and the entropy which is extensive (i.e.,
S(N) ∝ N for N � 1) to be SBG. The purpose of this
paper is to answer such questions for a mathematically in-
triguing class of correlated processes – which can be inter-
preted as prototypical mean field models – and therefore
are relevant in natural, artificial and even social systems.
Let us discuss the frequently occurring q-Gaussians, a nat-
ural generalization of the Gaussians, defined as

pq(x) ∝ [1 − (1 − q)βx2]1/(1−q) [p1(x) = pG(x)], (2)

where x ∈ R for q < 3 (for q ≥ 3, normalizability is lost),
and x2 ≤ 1/[(1 − q)β] for q < 1. (i) q-Gaussians appear,
e.g., as the exact solutions of paradigmatic non-Markovian
Langevin processes [1,2] which lead to inhomogeneous
linear [3], or homogeneous nonlinear [4,5] Fokker-Planck
equations. (ii) q-CLT attractors are q-Gaussians [6]. (iii)
The extremization of Sq with norm and finite width con-
straints yields q-Gaussians. Sq [7] is a (generically nonad-
ditive [8]) generalization of BG entropy, namely

Sq = k
1 − ∫

dx [p(x)]q

q − 1
(q ∈ R; S1 = SBG). (3)

Usually the extensive entropy of systems is given by the
Boltzmann Gibbs entropy SBG which is identical with Sq

for q = 1. It is noteworthy at this point that there exist
systems with distribution functions (which are in general
not q-Gaussian) depending on the system size N in such a
way that SBG is not the extensive entropy any more while
Sq becomes the extensive entropy for specific values of
q < 1 denoted by qent, i.e., Sqent(N) ∝ N (N � 1), [9,10].
As is well known, for all standard short-range-interacting
many-body Hamiltonian systems, we have qent = 1, i.e.
SBG, which is identical to S1, is extensive. (iv) Numerical
indications [11] for the distributions of velocities in qua-
sistationary states of long-range Hamiltonians [12] suggest
q-Gaussians. Different interpretations of the situation are
given in [13,14]. (v) Further, experimental and observa-
tional evidence for q-Gaussians exist for the motion of
biological cells [15,16], defect turbulence [17], solar wind
[18,19], cold atoms in dissipative optical lattices [20], dusty
plasma [21], among others. Numerical indications are also
available at the edge of chaos of unimodal maps [22] (see
also [23]). In [24] a specific model for correlated binary
random variable was shown to converge to q-Gaussian dis-
tributions in the thermodynamic limit for q < 1. Yet, no
mechanism was given of how such models can be generated
from general principles. This will be done in this paper.
In particular, it will be shown how the model given in [24]
can be generated and how by the same means q-Gaussian
models can be generated for 1 < q < 3.

In the following we consider binary exchangeable sto-
chastic processes, with correlated elements say from x ∈
{0, 1}. Exchangeable means that the N -point probabili-
ties
pN(x1, x2, . . . , xN ) of the process are totally symmetric
in its arguments for all N and that pN can always be
obtained by marginalization of pN+1. In particular, the
probability of a specific sequence (x1, x2, . . . , xN ), a mi-
crostate, does not depend on the order of binary events,
but only on the number n of events in the state xi = 0
and N −n events in the state xj = 1. Following the nota-
tion in [24] we denote this probability as rN

n . There are
(
N
n

)

such micro-states (where the order of the xi is exchanged),
and the probability of finding any situation with n events
in one state is given by

pN
n =

(
N

n

)

rN
n ,

N∑

n=0

pN
n = 1. (4)

Total symmetry of the micro-states, ∀N , implies rN−1
n =

rN
n + rN

n+1, sometimes referred to as the Leibniz trian-
gle rule [9], or scale-invariance of the distribution. Scale-
invariance means here that at every ‘scale’ N the rela-
tion pN(x1, x2, . . . , xN ) =

∑
xN+1

pN+1(x1, x2, . . . , xN+1)
holds (where the sum runs over the possible discrete val-
ues of the random variable), i.e. the distribution at a lower
scale can always be obtained by marginalization of higher
scales. What does this mean for physical systems? If we
look at the binary stochastic process in terms of coin
tosses, this means that the transition probabilities that
bias the N ′th coin toss depend only on the number of
tails and heads thrown after N − 1 tosses and not on the
particular history of coin tosses. If the coin tosses steer a
random walk this means that the next step of the random
walk is biased by the elapsed time (number of coin tosses
N) and the distance the random walk has covered to its
origin (N − 2n) but not on the particular path the ran-
dom walk has taken. In all Hamiltonian systems where the
interactions are sufficiently long-range and strong enough
for mean field solutions to be exact or close to exact to-
tally symmetric correlations become physically relevant.
Clearly, when mean field solutions become exact correla-
tions between the state variables become totally symmet-
ric. For binary state variables, i.e. Ising like spin systems,
this implies that the conditional probability of one arbi-
trary spin being in one particular state conditioned on
the state of all other spins only depends on the number of
spins in one or the other state and not on the particular
spin configuration of the system. Correlations introduced
by such interactions can be understood in terms of ex-
changeable processes.

For dealing with such binary correlated systems the
following representation was suggested by Laplace in 1774,
and later rediscovered by de Finetti [25,26];

rN
n =

∫ 1

0

dy yn(1 − y)N−ng(y)
[∫ 1

0

dy g(y) = 1
]
. (5)

This representation ensures Leibniz triangle rule and nor-
malization,

∑N
n=0

(
N
n

)
rN
n = 1. Note that the non-negative
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g introduces the correlations in the stochastic process. In
the case of independent variables, we have g(y) = δ(y−p),
i.e. rN

n = pn(1 − p)N−n is the usual binomial factor for
independent trials. The fact that any stochastic process
which is exchangeable to all scales N can be represented in
this way is called the Laplace-de Finetti theorem [25–27]
(if processes are exchangeable only up to a scales Nmax

positivity of g is not ensured and negative correlations can
occur [26]).

In order to pass from probabilities to distributions and
from sums to integrals in a Riemann-Stieltjes sense in the
thermodynamic limit N → ∞ we use the well known prop-
erties of the Beta function, B(a, b) ≡ ∫ 1

0 dxxa−1(1−x)b−1,
to re-express the binomial factor in equation (4). Defining
ρN

n ≡ (N + 1)pN
n turns equation (4) into

ρN
n =

∫ 1

0
dxxn(1 − x)N−ng(x)

∫ 1

0 dxxn(1 − x)N−n
, 1 =

N∑

n=0

1
N + 1

ρN
n .

(6)
As a consequence of this construction the natural domain
of the limit distribution ρ(y) is the interval y ∈ [0, 1].
Using yN

n = (1/2+n)/(N +1), for n = 0, 1, . . . , N , as dis-
cretization of [0, 1] in the limit one gets 1/(N + 1) → dy
and yN

n → y. Denote the natural number closest to the
value (N + 1)y − 1/2 by [(N + 1)y] then the limit dis-
tribution gets ρ(y) = limN→∞ ρN

[(N+1)y]. These arguments
imediately lead to

ρ(y) = lim
N→∞

∫ 1

0
dx

[
xy(1 − x)1−y

]N
g(x)

∫ 1

0 dx [xy(1 − x)1−y]N
. (7)

Notice that the maximum of xy(1− x)1−y with respect to
x is obtained at x = y and gets amplified above all other
values of the function by the power N . For N → ∞ we
therefore get a delta sequence and

δ(x − y) = lim
N→∞

[
xy(1 − x)1−y

]N

∫ 1

0
dx [xy(1 − x)1−y]N

. (8)

Consequently,

ρ(y) =
∫ 1

0

dx δ(x − y)g(x) = g(y), (9)

i.e. limN→∞
∑

n |ρN
n − g(yN

n )| = 0. The limit distribution
ρ and the function g generating the Leibniz-triangle rN

n
are in fact identical! Therefore, once a desired limiting
distribution on [0, 1] is given, one can simply write down
the sequence of rN

n which is generating it! Though it is
known that g may become negative [26], if scale-invariance
is broken and the model is exchangeable only up to a max-
imal scale Nmax, this interpretation of g makes it clear
why non-negativity of g is required in the limit N → ∞.
The limit distribution ρ(y), i.e. g(y), of binary exchange-
able processes is defined on y ∈ [0, 1], where y is ba-
sically the ratio of events n/N in the limit of large N .
However, prototypical processes, e.g. spin-systems or ran-
dom walks, depend on binary processes (spins up/down

or number of left/right steps). Yet, their associated ob-
servable variable is not the ratio n/N of binary events
but some other descriptive variable z (the magnetization
or the position of a random walk). Since the domain of
the descriptive variable z will in general not be [0, 1] (e.g.
typically [−1, 1] for spin systems and [−∞,∞] for random
walks) it has to be clear from the beginning that the form
of the limit distribution of the descriptive variable z will
not only depend on g but also on the relation between
z and the binary process, i.e. on y = n/N , which may
or may not depend on the scale N . E.g., if equidistant
spacing on intervals [−RN , RN ] ⊂ [−∞,∞] as RN → ∞
is considered (as is the case of CLT) this relation will
in general be a variable transformation depending on the
scale N . For simplicity we only consider the case of N in-
dependent transformations of variables between y and z.
We assume a symmetric distribution G(z) of the descrip-
tive variable z that can be obtained by a transformation
of variables defined by dzG(z) = dyρ(y). We will call a
strictly monotonous increasing antisymmetric functions f ,
such that the effective stochastic variable z will take the
values zN

n = f(2yN
n − 1), a symmetric representation of

the binary process. To be clear, z = f(2y − 1) is precisely
the change of variables relating the generating function g
of the binary process with the limit distribution G of the
observable process z. In particular, G and g are one-to-one
related by 2f ′(2y−1)G(f(2y−1)) = g(y). Each pair (f, g)
exactly defines the distribution G of the binary process.
Moreover, fixing G and the representation f uniquely de-
termines g. Inversely, for a given observable distribution
G, any pair (f, g) that represents G can serve as a stochas-
tic model for G. A physical view on the meaning of f and
g can be given by Galton’s board, where f corresponds
to the positions of needles on the board while g fixes the
probabilities of balls being reflected to the left or right at
the condition of hitting some needle.

We now proceed to derive a stochastic model with
q-Gaussian limit distributions. For the case of q < 1,
the q-Gaussian Gq(z) = 1

Zq
[1 − (1 − q)z2]1/1−q is de-

fined on a compact support, |z| ≤ 1√
1−q

. To identify it
with the limiting distribution we have to map z to the
unit interval by z = f(2y − 1) = 1√

1−q
(2y − 1). Since

the support of the q-Gaussian Gq(z) for q < 1 is com-
pact an affine transformation is the natural choice for
the change of variables. Under an affine variable trans-
formation Gq(z) → ρ(y) = 1

Zq
4y

1
1−q (1 − y)

1
1−q , where

Zq = 4B
(

1
1−q + 1, 1

1−q + 1
)
. Consequently, by introduc-

ing the notation ν ≡ 1
1−q + 1, we get g(y) = [y(1−y)]

1
1−q

B(ν,ν)

and, finally, by using equation (5),

rN
n (q) =

B (ν + n, ν + N − n)
B(ν, ν)

. (10)

To retrieve the original q-Gaussian Gq(z) one has to per-
form the inverse coordinate transformation. This maps the
discretization

zN
n = f(2yN

n − 1), i.e., zN
n = (2yN

n − 1)/
√

1 − q (11)
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and the discretization-width becomes dz ≡
2/(

√
1 − q(N + 1)), which takes into account the

the factor 2f ′(2yN
n − 1) = 2/

√
1 − q from the change of

variables. Analogous to ρ the discrete formulation of the
q-Gaussian Gq reads FN

n = (dz)−1
(
N
n

)
rN
n and

lim
N→∞

∑

n

|FN
n − Gq(zN

n )| → 0. (12)

This is exactly the model which was heuristically found
in [24]. There the model was presented as

rN
0 (q) =

(N + ν − 1)(N + ν − 2) . . . ν

(N + 2ν − 1)(N + 2ν − 2) . . . (2ν)
, (13)

for integer values of ν, which is obviously a particular case
of equation (10).

Since the q-Gaussian has no compact support for q > 1
the situation becomes more involved, since now one has
to map the real axis to the unit interval [0, 1]. Such a q-
Gaussian Gq(z) with z ∈ [−∞,∞] may be thought of as
distributions of the distance z a peculiar random walk has
covered in the long time limit. There is no map f now that
is a natural choice, a priori. However, in order to explicitly
compute the probabilities rN

n one may choose a map such
that rN

n is given in terms of Beta functions, as before.
This leads to the situation that pairs of q-Gaussians, one
with q < 1 and another with q > 1, can be generated by
the same binary process and differ only in terms of the
representation f .

Let us find a map f such that f(2y−1) again maps y ∈
[0, 1] to z ∈ [−∞,∞]. Using the normalization condition
of the q-Gaussian this variable transformation implies 1 =∫ ∞
−∞ dz Gq(z) =

∫ 1

−1 dx f ′(x)Gq(f(x)) and identify

g(y) = 2f ′(2y − 1)Gq(f(2y − 1)). (14)

A particular f to compute rN
n in closed form is given by

f(y) =
y

√
1 − y2

1√
q − 1

and f ′(y) =

(
1 − y2

)−3/2

√
q − 1

.

(15)
Noting, that this model f for the q-Gaussian implies [1−
(1 − q)f(y)2]1/(1−q) = (1 − y2)1/(q−1). Inserting this into
equation (14) we finally get the stochastic model,

rN
n (q) =

B (μ + n, μ + N − n)
B (μ, μ)

, (16)

where we have used the notation μ = 1
q−1 − 1

2 . All that is
left is to place everything correctly. We use the same dis-
cretization yN

n = (1/2 + n)/(N + 1) for the interval [0, 1]
as for q < 1. Again, dyN

n = 1/(N + 1) is the width of
the discretization on [0, 1] and with ρN

n = (dyN
n )−1

(
N
n

)
rN
n ,

we get that limN→∞
∑

n |ρN
n − g(yN

n )| = 0, as a power
of N as in the 0 < q < 1 case. To retrieve the q-
Gaussian Gq(z), one has to perform the inverse coordi-
nate transformation y ∈ [0, 1] → z ∈ [−∞,∞]. This is
a little more complicated since the discretization width

now depends on N and n. In particular, mapping back
to [−∞,∞] gives the discretization zN

n = f(2yN
n − 1), i.e.

zN
n = (yN

n −1/2)/
√

(q − 1)yN
n (1 − yN

n ), and the discretiza-
tion width becomes dzN

n ≡ (yN
n (1 − yN

n ))−3/2/(4(N +
1)
√

q − 1). The discretized version of the q-Gaussian for
q > 1 now reads, FN

n = (dzN
n )−1

(
N
n

)
rN
n . In the limit we

get limN→∞
∑

n |FN
n − Gq(zN

n )| → 0, as a power of N .
Comparing equations (10) and (16) it is obvious that for
the two models of the q-Gaussian distribution (q < 1 and
q̄ > 1) the generating binary processes rN

n are identical
whenever ν = μ. ν and μ are functions of q and q̄, and
ν(q) = μ(q̄) establishes a relation between two q-Gaussian
distributions generated by an identical exchangeable bi-
nary stochastic process, i.e. q̄ = 7−5q

5−3q ; q increasing from
−∞ to 1 yields q̄ decreasing from 5/3 to 1. Therefore, the
models of q-Gaussian distributions with q < 1 are con-
jugate with the model of q̄-Gaussian with q̄ ∈ [1, 5/3] in
the sense of being driven by an identical binary stochas-
tic process. The class of q̄-Gaussian distributions with
q̄ ∈ (5/3, 3], which is exactly the class of normalizable
q̄-Gaussian distributions with diverging second moment,
are not identified with a q < 1. The corresponding binary
processes are unique in this sense. For instance, choosing
1 < q̄ = 2 requires 1 > q = 3, which is impossible. For
q̄ = 2 it follows that μ = 1/2 and the associated binary
process rN

n = B (1/2 + n, 1/2 + N − n) /B (1/2, 1/2) has
no representation for any q < 1, and rN

0 = B(1/2,1/2+N)
B(1/2,1/2) =

2−2N
(
2N
N

)
. Of course one can choose many families (fq, gq)

of models for q-Gaussian limit distributions and, for each
strictly monotonous function q̄ : [−∞, 1] 
→ [1, 3], it is
possible to construct conjugate families of models in the
sense that they are generated by the same family of bi-
nary processes. In fact when the function Lq is defined by
∫ Lq(z)

0
dz′Gq(z′) =

∫ z

0
dz′′Gq̄(q)(z′′) and (fq, gq) is a model

for a q-Gaussian with q < 0 then (Lq(fq), gq) is a conju-
gate model of the q̄-Gaussian with q̄ = q̄(q). This allows to
conjugate families of models for different dualities recog-
nized in q-statistics, e.g. q̄ = (5− 3q)/(3− q) for q-Fourier
transforms [28].

We have explicitly derived two possible stochastic
models for correlated and exchangeable binary random
variables, which lead to exact q-Gaussians as the limiting
distributions, while strictly satisfying Leibniz rule,

rN
n =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B
(

2−q
1−q + n, 2−q

1−q + N − n
)

B
(

2−q
1−q , 2−q

1−q

) if q < 1,

1/2N if q = 1,

B
(

3−q
2q−2 + n, 3−q

2q−2 + N − n
)

B
(

3−q
2q−2 , 3−q

2q−2

) if 1 < q < 3 ,

(17)
q = 1 can be obtained by both q → 1±. Equation (17)
follows for the affine representation for q < 1 and for the
representation f given in equation (15) for q > 1. For
different families of representations fq of the q-Gaussians
the equation has to be adapted accordingly.
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Fig. 1. (Color online) Nonadditive entropy SQ vs. N for a q-
Gaussian with q = 1.5, for Q = 0.92, 1 and 1.02. Clearly, only
Q = 1 is extensive (i.e., S1(N) ∝ N , for N � 1).

Lately the question whether SQ can be the extensive
entropy for specific systems for Q < 1 has been discussed,
e.g. in [9,10]. With the Laplace-de Finetti representation
we consider the entropy SQ for large N and prove that
the value of Q for which SQ is extensive with respect to
the distribution of binary states is Q = 1, i.e. qent = 1, by
straight foreward calculation:

SQ[g] =
1 − ∑N

n=0

(
N
n

)
[rN

n ]Q

Q − 1

=

∑N
n=0

((N+1)(N
n))1−Q

N+1

[∫ 1
0 dx xn(1−x)N−ng(x)
∫ 1
0 dx xn(1−x)N−n

]Q

− 1

1 − Q

=

∫ 1

0
dy

[∫ 1

0
dx [xy(1 − x)1−y ]N

]Q−1

[g(y)]Q − 1

1 − Q
.

(18)

The first line follows from using the exchangeability-
property together with the definition of the q-entropy. The
second line can be obtained by inserting equation (5) for
rN
n and using the properties of the β-function. The third

line follows for large N , where
∑N

n=0 1/(N + 1) → ∫ 1

0
dy,

and using equation (8). To find the index Q where SQ

gets extensive requires dSQ[g]
dN to be a positive constant for

N � 1 for some specific value of Q which is called qent.
We find, by using Stirling’s approximation,

dSQ[g](N)
dN

∼ 2N(1−Q) g (1/2) ln 2. (19)

Hence, for any g(1/2) > 0, SQ(N) growing linearly with
large N requires that Q = 1, since otherwise SQ(N) grows
exponentially with N , i.e., qent = 1 for all such models. It
should be noted that particular choices of representations
f and the observable process (distribution functions) only

result in particular choices of g. Since the result is valid for
all g the result is basically independent of the particular
choice of representing an exchangeable process.

We have shown that the Laplace-de Finetti represen-
tation is a suitable framework which allows to generate
scale invariant probabilistic models by fixing their limit
distribution and a map which describes how the domain
of the observable variable of model is embedded on the
real axis on each scale N . We have demonstrated this
with the q-Gaussian distributions as an example. We have
constructed scale invariant models for q-Gaussians for all
q < 3 and have shown how notions of conjugate families
of processes can be constructed. We have shown that the
Boltzmann Gibbs entropy is the extensive entropy for all
stochastic processes generated by scale-invariant binary
processes.
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