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Influence of aperiodic modulations on first-order transitions: Numerical study
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We study the Potts model on a rectangular lattice with aperiodic modulations in its interactions along one
direction. Numerical results are obtained using the Wolff algorithm and for many lattice sizes, allowing for a
finite-size scaling analyses to be carried out. Three different self-dual aperiodic sequences are employed, which
leads to more precise results, since the exact critical temperature is known. We analyze two models, with 6 and
15 number of states: both present first-order transitions on their uniform versions. We show that the Harris-Luck
criterion, originally introduced in the study of continuous transitions, is obeyed also for first-order ones. Also, we
show that the new universality class that emerges for relevant aperiodic modulations depends on the number of
states of the Potts model, as obtained elsewhere for random disorder, and on the aperiodic sequence. We determine
the occurrence of log-periodic behavior, as expected for models with aperiodic modulated interactions.
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I. INTRODUCTION

Nonuniform systems are ubiquitous in nature. The nonuni-
formity may be a consequence of random disorder or of
a deterministic construction of materials from two different
atoms, for example. Experimentally, there are already several
techniques of surface growth [1–3] that let one control the
layout of the layers in order to follow, for example, an aperiodic
sequence. One of the main theoretical issues is to what extent
the introduction of nonuniformities affects the critical behavior
of a system, when compared with its uniform counterpart.

For random quenched disorder and continuous transitions
on the uniform model, this question is partially answered by
the Harris criterion [4]. According to this criterion, the random
model will have the same critical behavior of the uniform
one if the specific heat critical exponent α of the latter is
negative. The disorder is said to be irrelevant in this case. If
α is positive, the critical exponents of the random model are
different from the exponents of its uniform counterpart, and
the disorder is said to be relevant. For α = 0 (the marginal
case), logarithm corrections appear [5]. A generalization of
this criterion is available also for short-range [6–8] and long-
range [9,10] correlated disorder. When the transition in the
uniform model is a first-order one, the scenario is qualitatively
different: in two dimensions, even an infinitesimal amount of
disorder changes the nature of the transition to a continuous
one [11–14], while in three dimensions a finite amount of
disorder is necessary to change the order of the transition [12].

We are mainly interested here in the critical behavior
of models with aperiodic modulation of their interaction
parameter(s). For the case of continuous transition on the
uniform model, the Harris-Luck criterion determines when
the introduction of a given aperiodic modulation changes the
universality class of a model, compared with its uniform
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version [15]. This change is determined by the crossover
exponent �, given by

� = 1 + daν(ω − 1), (1)

where ω is the exponent describing the behavior of geometrical
fluctuations of the sequence (see below), da is the number of
dimensions upon which the aperiodic sequence acts, and ν is
the correlation-length critical exponent of the uniform model.
When � > 0 the sequence is relevant, and when � < 0 the
sequence is irrelevant.

This criterion applies to continuous transitions in the
uniform model, but numerical results [16,17] indicate that it
holds true also when the transition in the original model is a
first-order one (if this is the case, the introduction of aperiodic
modulations on the interaction parameters leads to a scenario
totally different from the one for random disorder). This result
was established through a study of the ferromagnetic Potts
model [18] with q = 8 states in Refs. [16] and [17]; in this
model a dynamical variable with q states is assigned to each
site on a given lattice, and first-neighbor sites tend to be in
the same state (see below). For low enough q, the transition is
continuous, while it is first order for q above a given value qc (in
two-dimensional lattices, qc = 4). For q = 8, the Harris-Luck
criterion is obeyed and the order of the transition changes for
relevant aperiodic modulations [16,17].

Here we will address two issues. First, we want to provide an
independent check of the Harris-Luck criterion for first-order
transitions. Second, we test the possibility that the new
universality class for relevant modulations depends on the
number of states of the Potts model, as is the case for random
disorder [19,20].

This paper is organized as follows. In the next section, we
review properties of aperiodic sequences and define the model
we use. In Sec. III we discuss details of the simulation, and in
Sec. IV we present and discuss our results. Finally, in the last
section we summarize our findings.
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II. APERIODIC SEQUENCES AND MODEL

The aperiodic sequences we use in this work are constructed
in a deterministic way, using a substitution rule on a two-letter
alphabet, such that no primitive cell is present. As an example
of a two-letter sequence, A and B, we have

s(A) → AB, s(B) → BA. (2)

This notation means that we choose an arbitrary initial letter
(usually A) and, from the above rule, we build our sequence
in the following way. The following generation of a sequence
is obtained by replacing every letter A and B in the previous
generation by AB and BA, respectively. In this example, we
obtain ABBABAAB . . . as our sequence.

Some properties of the sequences can be characterized by
its substitution matrix M, which is defined as

M =
⎛
⎝n

s(i)
i n

s(j )
i

n
s(i)
j n

s(j )
j

⎞
⎠, (3)

where n
s(j )
i is the number of letters i that are generated by

applying the rule s(j ). Several features of the sequences are
determined by the eigenvalues of M. The largest eigenvalue
(λ1) determines the rate of growth of the number of letters
N , such that N ∼ λn

1, n � 1, where n is the number of the
generations in the construction of the sequence. The second
largest eigenvalue (λ2) determines the wandering exponent ω

[see Eq. (1)] through

ω = ln |λ2|
ln λ1

, (4)

such that the fluctuation in one of the letters, g, is given by [21]

g ∼ N ω. (5)

In order to study the effects of the introduction of aperiodic
modulations on models with first-order transitions, we use
the Potts model with q states, which is described by the
Hamiltonian

H = −
∑
〈i,j〉

Jij δσiσj
, (6)

where the sum is made over all first neighbors, Jij is the
coupling constant between sites i and j , σi(=1,2, . . . ,q)
represents the state of site i, and δσiσj

is the Kronecker delta.
The total magnetization of the Potts model for a lattice of linear
size L is defined as

mL(T ) = qρmax − 1

q − 1
, (7)

where ρmax is the density of the most populous state and T is the
temperature. The susceptibility is obtained as the fluctuation
of the magnetization, namely,

χL(T ) = βN (〈m2〉 − 〈m〉2), (8)

where N is the total number of sites.
In the model we study, the interactions in one direction

(e.g., horizontal) follow an aperiodic sequence, such that
an interaction on a given position assumes a value (JA or
JB), according to the letter (A or B, respectively) occupying
the same position on the aperiodic sequence. In the vertical

JBJA JB JBJA

FIG. 1. (Color online) Interactions with strength JA and JB are
represented by dashed and continuous lines, respectively. Note that
the aperiodicity is introduced into the system in only one direction
(horizontal, in this figure). In the vertical direction, all interactions
have the same value as for the following horizontal bonds. The
aperiodic sequence used is the one defined in Eq. (2).

direction, the interactions have the same value as for the
following horizontal bonds [see Fig. 1 for an example of the
sequence defined in Eq. (2)]. Thus, all models we study have
da = 1 [see Eq. (1)].

The three sequences used in this work are presented in
Table I. Two of them are relevant (three-folding, TF, and
paper-folding, PF), assuming the Harris-Luck criterion holds
true for first-order transitions as well. Therefore, they are
expected to change the critical behavior when compared with
the uniform model. The third sequence (Thue-Morse, TM) is
expected to be irrelevant and should not change the universality
class with respect to its uniform counterpart. These sequences
were chosen because they are self-dual, which allows for the
exact calculation of their critical temperature, through the
relation [16]

(eβc − 1)(erβc − 1) = q, (9)

where βc = JA/kBTc, kB is Boltzmann’s constant, Tc is the
critical temperature, and r is the ratio between the coupling
constants, r = JA/JB . Therefore, r describes the amount of
aperiodicity of the model: for r = 1 we regain the uniform
model, and for very small (or very large) r we obtain a series of
independent one-dimensional-like systems (we will comment
on this issue below).

TABLE I. Aperiodic sequences, their substitution rules, and
wandering exponents ω. pLmax is the largest size of the simulated
lattice for q = 6. Note the abbreviations for the sequences. The
quantity p is the rate of growth of the sequence, after one application
of the substitution rule.

Sequence Substitution rule ω p pLmax

Three-folding A → ABA 0 3 19 683
(TF) B → ABB

Paper-folding AA → BAAA 0 2 16 384
(PF) AB → BAAB

BA → BBAA

BB → BBAB

Thue-Morse A → AB −∞ 2 8192
(TM) B → BA
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FIG. 2. Log-log graph of the autocorrelation time τ as a function of the linear size of the lattice, L, for the PF sequence with q = 6 and
r = 0.1.

III. DETAILS OF THE SIMULATION

The models we treat are invariant under a duality trans-
formation, and the exact critical temperature (kBTc/JA) is
known [16,17]. This knowledge allows for a more precise
calculation of critical exponents, using finite-size scaling, but
the simulation at Tc also leads to a severe critical-slowing
down if a single-spin algorithm, such as Metropolis [22],
for example, is used. Therefore, we resort to the Wolff
algorithm [22], which was proved to reduce, by a great amount,
critical-slowing down. A rectangular lattice of size pL × L is
used, with periodic boundary conditions in both directions.
The parameter p varies according to the rate of growth of the
aperiodic sequence. As previously mentioned, the aperiodic
interactions are introduced in only one dimension (the one
with linear size pL). We choose rectangular lattices to be able
to introduce larger aperiodic sequences.

We first checked that the equilibrium values for some
thermodynamic quantities were independent of the initial
configuration. As expected, the time to reach equilibrium
increased with lattice size but, for the worse cases, were
approximately 100 times the autocorrelation time τ . This quan-
tity was evaluated through the integral of the autocorrelation
functions for the magnetization and the energy, and the larger
value was considered. In order to calculate thermal averages,
configurations 2τ apart (in Wolff steps: one Wolff step
corresponds to building and flipping one island) were taken,
which guarantees that the errors may be calculated using the
standard deviation, for both the magnetization and the energy
[22]. All averages are calculated using a sample of at least
104 independent configurations (where two configurations are
considered independent if they are at least 2τ apart).

For the largest lattices, we parallelized our simulation, such
that 20 processes run in different CPUs. Since the time to

reach equilibrium was, for these lattices, approximately 100
times the autocorrelation time, this procedure allows for an
economy in computational time. On the other hand, it prevents
us from calculating the autocorrelation time. To overcome this
difficulty, we have simulated long time series for the smallest
lattices and have extrapolated the autocorrelation times for the
largest ones. See Fig. 2 for an example of this procedure for
the PF sequence, for q = 6 and r = 0.1; the extrapolation to
L = 8192, in this case, leads to τ = 710 000, in Wolff steps. If
this task was made in only one processor, it would take more
than eight months to obtain 1000 independent configurations.

IV. RESULTS

Our first goal is to determined the order of the transition and,
as a consequence, provide an independent test of the Harris-
Luck criterion. In order to do this, we use the so-called Lee-
Kosterlitz method [23], which works as follows. The quantity
FL(E) = − ln PL(E) is calculated for various linear lattice
sizes, L, where PL(E) is the probability distribution for energy
E. It is expected that, for first-order transitions, PL(E) will
present two peaks of the same height in the thermodynamic
limit, one for the disordered phase (high E) and other for the
ordered one (low E). For continuous transitions, on the other
hand, the presence of only one peak is expected. One then
studies the dependence of 
F ≡ ln(PL(Ep)/PL(Eb)) with L,
where Ep and Eb are the values of energy where PL(E) has
a maximum and a minimum, respectively. More precisely, a
plot of 
F as a function of 1/L is made, in order to obtain the
tendency of this barrier in the thermodynamic limit (L → ∞).
If 
F goes to zero in this limit, the transition is a continuous
one; otherwise, it is a first-order transition.
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FIG. 3. Plot of PL(E) (see text) as a function of the energy per
spin for the PF sequence (a) and for the TM sequence (b), for various
values of the linear lattice size L, for r = 0.9 and q = 6, at Tc(L).

In Fig. 3 we plot examples of the behavior of PL(E) for what
we expect to be continuous (a) and first-order (b) transitions,
for r = 0.9 and q = 6, for the TM and PF sequences. Note
that the two-peak structure is present for the TM sequence,

whereas for the PF one a crossover effect takes place and only
one peak is observed for the largest value of L.

In order to put our results on a more quantitative ground,
the behavior of the energy barrier as a function of 1/L is
plotted in Fig. 4, for a homogeneous model and for the three
sequences studied here with r = 0.9 and q = 6. Note the
distinct behavior for the homogeneous model and for the TM
sequence, when compared with the PF and TF sequences.
While 
F increases for L → ∞ for the former two models,
it goes to zero, in the same limit, for the PF and TF sequences,
after a subtle increase for small values of L. This indicates that
the transitions is continuous for the PF and TF sequences and
first order for the TM sequence. This result is consistent with
the Harris-Luck criterion. In order to test if this behavior is
a consequence of a value of r close to unity (homogeneous
model), we have also performed the same procedure for
r = 0.7 (inset of Fig. 4) for the TM sequence, comparing with
the behavior for r = 0.9: it is still evident that 
F increases
with L, and no sign of a crossover is seen, for the range of L

studied.
Note that the Harris-Luck criterion depends on the homo-

geneous model only through the value of ν [see Eq. (1)]. For
models with first-order transitions, one expects that ν = 1/d

[24], where d is the dimension of the system. Specifically for
the Potts model, the value of ν will not depend on the number
of states q, for q > 4 in two dimensions. So it is expected that
our conclusions will hold true for other values of q such that
the phase transition is a first-order one. Although not shown
here, our results for q = 15 support this picture.
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FIG. 4. The energy barrier 
F as a function of 1/L for the homogeneous model and the TM, PF, and TF sequences, for r = 0.9 and q = 6
(main graph). In the inset, a comparison of the behavior of the energy barrier is made for the TM sequence and r = 0.9 and 0.7.
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FIG. 5. Log-log graph of the magnetization (a) and susceptibility (b) vs. pL for the three aperiodic sequences, for q = 6 and r = 0.1. Full
lines correspond to power-law fittings, and dotted lines are guides for the eye. Error bars are smaller than the points.

Therefore, our calculations suggest that the Harris-Luck
criterion is also obeyed when the homogeneous model presents
a first-order transition. In fact, for ν = 1/d = 1/2 and da = 1,
the crossover exponent � reads [see Eq. (1)]

� = 1
2 (ω + 1). (10)

Looking at the values of ω from Table I, we see that � is
negative (irrelevant sequence), � = −∞, for the TM sequence
and positive (relevant sequences), � = 1/2, for the TF and PF
sequences. Our findings agree with the results of Refs. [16]
and [17].

We now turn to the question of the new universality classes
that emerge when the aperiodic sequence is a relevant one,
which is the case for the TF and PF sequences. We will also
address the possibility that the new universality class depends
on the number of states of the Potts model. In order to calculate
the critical exponents, we make simulations at the exact critical
temperature Tc (these two sequences are self-dual, which
allows for the exact calculation of Tc). The quantities we
calculate are the magnetization m and the susceptibility χ ,
which are expected to behave, at T = Tc, as

m ∼ L−β/ν, χ ∼ Lγ/ν, (11)

where L is the linear size of the lattice and ν is the critical
exponent of the correlation length. Log-periodic corrections to
the above behavior are expected, for aperiodic models and, as
we will see shortly, are found in our results. We have calculated
the two quantities cited above for q = 6 and q = 15 in order
to test the dependence of the new critical exponents with the
number of states.

An example of the results we obtain is presented in Fig. 5:
the log-log graphs of the magnetization (a) and susceptibility
(b) for all three sequences, for r = 0.1 and q = 6, are depicted.
The exponents β/ν and γ /ν are the slope of the curves
mL(Tc) × pL and χL(Tc) × pL, respectively. Note the evident
crossover behavior for the TM sequence, which is an irrelevant
one. The slope of the magnetization curve initially follows
the behavior of the curves for the PF and TF sequences but
eventually presents a curvature, and the slope tends to values
closer to zero. Although this is not our stronger evidence for
a first-order transition, the behavior is consistent with the one
for 
F . The same trend is obtained for the susceptibility, and
a crossover to a different behavior is obtained for the TM
sequence.

One possible way to obtain more precise values for the
critical exponents is to make fittings for different ranges of pL.
More precisely, we initially make fittings for pL � 32, which
defines our first estimate. The second estimate is obtained
removing the point with the smallest value of pL used in the
first estimate. The procedure is repeated until only three points
remain, which defines our last estimate [16,17,25]. We then
plot these values versus 1/pLmin, where pLmin is the smallest
value of pL used in a given fitting. The results for β/ν and
γ /ν are depicted in Fig. 6: it appears that the values for the
TM sequence converge to β/ν = 0 and γ /ν = 2, which are
the expected values for a first-order transition [24]. For the
PF and TF sequences, our results are analogous to the ones in
Refs. [16,17]. However, a detailed look at Figs. 6(b) and 6(c)
for small values of 1/pLmin shows that the convergence to
the thermodynamic limit is not the usual one: oscillations are
present for both β/ν and γ /ν, and they do not die out for the
largest lattices. This behavior maybe a sign of log-periodic
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FIG. 6. Semilog graph of the exponents vs. 1/pLmin for the three-folding sequence, for r = 0.1, q = 6, and the three sequences studied.

oscillations, expected to be present in models with aperiodic
modulations [26,27].

In order to test this possibility, we have calculated the
ratio of the exponents in the following way. For each three
successive points of m(Tc) or χ (Tc) we fit a straight line and
plot its slope as a function of 1/pL̃, where pL̃ is the smallest
value of the three used to make a given fit. For the “usual”
behavior, the value of these slopes should converge to the
thermodynamic value of β/ν or γ /ν, respectively [25]. In
Fig. 7 we show the results of this procedure for the ratio β/ν,
for the PF sequence, r = 0.1, and q = 6 and 15. As clearly
seen in this figure, our results show no sign of this expected
convergence. In fact, our data are well fitted by a log-periodic
function, in the form

�(L) = � + A cos[B log(L) + C], (12)

where �(L) stands for the slope of the straight line at a given L

and � stands for γ /ν or β/ν, depending on whether we use the
data for χ (Tc) or m(Tc), respectively. This shows the expected
behavior for systems with aperiodic modulations [26,27].

Note that Eq. (12) has four fitting parameters, and this
requires a reasonable amount of data points. We can accom-
plish this for the PF sequence, and good fittings are obtained
in this case. However, two issues should be addressed here.
First, note that fewer data points are available for the TF
sequence, in comparison with the PF one (this is due to
the larger rate of growth of the former sequence). Therefore,
one should anticipate that a fitting using Eq. (12) might not
be satisfactory. We have, therefore, applied a second procedure
to obtain γ /ν and β/ν for the PF sequence: we ignore the
log-periodic oscillation and fit the data to a straight line. In this
case, only two parameters are necessary, and one hopes that
fewer points are needed to provide a good fitting. In Table II

we compare β/ν and γ /ν calculated using the two procedures
explained above, for the PF sequence and q = 6 and 15. One
can note that, within error bars (assumed here as one standard
deviation), the values for straight-line fitting and with the use of
a log-periodic function [Eq. (12)] coincide. This corroborates
our strategy for the TF sequence: since for this sequence a
precise fitting using a log-periodic function is not possible, we
will rely on the straight-line fitting, to obtain γ /ν and β/ν.

Also from Table II, we notice that the values for γ /ν and
β/ν depend on the number of estates q. This is the same result
as for random disorder [19,20,28]. Note also that although our
values for β/ν are not equal to those for random disorder [28],
for a given q, the percentage difference between the values for
q = 6 and 15 are the same for our model and for the model
studied in Ref. [28].

The second issue we would like to address is the presence
of crossover effects, for values of r close to 1 and close to 0.
For the former, one expects “contamination” from the uniform
behavior, with a crossover effect and effective exponents, not
representing the behavior of the aperiodic model. On the other
hand, for r = 0 the lattice breaks into isolated strips, which are
one-dimensional. Therefore, one has to take into consideration

TABLE II. Values for the ratios β/ν and γ /ν for the PF
sequence, calculated through a straight-line fitting (S) and using
a log-periodic function (LP). q is the number of states. Each entry
is the average over three values of r (see text).

β/ν γ /ν

q S LP S LP

6 0.469(5) 0.470(4) 1.032(12) 1.03(1)
15 0.509(16) 0.499(10) 0.93(6) 0.93(2)
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FIG. 7. Graphs of β/ν versus 1/pL̃ (see text) for the PF sequence, r = 0.1, and q = 6 (a) and q = 15 (b).

the possibility that a crossover from the one-dimensional
model to the aperiodic behavior may take place. This would
be shown as a dependence of the critical exponents on r [25];
in fact, from our results obtained for r ranging from 0.001 to
0.5, we notice that reasonable stable values for β/ν and γ /ν

are obtained for r between 0.05 and 0.1. This means that the
aperiodic-model universality class is located in this interval.
In Fig. 8 we show the behavior of the two ratios mentioned

above as functions of r , for the PF sequence and q = 6 (our
results for the TF sequence or for q = 15 follow this same
behavior). Since we cannot be more precise in locating the
value of r that represents the behavior of the aperiodic model,
we take our values for γ /ν and β/ν as the average of the
values calculated for r = 0.1, 0.067, and 0.05. Note that γ /ν

increases for small r and for r close to 1. This is the expected
behavior, since for r = 1 γ /ν is expected to assume the value 2

-3 -2.5 -2 -1.5 -1 -0.5
log(r)
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1.08

γ/
ν
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ν

FIG. 8. Graphs of the ratios γ /ν (main graph) and β/ν (inset) as a function of log(r) for the PF sequence and q = 6.
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TABLE III. Values for the ratios β/ν and γ /ν for PF and TF
sequences, calculated through a straight-line fitting. q is the number
of states. Each entry is the average over three values of r (see text).
Numbers between parentheses represent the error in the (two) last
digit(s). Results for q = 8 are from Ref. [17], for r = 10 (equivalent
to our r = 0.1).

PF TF

q 6 8 15 6 8 15

β/ν 0.469(5) 0.49(1) 0.509(16) 0.433(4) 0.44(2) 0.47(2)
γ /ν 1.032(12) 1.01(1) 0.93(6) 1.13(1) 1.09(3) 1.00(3)

in two dimensions [16,24]. The same is true for r close to zero,
since in this limit the one-dimensional character of the model
should lead to an exponential divergence of the susceptibility.
For β/ν, the decrease in its value for r close to 1 and 0 reflects
the fact that in these two limits the transition is first order, such
that β = 0 [16,24]. Note that our estimate for the location of
the aperiodic-model universality class coincides with the result
for random-disorder Potts-model universality class [28].

Finally, we turn to the TF sequence. As mentioned above,
we do not have enough points to make a reliable fitting with
a log-periodic function. Therefore, we resort to straight-line
fittings to obtain β/ν and γ /ν. We have made simulations for
many values of r and noticed that the stable region is between
r = 0.05 and 0.1 (the exact point where the aperiodic-model
universality class is present may vary from one sequence to
another and from q = 6 to 15, but we do not have enough
precision to pinpoint the correct value of r). So we have
taken as our results averages over r = 0.1, 0.067, and 0.05. In
Table III we summarize our results for both sequences and for
q = 6 and 15 for straight-line fittings.

Our results strongly suggest that the new universality class
that emerges when aperiodic modulations are introduced in
the Potts model depends on the number of states q and on
the aperiodic sequence. This latter conclusion is supported
by the calculations in Ref. [17]. Together with the results of
Refs. [16] and [17], we can establish that β/ν (γ /ν) increases
(decreases) with q, but we are not able to propose a dependence
law. Finally, we would like to mention that our results, shown
in Table III, for both sequences and both values of q satisfy
the equality 2β/ν + γ /ν = 2, within error bars.

V. CONCLUSION

We have performed a numerical simulation of Potts models
on the square lattice with aperiodic modulations of the

interaction parameter in one direction. The Wolff algorithm
was used, and three different aperiodic sequences were studied,
for q = 6 and 15 number of states. For these cases the transition
on the uniform model is a first-order one. Using the Lee-
Kosterlitz method, we verified that the Thue-Morse sequence
does not change the universality class of the transitions,
whereas the Paper-Folding and Three-Folding sequences turn
the transition into a continuous one. These results are in
accordance with the Harris-Luck criterion and confirm and
extend the results of Refs. [16] and [28]. Therefore, we expect
that this criterion applies to first-order transitions, although
it was introduced in the context of models with continuous
transitions.

For the two sequences that are relevant, we calculate the
universality class, simulating the systems on their exact critical
temperature. Using finite-size scaling arguments, we were able
to show that this new universality class depends on the number
of states q and on the aperiodic sequence. This latter result is
in accordance with earlier calculations [16,28].

We have also made simulations to calculate the exponent
of the correlation length ν, studying quantities such as the
fourth-order cumulant and logarithmic derivatives of the
magnetization [29]. However, strong oscillations, already seen
in Refs. [16] and [28], prevented us from getting precise
results.

In order to calculate ν, obtain more precise values for the
value of r that represents the critical behavior of the aperiodic
model, and go to larger values of q, we are now using a
transfer matrix matrix approach. Mapping the Potts model
onto a Whitney polynomial [30], the number of states q enter
as a parameter, and the matrix involved grows much slower
than qN , where N is the number of rows of the finite system.
This allows for more precise values, for large q, than using
Monte Carlo simulation.

Note added in proof. Our attention was drawn to the work
by Turban and Igloi [31] where the authors calculate critical
parameters for a Potts model with a free surface, for large
number of states q. When the system follows a Fibonacci-type
modulation, which is marginal, in the context of the Harris-
Luck criterion, the exponents vary with the strength of the
aperiodic perturbation.
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