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We analytically link three properties of nonlinear dynamical systems, namely sensitivity to initial
conditions, entropy production, and escape rate, in z-logistic maps for both positive and zero Lyapunov
exponents. We unify these relations at chaos, where the Lyapunov exponent is positive, and at its onset,
where it vanishes. Our result unifies, in particular, two already known cases, namely (i) the standard
entropy rate in the presence of escape, valid for exponential functionality rates with strong chaos, and
(ii) the Pesin-like identity with no escape, valid for the power-law behavior present at points such as the
Feigenbaum one.

 2011 Elsevier B.V. All rights reserved.

1. Introduction

At the onset of chaos, some traditional approaches to under-
stand specific dynamical behavior, such as the entropy production,
do not provide quantitatively nontrivial information on the state of
the system. From the various physical phenomena which, at this
limit, show a clear departure from the classical Boltzmann–Gibbs
(BG) theory, the edge of chaos of one-dimensional maps has played
the role of an archetypical system of study (see, for example, [1–3]
and references therein). In this manuscript we will focus on the
relation between sensitivity to initial conditions, a possible escape
within traps, and the loss of information in an one-dimensional
map at the onset of chaos.

1.1. The z-logistic map

Let us focus on logistic-like maps xt+1 = f (xt) (t = 0,1,2, . . .)
with

f (x) = 1− µ|x|z (z > 1; 0 ! µ ! 2; −1 ! x ! 1). (1)
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The expression of the sensitivity to initial conditions ξt ≡
lim"x0→0

"xt
"x0

has been derived using exact analytic renormaliza-
tion group theory (RGT), leading to

ξt = e
λqsen t
qsen =

[
1+ (1− qsen)λqsent

] 1
1−qsen , (2)

with qsen ! 1, and eyq ≡ [1+ (1− q)y]
1

1−q (ey1 = ey). When the Lya-
punov exponent λ1 is positive, we have qsen = 1. At the edge of
chaos, from [4], we have

λqsen = 1
1− qsen

= (z − 1) lnα(z)
ln2

, (3)

where α(z) is the z-generalized Feigenbaum universal constant
(see also [5]). In particular α(2) = 2.50290 . . . . It follows that
ξt = (1+ t)λqsen ∼ tλqsen (t → ∞).

In this context, the nonadditive entropy [6]

Sq =
∑

i

pi lnq

(
1
pi

)
≡ 1− ∑

i p
q
i

q − 1
(
S1 = SBG ≡ −

∑

i

pi ln pi

)
, (4)

has been successfully used [7], where BG stands for Boltzmann–

Gibbs, and lnq y ≡ y1−q−1
1−q (ln1 y = ln y).
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2. Pesin’s theorem

More recently, using RGT, it has been proved an extension of
Pesin’s theorem [8], valid for the entire family of these unimodal
maps, making the important connection between the loss of infor-
mation measure, via entropy production

Kqent ≡ lim
t→∞

Sqent
t

, (5)

and the sensitivity to initial conditions. This result can be ex-
pressed by the q-generalized Pesin-like identity

Kqent = λqsen , (6)

with qent = qsen . Whenever λ1 > 0 we have

qent = qsen = 1. (7)

At the Feigenbaum point µ∞ (where λ1 = 0), Eq. (3) is satisfied.
For z = 2 we have µ∞ = 1.401155 . . . (for z increasing from 1 to
infinity, µ∞(z) monotonically increases from 1 to 2). At this point,
the pitchfork bifurcations accumulate, and the transition to chaos
occurs.

It is worth remembering that the Pesin equality relates the Lya-
punov exponent λ1 of nonlinear maps to the Kolmogorov–Sinai
(KS) entropy K. For relation (6), the probability distribution in
Eq. (4) is obtained as the frequency at which the i-th cell in the
state space, i = 1,2, . . . , is occupied at a given time. The main dif-
ference that one would expect between a possible q-generalization
of the Kolmogorov–Sinai rate, noted Kq , and the entropy produc-
tion rate Kq , in Eq. (6), is that in the latter the initial conditions
for the trajectories have a specific distribution pi(0) while the q-
KS-entropy case, Kq , considers all the trajectories from their initial
positions to the time t → ∞. The connection between K1 and K
has been studied for several chaotic maps [9] and it has been de-
termined that typically the asymptotic equality K1 = K holds. In
numerical calculations, this corresponds to an intermediate stage
of evolution, after a transient and before reaching the asymptotic
(saturated) state. In the same manner, we are interested here in
the temporal region where Kq = Kq , and, as shown in [8], it will
be necessary to study only uniform initial distribution.

We introduce the definition of the sensitivity factor ξtk for each
time subsequence k, k = 1,2,3, . . . , and for two trajectories xtk and
ytk with initial condition xin , yin

ξtk = lim
|yin−xin|→0

|ytk (yin) − xtk (xin)|
|ytk=0(yin) − xtk=0(xin)|

.

We will consider in this map a partition of W equal-length
boxes of size ", and an ensemble of N trajectories with initial
condition near xin = 1 (in what follows, we will omit the k-index,
that, as we mentioned, describes a possible time subsequence).
Then, the entropy production can be calculated considering the
occupancy frequency of each box. The total number of cells that
the ensembles of trajectories occupy at time t will be Wt = "t/",
where "t is the total size occupied by the ensemble. As pointed
out in [8], in the limit of " → 0, the total number of occupied
cells will be uniformly distributed as Wt = ξt . This result im-
plies that the total entropy at time t will be simply given by
Sq = lnq Wt = λqt , leading to Eq. (6). In our analysis we will con-
sider the same type of expansion for a generic dynamic map, that
is

Wt = ξt . (8)

This relation is based on maps that have been studied in the liter-
ature, as discussed above, some of them homomorphism of impor-
tant continuous chaotic dynamical systems [10]. The key point in
our discussion will be the relation between this expansion and the
functionality of the escape rate.

3. Open systems

In the presence of escape gates in the state space, the exponen-
tial decay behavior (corresponding to λ1 > 0) for a given number
of initial trajectories in the phase space has been extensively re-
ported [1]. This means that for a given number of initial trajecto-
ries, the number of them that remain in the system at time t , Nt ,
will be given by

Nt = N0e−γ1t . (9)

For a dynamical system that has an exponential uniform expan-
sion, and under the presence of an escape rate that behaves as the
previously mentioned one, the number of occupied cells at time t
can be expressed as

Wt = e−γ1teλ1t . (10)

And using Eq. (4), with q = 1, we can obtain the well-known rela-
tion

S1 = ln[Wt] = (λ1 − γ1)t. (11)

Consequently, given that K1 ≡ limt→∞ S1
t , we have

K1 = λ1 − γ1, (12)

which connects, for such systems, the entropy production K1, the
Lyapunov exponent λ1, and the escape rate γ1.

Notice that in principle the functionality of both the divergence
of initial conditions and the escape should be the same in order for
this relation to exist (exponential in the strong chaos, power-law at
its onset).

Consider now an uniform expansion that behaves as a power
law (instead of as an exponential), for example, the logistic map at
µ∞: what will the entropy production be under a power law-type
of escape? Note that, if the decreasing number of trajectories in
the presence of escape is exponential, the behavior of the occupied
bins after some time will be far from power law.

Assuming that our system is such that the escape asymptoti-
cally follows

Nt ∝ t−γqesc , (13)

and taking into account that

Nt = N0e
−γqesc t
qesc ∝ t−1/(qesc−1) (t → ∞), (14)

we can identify

γqesc = 1
qesc − 1

. (15)

The production of occupied bins, Wt , and sensibility ξt (see
Eq. (8)) will behave as

Wt = ξt ∝ tλqsen t−γqesc . (16)

Then, finally, the entropy production (from Eq. (5)) is given by

Kqent = λqsen − γqesc , (17)

with

Kqent = 1
1− qent

. (18)

Eq. (17) generalizes Eq. (12), the well-known relation valid for
chaotic systems (i.e., λ1 > 0) in the presence of escape (see for
instance [1]). Notice that the q indices present in Eq. (17) do not
need to be equal among them. Indeed the exponents in the power
laws shown in Eqs. (2) and (13) do not necessarily coincide. This
implies, through Eq. (18), that also qent generically differs from
them.
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Fig. 1. Fraction of points, n(t) = N0/Nt , remaining in the system versus time using
δ = 6/7 ∼ 0.86 and z = 2, in log–log scale. N0 = 106 uniformly taken within the in-
terval [1−10−10,1]. The fit, dashed line, shows a escape parameter γqesc = 0.216 . . .

while the theoretical one, calculated from Eq. (23), is γqesc = 0.2223 . . . .

3.1. Example

As a concrete example of a system that has the properties dis-
cussed above, we can mention the following non-autonomous map

xt+1 =
[
1− µ

(
x2t + y2t

)]
cosΘt

yt+1 =
[
1− µ

(
x2t + y2t

)]
sinΘt , (19)

with

Θt = π
ln(t + 1)

ln 2
, (20)

which is effectively a rotating logistic map. The values of cosΘi
(sinΘi) will be ±1 (0) exactly when the map expands in the x
axis (with y = 0). This system can simultaneously show a criti-
cal behavior such as that at the onset of chaos (i.e., at µ∞), and
power-law escaping due to holes that are uniformly distributed on
the line y = 0. In such situation we can achieve an exact solution
for the entropy production, using the usual ensemble of initial tra-
jectories at y = 0, near x = 1 [8], with t = 2i − 1, i = 1,2,3 . . . .

Then, if we introduce a fraction of (1−δ) traps (or holes) in the
domain −1 ! x ! +1, equidistantly distributed in the line y = 0,
the system will suffer a decrease in the number of trajectories in
a proportion given by δi . The number of occupied bins, at time
t = 2i − 1, will be given by

W (t) = W
(
2i − 1

)
= (1+ t)λqsen+ ln δ

ln2 . (21)

Finally, after a straightforward calculation of the entropy pro-
duction with

qent = 1− 1

λqsen + ln(δ)
ln(2)

, (22)

we obtain a generalization of the Pesin relation of rate parame-
ters, including power-law escaping Eq. (17) where we have used
Eq. (18), and

γqesc = − ln δ

ln 2
. (23)

In Fig. 1 we illustrate Eq. (13), and in Fig. 2 we show a corrobora-
tion of equality (17).

4. Final remarks

To conclude, let us mention that one of the important aspects
of dynamical systems with escape is their connection with physi-
cal scenarios that present boundaries in its phase space [11]. Our

Fig. 2. Sensitivity to initial condition versus entropy production, see Eqs. (16) and
(17), for different values of z. For z = 2 and δ = 0: Kqent = λqsen = 1.32 . . . , and
qent = qsen = 0.244 . . . ; while for z = 2 and δ = 6/7: γqesc = 0.222 . . . , from Eq. (23),
Kqent = 1.1012 . . . and qent = 0.0919 . . . , from Eqs. (17) and (18). Similar results can
be obtained for the other values of z. The holes are uniformly distributed in the line
y = 0. The continuous line correspond to a fit with a slope 1.004. . . , numerically
very close to unity, as expected. These examples neatly illustrate the validity of
Eq. (17): the ordinate corresponds to (λqsen − γqesc )t , and the abscissa corresponds
to Kqent t .

results show that, at the edge of chaos, a thermodynamical-like
quantity (entropy production) and a dynamical quantity (sensitiv-
ity to the initial conditions) are connected even in the presence of
escape. This type of connection, well known for chaotic dynami-
cal systems, is then valid, and natural, when considering a suitable
entropy that takes into account the particular regime (multifractal
structure in phase space, power-law escaping, etc.) under which
the system evolves.

The logistic map dynamics at the Feigenbaum point has been
recently studied in much detail [8]. Its structured behavior makes
possible an analytic treatment. The results presented here used
this amenable characteristic of this particular map, but our main
point goes beyond it. Our results would be applicable in prin-
ciple to any system where both trajectory divergence within the
phase space, and escaping to outside of the system, follow power
laws. Typical examples would be deterministic anomalous diffu-
sion in Lorenz gas, in Hamiltonian systems (e.g., those numeri-
cally explored in [12]), and spatio-temporal intermittency in dis-
sipative systems. As pointed out, our example, at the onset of
chaos, can be an archetypical illustration where the phenomenol-
ogy discussed here occurs, but also more complicated systems
where attractors (see also [13]) with low-dimensional behavior
and its transients, that connect them, are embedded in a larger
system.
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