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Carnot cycle for interacting particles in the absence of thermal noise
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A thermodynamic formalism is developed for a system of interacting particles under overdamped motion,
which has been recently analyzed within the framework of nonextensive statistical mechanics. It amounts to
expressing the interaction energy of the system in terms of a temperature θ , conjugated to a generalized entropy
sq , with q = 2. Since θ assumes much higher values than those of typical room temperatures T ! θ , the thermal
noise can be neglected for this system (T/θ " 0). This framework is now extended by the introduction of a work
term δW which, together with the formerly defined heat contribution (δQ = θdsq ), allows for the statement
of a proper energy conservation law that is analogous to the first law of thermodynamics. These definitions
lead to the derivation of an equation of state and to the characterization of sq adiabatic and θ isothermic
transformations. On this basis, a Carnot cycle is constructed, whose efficiency is shown to be η = 1 − (θ2/θ1),
where θ1 and θ2 are the effective temperatures of the two isothermic transformations, with θ1 > θ2. The results for
a generalized thermodynamic description of this system open the possibility for further physical consequences,
like the realization of a thermal engine based on energy exchanges gauged by the temperature θ .
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I. INTRODUCTION

Thermodynamics is a macroscopic theory based on empiri-
cal laws leading to several physical and technological applica-
tions, among which one can emphasize thermal engines [1,2].
Among many possible engines, the most celebrated is the one
described by the Carnot cycle. It played a fundamental role in
the historical and theoretical development of thermodynamics
by providing an operational method for measuring the ratio of
two temperatures based on the concept of cycle efficiency. As
a consequence, the choice of a reference system, on which one
arbitrarily imposes a temperature value, allows the definition of
a universal temperature scale, up to a multiplicative constant.
The ability for temperature measurements opens the possibility
of entropy variation (or relative entropy) estimates. The
Nernst postulate turns such relative entropies into absolute
entropies, so that one becomes able to evaluate the entropy of
a given physical system, providing a complete thermodynamic
description.

The recent analysis of a model for the overdamped motion
of interacting vortices in a type-II superconductor [3] within
the framework of nonextensive statistical mechanics has been
quite successful in describing the behavior of this system in
terms of an effective temperature θ , which is thermodynami-
cally conjugated to a generalized entropy per particle, sq , with
q = 2, to be called hereafter s2. While θ bears no resemblance
to the usual temperature T , its definition

kθ = Nπf0λ
2

Ly

= nπf0λ
2 (1)

can be easily interpreted in terms of certain physical properties
of the system. In the equation above k stands for the Boltzmann
constant, λ is the London penetration length, and f0 represents
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the interaction strength, to be defined more precisely later on.
One sees that θ is directly related to n = N/Ly , i.e., the number
of vortices N per unit of length Ly . As will be discussed in the
next section, it is possible to vary n experimentally, while the
other quantities appearing in Eq. (1) are fixed for each type-II
superconductor. It should be emphasized that this temperature
is associated with the interaction among vortices, as well as
their density, but not with their kinetic energy. We also recall
that the quoted analysis allowed for the derivation of several
relations among the system parameters and variables, which
are all in all similar to those of standard thermodynamics, e.g.,
just by replacing T > 0 by θ > 0.

The purpose of this work is to extend the previous
investigations by showing that other concepts in the usual
thermodynamics have their natural counterparts within a
generalized thermodynamics that is related to nonextensive
statistical mechanics. In particular, we show that a proper
identification of a generalized work term δW and the use of
the previously introduced heat term δQ = θds2 lead to the
recovery of Carnot’s results for a machine operating between
two heat reservoirs (these are, within this proposal, reservoirs
of vortices characterized by different densities). We emphasize
that the relevant concept for energy exchange in the current
approach is that of the “vortex reservoir,” a system containing
a much larger number of vortices than the one under study.
As will be detailed later on, the reservoir temperature θ is
not altered when it receives or delivers energy from or to the
considered system.

The paper is organized as follows: Sec. II briefly de-
scribes some relevant experimental features of the type-II
superconductor vortex system. In the following section we
discuss a nonlinear Fokker-Planck equation (NLFPE) that
has been derived directly by means of a coarse-graining
approach applied to the microscopic equations of motion of
the corresponding interacting-vortex model [4–6]. Next we
characterize, in Sec. IV, the equilibrium states and discuss
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the appropriateness of the effective-temperature definition
introduced in Ref. [3]. Furthermore, we introduce a definition
of an infinitesimal work term for this system, δW , which is
suitable to be combined with the heat term δQ in order to
state a law analogous to the first law of thermodynamics in
its infinitesimal form. This major contribution of the present
study leads to an equation of state and to a further physical
interpretation of the effective temperature, in terms of the
variance of the vortex positions, θ ∝ 〈x2〉3/2. In Sec. V we
indicate how two specific energy exchange processes can
be carried out, namely, the s2-adiabatic and θ -isothermic
transformations. The latter requires the system to be in contact
with a “vortex heat reservoir,” a concept that is also introduced
in this section. Finally, these definitions allow the construction
of a Carnot cycle, for which the efficiency is shown to be
given by η = 1 − (θ2/θ1), where θ1 and θ2 (with θ1 > θ2) are
the temperatures of two vortex reservoirs. This result strongly
supports the previous definition of the effective temperature θ
and of a consistent thermodynamic framework for this physical
system. Finally, Sec. VI closes the work with our concluding
remarks.

II. THE SUPERCONDUCTOR VORTEX SYSTEM

In type-II superconductors, vortices are generated by an
external magnetic field Bext, whose lines become confined to
flux tubes [7] and, for a given material, the quantities f0 and
λ (introduced in the previous section) present well-defined
values. So, according to Eq. (1), any proposal for varying θ
experimentally should be directly related to an adequate tuning
of the vortex density n. In fact, recent experimental researches
in this area led to considerable advances in the ability to control
many properties of these vortices, like their motion and density
[8–11]. In particular, the density n may be varied either by
changing Bext appropriately (typical estimates in this case are
given in [3]), or by applying an alternating electrical current
[8–11]. Within this latter procedure, one may even eliminate all
vortices, yielding the desirable limit n → 0. All these aspects
can be adequately described with the concept of the effective
temperature θ advanced in the previous section, including the
limit θ → 0.

The variable θ has been sometimes referred to as an
“effective temperature” [3]. This name has been widely used in
physics to represent the typical scale of energy per particle of a
given system. Therefore, it gauges the effect of typical thermal
fluctuations in the system as compared to the mechanical
and electromagnetic properties of its particles, such as their
masses, spin, harmonic frequencies, and concentration. As
an example, one might mention the Fermi temperature (TF)
in a Fermi-Dirac ideal gas, which is directly related to the
concentration of electrons and results from the analysis of
the system at T = 0. Thus, it presents well-defined values for
a given Fermi gas, e.g., TF ≈ 104 K for electrons in metals
[1,2], or TF ≈ 109 K for electrons in white dwarf stars [2]. In
real physical situations, one may treat electrons in metals as
a Fermi-Dirac ideal gas for experimental realizations carried
out at temperatures T ! TF, a condition that is satisfied even
at room temperatures.

Compared to the usual effective-temperature concepts in
the literature, the difference in Eq. (1) is that it does not simply

provide an energy scale for the system, but is associated with
its state and may be varied experimentally by changing the
density of vortices (θ ∝ n). The importance of associating θ
with effective-temperature concepts concerns the relation to
other features of the system (different from those of the usual
temperature T ), and also that it attains much larger values than
room temperatures. Analogously to the Fermi temperature in
a Fermi-Dirac ideal gas, the effective temperature defined in
Eq. (1) appears in the theoretical description on considering
the vortex system at relatively low temperatures (T/θ) " 0, in
which case the Boltzmann-Gibbs entropy may be neglected.

Typical values of θ in type-II superconductors were
estimated recently to lie in the range 108 → 1012 K [3].
Some of these estimates appear to be extremely high (even
when compared with the Fermi temperatures of electrons in
white dwarf stars), but one should keep in mind that θ repre-
sents an effective temperature associated with the interaction
among vortices. Based on this, experimental investigations of
physical properties associated with θ may be performed in
a temperature range that is limited only by the existence of
a superconducting phase. From the theoretical point of view,
the system is well approximated by a model satisfying the
condition (T/θ) " 0, where the effects of thermal noise can
be neglected. Moreover, the product kθ introduced in Eq. (1)
presents the dimension of energy, is positive definite, and
is directly related to the density n = N/Ly , as well as to
the interaction among vortices, f0 and λ. This energy was
also estimated in Ref. [3], leading to very high values, in
the range 10−14 → 10−11 J, comparable to the rest energy
of the electron (8.19 × 10−14 J) and other known particles.
Therefore, it would be most desirable to use this type of system
to perform work. This represents one of the motivations of the
present investigation.

III. THE MODEL AND ASSOCIATED ENTROPY

The temperature definition in Eq. (1) emerged through its
association with the diffusion coefficient D (D ≡ kθ ) in the
following NLFPE [4–6], which accurately describes the vortex
system:

µ
∂P (x,t)

∂t
= −∂[A(x)P (x,t)]

∂x

+ 2D
∂

∂x

{
[λP (x,t)]

∂P (x,t)
∂x

}
. (2)

This association has its justification in the similar procedure
that is usually adopted in the framework of the linear Fokker-
Planck equation [12]. Moreover, this equation depicts the
effects of an external potential φ(x) [A(x) = −dφ(x)/dx], as
well as of N − 1 vortices, on a tagged vortex. Therefore, the
distribution P (x,t) refers to one vortex of the above-mentioned
system and consequently all physical quantities to be derived
from this distribution will correspond to one-vortex properties.

The above NLFPE was obtained from a coarse-graining
approximation of the equations of motion of N repulsively in-
teracting vortices, under overdamped motion, in a rectangular
box of side lengths Lx and Ly , in a medium with an effective
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friction coefficient µ,

µvi = f0

2

∑

j +=i

K1(rij /λ) r̂ij + Fext
i . (3)

In the above equation, vi represents the velocity of vortex
i, and the terms on the right-hand side depict the forces
acting on vortex i (i = 1,2, . . . ,N). The first contribution
takes into account the interactions among vortices [each
vortex interacts with the remaining (N − 1) vortices], whereas
Fext = −A(x)x̂ represents an external force acting on vortex
i. The vortex-vortex interactions are repulsive and radially
symmetric, expressed in terms of a modified Bessel function of
the second kind of order 1, K1(rij /λ), rij = |ri − rj | stands for
the distance between vortices i and j , and r̂ij = (ri − rj )/rij

is a unit vector defined along the axis joining them. Moreover,
f0 is a positive constant, known as the pinning strength,
characteristic of each physical system, whereas the Bessel
function decays according to a characteristic length scale
λ, the so-called London penetration length [7,13–15]. These
repulsive forces are opposed by an external confining potential
in the x direction, which herein we consider as a harmonic one,
i.e., A(x) = −αx (α > 0), acting on each vortex. Therefore,
by starting the simulations with all particles confined in a small
region around x = 0, the repulsive vortex-vortex interactions
prevail at the initial times, with the vortices moving apart
quickly, until the external potential becomes significant, so that
the system reaches a stationary state after some sufficiently
long time [5,6]. For simplicity, the box size Lx is chosen
sufficiently large such that the vortices never reach the walls
in the x direction, whereas periodic boundary conditions are
considered in the y direction.

It is important to mention that the physical system defined in
terms of interacting vortices of Eq. (3) has been much used in
the literature to model magnetic flux lines in disordered type-II
superconductors (see, e.g., Refs. [4,7,13–15]). Besides the
coarse-graining approximation, which led to Eq. (2), the con-
nection of the present physical system with this equation was
further supported by a remarkable agreement found between
the vortex-position stationary-state [5] and time-dependent
[6] distributions, obtained by means of molecular-dynamics
simulations and the analytical solution of the NLFPE [16,17].

NLFPEs have been widely investigated [18], motivated by
the search for an appropriate description of many complex
physical systems. A particular interest has been dedicated
to the NLFPE proposed in Refs. [16,17], related to Tsallis
nonextensive statistical mechanics [19–22]. In particular, the
q-Gaussian distribution, which represents a generalization of
the standard Gaussian (recovered in the particular case q = 1),
appears naturally from an extremization procedure of the
entropy [22], or from the solution of the corresponding NLFPE
of Refs. [16,17], and it has been very useful for experiments
in many real systems [19–21]. Moreover, similarly to standard
procedures used for the linear Fokker-Planck equation [12],
proofs of the H theorem have been achieved recently by
considering nonlinear Fokker-Planck equations. Therefore,
in the same way that the linear Fokker-Planck equation is
associated with normal diffusion and with the Boltzmann-
Gibbs entropy, the NLFPEs are usually related to anomalous-

diffusion phenomena and to generalized entropies, by means
of the H theorem (see, e.g., Refs. [18,23–28] among others).

In the present case, the pertinent H theorem may be proved
by imposing a well-defined sign for the time derivative of the
free-energy functional per vortex [5,6],

f = u − θs2, u =
∫ x̄(t)

−x̄(t)
dx φ(x)P (x,t), (4)

and making use of Eq. (2). In the above free energy, u
represents the one-particle internal energy, φ(x) depicts the
external potential introduced in Eq. (2), and θ corresponds
to the effective temperature defined in Eq. (1). Moreover,
the distribution P (x,t) presents a compact support, −x̄(t) !
x(t) ! x̄(t). In order to satisfy the H theorem, the associated
entropy should be given by [5,6]

s2[P ] = k

{
1 − λ

∫ x̄(t)

−x̄(t)
dx [P (x,t)]2

}
. (5)

From now on, we will be restricted to the long-time
limit, for which one attains the stationary-state solution
limt→∞ P (x,t) = Pst(x), defined in terms of the finite support
limt→∞ x̄(t) = xe. As verified in the numerical simulations, in
this limit the system is characterized by a well-defined equi-
librium state [5,6]; therefore, the above-mentioned stationary-
state solution corresponds to this equilibrium state. Moreover,
the H theorem guarantees that the system will always approach
this state for sufficiently long times. This equilibrium state
will be considered now as the basis for our thermodynamic
framework.

IV. EQUILIBRIUM STATE AND FIRST LAW

The stationary-state solution of Eq. (2) is [5,6]

Pst(x) = α

4kθλ

(
x2

e − x2) = αλ

4kθ

[(
xe

λ

)2

−
(

x

λ

)2]
, (6)

with |x| < xe, where xe = (3kθλ/α)1/3 is found from the
normalization condition for Pst(x). As expected from a proper
temperature parameter, the width of Pst(x) increases as θ gets
larger [3]. In addition to this, for a fixed θ , the volume occupied
by the particles, 2xeLy , decreases for increasing values of α.

From the above distribution one may calculate physical
quantities at the stationary state, like the entropy and internal
energy. As shown in Refs. [3,5,6], in order to fulfill the H
theorem, the appropriate functional forms for these quantities
should be given respectively by Eqs. (5) and (4), leading to

s2

k
= 1 − λ

∫ xe

−xe

dx [Pst(x)]2 = 1 − 32/3

5

(
αλ2

kθ

)1/3

, (7)

u =
∫ xe

−xe

dx
αx2

2
Pst(x) = 32/3

10
(αλ2)1/3(kθ )2/3. (8)

After adequate manipulation of the above quantities, the
entropy may be expressed in terms of the internal energy,

s2(u,α) = k

[
1 − 3

5

(
αλ2

10u

)1/2 ]
, (9)
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or equivalently, the internal energy in terms of the entropy,

u(s2,α) = 9
250

αλ2

(1 − s2/k)2
. (10)

One should notice that in Eqs. (9) and (10) we have explicitly
written a dependence on the parameter α, which, as already
discussed, corresponds to an external parameter associated
with the confinement of vortices. From these equations one
obtains the fundamental relations

(
∂s2

∂u

)

α

= 1
θ
,

(
∂u

∂s2

)

α

= θ, (11)

showing the suitability of the definition introduced in Eq. (1).
Moreover, a specific-heat-like quantity has been defined for
fixed α, satisfying

cα =
(

∂u

∂θ

)

α

= θ

(
∂s2

∂θ

)

α

, (12)

suggesting the definition of an infinitesimal amount of heatlike
contribution to the energy change, δQ = θds2.

As usual, the work contribution should come from the
external potential, which in the present case corresponds to
the parameter α, directly related to the volume occupied
by the vortices in the stationary state. From this external
potential acting on each particle, we define heuristically
the infinitesimal work as δW = σdα, where σ represents
a parameter conjugated to α (with dimensions [σ ] = L2),
to be determined later on. Considering these definitions, an
equivalent to the first law becomes

du = δQ + δW = θds2 + σdα, (13)

where δW corresponds to the work done on the system. The
equation of state σ = σ (θ,α) may be obtained by noticing that
Eq. (13) yields (∂s2/∂α)u = −σ/θ , whereas deriving Eq. (9)
and using the internal energy of Eq. (8), one obtains the
following equation of state:

σ = 32/3

10
λ2

(
kθ

αλ2

)2/3

⇒ σ = u

α
. (14)

The relation above (σα = u) involving the two conjugated
parameters associated with the infinitesimal amount of work
δW and the internal energy u may be compared with the one
for an ideal gas, namely, pv = 2u/3 (valid for the classic case,
as well as in both types of quantum statistics [12]).

From the definition of internal energy in Eq. (8) and
considering the result of Ref. [3], 〈x2〉 = x2

e /5, one obtains

u = 1
10 αx2

e ⇒ σ = 1
10 x2

e = 1
2 〈x2〉, (15)

which implies that σ is a non-negative quantity. Dealing with
Eqs. (14) and (15) one obtains

kθ = 53/2

3
α

λ
〈x2〉3/2. (16)

This result provides an interpretation for the effective tem-
perature θ , which is herein related to the particle-position
deviation, defined according to the distribution Pst(x) of
Eq. (6). Therefore, similarly to the concept of the kinetic
temperature of a classical gas, for which the temperature is
related to the second moment of the corresponding velocity

probability distribution, i.e., T ∝ 〈v2〉, in the present case one
has θ ∝ 〈x2〉3/2.

Further remarks follow from the relations above: (i) Eq. (15)
expresses a relation between σ and the width of the distribution
Pst(x). In this way, one sees that the work term δW = σdα
acts directly on the stationary distribution, e.g., for fixed θ ,
a positive δW will reduce xe, decreasing the width of Pst(x).
(ii) The equation of state [Eq. (14)] implies that the parameter
σ introduced in Eq. (13) increases with θ (for fixed α),
whereas for fixed θ , an increase in σ yields a decrease in α.
(iii) The results above suggest a correspondence of the
parameters introduced in Eq. (13) with those of an ideal gas in
standard thermodynamics: (σ,α−1,θ ) ⇔ (p,v,T ).

V. PHYSICAL TRANSFORMATIONS
AND THE CARNOT CYCLE

Let us now address some simple physical transformations.
First, we will introduce the concept of a vortex heat reservoir
R, which is defined as a system containing a much higher
number of vortices than the system S under study. The concept
of reservoir plays an important role in thermodynamics
and statistical mechanics [1,2,12]. Within thermodynamics,
a reservoir defines a given equilibrium property of the system
which it interacts with, like its temperature (in the case of a
heat reservoir), its chemical potential (in the case of a particle
reservoir), or its pressure (in the case of a volume reservoir).
In statistical mechanics, a proper choice of the ensemble (e.g.,
canonical, grand-canonical, or pressure ensemble) depends
essentially on the type of system-reservoir interaction.

Let us now indicate how a contact between these two
systems R and S should occur, in such a way as to produce
effective-temperature changes. From Eq. (1) one has θ ∝ n,
i.e., θ ∝ N/Ly , so that temperature variations are associated
with changes in N or Ly (or both). Herein, we will restrict
ourselves to θ variations, keeping the total number of vortices
N fixed, corresponding to alterations in the length Ly . Since
the vortices interact repulsively, they should produce a pressure
on the horizontal wall separating the two systems. Hence, a
change in θ may be attained through the displacement of a
nonpermeable horizontal wall separating the systems R and
S, so that a variation δLy becomes negligible for the larger
system R, because R is much larger than S.

Thus, when the vortex heat reservoir is put in contact
with the smaller system, an out-of-equilibrium situation is
observed if their temperatures θR and θS are different. The
above-mentioned interaction between the two systems will
occur until their densities nR and nS become equal, keeping
constant the number of vortices in both systems. Since R is
much larger than S, the vortex heat transfer does not change
significantly the density of vortices of the reservoir. After some
time, an equilibrium situation is reached for which the larger
system will define the density of vortices of the smaller one,
and consequently its effective temperature θS = θR. In what
follows, the isothermal transformations to be considered are
presumed to occur for a system of vortices in contact with such
reservoirs.

Moreover, we recall that considering the expressions for the
entropy in Eqs. (7) and (9), as well as the relation σ = u/α,
one concludes that an adiabatic process corresponds to one of
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the conditions
α

θ
= const, σ = u

α
= const, (17)

or properly defined combinations of them. Therefore, the total
work done on the system in an adiabatic transformation from
an initial state characterized by (θi ,αi) to a final state with
(θf ,αf ) will be given by

uf − ui = W =
∫ αf

αi

σdα = σ (αf − αi), (18)

where σ is given by Eq. (14), with (θ/α) = const. Hence,
in an adiabatic process one gets positive (negative) work for
αf > αi (αf < αi). One should notice that in a plot of σ versus
α the adiabatic transformation is represented by a horizontal
line, and the area below this line corresponds to the work done.

For an isothermal process at a temperature θ , one has

Q =
∫ s2,f

s2,i

θds2 = 32/3

5
(kθλ)2/3(αi

1/3 − αf
1/3), (19)

W =
∫ αf

αi

σdα = 35/3

10
(kθλ)2/3(αf

1/3 − αi
1/3), (20)

uf − ui = Q + W = 32/3

10
(kθλ)2/3(αf

1/3 − αi
1/3), (21)

where the above internal energy variation may be calculated
either directly from Eq. (8), or by uf − ui = Q + W , as ex-
pected. Therefore, for the isothermal process one has positive
(negative) work and variation of internal energy, whereas the
system releases (absorbs) heat if αf > αi (αf < αi).

As mentioned above, the values of kθ for typical type-II
superconductors may be very high, when compared to standard
thermal energies. Moreover, the stationary-state solution Pst(x)
of Eq. (6) is expected to occur for kθ ∼ αλ2. Since the energies
of Eqs. (18)–(21) all depend on differences involving the
final and initial values of the vortex-confining parameter α,
considerable amounts of energy may appear if one is able
to perform thermodynamic transformations characterized by
an expressive variation in these parameters. Although this
remains as an experimental task, a large amount of work
might be obtained in an isothermal transformation like the
one of Eq. (20), if one could get a significant difference
(αf

1/3 − αi
1/3) throughout its experimental realization.

From the transformations above, one can define a cycle
analogous to the Carnot cycle, by considering two isothermal
and two adiabatic processes, intercalated, as illustrated in Fig. 1
in the plane σ/λ2 (dimensionless) versus αλ2 (dimensions of
energy); some of its properties are listed next. (i) An amount
of heat Q1 is absorbed in the isothermal process at the higher
temperature θ1, whereas the system releases heat Q2 in the
isothermal process at the lower temperature θ2. (ii) In a plot
of σ versus α (or equivalently, σ/λ2 versus αλ2, as in Fig. 1),
the work associated with a given process corresponds to the
area below this transformation. As shown above, work is
positive (negative) for transformations that increase (decrease)
α. Therefore, the total work done on the system, calculated as
W = Wab + Wbc + Wcd + Wda , is given by the area enclosed
in the cycle of Fig. 1, and is negative, as expected from
Eq. (13). If one defines W = −W as the work done by the

0 1 2 3 4

αλ2

0.2

0.3

0.4

0.5

σ/
λ2

b

a

➙➙

c

d

Q1Q2

→

→

W

FIG. 1. The Carnot cycle a → b → c → d → a, for a system
of interacting vortices under overdamped motion at (T/θ ) " 0.
The transformations for constant σ are adiabatic, and herein they
were chosen to occur for (σ/λ2) = 0.45 (b → c) and (σ/λ2) = 0.25
(d → a). The isothermal transformations are characterized by σ ∼
α−2/3 [cf. Eq. (14)] and they occur for kθ1 = 5 (units of energy)
in a → b, and kθ2 = 1 (units of energy) in c → d , i.e., θ1 > θ2.
The area inside the cycle represents the total work W done on the
system, which is negative, as expected from Eq. (13). The abscissa
αλ2 presents dimensions of energy, whereas the ordinate σ/λ2 is
dimensionless; the cycle above holds for any system of units, e.g.,
one may consider all quantities with dimensions of energy in joules.

system, the variation of internal energy is zero for the complete
cycle, and one has Q1 = W + Q2 (conventionalizing all these
three quantities as positive). (iii) By manipulating Eqs. (14)
and (19), one obtains the well-known result relating the
two isothermal processes, (Q1/Q2) = (θ1/θ2), leading to the
celebrated efficiency of the Carnot cycle,

η = W
Q1

= Q1 − Q2

Q1
= 1 − θ2

θ1
(0 ! η ! 1). (22)

This result provides a strong support for the idea that the
fundamental relation considered herein, as analogous to the
first law of thermodynamics [cf. Eq. (13)], is appropriate for
this system.

VI. CONCLUSIONS

To conclude, we have introduced concepts, analogous to
those of standard thermodynamics, for a system of interacting
vortices under overdamped motion, in which thermal noise
can be neglected [(T/θ) " 0]. First of all, the important idea
of an effective temperature θ , proposed in a previous work [3],
which is related to the density as well as to the interactions
among vortices (being always positive, by definition), was
investigated more deeply herein.

In this study, we have introduced a work term δW , in order
to formulate an infinitesimal form for the first law. From this
proposal, an equation of state follows naturally; the first law, to-
gether with the equation of state, is a fundamental requisite for
defining physical transformations, and consequently leading
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to the possibility of physical realizations. Moreover, using this
equation of state we have found a physical interpretation for
the effective temperature, which is associated with the variance
in the particle positions, namely, θ ∝ 〈x2〉3/2. This should be
compared with the interpretation of the kinetic temperature in
a classical gas, T ∝ 〈v2〉.

Considering simple transformations, like adiabatic and
isothermal processes, we have constructed a cycle analogous
to the Carnot cycle, and have shown that its efficiency is
given by η = 1 − (θ2/θ1), where θ1 and θ2 represent the
effective temperatures associated with the “hotter” (higher
vortex density) and “colder” (lower vortex density) heat
reservoirs, respectively, showing the appropriateness of the
definition of θ . Therefore, we have presented a consistent
thermodynamiclike framework, giving further support for the
system considered herein as an important physical application
for nonextensive statistical mechanics.

Finally, one should emphasize the following advantages of
the engine proposed herein, with respect to standard thermal
machines: (i) Significant amounts of work may result from

some thermodynamic transformations proposed. (ii) In stan-
dard thermal engines one usually comes across the undesirable
effect of overheating of the machine, due to exchanges of
heat between the engine and its environment. In the engine
proposed herein changes of the effective temperature are solely
associated with changes in the concentration of vortices, and as
a consequence, overheating is not expected to occur. (iii) From
the operational point of view, since typical values of θ in real
systems are much higher than room temperature, one expects
that thermal effects should not affect experiments carried out
at typical superconducting temperatures. Consequently, mea-
surements in type-II superconductors, under an appropriate
confining potential, turn out to be highly desirable in order to
confirm the validity of these theoretical predictions.
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