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Nonextensive local composition models in theories of solutions
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Thermodynamic models present binary interaction parameters, based on the Boltzmann weight.
Discrepancies from experimental data lead to empirically consider temperature dependence of the
parameters, but these modifications keep unchanged the exponential nature of the equations. We
replace the Boltzmann weight by the nonextensive Tsallis weight, and generalize three models for
nonelectrolyte solutions that use the local composition hypothesis, namely Wilson’s, NRTL, and
UNIQUAC models. The proposed generalizations present a nonexponential dependence on the
temperature, and relies on a theoretical basis of nonextensive statistical mechanics. The q-models
present one extra binary parameter qij , that recover the original cases in the limit qij → 1. Compar-
ison with experimental data is illustrated with two examples of the activity coefficient of ethanol,
infinitely diluted in toluene, and in decane.

PACS numbers: 78.30cd, 82.60.Lf

I. INTRODUCTION

The basic hypothesis of local composition models, em-
pirically introduced by Wilson [1], and later used in other
theories that followed, e.g. NRTL [2], UNIQUAC [3], as-
sumes that the composition in the vicinity of a central
molecule differs from the bulk composition, and this local
inhomogeneity strongly affects thermodynamic proper-
ties of the solution. The description of binary and multi-
component mixtures depends on interaction parameters,
that are estimated from experimental data, and they usu-
ally have the general form

Aij = exp

(

−∆aij
RT

)

, (1)

with ∆aij = aij−ajj , and aij is a molar potential energy
of interaction between species i and j, with aji = aij .
For a comprehensive approach to theory of solutions, and
fluid-phase equilibria in general, see [4]. ∆aij is originally
assumed to be constant. Extensions of the models relax
this hypothesis, and consider ∆aij = ∆aij(T ), according
to various functions, for instance, a linear relation [2],

∆aij = ∆aij,0 +∆aij,1(T − T0), (2)

the inverse of the absolute temperature [5],

∆aij = ∆aij,0 +
∆aij,1
T

, (3)

a combination of both linear and inverse relation [6],

∆aij = ∆aij,0 +∆aij,1T +
∆aij,2
T

, (4)

or, else [7],

∆aij = ∆aij,0 +
∆aij,1
T − T0

, (5)
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or even with a logarithmic term [8]:

∆aij = ∆aij,0 +∆aij,1(T − T0)

+∆aij,2

(

T ln
T0
T

+ T − T0

)

. (6)

Different thermodynamic properties (heat of mixing,
heat capacity, limiting activity coefficient, vapor-liquid
equilibrium, liquid-liquid equilibrium, etc.), and/or dif-
ferent chemical systems (presence of alcohols, hydro-
gen bonding, etc.), may require different expressions for
∆aij(T ). The use of these equations also varies accord-
ing to the considered model. Despite of the variety of
functional forms, the exponential nature of the param-
eter, that stems from the Boltzmann’s weight, is kept
unchanged by all models. Our proposal is to consider
the nonextensive Tsallis weight, as a replacement for the
Boltzmann weight. The departure from the exponential
behavior is, thus, intrinsically originated from the dis-
tribution, and not due to empirical modifications on the
temperature dependence of the parameters.
The paper is divided as follows: in Section II we briefly

present basic concepts of nonextensive statistical me-
chanics, that will be used later. Section III introduces the
q-local composition model, with the nonextensive weight.
Section IV applies the nonextensive local composition to
Wilson’s, NRTL and UNIQUAC models. Section V il-
lustrates the effect of the nonextensive parameter qij on
the temperature, with instances of activity coefficient at
infinite dilution. Finally, Section VI is dedicated to our
conclusions and final remarks.

II. BRIEF REMARKS ON NONEXTENSIVE

STATISTICAL MECHANICS

Despite the outstanding success of the Boltzmann-
Gibbs statistical mechanics (BG), there are systems that
are not properly described by the equations that emerge
from this formalism. Along the last two decades there has
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been continuously and increasingly developed the nonex-
tensive statistical mechanics. Its starting point is the
generalization of the concept of entropy (the Tsallis en-
tropy) [9],

Sq = k
1−

∑W
i pqi

q − 1
, (7)

with pi the probability of the microscopic state i, W is
the number of microscopic states, k is a positive constant,
and q is the entropic index. If q → 1, Eq. (7) recovers

the BG entropy, SBG ≡ S1 = −k
∑W

i pi ln pi, and thus
Sq is a generalization of SBG. Legendre transforms are
preserved in nonextensive statistical mechanics [10]. The
q-entropy in the microcanonical ensemble (maximization
of Sq with equiprobabilities) [9] is Sq = k lnqW , where
the q-logarithm is defined as [11]

lnq x ≡ x1−q − 1

1− q
. (8)

The celebrated equation, engraved in Boltzmann’s tomb-
stone, S = k lnW , is recovered at q → 1. Maximization
of Sq, Eq. (7), with the constraint of constant generalized
mean energy, leads to the canonical ensemble distribution
for the energy (see [10, 12] for details),

p(x) ∝ expq(−βqEi), (9)

where βq is is the Lagrange parameter, that is related
to the inverse temperature (β1 = 1/(kT ) in the BG
formalism), Ei is the energy of the i-th state, and the
q-exponential is precisely the inverse function of the q-
logarithm, Eq. (8),

expq x = [1 + (1− q)x]
1

1−q

+ . (10)

The symbol [A]+ stands for [A]+ = A if A > 0, and
[A]+ ≡ 0 if A ≤ 0. Equation (9) is the Tsallis weight, that
is a generalization of the Boltzmann weight. The main
difference between Tsallis and Boltzmann weights is that
the former presents power law tails (long-lasting for q >
1, and abruptly vanishing for q < 1), while the later has
exponential tails. Equations (8) and (10) present many
similar properties of the usual logarithm and exponential,
e.g. lnq 1 = 0 and expq 0 = 1, ∀q, and the derivative of
the q-exponential is given by

d(expq x)

dx
= (expq x)

q. (11)

In general, (expq x)
a 6= expq(ax), except for q = 1. The

q-exponential and the q-logarithm functions lead to a
nondistributive q-deformed algebra [13],[14]. Generalized
algebraic operations (q-addition x⊕qy, q-difference x⊖qy,
q-product x⊗q y, q-ratio x⊘q y) are defined as

x⊕q y ≡ x+ y + (1 − q)xy, (12)

x⊖q y ≡ x− y

1 + (1− q)y
, (y 6= 1

q − 1
), (13)

x⊗q y ≡
[

x1−q + y1−q − 1
]

1

1−q

+
(x, y > 0), (14)

x⊘q y ≡
[

x1−q − y1−q + 1
]

1

1−q

+
(x, y > 0). (15)

With these q-operations, the q-exponential follows the
properties:

expq x expq y = expq(x⊕q y),
expq x/ expq y = expq(x⊖q y),
expq x⊗q expq y = expq(x+ y),
expq x⊘q expq y = expq(x− y).

(16)

The q-algebra has been applied in different contexts
within nonextensive statistical mechanics. The q-product
has been used in the generalizations of the central limit
theorem and the Fourier transform [15],[16],[17], and
there are evidences that it is connected to q-Gaussian
distributions p(x) = A(q)

√
β expq(−βx2) [18]. Some

properties of q-functions and q-algebra may be found at
[19],[20],[21],[22], and references therein.
Nonextensive statistical mechanics is expected to be

valid in a variety of situations: systems with long range
interactions, long term memory, fractal structure, break
of ergodicity, quasi-stationary states, or other features
that characterize complex behavior. Let us briefly elabo-
rate on the range of interactions, and on the nature of the
quasi-stationary states, following the lines of [23]. We can
generally consider that interactions decay with distance
r as 1/rα. If α < 3, the interaction is long-ranged; α = 1,
for Coulomb and gravitation interactions, are typical ex-
amples. Such systems may exhibit negative specific heat,
e.g. [24]. If α > 3, the interaction is short-ranged, e.g.
van der Waals α = 6 interactions. Dipole interactions are
at the threshold (α = 3). See [23] for weak and strong
violation of BG, and more details.
Thermodynamic equilibrium is concerned about two

limits: the time limit (time t → ∞, related to equilib-

rium) and the macroscopic limit (number of particles
N → ∞, related to thermodynamics). For simple sys-
tems, the order in which these limits are taken is irrel-
evant, but for complex systems, these limits may not
commute. For certain classes of complex systems, if
the time limit is taken first, and then the macroscopic
limit (limN→∞ limt→∞ f(t, N) of a dynamical function
f(t, N)), the system is characterized by Boltzmann equi-
librium distributions, thus q = 1. But if the limits are
taken in the reverse order (limt→∞ limN→∞ f(t, N)), the
system may achieve a quasi-stationary metaequilibrium
state, according to its initial conditions, that is possibly
described by nonextensive distributions. This hypothesis
was conjectured in 1999 by Tsallis [23], and it was compu-
tationally verified for conservative long-range interacting
systems, e.g. [25],[26],[27].
We address some examples that follow nonextensive

behavior. The rate of re-association of CO with Myo-
globin dissolved in glycerol-water solutions, after being
photo-dissociated, was found to be described by func-
tions that are connected to nonextensive statistical me-
chanics [28]. This was supposed to be related to the
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path CO molecules have to perform in a fractal-like struc-
ture though the interior of folded proteins. q-Gaussian
distributions were applied to polymeric networks, when
finite chain effects are relevant [29]. Nonextensive dis-
tributions of velocity of monomers during the relaxation
process were found by molecular dynamics simulations
of polymer chains and Lennard-Jones molecules [30]. q-
Exponential functions were used to describe diatomic po-
tential energy curves, particularly for H+

2 and Li2, and vi-
brational spectra and spectroscopic constants were found
to be in good agreement with experimental data [31]. Ar-
rhenius law has recently been generalized by the use of
the q-exponential, and agreement with experiment was
found in plant respiration rates, bacterial gliding, and
tunneling in the F + H2 reaction [32]. Theoretical and
experimental aspects, and the historical development of
nonextensive statistical thermodynamics, and many ex-
amples, may be found in [22]. See also [33] for a theoret-
ical treatment of generalized thermostatistics.

III. NONEXTENSIVE LOCAL COMPOSITION

The basic assumption of the local composition the-
ory, as introduced by Wilson [1], is that, due to dif-
ferences in molecular sizes and in intermolecular inter-
actions, the ratio of the number of molecules of species
i and j, in the vicinity of a central molecule j, differs
from that of the whole solution, according to xij/xjj =
(xi/xj)(exp(− aij

RT )/ exp(−
ajj

RT )), where xi is the bulk
mole fraction of species i, and xij is the local mole frac-
tion of species i in the neighborhood of a molecule of
species j. Our assumption is to replace the Boltzmann
weight by the nonextensive Tsallis weight. Besides, the
q-product of probabilities yields nonextensive distribu-
tions (distributions remarkably close to q-Gaussians, to
be more precise; see [18],[34],[22]). The q-product, and
the q-ratio, of Tsallis weights has recently been shown to
be related to the locality of a generalized master equation
[35]. This inspires us to use the q-ratio, in the general-
ization of the local composition hypothesis: for a central
molecule j,

xij
xjj

=
xi
xj

expqij

(

− aij
RT

)

⊘qij expqij

(

− ajj
RT

)

. (17)

Substitution of Eq. (17) in the normalization condition
∑c

i xij = 1 (c is the number of chemical species) results

xij =
xiAq,ij

∑c
k xkAq,kj

, (18)

with the parameter Aq,ij given by1

Aq,ij ≡ expqij

(

−∆aij
RT

)

, (19)

1 We adopt the symbol Aq,ij , instead of Aqij ,ij , to avoid unnec-
essary heavy notation.

with ∆aij = aij − ajj . Symmetry of the interactions
implies aji = aij , and we assume, for simplicity, qji = qij .
The limiting case qij → 1 recovers the usual parameter
Aij ≡ A1,ij , Eq. (1). Note that, according to Eq. (11),

dAq,ij

dT
= A

qij
q,ij

∆aij
RT 2

. (20)

Figures 1 and 2 show the behavior of the parameter
Aq,12, Eq. (19), as a function of ∆a12, and the scaled in-
verse temperature, respectively. The usual case q12 = 1
appears as straight lines in these semi-logarithmic plots,
and q12 > 1 (q12 < 1) presents positive (negative) con-
cavity. Equation (3) is also displayed in Fig. 1, for com-
parison. The effect of the parameter ∆a12,1 of Eq. (3)
is simply to shift the q12 = 1 curve, but it remains a
straight line, once it relies on the Boltzmann weight.
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FIG. 1: Parameter Aq,12, Eq. (19), as a function of the binary
interaction parameter ∆a12 (with T = 298.15 K). q12 = 0.5
(dot-dashed), q12 = 1 (solid), and q12 = 1.5 (dashed). Dot-
dot-dashed curve uses Eq. (3) with ∆a12,1 = 5×105 J K/mol.

IV. q-WILSON’S, q-NRTL, AND q-UNIQUAC

MODELS

A. q-Wilson’s model

The excess molar Gibbs free energy for the Wilson’s
model [1] is an empirical modification of the Flory-
Huggins’ equation (see [4] for details and additional ref-
erences):

gE

RT
=

c
∑

i

xi ln
ξii
xi
, (21)

where ξii is the local volumetric fraction of the compo-
nent i in the neighborhood of another molecule i (Flory-
Huggins’ model for athermal polymeric solutions uses the
global segment fraction ξi in the place of ξii, in Eq. (21)).
The local volumetric fraction is given by

ξii =
xiivi

∑c
j xjivj

, (22)
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FIG. 2: Parameter Aq,12, Eq. (19), as a function of the inverse
temperature (conveniently scaled), for two typical values of
∆a12. The ordinary q12 = 1 model appears as straight lines
in these semi-log plots. q12 > 1 (q12 < 1) presents positive
(negative) concavity.

where the molar volume of liquid i, vi, is taken as a
measure of its molecular volume.
Substitution of Eq.s (18) and (22) in Eq. (21), leads to

the nonextensive generalization of the Wilson’s model,
and the excess molar Gibbs free energy is

gE

RT
= −

c
∑

i

xi ln





c
∑

j

xjΛq,ij



 , (23)

with Λq,ij = (vj/vi)Aq,ij . The activity coefficient is
formally given by the same expression of the original
(qij = 1) model, but with the q-parameter Λq,ij :

ln γi = − ln





c
∑

j

xjΛq,ij



+ 1−
c

∑

j

xjΛq,ji
∑c

k xkΛq,jk
. (24)

The excess molar enthalpy (heat of mixing) hE = ∂(gE/T )
∂(1/T )

is given by (see Eq. (20))

hE =

c
∑

i

xi
∑c

j xjΛq,ij

c
∑

k

(

vk
vi

)1−qik

xkΛ
qik
q,ik∆aik. (25)

B. q-NRTL model

The nonextensive generalization of the NRTL model
follows the same lines of [2], with Eq. (17). The excess

molar Gibbs free energy is given by

gE =

c
∑

i

xi

c
∑

j

xji∆aji

=
c

∑

i

xi

∑c
j xjAq,ji∆aji
∑c

k xkAq,ki
. (26)

The NRTL model introduces a nonrandomness parame-
ter αij = αji, so the parameter Aq,ij is given by a varia-

tion of Eq. (19), namely Aq,ij = expqij (−αij
∆aij

RT ). The
expression for the activity coefficient of a component i is
formally the same as the original (qij = 1) NRTL model,
just replacing the usual parameterAij by Aq,ij . This pro-
cedure is not valid to find the expressions of excess molar
entropy and excess molar enthalpy, due to Eq. (20).

C. q-UNIQUAC model

The UNIQUAC model [3] is based on the local com-
position hypothesis, but it replaces the local and global
mole fractions in Eq.s (17) and (18) by the local and
global surface fractions θij and θi (the global surface frac-
tion is defined as θi = xiq̃i/(

∑c
j xj q̃j), where q̃i is the sur-

face parameter2). The interaction parameter aij is con-
sidered as a measure of the internal energy (aij = uij),
and the excess molar internal energy is then given by

uE =

c
∑

i

xiq̃i

c
∑

j

θji∆uji. (27)

The excess molar Gibbs free energy is found by the ap-
proximate relation

gE/T ≈
∫ 1/T

0

uEd(1/T ), (28)

that, for the multicomponent case, shall be numerically
integrated. The residual contribution for the activity co-
efficient of component i, for a multicomponent mixture,
may be found by the numerical integration of

ln γresi =

∫ 1/T

0

ūEi d(1/T ), (29)

with the partial molar excess internal energy given by

ūEi = q̃i

c
∑

j

θjAq,ji∆uji
∑c

k θkAq,ki
+ q̃i

c
∑

j

θjAq,ij∆uij
∑c

k θkAq,kj

−q̃i
c

∑

j

θjAq,ij

(
∑c

k θkAq,kj)2
∑c

k θkAq,kj∆ukj . (30)

2 We use the notation q̃i to avoid confusion with the nonextensive
parameter qij . Sometimes there appear two surface parameters,
q̃ and q̃′, one of them is used in the combinatorial term and
the other in the residual term of the UNIQUAC model [5]. We
consider q̃ = q̃′, for simplicity.
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Analytical solution for the binary case is as follows:
substitution of Eq. (27) in Eq. (28), and Eq. (30) in
Eq. (29), with c = 2, lead to (see Eq. 3.194 5 and
Eq. 3.194 1 of [36])

∫ x

0

c expq(−cx)
a+ b expq(−cx)

dx = −1

a

∫ τ

1

τ ′1−q

1 + b
aτ

′
dτ ′

= − 1

a(2− q)

[

τ2−qχq

(

b

a
τ

)

− χq

(

b

a

)]

, (31)

∫ x

0

c expq(−cx)
[a+ b expq(−cx)]2

dx = − 1

a2

∫ τ

1

τ ′1−q

(1 + b
aτ

′)2
dτ ′

= − 1

a2(2− q)

[

τ2−qψq

(

b

a
τ

)

− ψq

(

b

a

)]

,(32)

where we have used the change of variables τ =

expq(−cx), and
∫ τ

1
f(τ ′)dτ ′ =

∫ τ

0
f(τ ′)dτ ′ −

∫ 1

0
f(τ ′)dτ ′,

with

χq(x) = 2F1(1, 2− q; 3− q;−x), (33)

ψq(x) = 2F1(2, 2− q; 3− q;−x), (34)

q < 2, and 2F1(α, β; γ;x) is the hypergeometric func-
tion, resulting the following analytical expressions for the
residual contributions, gEres and ln γresi :

(

gE

RT

)

res

= − x1q̃1
(2 − q

12
)

θ2
θ1

[

τ
2−q

12

q,21 χq
12

(

θ2
θ1
τq,21

)

− χq
12

(

θ2
θ1

)]

− x2q̃2
(2− q

12
)

θ1
θ2

[

τ
2−q

12

q,12 χq12

(

θ1
θ2
τq,12

)

− χq12

(

θ1
θ2

)]

, (35)

ln γresi = − q̃i
(2− q

12
)

θj
θi

[

τ
2−q

12

q,ji χq
12

(

θj
θi
τq,ji

)

− χq
12

(

θj
θi

)]

+
q̃i

(2− q
12
)

θj
θi

[

τ
2−q

12

q,ji ψq
12

(

θj
θi
τq,ji

)

− ψq
12

(

θj
θi

)]

− q̃i
(2− q

12
)

[

τ
2−q

12

q,ij ψq
12

(

θi
θj
τq,ij

)

− ψq
12

(

θi
θj

)]

, (36)

with q12 < 2, τq,ij ≡ Aq,ij = expqij (−∆uij/(RT )),

and (i = 1, j = 2) or (i = 2, j = 1). The lim-
iting case q12 → 1, with χ1(x) = x−1 ln(1 + x), and
ψ1(x) = (1 + x)−1 (see Eq. 9.121 6 and Eq. 9.121 16 of
[36], and Eq. 15.3.15 of [37]), recover the usual expres-
sions.

It is possible to find an expression for the residual con-
tribution of the activity coefficient of species i, in a binary
solution, different from, but equivalent to, Eq. (36), with
the partial molar excess Gibbs free energy taken from
Eq. (35), and ln γresi = (ḡEi )res/(RT ), where it is neces-
sary to use the derivative of χq(x) (see Eq. 15.2.1 of [37]),
dχq(x)/dx = −(2− q)/(3− q) 2F1(2, 3− q; 4− q;−x).
The combinatorial contribution of the UNIQUAC

model for the multicomponent case, that is the Guggen-
heim expression for athermal mixtures, remains un-
changed in the nonextensive generalization, consistent
with the lower limit of Eq. (28) [3]:

(

gE

RT

)

comb

=

c
∑

i

xi ln
φi
xi

+
z

2

c
∑

i

q̃ixi ln
θi
φi
, (37)

ln γcomb
i = ln

φi
xi

+
z

2
q̃i ln

θi
φi

+ li −
φi
xi

c
∑

j

xj lj (38)

where the volume fraction φi = xiri/(
∑c

j xjrj), ri is the

volumetric parameter of molecule i, li = (z/2)(ri − q̃i)−
(ri − 1), and z is the coordination number, usually as-
sumed z = 10. The complete expression for the excess
molar Gibbs free energy comprises the two contributions,
gE = gEres + gEcomb.

V. ACTIVITY COEFFICIENT AT INFINITE

DILUTION

We have chosen the activity coefficient at infinite di-
lution, that is a property that depends only on the tem-
perature, to illustrate our proposal. We have also cho-
sen the q-Wilson’s model to illustrate the effect of the
nonextensive parameter qij on the temperature depen-
dence, because it is the simplest model, if compared
to q-NRTL and q-UNIQUAC. The activity coefficient
at infinite dilution for the q-Wilson’s model is ln γ∞1 =
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lnΛq,12 −Λq,21 + 1. Fig. 3 shows curves for different val-
ues of q12 (all curves use the same parameters ∆a12 and
∆a21). q12 = 0.85 exhibits a maximum and a minimum
in γ∞1 , while q12 = 1 can only display a maximum.
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1000/T (K-1)
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γ1
∞
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q = 1.5

q = 0.85

q = 0.8

FIG. 3: γ∞

1 according to q-Wilson’s model, as a function of the
inverse temperature, for typical values of the binary parame-
ters: ∆a12 = 104 J/mol and ∆a21 = −5600 J/mol (v1 = v2,
values of q12 are indicated). Curve for q12 = 0.85 displays
a maximum and a minimum. The positions of the extreme
points and the values of γ∞

1 may be changed by adjusting
the parameters to other values; the particular values of the
parameters were chosen to make the figure visually good.

We have fitted the q-Wilson’s model to two examples
of experimental activity coefficient at infinite dilution:
ethanol infinitely diluted in toluene (Fig. 4a), and in de-
cane (Fig. 4b). The examples are not properly described
by the ordinary Wilson’s model, and the generalized q-
Wilson’s model is able to describe the data. The data
were taken from [38] (Vol IX, Parts 3, 4)3. The two
examples present positive deviations from Raoult’s law
(γ∞1 > 1) and decreasing γ∞1 with the temperature.

VI. FINAL REMARKS

The main goal of this paper is to introduce nonex-
tensivity in local composition models, used in theories
of solutions. Current theories and models are based on
Boltzmann’s distribution and Boltzmann’s weight. De-
viations from Boltzmann’s weight have been proposed,
mainly on an empirical basis (see Eq.s (2)-(6)). The q-
local composition hypothesis introduces one additional
binary parameter that comes from the nonextensive the-
ory, and generalizes the temperature dependence of the
models.

3 Four references are reported in [38] for the system ethanol-
toluene, and their fluctuations are significative. To avoid such
fluctuations, we have considered one single set of experimental
data, measured with the dilutor technique: Ref. 10 of [38], Vol
IX, Part 3, pp. 1292–1293 [39].
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q = 1

ethanol (1) - decane (2)

(b)

FIG. 4: Activity coefficient at infinite dilution of ethanol in
the solvents toluene (a), and decane (b). Experimental data
from [38]. Dashed lines are the best fittings for the origi-
nal (q12 = 1) Wilson’s model, and solid lines are the best
fittings for the q-Wilson’s model. (a) Dashed line: ∆a12 =
6880.0 J/mol, ∆a21 = −582.0 J/mol; solid line: q12 = 0.83,
∆a12 = 10267.0 J/mol, ∆a21 = −5179.7 J/mol. (b) Dashed
line: ∆a12 = 8773.6 J/mol, ∆a21 = −26.6 J/mol; solid line:
q12 = 0.7, ∆a12 = 6500.0 J/mol, ∆a21 = −2353.7 J/mol.

As one increases the degree of freedom of a model by
adding extra parameters, it is natural to expect a better
optimization from a fitting procedure. Sometimes new
parameters are simply introduced to take advantage of
the additional degrees of freedom, and then turn the fit-
tings easier. Nonextensive distributions do present a new
parameter qij , and of course the fittings are benefited
from it. But the extra parameter qij lies on a theoretical
background, and there are plenty of examples showing
that the entropic index q has a physical interpretation,
expressing the degree of nonextensivity of the system [22].

We have shown two fittings for the activity coefficient
at infinite dilution for the q-Wilson’s model. Expressions
for other models (q-NRTL, q-UNIQUAC) were presented,
but applications to large amounts of experimental data
still remain to be explored.

We hope this work invites experimentalists to apply
nonextensive local composition models to large experi-
mental databases, and test their validity in the descrip-
tion, or predicting capability, of thermodynamic proper-
ties, in different temperatures.
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[35] R. Silva, J. R. D. Feĺıcio, and A. S. Martinez, pre-
print(2012), arXiv:1205.6789 [cond-mat.stat-mech].

[36] I. S. Gradshteyn, I. M. Ryzhik, and A. A. Jeffrey, Table
of Integrals, Series, and Products, 5th Edition (Academic
Press, San Diego, 1994).

[37] M. Abramowitz and I. A. Stegun, Handbook of Math-

ematical Functions with Formulas, Graphs, and Math-

ematical Tables (Dover Publications, Inc., New York,
1972).

[38] J. Gmehling, J. Menke, and M. Schiller, DECHEMA

Chemistry Data Series (DECHEMA, Frankfurt/Main,
1994).

[39] F. Tian, S. Jin, X. Wang, S. Zhao, and Z. Chen, Sepu 4,
235 (1986).

http://arxiv.org/abs/{\protect \protect \protect \edef OT1{OT1}\let \enc@update \relax \protect \edef cmr{cmr}\protect \edef m{m}\protect \edef n{n}\protect \xdef \OT1/cmr/m/it/9 {\OT1/cmr/m/n/9 }\OT1/cmr/m/it/9 \size@update \enc@update \ignorespaces \relax \protect \relax \protect \edef cmr{cmtt}\protect \xdef \OT1/cmr/m/it/9 {\OT1/cmr/m/n/9 }\OT1/cmr/m/it/9 \size@update \enc@update arXiv:1205.6789 [cond-mat.stat-mech]}

