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Abstract

Asymptotic behavior (with respect to the number of trials) of symmetric general-

izations of binomial distributions and their related entropies are studied through three

examples. The first one derives from the q-exponential as a generating function. The

second one involves the modified Abel polynomials, and the third one involves Hermite

polynomials. The former and the latter have extensive Boltzmann-Gibbs whereas the

second one (Abel) has extensive Rényi entropy. A probabilistic model is presented for

this exceptional case.

1 Introduction

The content of our previous papers [1, 2, 3, 4] was devoted to a comprehen-
sive study of discrete distributions generalizing the familiar Bernoulli-like (or
binomial-like) distributions. The generalization consists in substituting the or-
dinary integers on which is based the binomial distribution with arbitrary se-
quences of positive numbers. They can be symmetrical or asymmetrical. The
study concerned the positiveness of those formal distributions in order to view
them as having a real probabilistic content. We have given many examples,
which run from Delone sequences, q-sequences, sequences based on family of
polynomials (modified Abel, Hermite...). A key point of our works was to dis-
play manageable generating functions. The existence of such functions allows
to easily control positiveness and makes a series of computations easier. Hence,
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we have shown in the above references a palette of interesting properties. Nev-
ertheless, except in a few cases, we did not give illustrating models of these new
probabilities distributions, and we did not explore systematically their asymp-
totic behaviors, their associated entropies (Shannon or Boltzmann-Gibbs, Tsal-
lis, Rényi ...), and related questions like extensiveness.

The aim of the present article is to examine comprehensively asymptotic
behaviors and associated entropies in the three cases concerning symmetric de-
formations of the binomial distribution previously presented in [3, 4] and having
a sound probabilistic content. Our interest is particularly concerned with the
extensivity, asymptotic or not, of these three entropies. We recall that an en-
tropy is extensive (resp. asymptotically extensive) if it is proportional (resp.
asymptotically proportional) to the number n of events (resp. at large n). The
three probability distributions mentioned above are denoted in this paper by

P =
⇣
p(n)
1

, p(n)
2

, . . . p(n)
n

⌘
. (1.1)

Due to symmetry, the multiplicity of states is the same as for the binomial
distribution. In our evaluations of entropies, we adopt a “microscopic” point of
view by ignoring the multiplicity.

The first entropy is the Boltzmann-Gibbs (BG) or Shannon [5, 6] entropy.

S
BG

= �

nX

k=0

p(n)
k

log
p(n)
k�
n

k

� . (1.2)

The second one is the Tsallis entropy S
q

[7], which is a deformation of (1.2),
S
q

! S
BG

as q ! 1,

S
q

=
1

q � 1

"
1�

nX

k=0

✓
n

k

◆ 
p(n)
k�
n

k

�
!

q

#
. (1.3)

The third one is the Rényi entropy S
Re;q

[9], which is also a deformation of (1.2)
S
Re;q

! S
BG

as q ! 1,

S
Re;q

=
1

1� q
log

"
nX

k=0

✓
n

k

◆ 
p(n)
k�
n

k

�
!

q

#
. (1.4)

The organization of the paper is the following. In Section 2 the necessary
background issued from [4] is rewieved. The first case, examined in Section 3,
has the so-called q-exponential as a generating function. It gives rise to a nice
probabilistic interpretation (e.g. Polya urns) and to an extensive Boltzmann-
Gibbs entropy, as was already mentioned in [4]. We show that the Rényi entropy
is also extensive for this distribution. The second case is related to modified
Abel polynomials and has the exponential of the Lambert function as a gen-
erating function. This example forms the content of Section 4 and yields an
unexpected nontrivial result. Indeed, the entropy which is asymptotically ex-
tensive in this case is not Boltzmann-Gibbs, nor the Tsallis q-entropy for any
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q, but instead the Rényi one, and its asymptotic behavior does not depend on
the Rényi parameter. Due to the importance of this result, we present in the
same section a probabilistic model based on counting of words made with let-
ters picked in several alphabets. This model is quite elaborate. Section 5 is
devoted to our third example, involving Hermite polynomials. With this case,
we return to the standard situation for which both Boltzmann-Gibbs and Rényi
are extensive. Following our conclusions and comments in Section 6 are the first
appendix where we present an historical survey of the concept of entropy, and
the second one where we give the necessary technical details.

2 Symmetric deformations of binomial distribu-
tions

We remind in this section notations and main results of [4].
Let X = (x

n

)
n2N be a sequence of positive numbers x

n

for n > 0 and x
0

= 0.

The “factorial” of x
n

is defined as x
n

! = x
1

x
2

· · ·x
n

, x
0

!
def

= 1 , and from it
we build the binomial coe�cient

✓
x
n

x
k

◆
:=

x
n

!

x
n�k

!x
k

!
.

We now associate to X the formal distribution

p(n)
k

(⌘) =

✓
x
n

x
k

◆
q
k

(⌘)q
n�k

(1� ⌘) , (2.1)

where the q
k

(⌘) are polynomials of degree k and the p(n)
k

(⌘) are constrained by
the normalization condition

8n 2 N, 8⌘ 2 [0, 1],
nX

k=0

p(n)
k

(⌘) = 1, (2.2)

and by the non-negativeness condition

8n, k 2 N, 8⌘ 2 [0, 1], p(n)
k

(⌘) � 0 . (2.3)

The normalization implies

8⌘ 2 [0, 1], p(0)
0

(⌘) = q
0

(⌘)q
0

(1� ⌘) = 1 ) q
0

(⌘) = ±1

From now on we keep the choice q
0

(⌘) = 1. This implies

8n 2 N, 8⌘ 2 [0, 1], p(n)
0

(⌘) = q
n

(1� ⌘).

Therefore the non-negativeness condition is equivalent to the non-negativeness

of the polynomials q
n

on the interval [0, 1]. The quantity p(n)
k

(⌘) can be inter-
preted as the probability of having k wins and n � k losses in a sequence of
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correlated n trials. Besides, as we recover the invariance under k ! n � k and
⌘ ! 1 � ⌘ of the binomial distribution, no bias in the case ⌘ = 1/2 can exist
favoring either win or loss.

We now associate to the sequence X an “exponential” defined as the entire
series

N (t) =
1X

n=0

tn

x
n

!
⌘

1X

n=0

a
n

tn , x
n

= a
n�1

/a
n

, (2.4)

which is supposed to have a non-vanishing radius of convergence. Hence N (t)
is an element of ⌃ defined as the set of entire series

P1
n=0

a
n

tn possessing a
non-vanishing radius of convergence and verifying a

0

= 1 and 8n � 1, a
n

> 0.
Starting from N (t) 2 ⌃ and ⌘ 2 [0, 1], we consider the series N (t)⌘. It is

easy to prove from N (t) = N (t)⌘ N (t)1�⌘ that it is a generating function for
polynomials q

n

obeying (2.1)-(2.2):

8⌘ 2 [0, 1], G̃N ,⌘

(t) := N (t)⌘ =
1X

n=0

q
n

(⌘)

x
n

!
tn. (2.5)

More precisely, the polynomials q
n

issued from (2.5) have the following proper-
ties:

(a) q
0

(⌘) = 1, q
1

(⌘) = ⌘ and more generally

8n 2 N , 8⌘ 2 [0, 1] , q
n+1

(⌘) = ⌘
x
n+1

n+ 1
⇥

⇥

nX

k=0

✓
x
n

x
k

◆
n� k + 1

x
n�k+1

q
k

(⌘ � 1) .
(2.6)

(b) The q
n

’s are polynomials of degree n obeying

8n 2 N , q
n

(1) = 1, and 8n 6= 0 , q
n

(0) = 0 ,

and they fulfill the normalization condition.

(c) The q
n

’s fulfill the functional relation

8z
1

, z
2

2 C, 8n 2 N,
nX

k=0

✓
x
n

x
k

◆
q
k

(z
1

)q
n�k

(z
2

) = q
n

(z
1

+ z
2

) . (2.7)

We note that these polynomials, suitably normalized, are of binomial type.
Since log(N (t)) is analytical around t = 0, N (t)⌘ = exp(⌘ log(N (t))) pos-

sesses a convergent series expansion around t = 0 (for all ⌘ 2 C).
Since we already know that q

0

(⌘) = 1 and 8 n 6= 0, q
n

(0) = 0, the non-
negativeness condition is equivalent to specify that for any ⌘ 2]0, 1], q

n

(⌘) > 0
and then the function t 7! N (t)⌘ belongs to ⌃. Defining ⌃

0

as the set of entire
series f(z) =

P1
n=0

a
n

zn possessing a non-vanishing radius of convergence and
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verifying the conditions a
0

= 0, a
1

> 0 and 8n � 2, a
n

� 0, it was proved in [4]
that

⌃
+

:= {N 2 ⌃ | 8⌘ 2 [0, 1), 8n � 0, q
n

(⌘) > 0 } = {eF |F 2 ⌃
0

} (2.8)

is the set of deformed exponentials such that the generating functions GN ,⌘

(t)
solve the non-negativeness problem.

3 Symmetric distribution from“q-exponential”

3.1 The probabilty distribution

We consider here the following family of functions belonging to ⌃
+

:

N (t) =

✓
1�

t

↵

◆�↵

, ↵ > 0 , (3.1)

that are q-exponentials in the sense that eq(x) = [1 � (1 � q)x](1/(1�q)), where
the parameter q = 1 + 1/↵ with the notations in [8]. We first note that if
↵ ! 1 then N (t) ! et, i.e. we return to the ordinary binomial case. The
corresponding sequence is bounded by ↵ and given by

x
n

=
n↵

n+ ↵� 1
, lim

n!1
x
n

= ↵ . (3.2)

For the factorial we have:

x
n

! = ↵n

�(↵)n!

�(n+ ↵)
=
↵nn!

(↵)
n

=
↵n

�
n+↵�1

n

� , (3.3)

where (z)
n

= �(z + n)/�(z) is the Pochhammer symbol. The corresponding
polynomials are given by

q
n

(⌘) =
�(↵)

�(n+ ↵)

�(n+ ↵⌘)

�(↵⌘)
=

(↵⌘)
n

(↵)
n

, (3.4)

and satisfy the recurrence relation

q
n

(⌘) =
n+ ↵⌘ � 1

n+ ↵� 1
q
n�1

(⌘) , with q
0

(⌘) = 1 . (3.5)

In particular q
1

(⌘) = ⌘. The distribution p(n)
k

(⌘) defined by these polynomials
is given by

p(n)
k

(⌘) =

✓
n

k

◆
�(↵)

�(⌘↵)�((1� ⌘)↵)

�(⌘↵+ k)�((1� ⌘)↵+ n� k)

�(↵+ n)
(3.6)

=

✓
⌘↵+ k � 1

k

◆✓
(1� ⌘)↵+ n� k � 1

n� k

◆

✓
↵+ n� 1

n

◆ . (3.7)

5



This is precisely the Pólya distribution [10], also called “Markov-Pólya” or “in-
verse hypergeometric” and more. It was considered by Pólya (1923) in the
following urn scheme [11]. From a set of b black balls and r red balls contained
in an urn one extracts one ball and return it to the urn together with c balls of
the same color. The probability to have in the urn k black balls after the n-th
trial is given by the ratio (3.7) with

⌘ =
b

b+ r
, ↵ =

b+ r

c
, (3.8)

which holds for rational parameters ⌘ and ↵. In this notation, the distribution
(3.6) reads, in terms of Pochammer symbol,

p(n)
k

(b, c, r) =

✓
n

k

◆
✓
b

c

◆

k

⇣r
c

⌘

n�k✓
b+ r

c

◆

n

. (3.9)

We notice that if we take the medium value ⌘ = 1/2 and redefine the param-
eters according to ↵ ! 2⌫, n ! N and k ! n in the distribution given by Eq.
(3.6) we recover the distribution rN

n

studied in reference [12], see Eqs. (4) and
(10) therein, within the framework of the Laplace-de Finetti representation.

3.2 Asymptotic behavior at large n

Let us now study the asymptotic behavior of (3.6) at large n. The probability
distribution is given by:

p(n)
k

(⌘) =

✓
n

k

◆
�(↵)

�(⌘↵)�((1� ⌘)↵)

�(⌘↵+ k)�((1� ⌘)↵+ n� k)

�(↵+ n)

=

✓
n

k

◆
B(⌘↵+ k, (1� ⌘)↵+ n� k)

B(⌘↵, (1� ⌘)↵)
,

where 0  ⌘  1, ↵ > 0, and B(p, q) = �(p)�(q)/�(q + p) is the beta
function . We put k = nx, with 0 < x < 1. Using the Stirling formula,
n! ⇠

p

2⇡ e�n nn+1/2 or �(z) ⇠
p

2⇡ e(z�1/2) log z�z, we find

B(⌘↵+ k, (1� ⌘)↵+ n� k) ⇠

r
2⇡

n
x⌘↵�1/2 (1� x)(1�⌘)↵�1/2 e�nC(x) ,

where we introduced

C(x) := �x log x� (1� x) log(1� x) ,

with C

0(x) = � log
x

1� x
, C

00(x) = �

1

x(1� x)
.

(3.10)

For x 2 (0, 1) this function is nonnegative, concave and symmetric with respect
to its maximum value log 2 at x = 1/2. In fact, C(x) is the basic BG (or
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Shannon) entropy in the case of two possibilities with probabilities x and 1�x,
and it appears in many places in the paper.

The asymptotic behavior of the binomial coe�cient at large n is (see (B.2))

✓
n

k = nx

◆
⇠

1p
2⇡nx(1� x)

enC(x)) .

Therefore, the limit distribution we find is the following:

p(n)
k=nx

(⌘) ⇠
1

n

1

B(⌘↵, (1� ⌘)↵)
x⌘↵�1 (1� x)(1�⌘)↵�1 . (3.11)

We easily check that the probabilistic normalisation
P

n

k=0

p(n)
k=nx

= 1 remains
valid at the limit n ! 1. Indeed, replacing the sum

P
n

k=0

by the integralR
1

0

ndx leads to

nX

k=0

p(n)
k=nx

⇠

1

B(⌘↵, (1� ⌘)↵)

Z
1

0

x⌘↵�1 (1� x)(1�⌘)↵�1 dx = 1 . (3.12)

Moreover, our asymptotic formula (3.11), in the case ⌘ = 1/2 and after
centering on the origin, becomes proportional to a Q-Gaussian [13] with Q =
(↵ � 4)/(↵ � 2). This result was recently obtained numerically by Ruiz and
Tsallis [14].

3.3 Boltzmann-Gibbs entropy

We take a definition of the BG entropy for the distribution (3.6) which does
not take into account the multiplicity of states, because as we have already
mentioned in the introduction, we are adopting a microscopic point of view.

Consequently we replace the random variable � log p(n)
k

by � log
⇣
p(n)
k

/
�
n

k

�⌘
:

S
BG

= �

nX

k=0

p(n)
k

log
p(n)
k�
n

k

� . (3.13)

The division of the probability by the binomial coe�cient in each logarithm in
(3.13) means a counting of the degeneracy. As a preliminary numerical explo-
ration, its extensive property is shown in Figure 1 where it is compared with
the Tsallis entropy

S(n)

q

def

= (1�
nX

k=0

✓
n

k

◆ 
p(n)
k�
n

k

�
!

q

)/(q � 1) .

Let us now establish the analytic formula for S
BG

in the asymptotic limit as

7



20 40 60 80 100

20

40

60

SBG

S1 .05
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n

Figure 1: n-dependence of entropies for the “q-exponential” case (N (t) =
(1 � t/↵)�↵). The Boltzmann-Gibbs (BG) and Tsallis (S

q

) entropies of the
distribution are shown for ⌘ = 1/2 and ↵ = 3. Upper curve is for q = 0.95.
Bottom curve is for q = 1.05.

n ! 1. In the present case the latter behaves as

S
BG

⇠

at largen

�

1

B(⌘↵, (1� ⌘)↵)

Z
1

0

dxx⌘↵�1 (1� x)(1�⌘)↵�1

⇥

⇥ log

"
1

B(⌘↵, (1� ⌘)↵)

r
2⇡

n
x⌘↵�1/2 (1� x)(1�⌘)↵�1/2 e�nC(x))

#

= nI
1

+
1

2
log n+ I

2

,

with

I
1

=
1

B(⌘↵, (1� ⌘)↵)

Z
1

0

dxx⌘↵�1 (1� x)(1�⌘)↵�1

C(x) ,

I
2

= log

✓
B(⌘↵, (1� ⌘)↵)

p

2⇡

◆
�

1

B(⌘↵, (1� ⌘)↵)

Z
1

0

dxx⌘↵�1 (1� x)(1�⌘)↵�1

⇥

⇥

✓
⌘↵�

1

2

◆
log x+

✓
(1� ⌘)↵�

1

2

◆
log(1� x)

�
.

Since the term in n is dominant, the Boltzmann-Gibbs entropy is proved to be
extensive in the present case. Let us calculate the integrals appearing in the
above expressions. They are all of the type

LB(p, q) :=

Z
1

0

dxxp�1 log x (1� x)q�1 =

Z
1

0

dx (1� x)p�1 log(1� x)xq�1

=
@

@p
B(p, q) = [ (p)�  (p+ q)]B(p, q) ,  (t) =

�
0
(t)

�(t)
. (3.14)
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Finally, we find

S
BG

⇠ n[ (↵+ 1)� (⌘ (⌘↵+ 1) + (1� ⌘) ((1� ⌘)↵+ 1)] +
1

2
log n+

+ log

✓
B(⌘↵, (1� ⌘)↵)

p

2⇡

◆

+ ↵ (↵)�

✓
⌘↵�

1

2

◆
 (⌘↵) +

✓
(1� ⌘)↵�

1

2

◆
 ((1� ⌘)↵)

�
. (3.15)

3.4 Rényi Entropy

We finally explore, for the present case, the Rényi entropy

S
Re;q

=
1

1� q
log

"
nX

k=0

✓
n

k

◆ 
p(n)
k�
n

k

�
!

q

#
, (3.16)

which becomes S
BG

as q ! 1. Using the asymptotic formula of Eqs. (B.2) and

(3.11), the approximation
P

n

k=0

⇠

R
1

0

ndx, and the Laplace formula (see (5.16)),
we obtain the asymptotic expression for q < 1

nX

k=0

✓
n

k

◆ 
p(n)
k�
n

k

�
!

q

⇠

1

2
p

1� q


25�2↵⇡

nB2(⌘↵, (1� ⌘)↵)

�
q/2

en(1�q) log 2 . (3.17)

By taking the logarithm of (3.17), we see that the dominant term is

S
Re;q

⇠ n log 2 . (3.18)

and the Rényi entropy is obviously extensive. A point to be noticed is that this
asymptotic behavior is independent of the Rényi parameter q. Actually this
remarkable feature is encountered in many distributions [15], including the next
two cases considered in this paper. We will give a special attention to this fact
in Section 6.

4 Symmetric distribution from modified Abel
polynomials

4.1 Probability distribution

We take here the specific generating function N (t) given by

N (t) = e�↵W (�t/↵) , ↵ > 0 , (4.1)

where W is the Lambert function [16], i.e. solving the functional equation
W (t)eW (t) = t. We first note that if ↵! 1 then N (t) ! et. The corresponding
sequence is bounded by ↵/e and given by

x
n

=
n↵

n+ ↵

✓
1�

1

n+ ↵

◆
n�2

, lim
n!1

x
n

= ↵/e . (4.2)

9



We also note that x
n

! n as ↵! 1. The corresponding factorial is

x
n

! = n!
↵n�1

(n+ ↵)n�1

. (4.3)

The polynomials q
n

’s read as

q
n

(⌘) = ⌘

�
⌘ + n

↵

�
n�1

�
1 + n

↵

�
n�1

. (4.4)

We verify that q
0

(⌘) = 1 and q
1

(⌘) = ⌘. The polynomials above are a kind of
modified Abel polynomials [17] which look like

P
n

(x) = x(x+ na)n�1 , a 2 Q , (4.5)

with the di↵erence of the presence of a normalization factor in the denominator
of (5.3) and the relaxing of the rational condition.

The corresponding probability distribution is found to be:

p(n)
k

(⌘) =

✓
n

k

◆
⌘(1� ⌘)

(⌘ + k/↵)k�1(1� ⌘ + (n� k)/↵)n�k�1

(1 + n/↵)n�1

, (4.6)

with 0  ⌘  1.

4.2 Regularization at the limit n ! 1

Putting k = nx in (4.6), with 0 < x < 1, and using the Stirling formula, we find
the limit distribution

p(n)
nx

(⌘) ⇠

large n

↵⌘(1� ⌘)
p

2⇡
(nx(1� x))�3/2 . (4.7)

The problem is that if one replaces the discrete sum
P

n

k=0

by the integral
R
1

0

ndx
this expression leads to a divergent integral. However, there is a simple way to
give it a finite value through a sort of principal value. First, let us consider the
finite convergent integral

B
✏

(a, a) :=

Z
1�✏

✏

xa�1(1� x)a�1dx (4.8)

with a small ✏ > 0 and arbitrary a. Due to the symmetry of the integrand under
the interchange x ! 1� x, we have

B
✏

(a, a) = 2

Z 1
2

✏

xa�1(1� x)a�1dx . (4.9)

By expanding the binomial (1� x)a�1 we easily find its expression in terms of
Gauss hypergeometric function:

B
✏

(a, a) =
2

a


2�a

2

F
1

✓
a, 1� a; a+ 1;

1

2

◆
� ✏a

2

F
1

(a, 1� a; a+ 1; ✏)

�
. (4.10)
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We now consider our particular case a = �1/2. By using the formula [19]

2

F
1

✓
a, 1� a; b;

1

2

◆
=

p

⇡21�b�(b)


�

✓
a+ b

2

◆
�

✓
1 + b� a

2

◆��1

, (4.11)

and from 1/�(0) = 0,
2

F
1

(a, 1� a; a+ 1; ✏) ⇡ 1 at small ✏, we eventually find

B
✏

✓
�

1

2
,�

1

2

◆
⇠

4
p

✏
. (4.12)

Now, from (4.7), we have
nX

k=0

p(n)
nx

(⌘) ⇠

large n

↵⌘(1� ⌘)
p

2⇡
n�1/2 lim

✏!0

Z
1�✏

✏

x� 3
2 (1� x)�

3
2 dx (4.13)

⇠

large n
lim
✏!0

4↵⌘(1� ⌘)
p

2⇡

1
p

n✏
. (4.14)

It is then legitimate to put ✏ = A/n, where the arbitrarily constant A is consis-
tently chosen as A = 8(↵⌘(1�⌘))2/⇡, in such a way that the original expression
remains equal to 1.

4.3 Boltzmann-Gibbs Entropy

We first examine the Boltzmann-Gibbs entropy for the limit distribution (4.7).
From (4.7) and (B.2) we find the asymptotic behavior of each term in the defin-
ing sum of the BG entropy:

p(n)
k

log
p(n)
k�
n

k

�
⇠

↵⌘(1� ⌘)
p

2⇡
(nx(1� x))�3/2

⇥

⇥ log
h
↵⌘(1� ⌘)(nx(1� x))�1e�nC(x)

i
. (4.15)

After replacing the sum
P

n

k=0

by the integral
R
1

0

ndx in

S
BG

= �

nX

k=0

p(n)
k

log
p(n)
k�
n

k

� , (4.16)

the BG entropy behaves as the sum of three terms

S
BG

⇠

large n

1
p

n

✓
lim
✏1!0

R
1;✏1 + lim

✏2!0

R
2;✏2

◆
+
p

nR
3

, (4.17)

where

R
1;✏1 = �

↵⌘(1� ⌘)
p

2⇡
log

✓
↵⌘(1� ⌘)

n

◆
B

✏1

✓
�

1

2
,�

1

2

◆

R
2;✏2 = 2

↵⌘(1� ⌘)
p

2⇡
LB

✏2

✓
�

1

2
,�

1

2

◆

R
3

= �2
↵⌘(1� ⌘)

p

2⇡

Z
1

0

x�1/2 (log x) (1� x)�3/2 dx .
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Here we have introduced the notation

LB
✏

(a, a) :=

Z
1�✏

✏

xa�1 (log x) (1� x)a�1dx

=

Z
1�✏

✏

xa�1 (log (1� x)) (1� x)a�1dx ,

(4.18)

and made use of symmetries x 7! 1 � x in the integrals. From the general
expression

LB
✏

(a, a) =
1

2

@

@a
B

✏

(a, a) = �

1

2a
B

✏

(a, a)�

p

⇡

a
21�2a log 2

�(a+ 1)

�
�
a+ 1

2

�+

+

p

⇡

a
2�2a

�(a+ 1)

�
�
a+ 1

2

�

 (a+ 1)�  

✓
a+

1

2

◆�
+

�

1

a
log ✏ ✏a

2

F
1

(a, 1� a; a+ 1; ✏)�
1

a
✏a O(✏) ,

we find

LB
✏

✓
�

1

2
,�

1

2

◆
⇠

4
p

✏
+

2 log ✏
p

✏
⇠

2 log ✏
p

✏
.

In (4.17) choosing ✏
1

/ 1/n and ✏
2

(log ✏
2

)2 / 1/n we get rid of both the integral
divergences in R

1;✏

and R
2;✏

respectively. The value of R
3

is easily found from
[18]:

LI
p

:=

Z
1

0

xp�1 (log x) (1� x)�p�1 dx = �

⇡

p
csc p⇡ , 0 < p < 1 . (4.19)

In the present case, p = 1/2 and so LI
p

= �2⇡. Hence, we see that the dominant
term in (4.17) is

S
BG

⇠ 2
p

2⇡ ↵ ⌘ (1� ⌘)
p

n . (4.20)

Hence, we conclude that the Boltzmann-Gibbs entropy is not extensive for this
type of deformation of the binomial distribution and with the chosen regular-
ization of integrals. It behaves as

p

n, as is also shown in Figure 2 obtained
from numerical computations of (4.16).

4.4 Tsallis Entropy

Let us now explore, for the present case, the Tsallis entropy defined as

S
q

=
1

q � 1

"
1�

nX

k=0

✓
n

k

◆ 
p(n)
k�
n

k

�
!

q

#
, (4.21)

which becomes S
BG

as q ! 1. We first estimate the general term in the sum:

✓
n

nx

◆ 
p(n)
nx�
n

nx

�
!

q

⇠

(↵⌘(1� ⌘))q
p

2⇡
n�q�1/2 (x(1� x))�q�1/2 e�n(q�1)C(x) . (4.22)
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Figure 2: Numerical behavior of the Boltzmann-Gibbs entropy (4.16) versus
p

n
for the symmetric distribution from modified Abel polynomials, with ⌘ = 0.8,
↵ = 5 and n up to 20 000.

We now replace the sum
P

n

k=0

by the integral
R
1

0

ndx and obtain

nX

k=0

✓
n

k

◆ 
p(n)
k�
n

k

�
!

q

⇠

(↵⌘(1� ⌘))q
p

2⇡
n1/2�q

Z
1

0

(x(1� x))�q�1/2 e�n(q�1)C(x) dx ,

(4.23)
and this would impose a convergence condition q < 1/2 if we were not in the
very large n regime. With the properties (3.10) of C(x), the use of the Laplace
approximation method with the condition q < 1 yields

nX

k=0

✓
n

k

◆ 
p(n)
k�
n

k

�
!

q

⇠

1p
|q � 1|

22q(↵⌘(1� ⌘))q n�q en(1�q) log 2 , (4.24)

and the Tsallis entropy becomes

S
q

⇠

1

(q � 1)
p
|q � 1|

hp
|q � 1|� 22q(↵⌘(1� ⌘))q n�q en(1�q) log 2

i
. (4.25)

We see that the Tsallis entropy is not extensive for any value of q < 1. However,
we should be aware that our derivation prevents us to consider the asymptotic
form of S

BG

in (4.20) as the limit at q ! 1 of (4.25), since the Laplace approx-
imation method in (4.23) loses its validity for q = 1.

4.5 Rényi Entropy

We finally explore the Rényi entropy

S
Re;q

=
1

1� q
log

"
nX

k=0

✓
n

k

◆ 
p(n)
k�
n

k

�
!

q

#
. (4.26)
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From (4.24) we derive immediately

log

"
nX

k=0

✓
n

nx

◆ 
p(n)
nx�
n

nx

�
!

q

#
⇠ log

 
1p

|q � 1|
22q(↵⌘(1� ⌘))q

!
+

� q log n+ n(1� q) log 2 . (4.27)

Therefore, the Rényi entropy is extensive for q < 1:

S
Re;q

⇠ n log 2 . (4.28)

We recover the asymptotic q-independence already noticed in the case of the
previous example.

4.6 Probabilistic interpretation

Choosing the parameters ↵ and ⌘ in the expression (4.6) as

↵ =
p+ q

c
and ⌘ =

p

p+ q
, (4.29)

where p, q and c are three positive integers, we obtain

p(n)
k

=

✓
n

k

◆
p(p+ kc)k�1q(q + (n� k)c)n�k�1

(p+ q)(p+ q + nc)n�1

. (4.30)

¿From the sum of probabilities, we deduce the finite expansion formula

nX

k=0

✓
n

k

◆
p(p+ kc)k�1q(q + (n� k)c)n�k�1 = (p+ q)(p+ q + nc)n�1 . (4.31)

We now present counting interpretation of this expansion and its resulting urn
model. We define a finite set for which the numbers

�
n

k

�
p(p+ kc)k�1q(q + (n�

k)c)n�k�1 for k = 0, 1 . . . correspond to counting of partitions. As our main
interest is to present at least one sound probabilistic model, for the sake of
simplicity we consider the case c = 1.

4.6.1 The model

Let A(2n, p, q) = A

C`

(2n) [A

`

(p) [A

C

(q) be an alphabet of 2n+ p+ q letters
viewed as the union of three sub-alphabets:

• A

`

(p), p � 1, is a set {b
1

, b
2

, . . . , b
p

} of p letters which are only lowercase,
by convention A

`

(0) = ;,

• A

C

(q), q � 1, is a set {C
1

, C
2

, . . . , C
q

} of q letters which are solely capital,
by convention A

C

(0) = ;,
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• The family {A

C`

(2n)}1
n=1

where A

C`

(2n) =
S

n

i=1

{a
i

, A
i

} made of 2n
mixed letters, built from a possible infinite sequence of pairs

(a
1

, A
1

), . . . (a
i

, A
i

), . . .

Each pair (a
i

, A
i

) is made from the same letter in both sizes (lowercase
and capital), and the letters are assumed to be di↵erent in di↵erent pairs,
independently of their size. The inclusion A

C`

(2n) ⇢ A

C`

(2m) holds for
any n  m.
In the following we introduce also the lowercase part ofA

C`

(2n) asA`

C`

(n) =S
n

i=1

{a
i

} and the capital part of A
C`

(2n) as AC

C`

(n) =
S

n

i=1

{A
i

}.

• All letters, independently of their size, are assumed to be di↵erent: in
A(2n, p, q) we have n + p di↵erent lowercase letters and n + q di↵erent
capital letters.

We consider the set of words W
n

with n letters picked from A(2n, p, q), built
as W

n

=
S

n

k=0

W

n

k

where the subsets Wn

k

contain the words with n letters, k of
them being lowercase and n� k capital. The words are built with the following
rules.

(i) Di↵erent orderings of letters are assumed to give di↵erent words,

(ii) In a word in W

n

k

, starting from the left, the first lowercase letter encoun-
tered (if k 6= 0) belongs to A

`

(p), and the first capital letter encountered
(if k 6= n) belongs to A

C

(q) .

(iii) In a word in W

n

k

, all the lowercase letters (k 6= 0) belong to A

`

(p)[A`

C`

(k),
and all the capital letters (k 6= n) belong to A

C

(q) [A

C

C`

(n� k).

Now let us evaluate the number of words Nn

k

in W

n

k

.

• If k = 0 the words contain exactly n capital letters. The first one (from
the left) belongs to A

C

(q) and the n�1 remaining ones belong to A

C

(q)[
A

C

C`

(n). This gives
N

n

0

= q(q + n)n�1 . (4.32)

• If k = 1, the words contain a unique lowercase letter that belongs to A

`

(p),
and n�1 capital letters. The first capital letter belongs to A

C

(q), the n�2
remaining (capital letters) belong to A

C

(q) [ A

C

C`

(n � 1). Since there is
n =

�
n

1

�
ways to locate the lowercase letter in the word, we have

N

n

1

=

✓
n

1

◆
pq(q + n� 1)n�2 (4.33)

• For 2  k  n � 2, we first choose the k positions of the lowercase letters
in the word, there are

�
n

k

�
possibilities. The first lowercase letter belongs

to A

`

(p), the following k� 1 ones belong to A

`

(p)[A

`

C`

(k), then for each
choice of the k positions, we have p(p+k)k�1 possibilities for the lowercase

15



letters. For the capital letters, we obtain similarly q(q + n � k)n�k�1

possibilities. We deduce

N

n

k

=

✓
n

k

◆
p(p+ k)k�1q(q + n� k)n�k�1 (4.34)

• The cases k = n � 1 and k = n are analyzed following the same rules,
leading to

N

n

n�1

=

✓
n

n� 1

◆
pq(p+ n� 1)n�2 and N

n

n

= p(p+ n)n�1 . (4.35)

We conclude that the formula of Eq.(4.34) is valid for k = 0, 1 . . . , n � 1, n.
Using Eq.(4.31) we deduce that the total number N

n

of words of W
n

is N

n

=
(p+ q)(p+ q + n)n�1 .

Remark The value of N
n

can be easily understood. A generic word of W
n

contains:

• One letter that belongs either to A

`

(p) or to A

C

(q): this gives p + q pos-
sibilities,

• Each remaining letter is either lowercase belonging to A

`

(p) [ A

`

C`

(k), or
capital belonging to A

C

(q) [A

C

C`

(n� k) for some k. This gives (p+ k) +
(q + n� k) = p+ q + n possibilities for each n� 1 letters.

Therefore N

n

= (p+ q)(p+ q + n)n�1 .

Conclusion The probabilities p(n)
k

of Eq.(4.30) are the probabilities to extract
a word with k lowercase letters after a draw at random from the “urn” W

n

.

Remark Other interesting probabilities emerge from this urn model. For ex-
ample let us call P ({l

1

, l
2

, . . . }) the probability that a word of W
n

contains at
least one of the letters of the family {l

1

, l
2

, . . . }. We have the following results
8
>>><

>>>:

P (A
`

(p)) = 1� p(n)
0

P (A
C

(q)) = 1� p(n)
n

8k � 2 , P (A
`

(p) [A

`

C`

(k)) =
P

n

i=k

p(n)
i

P (A
`

(p) [A

`

C`

(1)) = 1

2

P (A
`

(p) [A

`

C`

(2))

(4.36)

4.6.2 An example

Let us illustrate the above counting with the manageable although not trivial
case n = 3, p = q = 1 and the alphabet

A = {a, b, c, d, A, B, C, D} ⌘ A

C`

(6) [A

`

(1) [A

C

(1),

A

C`

(2) = {a, A} , A
C`

(4) = {a, A}[{b, B} , A
C`

(6) = {a, A}[{b, B}[{c, C} ,
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A

`

C`

(1) = {a} , A`

C`

(2) = {a, b} , A`

C`

(3) = {a, b, c} ,

A

C

C`

(1) = {A} , AC

C`

(2) = {A, B} , AC

C`

(3) = {A, B, C} ,

A

`

(1) = {d} , A

C

(1) = {D} .

The total number of possible words of W
3

is N
3

= 50. The set of allowed words
with 3 letters built from the above rules is described as follows.

• The subset of words W3

0

is
0

BB@

DAA DAB DAC DAD
DBA DBB DBC DBD
DCA DCB DCC DCD
DDA DDB DDC DDD

1

CCA ,

corresponding to N

3

0

= 16 words.

• The subset of words W3

1

is
0

@
dDA dDB dDD
DdA DdB DdD
DAd DBd DDd

1

A .

corresponding to N

3

1

= 9 words.

• The subset of words W3

2

is
0

@
dDa dDb dDd
daD dbD ddD
Dda Ddb Ddd

1

A .

corresponding to N

3

2

= 9 words.

• The subset of words W3

3

is
0

BB@

daa dab dac dad
dba dbb dbc dbd
dca dcb dcc dcd
dda ddb ddc ddd

1

CCA ,

corresponding to N

3

3

= 16 words.

The total number of words is 2⇥ 16+ 2⇥ 9 = 50. Finally, the probabilities p(3)
k

corresponding to these 4 situations are given in Table 1.

5 Symmetric distribution from Hermite polyno-
mials

Here the function N (t) is chosen as

N (t) = et+
a
2 t

2

, 0 < a < 1 . (5.1)
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Table 1: values of p(n)
k

for n = 3, ↵ = 2 = p+ q, ⌘ = p/(p+ q) = 1/2, p = q = 1

k p(n)
k

0 8/25
1 9/50
2 9/50
3 8/25

The corresponding sequence x
n

has the following factorial form:

x
n

! =

"
in
�
a

2

�
n/2

n!
H

n

✓
�i
p

2a

◆#�1

=

2

64
b

n
2 cX

m=0

(a/2)m

m!(n� 2m)!

3

75

�1

:=
1

'
n

(a)
. (5.2)

In particular, x
1

! = x
1

= 1, x
2

! = 2/(a + 1). Also, x
n

= '
n�1

(a)/'
n

(a), and
we know from [2] that x

n

⇡

p
n/a as n ! 1. The corresponding polynomials

and probability distributions are respectively given by

q
n

(⌘) =
x
n

!

n!

✓
i

r
a⌘

2

◆
n

H
n

✓
�i

r
⌘

2a

◆
(5.3)

and

p(n)
k

(⌘) = ⌘k(1� ⌘)n�k

'
k

(a/⌘)'
n�k

(a/(1� ⌘))

'
n

(a)
. (5.4)

5.1 Asymptotic behavior at large n

Let us evaluate the asymptotic behavior of the probability distribution (5.4).
For that, let us rewrite it in terms of Hermite polynomials:

p(n)
k

(⌘) =

✓
n

k

◆
⌘

k
2 (1� ⌘)

n�k
2

H
k

�
�i
p

⌘

2a

�
H

n�k

✓
�i
q

1�⌘

2a

◆

H
n

⇣
�i
q

1

2a

⌘ . (5.5)

Putting k = nx, with 0 < x < 1, using the Stirling formula (B.1), and the
asymptotic behavior of Hermite polynomials versus their respective degree when
argument is not real [19]1,

|H
n

(t)| ⇠
n!

2�
�
n

2

+ 1
� e

p
2n|Im(t)| , (5.6)

we find

p(n)
k=nx

⇠

1

2

✓
n

2

nx

2

◆
⌘

k
2 (1� ⌘)

n�k
2 exp

r
n

a
(
p

x⌘ +
p
(1� x)(1� ⌘)� 1)

�

⇠

1

2

1p
n⇡x(1� x)

enA(x) , (5.7)

1
Page 255. Actually, a factor 2 in front of |Hn(t)| is missing there.
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where

A(x) =
x

2
log

⌘

x
+

(1� x)

2
log

1� ⌘

1� x
+

1
p

na
(
p

x⌘+
p
(1� x)(1� ⌘)� 1) . (5.8)

Let us check if the asymptotic distribution (5.7), continuous with respect to the
measure ndx, is correctly normalized,

1

2

r
n

⇡

Z
1

0

[x(1� x)]�1/2 enA(x) dx = 1? (5.9)

For showing this, we use Laplace’s method. The two first derivatives of the
function A(x) are given by

A0(x) =
1

2

✓
log

⌘

x
� log

1� ⌘

1� x

◆
+

1

2
p

na

 r
⌘

x
�

r
1� ⌘

1� x

!
,

A00(x) = �

1

2

✓
1

x
+

1

1� x

◆
�

1

4
p

na

 r
⌘

x3

+

s
1� ⌘

(1� x)3

!
.

We see that in the integration interval A00(x) < 0, A0(x) = 0 for x = ⌘ (unique
root), and that the values assumed by A(x) and A00(x) at this value are respec-
tively

A(⌘) = 0 , A00(⌘) ⇠ �

1

2⌘(1� ⌘)
. (5.10)

Then let us apply the Laplace approximation formula (with suitable conditions
on the functions involved)

Z
b

a

h(x) enA(x) dx ⇠

s
2⇡

n|A00(x
0

)|
h(x

0

) enA(x0) as n ! 1 , (5.11)

where A0(x
0

) = 0 for x
0

2 [a, b], A
00
(x

0

) < 0 and h is positive. We get in our
case,

1

2

Z
1

0

p(n)
k

ndx ⇠

r
n

⇡

Z
1

0

[x(1� x)]�1/2 enA(x) dx ⇠ 1 . (5.12)

⇤

5.2 Boltzmann-Gibbs entropy

¿From the asymptotic behavior (5.7) and (B.2) we infer the following behavior

p(n)
nx

log
p(n)
nx�
n

nx

�
⇠

1

2
p

n⇡
h(x) enA(x) , (5.13)
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where A(x) is given by (5.8) and the function h(x) is given by

h(x) =
p
x(1� x)


�

1

2
log 2 +

n

2
[x log(x⌘) + (1� x) log((1� x)(1� ⌘))]+

+

r
n

a
[
p

x⌘ +
p

(1� x� (1� ⌘)� 1]

�
. (5.14)

After the usual replacement
P

n

k=0

7!

R
1

0

ndx, we get for the BG entropy,

S
BG

= �

nX

k=0

p(n)
k

log
p(n)
k�
n

k

�

⇠ �

1

2

r
n

⇡

Z
1

0

h(x) enA(x) dx . (5.15)

Applying the Laplace approximation method

S
BG

= �

1

2

r
n

⇡

s
2⇡

n|A00(⌘)|
h(⌘) enA(⌘)

⇠

1

2
log 2� n[⌘ log ⌘ + (1� ⌘) log(1� ⌘)] . (5.16)

So we can conclude that S
BG

is extensive in this model.

5.3 Tsallis and Rényi entropy

To estimate the asymptotic behavior of both entropies, we first use the approx-
imation resulting from (5.7) and (B.2)

✓
n

k = nx

◆�
q�1 ⇣

p(n)
k=nx

⌘
q

⇠

1p
2q+1n⇡x(1� x)

enB(x) , (5.17)

with

B(x) = qA(x)� (q � 1)C(x) =
q

2
[x log ⌘ + (1� x) log(1� ⌘)]+

+
⇣q
2
� 1
⌘
[x log x+ (1� x) log(1� x)]+

+
q

p

na
[
p

x⌘ +
p
(1� x)(1� ⌘)� 1] .

(5.18)

Next we transform the sum into an integral, as usual,

X

k=nx

✓
n

k = nx

◆�
q�1 ⇣

p(n)
k=nx

⌘
q

⇠

r
n

2q+1⇡

Z
1

0

dx (x(1� x))�1/2 enB(x) .

(5.19)
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In order to implement the Laplace method, we calculate B0 and B00.

B0(x) =
q

2
[log ⌘ � log(1� ⌘)] +

⇣q
2
� 1
⌘
[log x� (1� x) log(1� x)]+

+
q

2
p

na

"r
⌘

x
+

r
1� ⌘

1� x

#
, (5.20)

B00(x) =
⇣q
2
� 1
⌘ 1

x(1� x)
�

q

4
p

na

"r
⌘

x3

+

s
1� ⌘

(1� x)3

#
. (5.21)

We see that for q < 2 we have B00(x) < 0 for all x 2 (0, 1). Hence, if q < 2
and if we find one and only one x

0

2 (0, 1) such that B0(x
0

) = 0, the Laplace
approximation method is valid, and we obtain the behavior of the sum at large
n:

X

k

✓
n

k

◆�
q�1 ⇣

p(n)
k

⌘
q

⇠

s
1

2q|B00(x
0

)|
(x

0

(1� x
0

))�1/2 enB(x0) . (5.22)

Now, for the median value ⌘ = 1/2, we find immediately the unique solution
x
0

= 1/2. Then, B00(1/2) = 2(q � 2)� q/
p

na, B(1/2) = (1� q) log 2, and so

X

k

✓
n

k

◆�
q�1 ⇣

p(n)
k

⌘
q

⇠

at large n
2(3�q)/2(q � 2)�1/2 en(1�q) log 2 . (5.23)

Therefore, for ⌘ = 1/2, while the Tsallis entropy is not extensive, the Rényi
entropy is extensive,

S
Re;q

⇠ n log 2 . (5.24)

One can easily show that with ⌘ = 1/2 + �, |�| ⌧ 1/2, the value of the root x
0

is x
0

= q

2�q

� +O(�2) and that the behavior (5.24) holds too. We have checked

numerically that it holds for all ⌘ 2 (0, 1). We notice that this behavior (which
is simply ⇠ n if we adopt the original Rényi choice log

2

) is the same as for the
two other cases considered in this paper, Eqs. (3.18) and (4.28), and also for the
binomial and Laplace de Finetti distributions considered in [15]. We will come
back to this important point in the conclusion.

6 Conclusions

In this paper our main interest is the extensivity property of di↵erent entropies
constructed from generalized binomial distributions. We analyse the behavior
of three entropies, mainly the Boltzmann-Gibbs, Tsallis, and Rényi ones for the
three examples of generalized binomial distributions presented in [4], recalling
that our point of view is strictly microscopic. For that sake we examined the
asymptotic behavior of the deformed probability distributions in question, which
are those whose generating functions are the q-exponential, the exponential
of the Lambert function and the exponential of a second-degree polynomial:
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the probabilities obtained are respectively the Polya distribution, a product of
modified Abel polynomials and a product of Hermite polynomials.

As could be expected, the Tsallis entropy is not extensive for the three prob-
ability distributions considered. The results found for the other two entropies
are interesting: the Rényi entropy is extensive for the three probability distri-
butions and, which is surprising, the Boltzmann-Gibbs one is extensive for two
cases, those related to the q-exponential and to the Hermite polynomials, but
not when the probability distribution is given by modified Abel polynomials.
This example of non-extensivity of Boltzmann-Gibbs is a result that deserves
further investigation, as it has so far been considered as the universally exten-
sive entropy. As to the Rényi entropy an important aspect of the result found
here is that for all the three studied distributions its asymptotic value at large
n is the same, n log 2, and therefore does not depend on its parameter q.

Actually, this extensivity is probably due to the nature of the three distribu-
tions examined here, which are smooth deformations of the binomial one. We
have shown in [15] that both Boltzmann-Gibbs and Rényi are extensive for the
binomial case. Deformations of the binomial distribution introduce correlations,
and these correlations may or not be strong enough to substantially modify the
asymptotic behaviors. The fact that extensivity holds for Rényi and for its BG
limit at q = 1 when the deformed probability is either the Polya distribution or
a product of Hermite polynomials indicates that in these cases the related cor-
relations are weak. Otherwise, the behavior of the deformed probability given
as products of modified Abel polynomials is di↵erent as the Boltzmann-Gibbs
limit of the Rényi entropy is asymptotically not extensive. This distribution
deserves a further investigation on the correlations it introduces and we might
expect them to be stronger than the two former mentioned cases; this issue
will be the subject of future work. Due to this exceptionality of the modified
Abel polynomials case we illustrated it here with a concrete and non trivial
probabilistic model.

A Axiomatic(s) for entropies

As a complement to the introduction and since the content of the paper is
strongly concerned with entropy, we remind in this appendix, through di↵erent
sets of postulates, the senses which can be given to this mathematical entity.
Entropy is at the same time an information theory concept and a physical quan-
tity as well - physical in the sense that it should be accessible to measurement,
and which acts, according to Boltzmann, as a link between the microscopic and
the macroscopic worlds.

It is worthy to start with the way Shannon introduced it in [5]:

We have represented a discrete information source as a Marko↵ pro-
cess. Can we define a quantity which will measure, in some sense,
how much information is “produced” by such a process, or better, at
what rate information is produced? Suppose we have a set of n possi-
ble events whose probabilities of occurrence are p

1

, p
2

, . . . , p
n

. These
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probabilities are known but that is all we know concerning which event
will occur. Can we find a measure of how much “choice” is involved in
the selection of the event or of how uncertain we are of the outcome?
If there is such a measure, say H(p

1

, p
2

, . . . , p
n

), it is reasonable to
require of it the following properties:

S1 H should be continuous in the p
k

.

S2 If all the p
k

are equal, p
k

= 1/n, then H should be a monotonic
increasing function of n. With equally n likely events there is
more choice, or uncertainty, when there are more possible events.

S3 If a choice be broken down into two successive choices, the original
H should be the weighted sum of the individual values of H.

Then (Theorem) the only H satisfying the three above assumptions
is of the form:

H ⌘ H(P) = �K
nX

k=1

p
k

log p
k

⌘ h�K log p
k

i . (A.1)

where K is a positive constant and P = (p
1

, p
2

, . . . , p
n

).

The above identity means that if we look at k 7! �K log p
k

= y
k

as a random
variable Y , then the entropy H is its expected value with respect to the dis-
tribution k 7! p

k

, H = hY i. Information theory uses log
2

instead of log and
(A.1) with K = 1 is the average number of bits needed to describe any random
variable with the same probability distribution.

A (partially) di↵erent set of axioms, which involve conditional probabilities,
was established by Khinchin [20] in view of characterizing the Shannon entropy
(A.1). Here we also use the notation H[⇠] ⌘ H(P) where ⇠ = (x

1

, x
2

, . . . , x
n

)
is a random variable with probability distribution P, i.e. p

k

is the probability
that ⇠ assumes the value x

k

.

K1 H is symmetrical in its arguments.

K2 The uniform distribution p
k

= 1/n has maximal H = K log n.

K3 If Q = (q
1

, q
2

, . . . , q
m

) is a probability distribution with m > n, q
k

= p
k

for 1  k  n and q
k

= 0 for n+ 1  k  m, then H(P) = H(Q).

K4 For any random variables ⇠ and ⌘, H[⇠, ⌘] = H[⇠] +
P

n

k=1

p
k

H[⌘ | ⇠ = x
k

],
which means that the joint entropy is the sum of the entropy of one variable,
plus the average value of the entropy of the other variable, once the first
is given.

According to Rényi in [9] the Shannon entropy is characterized by another
(partially di↵erent) set of postulates (Fadeev):

F1=K1 H is symmetrical in its arguments.

F2 H(p, 1� p) is a continuous function of p for 0  p  1.

F3 H(1/2, 1/2) = 1.
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F4 H(tp
1

, (1 � t)p
1

, p
2

, . . . , p
n

) = H(p
1

, p
2

, . . . , p
n

) + p
1

H(t, 1 � t) for any
distribution P = (p

1

, p
2

, . . . , p
n

) and for 0  t  1.

The Shannon entropy is also the only one which satisfies these four postulates.
On the other hand, there are many quantities other than (A.1) that satisfy F1,
F2 and F3, plus the property of additivity

H(P ⇤Q) = H(P) +H(Q) , (A.2)

where P⇤Q is the direct product of the distributions P and Q. The fundamental
property (A.2) is weaker than the Shannon S3. Rényi in [9] gave the following
example which now bears the name of Rényi entropy :

H
q

(p
1

, p
2

, . . . , p
n

) =
1

1� q
log

2

 
nX

k=1

pq
k

!
⌘ log

2

⇣D
pq�1

k

E⌘
1/(1�q)

, (A.3)

where q > 0 and q 6= 1, which is one of the entropies examined in this paper.
Usually log

2

is replaced by log. This family of entropies goes to the Shannon
entropy as q ! 1.

To dispel any remnant ambiguity regarding the definition of both the above
entropies if one wants to impose additivity, Rényi defined a set of 5 postulates
that characterize completely these quantities. First, he extended his consider-
ations to incomplete distributions, i.e. sequences P = (p

1

, p
2

, . . . , p
n

) of non-
negative numbers such that their weights

w(P) :=
nX

k=1

p
k

(A.4)

are positive and  1, but not necessarily equal to 1. The Rényi postulates for
the entropy function H(P) are

R1 H(P) is a symmetric functions of the elements of P.

R2 If {p} denotes the generalized probability distribution consisting of the
single probability p then H({p}) is a continuous function of p for 0 < p  1
(not necessarily in 0).

R3 H({1/2}) = 1.

R4 Additivity holds for any pair of incomplete distributions, H(P ⇤ Q) =
H(P) +H(Q).

R5 There exists a strictly monotonic and continuous function y = g(x) such
that for two incomplete distributions P = (p

1

, p
2

, . . . , p
m

) and
Q = (q

1

, q
2

, . . . , q
n

) with w(P) + w(Q)  1, we have the g-mean value
formula

H(P [Q) = g�1


w(P) g (H(P)) + w(Q) g (H(Q))

w(P) + w(Q)

�
. (A.5)

By adding some considerations involving conditional probability, Rényi proved
that there are only two possible solutions for the function g.

24



• The function g is linear, g(x) = ax+b, and then the corresponding entropy
is Shannon for incomplete distributions

H(P) = �

P
n

k=1

p
k

log
2

p
kP

n

k=1

p
k

. (A.6)

• It is exponential, g
q

(x) = 2(q�1)x, q > 0, q 6= 1, and then the entropy is
Rényi for incomplete distributions

H
q

(P) =
1

1� q
log

2

P
n

k=1

pq
kP

n

k=1

p
k

�
. (A.7)

The first case is the limit as q ! 1 of the second one.
Finally, we have as well considered the Tsallis entropy which is also a defor-

mation of (A.1):

S
q

(p
1

, p
2

, . . . , p
n

) =
1

q � 1

 
1�

nX

k=1

pq
k

!
⌘

*
1� pq�1

k

q � 1

+
. (A.8)

This entropy also goes to the Shannon entropy as q ! 1. While it satisfies F1
and F2, the Tsallis entropy does not satisfies F3 and has the deformed additivity
property

S
q

(P ⇤Q) = S
q

(P) + S
q

(Q) + (1� q)S
q

(P)S
q

(Q) . (A.9)

More precisely, Abe [21] has proved that this entropy is characterized by three
postulates adapted from the Shannon-Khinchin axioms.

A1 S
q

(P) is continuous with respect to all its arguments and takes its maxi-
mum for the equiprobability distribution p

k

= 1/n.

A2 If Q = (q
1

, q
2

, . . . , q
m

) is a probability distribution with m > n, q
k

= p
k

for 1  k  n and q
k

= 0 for n+ 1  k  m, then S
q

(P) = S
q

(Q).

A3 For any random variables ⇠ and ⌘,

S
q

[⇠, ⌘] = S
q

[⇠] + S
q

[⌘ | ⇠] + (1� q)S
q

[⇠]S
q

[⌘ | ⇠] .

B Asymptotic formulas

From the Stirling formula,

n! ⇠
p

2⇡ e�n nn+1/2 at large n , (B.1)

we derive the asymptotic behavior of binomial coe�cient at large n,

✓
n

k = nx

◆
⇠

1p
2⇡nx(1� x)

enC(x) (B.2)
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where the function C(x) := �x log x� (1� x) log(1� x). From this expression,
we can check that the summation formula

nX

k=0

✓
n

k

◆
= 2n (B.3)

keeps its validity at large n. Indeed, with k = nx, 0 < x < 1 and replacing the
above sum

P
n

k=0

by the integral
R
1

0

ndx, leads to

nX

k=0

✓
n

k

◆
⇠

r
n

2⇡

Z
1

0

[x(1� x)]�1/2 enC(x) dx . (B.4)

Then we apply the Laplace’s method for evaluating the above integral. Laplace’s
approximation formula (with suitable conditions on the functions involved)
reads

Z
b

a

h(x) enA(x) dx ⇡

s
2⇡

n|A00(x
0

)|
h(x

0

) enA(x0) as n ! 1 , (B.5)

where A
0
(x

0

) = 0 for x
0

2 [a, b], A
00
(x

0

) < 0 and h is positive. Here, we have

C

0(x) = � log(x) + log(1� x) C

00(x) = �

1

x(1� x)
.

Now, x = 1/2 is the only root of C0(x) = 0 in the interval 0 < x < 1, and this
corresponds to the maximum of C(x) in that interval: C(1/2) = log 2. Moreover,
C

00(1/2) = 4. Thus,

r
n

2⇡

Z
1

0

[x(1� x)]�1/2 enC(x) dx ⇠ 2n .
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