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Sensitivity to initial conditions of a d-dimensional long-range-interacting quartic
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We introduce a generalized d-dimensional Fermi-Pasta-Ulam model in the presence of long-range interactions,
and perform a first-principle study of its chaos for d = 1,2,3 through large-scale numerical simulations. The
nonlinear interaction is assumed to decay algebraically as d−α

ij (α ! 0), {dij } being the distances between N

oscillator sites. Starting from random initial conditions we compute the maximal Lyapunov exponent λmax as a
function of N . Our N ≫ 1 results strongly indicate that λmax remains constant and positive for α/d > 1 (implying
strong chaos, mixing, and ergodicity), and that it vanishes like N−κ for 0 " α/d < 1 (thus approaching weak
chaos and opening the possibility of breakdown of ergodicity). The suitably rescaled exponent κ exhibits universal
scaling, namely that (d + 2)κ depends only on α/d and, when α/d increases from zero to unity, it monotonically
decreases from unity to zero, remaining so for all α/d > 1. The value α/d = 1 can therefore be seen as a
critical point separating the ergodic regime from the anomalous one, κ playing a role analogous to that of an
order parameter. This scaling law is consistent with Boltzmann-Gibbs statistics for α/d > 1, and possibly with
q statistics for 0 " α/d < 1.
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I. INTRODUCTION

Many-body systems with long-range-interacting forces are
very important in nature, the primary example being gravita-
tion. Long-ranged systems deviate significantly from the con-
ventional “well behaved” systems in many respects. Various
features like ergodicity breakdown, ensemble inequivalence,
nonmixing nonlinear dynamics, partial (possibly hierarchical)
occupancy of phase space, thermodynamical nonextensivity
for the total energy, longstanding metastable states, phase
transitions even in one dimension, and other anomalies,
can be observed in systems with long-range interactions.
Consistently, some of the usual premises of Boltzmann-Gibbs
(BG) statistical mechanics are challenged and an alternative
thermostatistical description of these systems becomes neces-
sary in many instances. For some decades now, q statistics [1,2]
has been a useful formalism to study such systems, and
has led to satisfactory experimental validations for a wide
variety of complex systems (see, for instance, [3–17]). The
deep understanding of the microscopical nonlinear dynamics
of such systems naturally constitutes a must in order to
theoretically legitimize the efficiency of the q generalization
of the BG theory. For classical systems such as many-body
Hamiltonian ones and low-dimensional maps, a crucial aspect
concerns the sensitivity to the initial conditions, which is
characterized by the spectrum of Lyapunov exponents. If the
maximal Lyapunov exponent λmax is positive, mixing and
ergodicity are essentially warranted, and we consequently
expect the BG entropy and statistical mechanics to be
applicable. If instead λmax vanishes, the sensitivity to the
initial conditions is subexponential, typically a power law
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with time, and we might expect nonadditive entropies such
as Sq and its associated statistical mechanics to emerge, as has
been observed numerically as well as experimentally in many
systems (see, for instance, [16–23]).

II. MODEL AND THE NUMERICAL SCHEME

In the present paper we extend to d dimensions (d = 1,2,3)
and numerically study from first principles (i.e., using only
Newton’s law F⃗ = ma⃗) the celebrated Fermi-Pasta-Ulam
(FPU) model with periodic boundary conditions; nonlinear
long-range interactions between all the N = Ld oscillators
are allowed as well. The Hamiltonian is the following one:

H =
∑

i

p⃗i
2

2mi

+ a

2

∑

i

(r⃗i+1 − r⃗i)2 + b

4Ñ

∑

i

∑

j ̸=i

(r⃗i − r⃗j )4

dα
ij

,

(1)

where r⃗i and p⃗i are the displacement and momentum of the
ith particle with mass mi ≡ m; a ! 0, b > 0, and α ! 0.
Here dij is the shortest Euclidean distance between the ith
and j th lattice sites (1 " i,j " N ); this distance depends
on the geometry of the lattice (ring, periodic square, or
cubic lattices). Thus for d = 1, dij = 1,2,3, . . .; for d = 2,
dij = 1,

√
2,2, . . ., and, for d = 3, dij = 1,

√
2,

√
3,2, . . . If

α/d > 1 (0 " α/d " 1) we have short-range (long-range)
interactions in the sense that the potential energy per particle
converges (diverges) in the thermodynamic limit N → ∞; in
particular, the α → ∞ limit corresponds to only first-neighbor
interactions, and the α = 0 value corresponds to typical mean
field approaches, when the coupling constant is assumed to
be independent from distance. The instance (d,α) = (1,∞)
recovers the original β-FPU Hamiltonian, that has been
profusely studied in the literature; the d = 1 model and generic
α has been addressed in [24].
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Although not necessary (see [19]), we have followed the
current use and have made the Hamiltonian extensive for all
values of α/d by adopting the scaling factor Ñ in the quartic
coupling, where

Ñ ≡
N∑

i=1

1
dα

ij

. (2)

Hence Ñ depends on α,N,d, and the geometry of the lattice.
Note that for α = 0 we have Ñ = N , which recovers the
rescaling usually introduced in mean field approaches. In
the thermodynamic limit N → ∞, Ñ remains constant for
α/d > 1, whereas Ñ ∼ N1−α/d

1−α/d
for 0 " α/d < 1 (Ñ ∼ ln N for

α/d = 1); see details in [19] and references therein.
Let us mention that the analytical thermostatistical ap-

proach of the present model is in some sense even harder than
that of coupled XY or Heisenberg rotators already addressed
in [19,25–28]. Indeed, the standard BG approach of these
models is analytically tractable, whereas not even that appears
to be possible for the original FPU, not to say anything for the
present generalization. Therefore, for this kind of many-body
Hamiltonian, the numerical approach appears to be the only
tractable one.

To numerically solve the equations of motion (Newton’s
law) we have employed the symplectic second order accurate
velocity Verlet algorithm. To accelerate the computationally
expensive part of the force calculation routine we have
exploited the convolution theorem and used a fast Fourier
transform algorithm. This yields a considerable reduction in
the number of operations for force calculation from O(N2)
to O(N ln N ), thus facilitating computation for larger system
sizes and longer times.

We choose the time step %t (which is typically ∼10−3

for most of our results) such that the standard deviation of the
energy density over the entire simulation time (i.e., the number
of iterations required by the maximal Lyapunov exponent to
saturate, which is typically ∼105–106 iterations, depending on
system parameters) is of the order of 10−4 or smaller (for the
range of N considered here, 10 < N < 106).

Starting from random initial displacements r⃗i drawn from
a uniform distribution centered around zero, and momenta p⃗i

from a Gaussian distribution with zero mean and unit variance,
we evolve the system and compute the maximal Lyapunov
exponent λmax defined as follows:

λmax = lim
t→∞

lim
δ(0)→0

1
t

ln
δ(t)
δ(0)

, (3)

where δ(t) =
∑

i(δr
2
i + δp2

i )1/2 is the metric distance between
the fiducial orbit and the reference orbit having initial displace-
ment δ(0). We numerically compute this quantity by using the
algorithm by Benettin et al. [29]. For typical values of the
exponent α, we compute λmax as a function of the system size
N for d = 1, 2, and 3.

III. SIMULATION RESULTS

Let us now present the results of our numerical analysis by
setting m = 1 (no loss of generality), and fixing the energy
density u ≡ U/N = 9.0 and b = 10.0 for all d, unless stated
otherwise, where U is the total energy associated with H.
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FIG. 1. Log-log plot of the dependence, for a ring (d = 1), of
the maximal Lyapunov exponent λmax on the number N = L of
oscillators for (a,b,u) = (0,10,9) and typical values of the exponent
α. Each individual curve has been multiplied by the number indicated
next to it for visualization clarity.

Additionally, we have set the harmonic term to zero, i.e.,
a = 0, for reasons that will be elaborated later. In fact such
a model, with only the quartic anharmonic nearest neighbor
interactions, has been studied previously in the context of heat
conduction [30].

In Figs. 1, 2, and 3 we present, for d = 1, 2, and 3,
respectively, the maximal Lyapunov exponent λmax as a
function of the system size for typical values of the exponent α.
We find that, for α > d, λmax saturates to a positive value with
increasing N , which strongly suggests that it will remain so for
N → ∞, thus leading to ergodicity, which in turn legitimizes
the BG thermostatistical theory. In contrast, for 0 " α < d,
λmax algebraically decays with N = Ld as

λmax ∼ N−κ , (4)

where κ > 0 and depends on (α,d). Assuming that it remains
so for increasingly large N , we expect limN→∞ λmax =
0, which implies that the entire Lyapunov spectrum van-
ishes. This characterizes weak chaos for 0 < α/d < 1, i.e.,
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FIG. 2. Same as in Fig. 1 for a periodic square lattice (d = 2)
with N = L2 oscillators.
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FIG. 3. Same as in Fig. 1 for a periodic cubic lattice (d = 3) with
N = L3 oscillators.

subexponential sensitivity to the initial conditions, which
opens the door for breakdown of mixing, or of ergodicity,
or some other nonlinear dynamical anomaly. Within this sce-
nario, the violation of Boltzmann-Gibbs statistical mechanics
in the N → ∞ limit becomes strongly plausible (see, for
example, [23,24]).

From the results illustrated in Figs. 1, 2, and 3 we compute
the exponent κ(α,d) for d = 1, 2, and 3, as shown in Fig. 4,
including its inset. We find that κ(α,d) > 0 for 0 " α < d,
and, within numerical accuracy, vanishes for α > d. Also note
that κ(0,d) decreases for increasing d. Remarkably enough, all
three curves in the inset of Fig. 4 can be made to collapse onto
a single curve through the scalings α → α/d and κ(α,d) →
(d + 2)κ(α,d). This is shown in the main figure of Fig. 4. In
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FIG. 4. Inset shows the exponent κ(α,d) as a function of α for
d = 1,2,3. Note that κ > 0 for 0 " α < d and κ = 0 for α > d.
The main figure exhibits the universal law obtained by appropriately
rescaling the abscissas and ordinates as indicated on the axes, i.e.,
(d + 2)κ(α,d) = f (α/d). The thick continuous curve is the heuristic
scaling function f (x) = (1 − x2)/(1 + x2/6) [26], which, within
the present precision, is a remarkably close fit to the collapsed
data. The present collapse obviously implies κ(0,d) = 1/(d + 2),
hence limd→∞ κ(0,d) = 0, thus recovering ergodicity, as intuitively
expected.

other words, (d + 2)κ(α,d) = f (α/d), where f (x) appears to
be a universal function.

A similar scaling was also verified for the classical
model of long-ranged coupled rotators [19,26]. Some relevant
differences exist however between the two models and their
sensitivities to initial conditions. The long-range-interacting
planar rotator model exhibits, for a critical energy density
uc [19,25–27], a second order phase transition from a clustered
phase (ferromagnetic) to a homogeneous one (paramagnetic).
Such critical phenomenon does not exist in either the short-
ranged or the long-ranged FPU model. For the XY ferro-
magnetic model the exponent κ for α = 0 is found to be
independent from d (quite obvious since the α = 0 model
has no dimension) and given by κ(0,d) = 1/3 [26,31] (see
also [32]). In contrast, our long-range model yields a value
κ(0,d) which depends on d. Indeed, for d = 1, 2, and 3, we
respectively obtain κ(0,d) ≃ 1/3, 1/4, and 1/5.

This difference in κ(0,d) is related to the fact that, for
the XY model, the number of degrees of freedom (number
of independent variables needed to specify the state of the
system in phase space) for N coupled rotators in d dimensions
is 2N (∀d), whereas, for our model, there are 2Nd degrees of
freedom; hence the dimension of the full phase space grows
linearly with d. Thus there are more possible phase space
dimensions for our coupled oscillator system to escape even
if it gets somewhat trapped in some nonchaotic region of the
phase space. Consequently, the system gets closer to ergodicity
(equivalently, κ gets closer to zero) for increasing d. It is even
not excluded that, because of some generic reason of this kind,
κ(0,d) (∀d) for the long-ranged XY model and κ(0,1) for the
system studied here, we obtain (in the absence of the integrable
term, i.e., with a = 0) the same value 1/3.

In this context we should mention another recent study [33]
of the Hamiltonian mean field (HMF) model which is the
α = 0 particular case of the long-ranged XY model discussed
above. Using numerical and analytical arguments it was
suggested that the nature of chaos is quite different for
this model (which has a phase transition at uc = 3/4) in
the homogeneous phase (u > uc) where λmax ∼ N−1/3, the
ordered phase (u < uc) where λmax remains positive and
finite, and at criticality (u → uc) where λmax ∼ N−1/6 in the
infinite size limit. However, in another earlier work [34], using
scaling arguments and numerical simulations, it was observed
that λmax ∼ N−1/9 below the critical point (u = 0.69) in the
(nonequilibrium) quasistationary regime of the HMF system.

Another class of models might also have a similar behavior.
If we consider the d-dimensional long-range-interacting n-
vector ferromagnet, we expect an exponent κ(α,n,d). We know
that for n = 2 (XY symmetry) κ(0,2,1) = 1/3, for n = 3
(classical Heisenberg model symmetry) κ(0,3,1) = 0.225 ±
0.030 [35], and for n → ∞ (spherical model symmetry)
most plausibly κ(0,∞,d) = 0 (∀d). These expressions can be
simply unified through κ(0,n,d) = 1/(n + 1) (∀d).

Strikingly enough, the present Fig. 4 and Fig. 2 of [26] for
the d-dimensional XY model are numerically indistinguish-
able within error bars. This suggests the following heuristic
expression:

κ(α,d)
κ(0,d)

= f (α/d) ≃ 1 − (α/d)2

1 + (α/d)2/6
, (5)
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FIG. 5. Parameter dependencies of λmax(N ) with N = Ld : (a) for different b’s and u’s with (a,α,%t) = (0,0,0.002)—inset shows data
collapse obtained by rescaling the y axis of the main figure as (bu)−1/4λmax; (b) for different a’s with (α,b,u,%t) = (0,10,9,0.002); (c) for
different %t’s with (a,α,b,u) = (0,0,10,9).

where this specific analytic expression for f (x) has been
first suggested in [26]. This or a similar universal behavior
is expected to hold for d-dimensional long-range-interacting
many-body models such as the present one, the XY ferro-
magnetic one, and others such as, for instance, the n-vector
ferromagnetic one (∀n).

All the numerical results presented until now are with a
fixed set of parameters (a,b,u,) = (0,10,9) and a fixed time
step %t . Before concluding, let us briefly mention some results
concerning the influence of these parameters on λmax(N ) and
κ(α,d). In Fig. 5(a) we plot λmax(N ) for d = 1 for three
different sets of (b,u) keeping all other parameters unchanged.
We find that increasing b has the same effect as increasing
u—the maximum Lyapunov exponent λmax increases with
both of them but the slope of the curve κ remains practically
unaltered. For a = 0, it is straightforward to show that the
average of Hamiltonian Eq. (1) remains invariant with respect
to b and u (all other parameters remaining the same) under the
transformations

x ′ = (b/u)1/4x, t ′ = (bu)1/4t. (6)

The second transformation in Eq. (6) implies that the max-
imum Lyapunov exponent λmax (∼t−1) satisfies the following
scaling relation:

λ′
max = (bu)−1/4λmax. (7)

Using the data in the main figure, we show in the inset
of Fig. 5(a) the variation of λ′

max ≡ (bu)−1/4λmax with N . As
predicted by the scaling analysis, we get an excellent data
collapse of the three curves. This is precisely as desired,
keeping in mind the universal behavior ubiquitously found
in statistical mechanics, in the sense that scaling indices, such
as κ here, are generically expected to be independent of the
microscopic details of the model.

For nonzero values of a, the simple scaling Eq. (7)
disappears, and λmax(N ) shows a saturation to a positive value
that vanishes for a = 0 when N is large, b being a finite positive
number. This is shown in Fig. 5(b) for two values of a with the
same value of b. The saturation of λmax for a > 0 needs careful
study to be understood properly. In Fig. 5(c) we have shown
(for d = 2) that increasing %t can also lead to a deviation from
the λmax ∼ N−κ behavior; this deviation is quite expected, and
one should choose the time step judiciously. Note that the

saturation behavior in Fig. 5(b) is not due to finiteness of the
time step.

IV. SUMMARY AND DISCUSSIONS

Summarizing, we have introduced a d-dimensional gener-
alization of the celebrated Fermi-Pasta-Ulam model which
allows for long-range nonlinear interaction between the
oscillators, whose coupling constant decays as distance−α .
We have then focused on the sensitivity to initial conditions,
more precisely on the first-principle (based on Newton’s law)
calculation of the maximal Lyapunov exponent λmax as a
function of the number N of oscillators using large-scale
numerical simulations. Without the quadratic nearest neighbor
interaction (i.e., a = 0), λmax(N ) appears to asymptotically
behave as N−κ (with κ > 0) for 0 " α/d < 1, and approach
a positive constant (i.e., κ = 0) for α/d > 1 in the N → ∞
thermodynamic limit. Our results provide strong indication
that κ only depends on (α,d), and does so in a universal manner,
namely (2 + d)κ(α,d) = f (α/d) for 0 " α/d < 1, and κ = 0
for α/d > 1. This universal suppression of strong chaos is
well approximated by a model-independent heuristic function
f (x) ≃ (1 − x2)/(1 + x2/6), previously found [19,26] for the
d-dimensional XY model of coupled rotators. Thus, in the
thermodynamic limit, these systems (and plausibly others as
well) have a sort of critical point at α/d = 1, which separates
the ergodic α/d > 1 region (where the Boltzmann-Gibbs
statistical mechanics is valid, and the stationary state distri-
bution of velocities is the standard Maxwellian one), from the
weakly chaotic 0 " α/d < 1 region with anomalous nonlinear
dynamical behavior (where q statistics might be expected to
be valid, and the one-body distribution of velocities appears to
be of the q-Gaussian form, consistent with preliminary results
available in the literature [24,27]). The present universality
scaling for κ(α/d) enables the conjecture that the indices q of
the distributions of velocities and of energies might exist and
only depend on the ratio α/d. Naturally, all these observations
need further and wider checking, which would be welcome.
Work along this line is in progress.
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