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Generalized q-Weibull model and 

 the bathtub curve  

Abstract 
Purpose. 

To analyze mathematical aspects of the q-Weibull model and explore the influence of the parameter q .  

Metodology 

Analytical developments with graph illustrations and an application to a practical example. 

Findings 

The q-Weibull distribution function is able to reproduce the bathtub shape curve for the failure rate 

function. Moments of the distribution are also presented. 

Practical implications 

The generalized q-Weibull distribution unifies various possible descriptions for the failure rate function: 

monotonically decreasing, monotonically increasing, unimodal and U-shaped (bathtub) curves. It recovers 

the usual Weibull distribution as a particular case. It represents a unification of models usually found in 

reliability analysis. q-Weibull model has its inspiration in nonextensive statistics, used to describe 

complex systems with long-range interactions and/or long-term memory. This theoretical background 

may help the understanding of the underlying mechanisms for failure events in engineering problems. 

Originality 

q-Weibull model has already been introduced in the literature, but it was not realized that it is able to 

reproduce a bathtub curve. The paper brings a mapping of the parameters, showing the range of the 

parameters that should be used for each type of curve. It also brings moments of the distribution and other 

mathematical details. 

1 Introduction  

Reliability analysis largely uses Weibull distribution (Weibull, 1951), that is a simple and powerful 

empirical model. Many branches of knowledge has applied this distribution. These are some recent 

examples: service operations (Hensley and Utley, 2011), the problem of the strength of a manufactured 

item against stress (Ali and Kannan, 2011) and large-scale information systems supporting 

infrastructures deterioration process formulated by a Weibull hazard model (Kobayashi and Kaito, 

2011). Weibull probability density function (pdf) at time t, where t < T and T is time to failure, is given 

by  

1

0 0

0 0 0

( ) exp
t t t t

f t
t t t

� �
�

� � �

� � �� � � �� �
� 	A �B C B C� � �� 	D E D EF �

 (1)  

with � > 0, � > 0, � > t0, t � t0, and 
0

( ) 1f x dx
�

A� . Eq. (1) may be viewed as a generalization of the 

exponential distribution, that is recovered if parameter � is taken as unity.  

Various generalizations of Weibull model have been proposed: linear or nonlinear transformation of time, 

use of multiple distributions, time dependence of parameters, discrete, multivariate, stochastic models, 

etc. (see (Murthy et al., 2004)) for a comprehensive approach). (Xie et al., 2000) compares the 

approximated exponential distribution using the average failure rate with the Weibull reliability. Almost 

all proposals of generalization of Weibull model share a common feature: they rely on the exponential 

framework (single exponential, exponentials of a variety of functions and so forth).  
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In the following we briefly point out some theoretical remarks about the emergence of exponential and 

non exponential distributions in statistical mechanics, that serve as motivation for our approach to the 

problem. Exponentials are usually found in non-interacting or weakly interacting systems. Systems that 

exhibit long-range (spatial) interactions, long-term (temporal) memory, effects of 

competition/cooperation, among others, usually can be classified as complex (see, for instance, (Bak,  

1997)) and power-laws dominate their statistical distributions, in contrast to simple systems, that is the 

realm of exponential laws. Failure of a component may have many (recent or not) multiple and interacting 

causes, some of them acting on a cooperative and others on a conflictive basis, so it is not surprising that 

complex behavior may appear. If this happens, power-law-like expressions are expected to substitute 

exponentials in the statistical description.  

Statistical mechanics of simple systems has a well established theoretical framework, and probability 

distributions with exponentials (e.g. Boltzmann weight, Maxwellian distribution among many others) are 

derived from Boltzmann-Gibbs-Shannon (BGS) entropy. On the other hand, theoretical basis of the 

statistical description of complex systems is object of intense current research.  

The definition of the nonextensive entropy (Tsallis, 2009), that is a generalization of BGS entropy, (by 

means of a parameter q, also known as entropic index), has introduced the possibility to extend statistical 

mechanics to complex systems in a coherent and natural way. The developments surpassed the bounds of 

physics and have lead to applications in different areas, including topics in applied mathematics. We 

focus on the q-exponential function, that naturally appears in nonextensive formalism, defined as  

� �� � � �� �
1

11 1 , if 1 1 0
exp ( )

0, otherwise,

q

q

q x q x
x

�
�� � � � � �A �
��

 (2)  

with x, q R� . The q-exponential is reduced to the usual exponential function in the limiting case q�1 

(exp1x = expx), and thus Eq. (2) is a generalization of the later. The definition of the q-exponential brings 

a cut-off condition that prevents negative or even complex values. This is an important feature whenever 

the function is to be associated with probabilities. For certain values of the parameters the q-exponential 

presents a crossover between an exponential behavior and a power-law regime (expq( − ax) with a > 0 

and q > 1 is asymptotically a power-law for large x, leading to fat-tailed distributions).  

The q-exponential has been applied to different contexts in pure and applied mathematics. For the present 

purposes we are particularly interested in the applications in probability distributions. The q-gaussian 

distribution (Tsallis et al.,1995, Prato and Tsallis, 1999) generalizes the gaussian (recovered for q = 1), 

and also the Cauchy-Lorentz distribution (recovered for q = 2), among others. The central limit theorem 

has been generalized into its “q-version” in (Tsallis, 2005) and (Umarov et al., 2008).  

If we look to Weibull distribution on the light of nonextensive statistics, a natural step forward is its 

generalization with q-exponentials, and this was done in (Picoli et al., 2003), with applications in 

frequency distributions for different systems. To the best of our knowledge, the first use of q-Weibull 

distribution in reliability analysis was presented in (Costa et al., 2006). It was applied to describe time-to-

breakdown during the dielectric breakdown regime of ultra-thin oxides in electronic devices. q-Weibull 

pdf was also used in order to model data of New York Stock Exchange and Helsinki Stock Exchange 

(Vuorenmaa, 2006).  

The aim of the present paper is to recall q-Weibull model and to analyze some features and details that are 

important to reliability analysis and were not covered earlier. It is a continuation of a previous paper 

(Sartori et al., 2009), in which we have done a preliminary study of the applicability of q-Weibull 

distribution, and also a continuation of (Assis et al., 2011), in which we have compared q-Weibull pdf 

with q-exponential pdf. The present paper shows that q-Weibull distribution is able to reproduce various 
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types of failure rate behaviors: monotonically decreasing, monotonically increasing, unimodal and U-

shaped (bathtub curve). The possibility to use q-Weibull to describe the bathtub curve was not realized by 

previous papers. Before introducing the model (what is done in the next Section), we show Figure 1 that 

compares Weibull distribution and the q-Weibull distribution. Two curves of the Weibull distribution are 

displayed, a decreasing function (with shape parameter � < 1), and an increasing function (with shape 

parameter � > 1). The q-Weibull model approximates both curves, for small and large values of time, and 

properly interpolates in-between, generating the curve with the bathtub shape. 

 

 

 

0 50 100 150
t

0

0.2

0.4

h
(t

)

q = 0.9, β = 0.5, η = 6

q = 1,    β = 0.5, η = 1

q = 1,    β = 6.0, η = 86

q-Weibull

Weibull, β > 1

Weibull, β < 1

 

Figure 1 Comparison of two instances of the Weibull distribution, the decreasing curve with shape 

parameter � = 0.5, and the increasing curve with shape parameter � = 6. The displayed q-Weibull 

distribution is a generalization of ordinary Weibull and is able to represent the bathtub curve. The values 

of the parameters were chosen just to give a good visual representation.  

Section 2 introduces the model and some of its features are shown in Section 3. Section 4 brings an 

example and our conclusions and final remarks are developed in Section 5.  

2 q-Weibull failure rate model  

The q-Weibull model is obtained from the classical Weibull model (Eq. (1)) by the substitution of the 

exponential function by a q-exponential (see details in (Costa et al., 2006)):  

1

0 0

0 0 0

( ) (2 ) exp .q q

t t t t
f t q

t t t

� �
�

� � �

� � �� � � �� �
� 	A � �B C B C� � �� 	D E D EF �

 (3) 

The factor (2 − q) and the constraint q < 2 are necessary for normalizability requirements. The ordinary 

Weibull pdf is recovered in the limit q�1, and coherently Eq. (1) shall now be denoted as f1(t). � is the 

scale parameter and t0 is the location parameter of q-Weibull model as well as in Weibull model, however 

� and q parameters control the shape of q-Weibull distribution while in Weibull model only � affects the 
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shape.  

q-Weibull is also a generalization of Burr XII distribution function (Burr, 1942),  

1
1

( ) 1 ( 0, 0, 0),

k
cc

c

t t
f t ck k c s

ss

� �
� � �� �A � � � �� 	B C

D E� 	F �
 (4) 

if the parameters of q-Weibull are taken as � = c, � = s ⁄ (k + 1)1 ⁄ c and q = (k + 2) ⁄ (k + 1) > 1. It is worth 

a mention that q-Weibull is a generalization of Burr XII, and not the opposite as claimed by (Nadarajah 

and Kotz, 2006), once Eq. (4) demands q > 1, while Eq. (3) is also defined for q�1. Burr XII distribution 

can assume different shapes which allow it to be a good candidate to fit various lifetimes data. Recent 

studies in (Rastogi and Tripathi, 2011) estimate an unknown parameter of the Burr type XII distribution 

when data are hybrid censored.  

The q-Weibull reliability function is consistently given by  

2

1

0

0

2

0

0

( ) ( )

1 (1 )

e ,xp

q q

t

q

q

q

q

R t f t dt

t t
q

t

t t

t

�

�

�

�

�

�

�

�

�

� �A

� �� ��
� 	A � � B C�� 	D EF �

� �� �� ��� 	� 	A �B C�� 	� 	D EF �F �

�

 (5) 

where we use the symbol [A] +  (second line of Eq. 5) that means that [A] +  = A if A � 0 and [A] +  = 0 if A 

< 0. This is already implicit in Eq. 2: we use it here and also in some equations in the following just to 

remind the reader of the cut-off condition of the q-exponential. In order to arrive at Eq. (5) we have used 

the following property of the q-exponential function:  

21
exp ( ) [exp ( )] .

(2 )

q

q q
ax dx ax

q a

�A
��  (6) 

Note that (expqx)a � expq(ax) for q � 1, but  

1 (1 )/(exp ) exp ( ),a

q q ax ax� �A  (7) 

so that Eq. (5) may be alternatively written as Rq(t) = expq’[ − (2 − q)((t − t0)/(� − t0))�] with q’ = 1 ⁄ (2 − 

q). The interested reader may find more properties of q-exponentials at (Yamano, 2002).  

The cumulative distribution function Fq(t) is the complement to the reliability function,  

F (t)=1-R (t).
q q

 (8) 

The instantaneous failure rate, defined as  
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( )
( )

( )

q

q

q

f t
h t

R t
�  (9) 

is generalized to  

1
1

0 0

0 0 0

1
1

0 0

0 0 0

(2 )
( ) 1 (1 )

(2 )
exp ,

q

q

q

t t t tq
h t q

t t t

t t t tq

t t t

� �

� �

�
� � �

�
� � �

��

�

�
�

� �� � � �� ��
� 	� � �B C B C� � �� 	D E D EF �

� �� �� � � �� �� � 	� 	� �B C B C� � �� 	� 	D E D EF �F �

A

A

  (10) 

which is consistently reduced to the usual Weibull version as q�1:  

1

0

1

0 0

( ) .
t t

h t
t t

�
�

� �

�
� ��

A B C
� �D E

 (11) 

This is precisely the origin of the difference of behaviors between usual (q = 1) and q-Weibull models: 

the integral of an ordinary exponential is an exponential (except from a multiplicative constant), and they 

cancel out in the expression for the failure rate (Eq. (9) with q = 1). That does not happen with hq(t), due 

to the property given by Eq. (6).  

Equation (10) is able to represent four different types of failure rate function, according to the values of 

the parameters, besides the constant type (with q = 1 and � = 1). hq(t) is monotonically decreasing for 1 < 

q < 2 and 0 < � < 1, monotonically increasing for q < 1 and � > 1, unimodal for 1 < q < 2 and � > 1 and 

U-shaped (bathtub curve) for q < 1 and 0 < � < 1. The non-monotonic hazard function cited by 

(Vuorenmaa, 2006) corresponds to the unimodal type and the bathtub shape was not covered by that 

paper. Figure 2 shows the four possibilities (detailed analysis of the parameters is performed in Section 

3), and Figure 3 shows the corresponding four unreliability curves.  

 

0 2 4 6 8 10
t

0

0.5

1

1.5

h
q
(t

)

U-shaped

Unimodal

Increasing

Decreasing

 

Figure 2 Types of failure rate curves that q-Weibull is able to describe. Values of the parameters were 

chosen to give a good visualization of the curves in the same figure. The four types are: (i) monotonically 

decreasing function: q = 1.5, � = 0.5, � = 1; (ii) monotonically increasing function: q = 0.5, � = 2, � = 
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7.071 (evaluated from Eq. (12) with tmax = 10); (iii) unimodal function: q = 1.5, � = 2, � = 1; (iv) U-

shaped (bathtub curve): q = 0.5, � = 0.5, � = 2.5 (evaluated from Eq. (12) with tmax = 10).  

For q < 1, Eq. (10) presents a divergence that defines the maximum allowed time (lifetime deadline) at  

� � 1/

0 0 (1 ) .maxt t t q
�� �A � � �  (12) 

Finite tmax corresponds to a relaxation of the constraint usually imposed to a cumulative failure rate 

function 
0

( ) ( )
t

q q
H t h t dtA �  (see (Pham and Lai, 2007)): it is normally expected that H1�� at t��. 

According to q-Weibull model, Hq < 1�� at t�tmax < �. That is to say that ordinary Weibull is 

unlimited, while q-Weibull (with q < 1) is limited to tmax. Coherently, limq�1
-
 tmax��.  

0 2 4 6 8 10 12

0

0.2

0.4

0.6

0.8

1

t

F
q
Ht
L

 

Figure 3 Unreliability curves of q-Weibull distribution. The parameters are the same of the Fig. 2. The 

four types of failure rate associated are : (i) monotonically decreasing with solid line; (ii) monotonically 

increasing with dashed line; (iii) unimodal with dot-dashed line; (iv) U-shaped (bathtub curve) with dot-

dot-dashed line.  

Time derivative of q-failure rate is  

� �

2

0

2

00

0

0

2

0

0

(2 ) ( 1)
' ( )

1
1

1
.

1 (1 )

q

t tq
h t

tt

t tq

t

t t
q

t

�

�

�

� �
��

� �

�

�

�

� ��� �
A �B C�� D E

� �� ��� ��
� 	� B CB C� �� 	D ED EF �

� �� ��
� 	� � B C�� 	D EF �

 (13) 

For the unimodal case (1 < q < 2 and � > 1) and for the U-shaped case (q < 1 and 0 < � < 1), the root of 

Eq. (13) is located at  
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*

0 0

1
,

1
t t t

q

�
�

�
� ��

A � � B C�D E
 (14)  

that corresponds to the extremum value (maximum for unimodal case, minimum for bathtub case)  

( 1)/

*

0

2 1
( ) .

1
q

q
h t

t q

� �
�

�

�
� �� �

A B C� �D E
 (15) 

Figure 4 illustrates the change of sign in time derivative of hq(t). 
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Figure 4 Time derivative ' (t)qh , given by Eq. (13), with q = 0.5, � = 0.5 and � = 2.5 (corresponding to 

the U-shaped curve) and q = 1.5, � = 2 and � = 1 (corresponding to the unimodal curve). Parameters are 

the same of those in Fig. 2 (monotonic cases are not shown). The change of sign in ' (t)qh  is responsible 

for the proper description of the whole bathtub curve.  

Time derivative of the usual (q = 1) Weibull failure rate is a monotonic power-law,  

� �

2

0

1 2

00

( 1)
' ( ) ,

t t
h t

tt

�
� �

��

�
� ���

A B C�� D E
 (16) 

hence it is unable to represent the whole bathtub curve. '

1 (t)h  < 0 for 0 < � < 1, and this situation can just 

describe the warm in phase. Wear out phase needs '

1 (t)h  > 0, and this happens in usual Weibull for � > 1. 

Description of intermediary random failure phase happens by imposing � = 1. q-Weibull failure rate 

reproduces the whole curve by a continuous function with the same set of parameters. 

3 Behavior of q-Weibull probability 

distribution function  

In this Section we present the moments of q-Weibull pdf and analyze the influence of the parameter q 
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on the model.  

3.1 Moments of q-Weibull pdf  

In order to evaluate the raw moments (moments about zero) of Eq. (3), 
0

( )n

n q
t f t dt 

�
� A � , we shall 

consider separately the cases q < 1 and q > 1. It is not necessary to set � = 1 as shown by (Vuorenmaa,  

2006). For the case q < 1, it is useful to consider the integral representation of the q-exponencial given 

by (Lenzi et al., 1999). For the case q > 1, it is necessary to use the integral representation proposed by 

(Tsallis, 1994). Straightforward calculations lead to the raw moments. For q < 1,  

0
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and for q > 1,  
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with 1 < q < qupper and qupper = 1 + � ⁄ (n + �). Note that q�1 recovers the moments of usual Weibull 
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qupper attains the values lim��0qupper = 1, lim���qupper = 2, and limn��qupper = 1. The latter limiting 

behavior means that it is not possible that q-Weibull pdf has all its moments for q > 1 (all moments are 

defined for q�1). As q departs from unity from above (for constant �), q-Weibull loses its higher moments 

(normalizability, that is �’0 = 1, is preserved 䞇q < 2). Note that 1 �  is the mean time between failures 

(MTBF). There are many distributions that don’t have all moments. Cauchy-Lorentz distribution, for 

instance, has no mean, variance or higher moments. Usual Weibull pdf has all moments, that is typical for 

distributions with exponential decay.  

Central moments (moments about the mean) are found using the binomial transformation of the raw 

moments, as usual,  
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  (25)  

The median of q-Weibull pdf is Md = t0 + (� − t0)(2q’ − 1q’lnq’2)1 ⁄ �, with q’ = 1 ⁄ (2 − q), and its mode is 

Mo = t0 + (� − t0){(� − 1) ⁄ [� + (1 − q)(� − 1)]}1 ⁄ �, if � > 1.  

3.2 Influence of q  

In order to exhibit the effect of the parameter q < 1 on the q-Weibull model, let us consider the 

instance � = 0.5. Firstly we keep parameter � constant (let us assume � = 1 for simplicity). The usual 
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(q = 1) Weibull does not present a limiting lifetime (i.e., tmax = �). As q departs from unity (from 

below), lifetime deadline gets smaller values, as Figure 5 depicts. Secondly let us keep tmax constant 

(we choose the instance � = 0.5 and tmax = 100), so � is obtained according to Eq. (12). Figure 6 shows 

curves for different values of q. As q approaches unity (from below), intermediate random failure 

phase decreases and minimum of failure rate (Eq. (15)) increases. Particularly limq�1
-
  hq(t*)��. 

Minimum value of hq is found at lim��1limq� -� hq(t*) = 1 ⁄ tmax. 
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Figure 5 q-Weibull failure rate curve as a function of time for different values of q < 1 in log-log 

scale. All curves are calculated with � = 0.5 and � = 1. Limiting lifetime comes from t = � for q = 1 to 

closer and finite values as parameter q departs from unity from below. 
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Figure 6 q-Weibull failure rate curve as a function of time for different values of q < 1. All curves 

are calculated with � = 0.5 and tmax = 100, so � is taken from Eq. (12): � = 0.09, 0.25, 1, 25, 100, 400 

corresponds to q = 0.97, 0.95, 0.9, 0.5, 0,  − 1 respectively. As q approaches unity, intermediate 

random failure phase decreases and minimum value of failure rate hq(t*) increases (hq(t*)�� for 
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q�1). As q� − �, curves tend to a lower bound (this particular instance, hq(t*) = 0.02, from Eq. (15) 

with � = 0.5 and tmax = 100).  

Influence of q on unimodal case (1 < q < 2 and � > 1) can be viewed in Figure 7. There is a displacement 

of the maximum failure rate as q approaches the value 2. 
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Figure 7 q-Weibull failure rate for unimodal case, with � = 2 and � = 1, and different values of q > 1 

(indicated). Inset shows maximum of failure rate as a function of q (Eq. (15)).  

For 1 < q < 2 and 0 < � < 1, q-Weibull failure rate is a monotonically decreasing function and Figure 8 

presents examples.  
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Figure 8 q-Weibull failure rate, given by Eq. (10), with � = 0.5, � = 1 and different values of q > 1. hq(t) 

is a monotonically decreasing function for � < 1 and 1�q < 2.  

4 An example  

An example extracted from (Assis et al., 2011) can illustrate the flexibility of q-Weibull distribution in 
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comparison to the usual Weibull model. Time to failure of lower nipple pump data from Brazilian oil 

wells are collected in days and are shown in Table 1. The maximization of the coefficient of 

determination R2 was applied at four different distributions (q-Weibull, Weibull, q-exponential and 

exponential) in order to calculate the parameters of the distributions in Table 2. Fig. 9 show the results. 

It is evident that the q-Weibull distribution yields a better fit to the data. Its failure rate shape is a 

bathtub curve.  

Table 1 Nipple pump time to failure, in days in ascending order. 

 

Table 2 Fitting parameters for the Weibull and q-Weibull models, data from Table 1.  
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Figure 9 Log-log plot of the data of Table 1 (circles), Weibull (dotted line), q-Weibull (solid line) 
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Figure 10 Weibull (dotted line), q-Weibull (solid line) failure rates (data from Table 1).  

5 Final remarks  

Several models for failure rate function are found in the literature, many of them use Weibull (or 

Weibull-like) as a basis. These distributions share in common the exponential nature. The q-Weibull 

generalization uses a function that is exponential only as a limiting case, and may yield asymptotic 

power-laws. The q-Weibull model is able to describe four types of failure rate function, namely 
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monotonically decreasing, monotonically increasing, unimodal and U-shaped curves, with a single 

parsimonious set of three parameters, representing a unification of various models, including the 

versatile Burr XII distribution. Table 3 summarizes the possibilities with the corresponding ranges of 

parameters.  

Table 3  Behavior of q-Weibull failure rate according to the range of parameters q and �. 

Usual (q = 1) Weibull model is unable to represent the whole bathtub curve, once h1(t) is 

monotonically decreasing or monotonically increasing, depending on the value of parameter �. 

Modeling of U-shaped bathtub curve with Weibull requires a piecewise, discontinuous description 

with � < 1 for the warm in phase, then � = 1 for the intermediary random failure phase and finally � > 

1 for the wear out phase. q-Weibull continuously reproduces the whole curve with the same set of 

constant parameters and without need of introducing ad hoc hypotheses.  

The example given in the text compares the fitting of Weibull and q-Weibull models. In the ordinary 

Weibull case, the shape parameter is close to one, which represents a constant failure rate (similarly to the 

exponential distribution). The q-Weibull model provides a better fitting and is able to describe a bathtub 

shape curve for the failure rate.  

q-Weibull is a natural extension of usual Weibull, and it has the advantage of being originated from a 

theoretical background rooted in nonextensive statistical physics. Of course the introduction of additional 

(empirically or theoretically based) generalizations, like the use of linear or nonlinear transformation of 

time, use of multiple distributions, time dependence of parameters, etc., as it was done with Weibull, will 

further enhance flexibility and accuracy of q-Weibull model.  
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Table 1 Nipple pump time to failure, in days in ascending order. 

Nipple pump time to failure (days) 

4 21 21 30 30 33 33 

52 52 99 99 132 132 160 

260 261 261 280 280 300 300 

347 347 364 364 381 381 393 

393 429 429 514 514 522 574 

574 620 620 699 699 799 799 

839 863 905 1098 1098 
  

 

Table 2 Fitting parameters for the Weibull and q-Weibull models, data from Table 

1.  

 

Weibull q-Weibull  

�  0.99 0.74 

�  431 4540 

t0  -3.53 1.48 

q  1.00 -1.76 

R2  0.959 0.973 

 

Table 3  Behavior of q-Weibull failure rate according to the range of parameters q and 

�. 

 0 < � < 1  � = 1  � > 1  

q < 1  bathtub curve  monotonically increasing  monotonically increasing  

q = 1  monotonically decreasing  constant  monotonically increasing  

1 < q < 2  monotonically decreasing  monotonically decreasing  unimodal  
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