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Abstract
Purpose – The purpose of this paper is to compare four life data models, namely the exponential and
theWeibull models, and their corresponding generalized versions, q-exponential and q-Weibull models,
by means of one practical application.
Design/methodology/approach – Application of the models to a practical example (a welding
station), with estimation of parameters by the use of the least squares method, and the Akaike
Information Criterion (AIC).
Findings – The data of the example considered in this paper is divided into three regimes, decreasing,
constant and increasing failure rate, and the q-Weibull model describes the bathtub curve displayed by
the data with a single set of parameters.
Practical implications – The simplicity and flexibility of the q-Weibull model may be very useful for
practitioners of reliability analysis, and its benefits surpasses the inconvenience of the additional
parameter, as AIC shows.
Originality/value – The q-Weibull model is compared in detail with other three models, through the
analysis of one example that clearly exhibits a bathtub curve, and it is shown that it can describe
the whole time range with a single set of parameters.
Keywords Reliability, Bathtub curve, Failure rate, q-distribution
Paper type Research paper

1. Introduction
Reliability modeling is one of the most important steps for Reliability, Availability,
Maintainability, and Safety (RAMS) assessment. A growing focus has been placed on
RAMS during the design and operation of industrial systems, mainly due to the size
and complexity of modern industrial plants. A comprehensive assessment of
operational safety requires a systemic approach based on statistical models for the
description of failure rates related to equipments and their components. Development,
choice or even application of a model to accurately characterize the failure rate is a
nontrivial task, and mathematical simulation of reliability performance depends
crucially on it. However, life data are still scarce and a predictive capability of the model
should be often investigated. It is necessary to have a faithful model to overcome these
problems. So, reliability modeling becomes one of the most important steps for RAMS
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assessment. In order to improve reliability modeling we take some mathematical
functions, originally derived within nonextensive statistical physics, which has been a
continuously and increasingly developed along the last two decades. A pair of
functions naturally appears from this formalism, namely the q-logarithm, and its
inverse, the q-exponential, defined as (see Tsallis, 1994):

lnq x ¼ x1�q�1
1�q

x40ð Þ; (1)

expq x ¼ 1þ 1�qð Þx½ �1= 1�qð Þ
þ ; (2)

where the symbol [a]+ means that [a]+¼ a if aW0 and [a]+¼ 0 if a ⩽ 0. This is an
important feature of the q-exponential, once it avoids negative or even complex
numbers for expq x, and permits its interpretation as probabilities. If the limit q→1 is
taken, these functions recover the usual logarithm and exponential, and thus they
are generalizations of these functions. They also satisfy lnq 1¼ 0 and expq 0¼ 1, ∀q.
Foundations of nonextensive statistical mechanics and applications for various
systems can be found in (Tsallis, 2009). A set of actualized references is maintained in
(Tsallis, 2013).

The q-exponential of a negative argument asymptotically becomes a power law
for qW1 (expq(−x)∼1/xn, with xW0, n¼ 1/(q−1)). One remarkable feature of the
q-exponential function is to continuously interpolate between a power law behavior
(with qW1) to an exponential behavior (with q¼ 1).

Tsallis et al. (1995) were the pioneers in the application of q-exponential and
q-logarithm functions in statistical distributions by the generalization of the Gaussian
function. The introduction of the parameter q yields the q-Gaussian distribution
that recovers the usual Gaussian when q¼ 1. The q-Gaussian generalizes various
distributions, e.g., the Dirac delta Lorentzian, and completely flat distribution,
according to the value of the parameter q. Prato and Tsallis (1999) modified the
q-Gaussians by means of the escort probabilities, which has normalized moment of
order zero.

One special distribution widely used in RAMS is the Weibull distribution. q-Weibull
distribution has been advanced by (Picoli et al., 2003):

p xð Þ ¼ p0
bxb�1

xb0
expq � x

x0

� �b
" #

: (3)

Particular cases of Equation (3) are the q-exponential, for β¼ 1, and Weibull, for q¼ 1.
This function has been applied to a variety of systems, like distributions of dielectric
breakdown in oxides, cyclone victims, brand-name drugs by retail sales, highway
length (Costa et al., 2006; Picoli et al., 2003). In Sartori et al. (2009) we have briefly
compared an application of the Weibull and q-Weibull models for a natural gas
recovery plant, and in Assis et al. (2013) we have explored some mathematical
properties of the q-Weibull model, and we have shown that it can exhibit a bathtub
curve for particular values of the parameters (0oβo1 and qo1).

The main focus of this work is to present an example that exhibits the bathtub
curve, that is properly modeled by the q-Weibull distribution (obviously this model is
applicable to other systems). We also use other models, namely the ordinary Weibull,
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the ordinary exponential, and the q-exponential, for comparison. In Section 2 we
review the mathematical expressions adopted, and present the methodology for
estimation of parameters. Subsequently, in Section 3, these distributions are
applied to life data of a welding station. Finally the last section is dedicated to
our conclusions.

2. Life distributions
A statistical distribution of a single continuous variable is fully described by its
probability density function (pdf). Most functions commonly used in reliability
engineering and life data analysis (reliability function, failure-rate function, mean-time
function, median-life function) can be determined directly from the pdf.

Some distributions are more propitious to represent life data and are most
commonly called life distributions. A life distribution shows how a population of
components fails in time, or how the failures are distributed in time. It is just like any
statistical distribution, except that the data involved are time-to-failure or life data.
A life distribution is known when the parameters of a properly selected model
are estimated.

The use of pdfs in reliability analysis is widespread since long (see Pham and Lai
(2007), and also Kotz and Nadarajah (2005) about some quest regarding the originality
of the use of pdf in reliability analysis). According to Berberan-Santos et al. (2008), the
use of stretched exponential (the Weibull distribution can also be called a stretched
exponential) has been recorded before the article of Weibull (1951), in a work of
Kohlrausch (1854) which describes capacitor discharge.

2.1 q-Weibull and q-exponential distributions
The Weibull distribution is largely used in reliability context. The density of the
Weibull distribution, in its three-parameter form, is defined by (Weibull, 1951):

f tð Þ ¼ b t� t0ð Þb�1

yb
exp � t� t0

y

� �b
" #

; witht ⩾ t0; (4)

where β is the shape parameter, θ is the scale parameter, and t0 is the location
parameter. The characteristic life is η¼ θ+ t0.

There are many models based on Weibull distribution. Time-depending parameters,
exponentiated unreliability function, and nested exponentials are some examples used
to extend its applicability. Most of these modifications presents exponential behavior
(see Murthy et al., 2004).

Exponential functions are usually found in the description of systems with weak
interactions (or, in the limit, no interactions at all). Complex systems usually have
long-range spatial interactions or long-term memory or a cooperation/competition, as
can be seen in Bak (1997). Statistical distributions of complex systems are usually
described by power laws.

Component failures can have multiple causes, that can be recent or not; cooperation
and conflict between causes may also happen, so it is not surprising that, in specific
situations, complex behavior may appear, and power laws, or power law like
distributions are expected.

The description of simple systems is well established, particularly through
Boltzman-Gibbs statistical mechanics (Boltzmann weight and Maxwellian
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distributions, that rely on an exponential basis). These exponential distributions are
derived from the Boltzmann-Gibbs-Shannon (BGS) entropy. The theoretical basis of
statistical mechanics for complex systems is under intense research recently, and there
are many evidences that points toward the nonextensive statistical mechanics, and the
Tsallis nonadditive entropy (Tsallis, 2009).

The nonextensive statistical mechanics is a generalization of the Boltzmann-Gibbs
statistical mechanics, and it permits to generalize many distributions originally
conceived for simple systems. The q-Weibull pdf, expressed by Equation (3), can be
generalized as (Picoli et al., 2003):

f q tð Þ ¼ b 2�qð Þ
y

t� t0
y

� �b� 1

expq � t�t0
y

� �b
" #

; with t ⩾ t0; qo2: (5)

The q-Weibull pdf is not normalized for q ⩾ 2. The generalized reliability function,
Rq tð Þ � R1

t f q xð Þdx, is given by:

RqðtÞ ¼ exp 1
2�q

�ð2�qÞ t� t0
y

� �b
" #

; witht ⩾ t0: (6)

Note that the index of the q-exponential changes from q to 1/(2−q) due to the property
of the q-exponential

R
expq xdx ¼ exp 1

2�q
x. The generalized unreliability function is

defined as:

Fq tð Þ ¼ 1�Rq tð Þ: (7)

The q-exponential function (Equation (2)) has a cut off whenever qo1 and xo−1/
(1−q); when this happens, the q-exponential is defined as zero, avoiding complex
values, and this allows its interpretation as a probability. This cut off implies a vertical
asymptote in Equation (6), that is a maximum value for lifetime (see Assis et al. (2013)
for details).

These equations, with general q and βW0, are generalizations of three models: the
ordinary Weibull (with general βW0 and q¼ 1), the ordinary exponential (with β¼ 1
and q¼ 1 that is already a particular case of the ordinary Weibull), and the
q-exponential (with β¼ 1 and general qo2). We compare the four models by means of
the example presented in Section 3.

2.2 Failure rate of distributions
The q-Weibull hazard function, hq(t), is given by Assis et al. (2013):

hq tð Þ ¼ f q tð Þ
Rq tð Þ ¼

b 2�qð Þ
y

t� t0
y

� �b�1
expq � t� t0

y

� �b� �
exp 1

2�q
� 2�qð Þ t� t0

y

� �b� � ; qo2: (8)

The behavior of the q-Weibull hazard function may be very different from its
particular case h1 (Weibull hazard function). In total, four different types of failure rate
behaviors can be described by Equation (8): (i) monotonically decreasing (1oqo2 and
0oβo1); (ii) monotonically increasing (qo1 and βW1); (iii) unimodal (1oqo2
and βW1); (iv) bathtub curve (qo1 and 0oβo1). The trivial constant failure rate is
obtained for q¼ 1 and β¼ 1. The types (iii) and (iv) have a maximum and a minimum,

159

Modeling
failure rate
of a robotic

welding station

D
ow

nl
oa

de
d 

by
 U

FB
A

 A
t 0

9:
10

 2
0 

Ja
nu

ar
y 

20
15

 (
PT

)



respectively, and this behavior cannot be achieved by the usual (q¼ 1) Weibull hazard
function. The q-exponential (β¼ 1) and the exponential (β¼ 1 and q¼ 1) are particular
cases. The constant failure rate of the exponential distribution is given by λ¼ 1/θ.

2.3 Estimation of parameters
Sample data may be conveniently put into a straight line in the form of y¼ βx+b by the
change of variables x¼ ln(t−t0), and y¼ ln{−lnq’ [1−Fq(t)]}, with q′¼ 1/(2−q) and
b ¼ �bln½y= 2�qð Þ1b�(note that the q-logarithm is the inverse function of the
q-exponential).

Sample data are time-to-failure ranked in ascending order and an estimate of the
unreliability can be obtained using an approximation of the median ranks, also known
as Bernard’s approximation, given by ( Johnson, 1951):

F̂ i ¼
i�0:3
nþ0:4

; (9)

where n is the sample size, i is the order number of failure varying from 1 to n. In this
way, for every sample time ti we obtain:

xi ¼ ln ti� t0ð Þ; (10)

yi ¼ ln �lnq0 1� F̂ i

� �h i
: (11)

An alternative to compute F̂ i is to consider it as the sum of relative frequency of
occurrence of failure in the previous time intervals. This procedure is suitable for a
large number of samples and it is used in Section 3.

The parameters of Equation (5) are estimated by the maximization of the coefficient
of determination R2:

R2 ¼ 1�
Pn

i¼1
yi�ŷi½ �2Pn

i¼1
yi�y½ �2 ; (12)

with the constraints βW0, θW0, t0oη, t0o tmin, and qo2, where ŷi is given by
Equation (11), y¼ (∑ yi)/n and tmin is the lowest sample time. This procedure is
obviously also valid for the other three particular models that q-Weibull generalizes,
with the additional constraints referred to at the end of Subsection 2.1.

The Akaike Information Criterion (AIC) (Akaike, 1974) is an index that may help the
comparison of models with different number of parameters, which is our case. AIC is
defined by:

AIC ¼ n ln
RSS
n

� �
þ2K; (13)

where n is the number of data points (xi, yi), RSS is the residual sum of squares, andK is
the number of parameters of the model. The best model is supposed to be that one with
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the lowest AIC. AIC requires a bias correction, AICc, for small number of points Hurvich
and Tsai (1989):

AICc ¼ n ln
RSS
n

� �
þ2Kþ2K Kþ1ð Þ

n�K�1
: (14)

The variable Δi≡ ICi−min[ICi] may be directly used to compare the models, the best
one obviously has Δi¼ 0.

3. Application to a robotic welding station
We considered approximately 1,250 operating times (in minutes) of a robotic welding
station used in a manufacturing process. The lifetimes were grouped in 50 intervals
and the probability of failure was calculated for each interval by the relative frequency
of occurrence. Our analysis is divided in two parts: initially we considered all the
operating times as a whole (Figure 1). Then we divided the time-to-failure data in three
groups, to evidentiate that there is a mixture of failure models in this example
(Figure 3). At the end of this section, we return to all the operating times, without
grouping them, to show that the q-Weibull model can fit the whole data set (Figure 4).

Figure 1 compares the four models by means of the variable y (Equation (11)) as a
function of ln(t−t0). The main advantage of this representation is that the points should
be aligned to a straight line if the data would be perfectly described by the model.

The calculated parameters are indicated in each panel of the Figure 1 and forward in
Figures 2 and 4, tabulated for the convenience of the reader. The scales of the abscissas
are different for each graph because the models have different values for the parameter t0.
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Figure 1.
Fitting of the

time-to-failure data
(circles) and fitted

curves (solid lines) of
the models

161

Modeling
failure rate
of a robotic

welding station

D
ow

nl
oa

de
d 

by
 U

FB
A

 A
t 0

9:
10

 2
0 

Ja
nu

ar
y 

20
15

 (
PT

)



The vertical lines in Figure 1(a) and (b) will become clear in Figures 3 and 4: they are
limiting times (at t¼ 40,000min and t¼ 1,10,000 min) of three different failure behaviors.

In the following we analyze the fitting of each model, corresponding to each panel of
Figure 1.

(a) The exponential distribution: the hypotheses compatible for this case are:
nonrepairable items, single failure mode, and constant failure rate. Though the coefficient
of determination R2¼ 0.9652 indicates a good fitness quality, the simplifying assumption
of constant failure rate is too strong and does not correspond to the data, as it becomes
clear soon. The data include all failure modes and there is no guarantee that the
combination of all of them produces constant failure rate. Another way to observe this
limitation is to consider a system that presents various failure modes and each of them
with constant failure rates. Despite this, the system failure rate is not constant,
according to the theory of system reliability (for more details see redundancy in
Lewis (1987)).

(b) The Weibull distribution: if the hypothesis of constant failure rate, assumed in the
previous model (a), is relaxed to a monotonic behavior, then this situation can be
modeled by the Weibull distribution (with β≠1, q¼ 1). This model can describe
monotonically decreasing (for 0oβo1) or monotonically increasing (for βW1) failure
rates. Of course the particular case β¼ 1 reduces to item (a). The fitting of the Weibull
distribution has a coefficient of determination (R2¼ 0.9736) slightly larger than that of
the exponential distribution. The calculated value of the parameter βo1 indicates that
the failure rate for this example should be monotonically decreasing, however, it is
shown in the next section that this is not true. This result is due to the limitation of the
model (b) imposed to the data.

100

10–1

q -Weibull

q -exponential

exponential

Weibull

�
10–2

R
q

10–3

104

t (min)

105
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1.00
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–0.01
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0.9736

0.9706

0.9970

Weibull

q -Weibull

q -exponential

q R2

Notes: Exponential (dashed line, violet online); Weibull (dotted line, blue online);
q-exponential (dash-dotted line, green online); and q-Weibull (solid line, red online). 
The inset present the parameters

Figure 2.
Fitting of the
time-to-failure data
(circles) and
reliability
function calculated
by the models
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Figure 4.
Failure rate curves
calculated by the

models exponential
(dashed line),

Weibull (dotted line),
q-exponential

(dash-dotted line),
and q-Weibull

(solid line)
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Figure 3.
Examples of Weibull
fittings for samples

grouped by time
of failure
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(c) The q-exponential distribution: the generalization of (a) is achieved by the
q-exponential distribution (β¼ 1, q≠1). It is worth mention that the q-exponential
distribution is not restricted a constant failure rate as it is the case (a). This is
monotonic decreasing (1oqo2) or monotonic increasing (qo1).

(d) The q-Weibull distribution: this is the most general model we are considering, and
it presents a nonmonotonic failure rate. Visual inspection of Figure 1(d) indicates that
the quality of this fitness is greater than the previous analysis and the coefficient of
determination greater than 0.99 confirms it.

Figure 2 presents the fittings for the reliability function Rq(t), as a function of time,
for the four models. Note that the q-Weibull distribution is able to describe the whole
range of the data, while the others depart from the experimental points for low or high
values of time.

The Figure 1(b) does not present a clear abrupt change of the slope (also known as
dog-leg), that is typical when there is a mixture of failure modes, but this is the case
for this sample, as can be seen with the following procedure: we divided all 1,250
time-to-failure data in three groups and fitted the usual (q¼ 1) Weibull model
separately for each one. For t ⩽ 40,000 min, we obtained βo1 that corresponds to the
decreasing failure rate. For the intermediate region 40,000 mino t ⩽ 1,10,000 min, we
found β ≈ 1, that predicts a constant failure rate, and the last region, tW1,10,000 min,
produced βW1, that corresponds to increasing failure rate. The results of the fittings
are shown in Table I. Figure 3 shows these fitting plots. The limiting times 40,000 and
1,10,000 min were found by testing different values, and then we chose those that gave
best fits in Figure 3.

The failure rate curves are shown in Figure 4. The curves are made with all the data,
without dividing them into the three regions aforementioned. This makes evident that the
exponential, the Weibull and the q-exponential models are unable to reproduce the three
behaviors detected, separated by vertical lines in the figure (these vertical lines also
appear in Figure 1(a) and (b)), with the same parameter set, while the q-Weibull presents a
decreasing region, an approximately constant region, and finally an increasing region.

Finally Table II presents AICc(bias-adjusted AIC) and Δi for the fittings. According
to the results, the q-Weibull model is the best fitting model, as indicated by visual
inspection on Figures 1 and 2.

Parameters Decreasing Constant Increasing

β 0.65 1.04 1.74
θ (min) 3,124 30,747 45,502
t0 (min) −2,080 39,785 98,964
R2 0.9847 0.9796 0.9716

Table I.
Parameters and
coefficient of
determination
for each region

Model AICc Δi

q-Weibull −472.49 0
Weibull −270.32 202.17
q-exponential −246.17 226.32
Exponential −258.96 213.53

Table II.
AICc and Δi
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4. Conclusions
We have compared four models for the description of life data of a robotic welding station
used in a manufacturing process, a system that exhibits a bathtub behavior in the
instantaneous failure rate curve. In total, two of the models are generalized versions of
the usual ones (the q-Weibull and the q-exponential). The generalizations are based on the
q-exponential function, that has been successfully applied in different systems within
nonextensive statistical physics. We have used the approximation of the median ranks,
relative frequency of occurrence of failure and the least squares method to estimate the
parameters of the models. The results show that the q-Weibull distribution is much more
flexible to describe shapes of hazard rate curves than the other analyzed models.

Among the considered models, the q-Weibull distribution was the most appropriate
for the considered example. It was able to identify three distinct behaviors of
failure rate: decreasing, constant, and increasing, with the same parameter set. These
behaviors can be interpreted as three predominant failure modes. In another context
the passages could represent infant mortality, lifetime, and aging of an item.

According to this example Weibull and q-exponential models indicate a decreasing
failure rate; in fact these models represent only monotonic failure rate shapes. Maintenance
policies, risk and costs analyses may be inaccurate if the reliability model cannot recognize
nonmonotonic failure rate shape. The q-Weibull model is more indicated for these cases.

We have also taken into account the AIC as an additional source of information to
show that the q-Weibull distribution is indeed the best model, among those considered,
to represent the data.

The q-distributions can possibly be successfully used in other systems and improve
the description of reliability engineering problems.
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