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Electromagnetic energy within a magnetic infinite
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We analytically calculate the time-averaged electromagnetic energy stored inside a nondispersive magnetic
isotropic cylinder that is obliquely irradiated by an electromagnetic plane wave. An expression for the optical-
absorption efficiency in terms of the magnetic internal coefficients is also obtained. In the low absorption limit,
we derive a relation between the normalized internal energy and the optical-absorption efficiency that is not
affected by the magnetism and the incidence angle. This relation, indeed, seems to be independent of the shape
of the scatterer. This universal aspect of the internal energy is connected to the transport velocity and conse-
quently to the diffusion coefficient in the multiple scattering regime. Magnetism favors high internal energy
for low size parameter cylinders, which leads to a low diffusion coefficient for electromagnetic propagation in
2D random media. © 2010 Optical Society of America
OCIS codes: 290.0290, 290.4020, 290.5825, 290.5850, 290.4210.
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. INTRODUCTION
nterest in the study of magnetic materials and their op-
ical properties has recently increased in the applied sci-
nces. Applications of magnetic 2D and 3D photonic band-
aps (PBGs) [1–4], microwave filters, metamaterials [5],
igh density magnetic recording media [6], and weak lo-
alization of light [7,8] have been reported. All these
orks explore the fact that, at microwave or radio fre-
uencies, the magnetic materials exhibit large values of
agnetic permeability [1,2].
Electromagnetic (EM) scattering by magnetic spheres

as been applied by Kerker et al. [9]. Some unusual fea-
ures present in single and multiple magnetic Mie scat-
ering, such as forward–backward asymmetry with pref-
rential backward scattering and resonance effects
10,11] and vanishing of the energy-transport velocity
ven for small size parameters [7,8], have been studied.
n a recent paper, we have calculated the EM energy
tored inside a magnetic sphere, and we have shown that,
ven for size parameters much smaller than unity (Ray-
eigh size region), this quantity is strongly enhanced, with
harp resonance peaks [12].

The problem of EM scattering by an isotropic circular
ylinder is not new [13,14]. For a general case of oblique
ncidence and magnetic scatterers, an analytical solution
as provided some time ago by Wait [15] and has also
een treated by Lind and Greenberg [16] in the context of
ielectric infinite cylinders. Although expressions for the
tored energy in normally illuminated dispersive and
ondispersive dielectric cylinders have been documented

n the literature [17], no analytical study of the magne-
ism influence for a general case of oblique incidence has
1084-7529/10/071679-9/$15.00 © 2
een so far performed. Our aim is to fill this gap with a
etailed study of a cylindrical magnetic scatterer illumi-
ated at an arbitrary incidence angle. We devote special
ttention to the fields inside the scattering center and
heir application to the calculation of the energy-
ransport velocity in a disordered magnetic medium
17,18].

The framework in which the scattering quantities are
alculated is presented in Section 2 of this description.
ssentially, we present the main expressions obtained
olving the macroscopic Maxwell’s equations for the EM
nternal fields [15,19]. We have adopted the same nota-
ion as Bohren and Huffman [19]. In Section 3, for a gen-
ral case of oblique incidence, we use new relations
mong Bessel functions to calculate the normalized aver-
ge EM energy stored inside a magnetic infinitely long
ylinder. This extends the studies of [17,20] for nondisper-
ive scatterers. Also, in Section 4, we derive exact and ap-
roximated expressions for the optical-absorption effi-
iency in terms of the internal coefficients. This last
esult, which has an analog in single Mie scattering [12],
s important to link measurable quantities with the time-
veraged EM energy [12,20]. Numerical results are
hown in Section 5. Specifically, for a weakly absorptive
agnetic cylinder, we determine a relation between the

nternal energy-enhancement factor and the absorption
fficiency that does not depend on the incidence angle and
he polarization of the incident EM wave. Comparing our
esult with that obtained first in [20], we ascribe the
chieved differences only to the cylindrical and spherical
eometries. This geometrical consideration allows us to
rite a relation that is independent of the shape of the
010 Optical Society of America
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catterer. Following [17,18], we present an application of
ur calculations to the study of the energy-transport ve-
ocity. For a 2D disordered magnetic medium, we obtain
n oscillatory behavior of the energy-transport velocity as
function of the size parameter, even in the Rayleigh size

egion. Briefly, in Appendix A we present approximations
or the far-field scattering coefficients and some consider-
tion about the degree of polarigation for magnetic cylin-
ers at normal incidence.

. BASIC THEORY
et the scatterer be an infinite right circular cylinder
ith finite radius a embedded in an infinite non-
bsorptive medium. Both the cylinder and the surround-
ng medium are assumed to be linear, homogeneous, and
sotropic, with inductive capacities ��1 ,�1� and �� ,��, re-
pectively. The incident EM wave that interacts with the
ylinder is a plane and monochromatic complex wave,
ith time-harmonic dependence given by exp�−i�t�

19,21]. The quantity � is the angular frequency and it is
onsidered to be the same for the incident and scattered
aves (elastic scattering). In addition, we assume that

hese media are electromagnetically source-free and
dopt the international system of units. On account of
ymmetry, the cylindrical scatterer imposes two basic lin-
ar polarizations for the incident EM wave [19,22]. They
re referred to as the TM (or case I) and TE (or case II)
odes [19]. In the former, the incident electric field is par-

llel to the xz plane, while in the latter it is perpendicular
o this plane [19,21–23]. For both cases, consider that � is
he angle between the wave vector k and the z axis,
here k= �k�=�����1/2 is the wavenumber.
Inside the cylinder �0�r�a�, the expansion of the in-

ernal EM field �E1 ,H1� in terms of cylindrical harmonics
n and Nn [19] is expressed as follows: for the TM and TE
odes, which are indicated by the indices (I) and (II), re-

pectively, one obtains

E1
�I� = �

n=−�

�

En�dn
�I�Mn

�1� + cn
�I�Nn

�1��, �1�

H1
�I� = − i

k1

��1
�

n=−�

�

En�cn
�I�Mn

�1� + dn
�I�Nn

�1��; �2�

E1
�II� = − i �

n=−�

�

En�dn
�II�Mn

�1� + cn
�II�Nn

�1��, �3�

H1
�II� = −

k1

��1
�

n=−�

�

En�cn
�II�Mn

�1� + dn
�II�Nn

�1��, �4�

here En=rE0�−i�n /�1, with �1=kr�m2−cos2 ��1/2, and the
ndex (1) indicates the Bessel function Jn��1� to generate
he cylindrical harmonics [19]. The quantity m
��1�1 /���1/2 is the relative refraction index between the
ylinder and the surrounding medium, and k1=mk is the
avenumber inside the cylinder.
To simplify the expressions of the internal (cn, dn) and

cattering (a , b ) coefficients, consider the functions
n n
An = i���Jn���Jn��	�
m

m̃
− 	Jn����Jn�	�� , �5�

Bn = ��mm̃�Jn���Jn��	� − 	Jn����Jn�	��, �6�

Cn = n cos �	Jn���Jn�	�	 �2

	2 − 1
 , �7�

Dn = n cos �	Hn
�1����Jn�	�	 �2

	2 − 1
 , �8�

Vn = ��mm̃�Hn
�1����Jn��	� − 	Hn�

�1����Jn�	��, �9�

Wn = i��	Hn�
�1����Jn�	� − �Hn

�1����Jn��	�
m

m̃� , �10�

here �=x sin �, 	=x�m2−cos2 ��1/2, x=ka is the size pa-
ameter, Hn

�1�=Jn+ iYn is the Hankel function, and m̃
���1 /�1��1/2 is the relative impedance between the cylin-
er and the surrounding medium. These functions
5)–(10) are analogous to those presented in [19], and they
re the same for �=�1 (nonmagnetic approach).
For the TM mode, the boundary conditions provide a

et of four linear equations connecting the coefficients an
�I�,

n
�I�, cn

�I�, and dn
�I� [15,19,22]. Solving the system of equa-

ions, we obtain

an
�I� =

CnVn − BnDn

VnWn + iDn
2 , �11�

bn
�I� =

BnWn + iCnDn

VnWn + iDn
2 , �12�

cn
�I� =

− 2im�Wn


�VnWn + iDn
2�

, �13�

dn
�I� =

− 2m�Dn


m̃�VnWn + iDn
2�

. �14�

imilarly, for the TE mode, we have

an
�II� = −

AnVn − iCnDn

VnWn + iDn
2 , �15�

bn
�II� = − i

CnWn + AnDn

VnWn + iDn
2 , �16�

cn
�II� =

− 2m�Dn


�VnWn + iDn
2�

, �17�

dn
�II� =

− 2m�Vn


m̃�VnWn + iDn
2�

, �18�

here the functions An, Bn, Cn, Dn, Vn, and Wn are defined
n Eqs. (5)–(10).
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For normal EM wave incidence to the cylinder axis
�=90° �, we have an

�I�=bn
�II�=cn

�II�=dn
�I�=0, and [13]

an = �an
�II���=90° =

m̃Jn��x�Jn�mx� − Jn�x�Jn��mx�

m̃Jn�mx�Hn�
�1��x� − Jn��mx�Hn

�1��x�
,

bn = �bn
�I���=90° =

Jn�mx�Jn��x� − m̃Jn��mx�Jn�x�

Jn�mx�Hn�
�1��x� − m̃Jn��mx�Hn

�1��x�
,

cn = �cn
�I���=90° =

2i/
x

Jn�mx�Hn�
�1��x� − m̃Jn��mx�Hn

�1��x�
,

dn = �dn
�II���=90° =

2i/
x

m̃Jn�mx�Hn�
�1��x� − Jn��mx�Hn

�1��x�
,

here we have used the Wronskian Hn�
�1��x�Jn�x�

Hn
�1��x�Jn��x�=2i /
x.

. TIME-AVERAGED INTERNAL ENERGY
he time-averaged EM energy within a nondispersive fi-
ite cylinder with radius a and length L is given by

17,24]

W�a� =�
0

a

drr�
0

2


d��
−L/2

L/2

dz Re� �1

4
��E1r�2 + �E1��2 + �E1z�2�

+
�1

4
��H1r�2 + �H1��2 + �H1z�2�� . �19�

his expression takes �1 and �1 as complex quantities
ith positive real parts and small imaginary parts com-
ared to the real ones. In particular, for a cylinder with
he same optical properties as the surrounding medium,
ne has

W0 =

a2

2
��E0�2L. �20�

o simplify the analytical expressions and thereby the nu-
erical calculations, it is common to use some relations

nvolving the Bessel functions. Specifically, for the aver-
ge EM energy, [25] provides two equations in which the
ntegrals associated with the product of two cylindrical
essel functions are performed analytically. In our nota-

ion, for the situation in which there is absorption �m
m*�, we can define the function

In�	� =
1

a2�
0

a

drr�Jn��1��2 = 2 Re�	*Jn��	*�Jn�	�

	2 − 	*2 � ,

�21�

here �1�r�=kr�m2−cos2 ��1/2 and 	=�1�a�. Using
’Hospital’s rule and the recurrence relation Jn����
± �nJn��� /�−Jn±1����, for real relative refractive index

m�, Eq. (21) can be rewritten as
In�	� =
1

a2�
0

a

drrJn
2��1� = 1

2 �Jn
2�	� − Jn−1�	�Jn+1�	��.

�22�

In addition, from the recurrence relations 2nJn���
��Jn−1���+Jn+1���� and 2Jn����=Jn−1���−Jn+1���, one can
eadily show that

2�AJn���� − B
nJn���

�
�2

+ 2�A
nJn���

�
− BJn�����2

= �Jn−1����A − B��2 + �Jn+1����A + B��2, �23�

2�AJn���� + B
nJn���

�
�2

+ 2�A
nJn���

�
− BJn�����2

= ��A�2 + �B�2���Jn−1����2 + �Jn+1����2�

− 4 Im�AB*�Im�Jn+1���Jn−1��*��, �24�

or any functions A and B. Equations (23) and (24) are
riginal and they appear in the calculation of the average
nergy associated with the components �r ,�� of the EM
eld at the oblique incidence.
Consider the internal fields defined by Eqs. (1)–(4) and

ake separately each one of the field components in the
efinition (19). For the TM polarization, the average EM
nergy Wtot

�I� �a� is given by

Wtot
�I� = �WEr

�I� + WE�
�I� + WEz

�I�� + �WHr
�I� + WH�

�I� + WHz
�I� �, �25�

ith

WEr
�I��a� = W0 Re�mm̃��cos2 �� c0

�I�

m
�2

I1�	�

+ 2�
n=1

� �
0

a

drr
�Jn��1��2

a2 � � cos �

m
cn

�I�Dn��1�

+ dn
�I�

n

�1
�2� , �26�

WE�
�I� �a� = 2W0 Re�mm̃��

n=1

� �
0

a

drr
�Jn��1��2

a2

� � cos �

m
cn

�I�
n

�1
− dn

�I�Dn��1��2

, �27�

WEz
�I��a� = W0 Re�mm̃�� 	

mx�2��c0
�I��2I0�	�

+ 2�
n=1

�

�cn
�I��2In�	�� , �28�

WHr
I �a� = 2W0 Re�mm̃*��

n=1

� �
0

a

drr
�Jn��1��2

a2 � �cn
�I�

n

�1

−
cos �

d�I�Dn��1��2

, �29�

m n
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WH�
I �a� = W0 Re�mm̃*���c0

�I��2I1�	�

+ 2�
n=1

� �
0

a

drr
�Jn��1��2

a2 � �cn
�I�Dn��1�

−
cos �

m
dn

�I�
n

�1
�2� , �30�

WHz
�I� �a� = 2W0 Re�mm̃*�� 	

mx�2

�
n=1

�

�dn
�I��2In�	�, �31�

here WEr=
drr
d�
dzRe��1��E1r�2 /4, WHr

drr
d�
dzRe��1��H1r�2 /4, and so on, and Dn��1�
Jn���1� /Jn��1�.
Because of the integrals in the radial component, ob-

erve that Eqs. (26), (27), (29), and (30) cannot be solved
nalytically. However, if one considers the contributions
Er�= �WEr+WE�� and WHr�= �WHr+WH�� to the internal

nergy, the expressions can be simplified by means of Eqs.
23) and (24). Explicitly, using Eq. (24), for A
cn

�I� cos � /m and B=dn
�I�, it follows from Eqs. (26) and (27)

hat

WEr�
�I� �a� = W0 Re�mm̃��cos2 �� c0

�I�

m
�2

I1�	�

+ �
n=1

� �	cos2 �� cn
�I�

m
�2

+ �dn
�I��2
 � �In−1�	�

+ In+1�	�� −
4 cos �

a2 Im	 cn
�I�dn

�I�*

m



��
0

a

drr Im�Jn+1��1�Jn−1��1
*���� . �32�

lso, employing Eq. (23), for A=cn
�I� and B=dn

�I� cos � /m,
e obtain from Eqs. (29) and (30)

WHr�
�I� �a� = W0 Re�mm̃*���c0

�I��2I1�	�

+ �
n=1

� ��cn
�I� − dn

�I�
cos �

m �2

In−1�	�

+ �cn
�I� + dn

�I�
cos �

m �2

In+1�	��� . �33�

ote that the integral in the last term in Eq. (32) cannot
e performed analytically. However, for normal incidence
�=90° :Ei �z�, it is clear that WEr�

�I� =WHz
�I� =0, and the aver-

ge EM energy is Wtot
�I� =WEz

�I� +WHr�
�I� . In this particular

ase, it can be shown that In−1�y�+In+1�y�
4Re�yJ �y�J��y*� / �y2−y*2��, where y=mx, and thereby
n n
Wtot
� =

2W0

x �
n=−�

�

Re��Jn�mx�Jn��m*x�

m2 − m*2 ��m Re�mm̃*�

+ m* Re�mm̃����cn�2. �34�

hen m and m̃ are real quantities, by using L’Hospital’s
ule, Eq. (34) takes the simple form

Wtot
� =

W0m̃

x �
n=−�

�

�Jn�mx�Jn��mx� + mxJn�mx�2

− mxJn−1�mx�Jn+1�mx���cn�2. �35�

or the TE polarization (case II), we obtain similar ex-
ressions:

WEr�
�II� �a� = WEr

II �a� + WE�
II �a� = W0 Re�mm̃���d0

�II��2I1�	�

+ �
n=1

� ��dn
�II� − cn

�II�
cos �

m �2

In−1�	�

+ �dn
�II� + cn

�II�
cos �

m �2

In+1�	��� , �36�

WEz
�II��a� = 2W0 Re�mm̃�� 	

mx�2

�
n=1

�

�cn
�II��2In�	�, �37�

WHr�
�II� �a� = W0 Re�mm̃*��cos2 ��d0

�II�

m
�2

I1�	�

+ �
n=1

� �	cos2 ��dn
�II�

m
�2

+ �cn
�II��2
�In−1�	�

+ In+1�	�� −
4 cos �

a2 Im	dn
�II�cn

�II�*

m



��
0

a

drr Im�Jn+1��1�Jn−1��1
*���� . �38�

WHz
�II��a� = W0 Re�mm̃*�� 	

mx�2��d0
�II��2I0�	�

+ 2�
n=1

�

�dn
�II��2In�	�� . �39�

or normal incidence ��=90° :Ei�z�, one obtains that

Ez
�II�=WHr�

�II� =0 and, therefore, the average EM energy is
iven by Wtot

�II�=WEr�
�II� +WHz

�II�. Explicitly, we obtain

Wtot
� =

2W0

x �
n=−�

�

Re��Jn�mx�Jn��m*x�

m2 − m*2 ��m* Re�mm̃*�

+ m Re�mm̃����dn�2. �40�

f m and m̃ are real quantities, Eq. (40) becomes Eq. (35),
eplacing c with d .
n n



=
R
n
i
u

4
T
a

w
s
i
t

a
c

w
i

a
(

w

m
i

w
�
t
E

t
b

w
d
m
w
E
fi
(

5
H
e
m
p
s
f
N
[
v
m
v
w

F
�
=
�

T. J. Arruda and A. S. Martinez Vol. 27, No. 7 /July 2010 /J. Opt. Soc. Am. A 1683
In all equations above, we use the equalities Re�mm̃�
Re��1� /�, which is associated with the electric field, and
e�mm̃*�= �k1 /��1�2Re��1� /�, which appears in the mag-
etic one. For dispersive cylinders, the expressions for the

nternal energy must be modified according to the model
sed to write the functions �1��� and �1��� [17,24].

. ABSORPTION EFFICIENCY
he efficiencies in the EM scattering by a non-optically
ctive infinite cylinder are

Qsca
�I� =

2

x��b0
�I��2 + 2�

n=1

�

��bn
�I��2 + �an

�I��2�� , �41�

Qtot
�I� =

2

x
Re�b0

�I� + 2�
n=1

�

bn
�I�� , �42�

Qabs
�I� = Qtot

�I� − Qsca
�I� , �43�

here Qtot
�I� , Qsca

�I� , and Qabs
�I� are the extinction (or total),

cattering, and absorption efficiencies for the TM polar-
zation, respectively. Expressions for the TE mode are ob-
ained replacing an

�I� with bn
�II� and bn

�I� with an
�II� [19].

Using the boundary conditions for the TM mode,

	Jn�	�cn
�I� = m��Jn��� − Hn

�1����bn
�I��, �44�

im̃	Jn�	�dn
�I� = m�Hn

�1����an
�I�, �45�

nd the definitions for the magnetic internal coefficients

n
�I� and dn

�I� given by Eqs. (13) and (14), we obtain

Qabs
�I� =

2

x �
n=−�

�

Re��cn
�I��2

i
m̃

2m* 	Jn�	*�Jn��	� + � m̃dn
�I�

m
�2

� �
	2Jn�	*���2 − 	*2�Wn

2�2	*2Hn
�1�����	2 − �2�

− �	Jn�	�

Hn
�1���� �2�� ,

�46�

here Wn is defined in Eq. (10). In the same manner, us-
ng the boundary conditions for the TE mode,

	Jn�	�cn
�II� = im�Hn

�1����bn
�II�, �47�

m̃	Jn�	�dn
�II� = m��Jn��� − Hn

�1����an
�II��, �48�

nd the coefficients cn
�II� and dn

�II� given by Eqs. (17) and
18), we obtain

Qabs
�II� =

2

x �
n=−�

�

Re�� m̃dn
�II�

m
�2 i
m

2m̃
	*Jn�	*�Jn��	� + � cn

�II�

m
�2

� � i
	2Jn�	*���2 − 	*2�Vn

2�2	*Hn
�1������2 − 	2�

− �	Jn�	�

Hn
�1���� �2�� , �49�

here Vn is defined in Eq. (9).
If we consider in the last term of Eq. (46) the approxi-
ation 	2�	*2, which means m2�m*2 (low absorption),

t can readily be shown that
Qabs
�I� �




x �
n=−�

� ��cn
�I��2 Im� m̃*

m
	Jn�	�Jn��	*��

+ �dn
�I��2 Im� m̃

m
	Jn�	�Jn��	*��� , �50�

here we have used the Wronskian Hn�
�1����Jn���−Hn

�1�

���Jn����=2i /
�. An analogous expression is obtained for
he TE polarization by replacing the index (I) with (II) in
q. (50).
It is important to emphasize that in Eq. (50) only the

erms that vanish for normal incidence are approximated
y using 	2�	*2. Therefore, when �=90°, it follows that

Qabs
� = 
 �

n=−�

�

Im�m̃*Jn�mx�Jn��m*x���cn�2, �51�

Qabs
� = 
 �

n=−�

�

Im�m̃Jn�mx�Jn��m*x���dn�2, �52�

hich are exact expressions for the parallel and perpen-
icular absorption efficiencies expanded in terms of the
agnetic internal coefficients cn and dn. In the following,
e show an expected interrelation between the average
M energy within a cylinder and its optical-absorption ef-
ciency, provided that Re�m�
Im�m� and Re�m̃�
Im�m̃�

low absorption limit).

. NUMERICAL CALCULATIONS
ere we present some numerical results from the exact

xpressions of the time-averaged EM energy within a
agnetic cylinder. All numerical calculations have been

erformed by programs written for the free software for
cientific computation Scilab 5.1.1. As an upper limit N
or the truncated series �n=1

N , we employ the expression
=max�nc , �m�x�+ �101.0+x�1/2, with nc=x+4.05x1/3+2

21]. The modification added in N in which we take the
alue max�nc , �m�x� instead of only nc is introduced to give
ore accurate sums even for large values of �1 /� at small

alues of x (Figs. 1–3). The exceptions are the Figs. 4–6,
here we replace max�nc , �m�x� with nc.
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�1.4161+4.0�10−9�. Only the TM polarization is shown, with
=60°.
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Figure 1 shows a comparison between the magnetic
nd nonmagnetic approach for the TM mode with �=60°
oblique incidence). The quantities are calculated in the
nterval 0�x�2, with �x=10−3. We have used in this cal-
ulation the same value of �1 /� as [10] for a magnetic cyl-
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ig. 2. Comparison between the normalized EM energy Wtot /W0
ithin a magnetic ��1 /�=100� and a nonmagnetic ��1 /�=1� cyl-

nder with �1 /�=1.4161. The parallel and perpendicular polariza-
ions are indicated by (I) and (II), respectively.
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ig. 3. Comparison between the normalized energy-transport
elocity vE /c0 in a medium containing magnetic ��1 /�=100� and
onmagnetic ��1 /�=1� cylinders with �1 /�=1.4161 and volume
raction f=0.36. The parallel and perpendicular polarizations are
ndicated by (I) and (II), respectively.
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ig. 4. Normalized EM energy Wtot
�I� /W0 within a magnetic
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1.4161, parallel polarization.
nder with a small imaginary part added. The result
chieved in Fig. 1 is quite similar to the one we have ob-
ained for EM scattering by a magnetic sphere [12]. In
oth cases, the average internal energy is much larger
han the one related to a scatterer with the same optical
roperties as the surrounding medium even for x�1.
The series of sharp peaks in Fig. 1 as a function of the

ize parameter are well-known and are generally referred
o as morphology-dependent resonances (MDR) [26]. For
he average internal energy, they are ascribed to the reso-
ances of the far-field scattering coefficients [27,28],
hich are related to the internal coefficients by Eqs. (44),

45), (47), and (48). Physically, these large values of the
ormalized internal energy can be explained by the en-
ancement of the extinction efficiency Qtot, whose sharp
eaks occur at the corresponding size parameters in
hich the large values of Wtot /W0 occur [17].

. Weak Absorption
imilar to the case studied in [12,20], it can be shown that

or a cylindrical scatterer with weak absorption (wa)
here is a relation between the average EM energy and
he optical-absorption efficiency. For sake of simplicity,
onsider Eq. (34) and assume that mi�mr and m̃i�m̃r,
here m=mr+ imi, m̃=m̃r+ im̃i are the complex relative
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efraction and impedance indices, respectively. Approxi-
ating �m2−m*2��4imrmi, Re�mm̃*��mrm̃r and
e�mm̃��mrm̃r, we have

Wtot
�I�

W0
� �

n=−�

� mr

mix
Im�m̃rJn�mx�Jn��m*x���cn�2. �53�

omparing Eqs. (51) and (53), it results that

Wtot
�wa�

W0
� 	 mr


mix

Qabs. �54�

elation (54) for cylindrical scatterers, which to the best
f our knowledge has not been determined previously,
olds for both TM and TE modes and it does not depend
n the incidence angle �90°−��.

An analogous result has been obtained for the EM scat-
ering by a dielectric sphere [19] and a magnetic one [12].
ecause of the system symmetry, the constant that asso-
iates Wtot /W0 with Qabs for a homogeneous magnetic
phere is not the same as that for an infinitely long cylin-
er: Wtot

�sph� /W0=3mrQabs
�sph� / �8mix�. In the special case of

he infinite cylinder with optical properties similar to the
urrounding medium, i.e., mr�1 and Wtot

�wa��W0, it fol-
ows that Qabs�
mix. This last result is in agreement
ith [22]. For the sphere, one has Qabs

�sph��8mix /3
12,20,22].

As a curiosity, comparing the EM scattering by spheres
ith infinite cylinders, both in the weak absorption re-
ime �mi�mr�, we can rewrite Eq. (54) as

Wtot
�wa�

W0
�

a�g

2V

mr

x

Qabs

mi
=

mr

2kV

�abs

mi
, �55�

here V is the volume of the scatterer, k is the wavenum-
er of the incident EM wave, and �g and �abs=Qabs�g are
he geometrical and the absorption cross sections, respec-
ively. Note that although we explicitly consider two par-
icular geometries in this derivation (a sphere of radius a
nd a segment L of an infinite cylinder of radius a), Eq.
55) does not depend on the shape of the scatterer. Of
ourse, Eq. (55) must be further investigated to verify if
ts universality is valid or not.

. Energy-Transport Velocity
an Tiggelen et al. [18] have shown that, for simple 3D
ielectric scatterers, the energy-transport velocity vE is
elated to the energy-enhancement factor Wtot /W0 by the
xpression vE=c0 / �1+ f�Wtot /W0−1��, where c0 is the wave
elocity in the host medium �� ,�� and f is the volume frac-
ion occupied by the scatterers. Ruppin [17] has success-
ully used this expression for vE as an application of the
verage energy stored inside an infinite dielectric cylin-
er. As it has been reported in [17], this simple model to
alculate the transport velocity in a 2D medium repro-
uces well the results of Busch et al. [29] obtained in a
ifferent context of the low-density approximation of the
ethe–Salpeter equation.
Here, we extend the use of this expression for vE to the

alculation of the energy-transport velocity in a 2D disor-
ered magnetic medium ��=90° �. We consider a random
ollection of parallel isotropic cylinders with a packing
raction f=0.36, which is the same used in the experi-
ents with nonmagnetic scatterers TiO2 [18]. Specially,
e assume the scatterers are magnetic and have negli-
ible losses, i.e., ��1 ,�1� are real quantities. This last as-
umption can be achieved in soft ferrites, which present
arge values of �1 /� with low magnetic losses at micro-
ave frequencies typically below 100 MHz [1].
The quantities in Figs. 2 and 3 are calculated in the in-

erval 0�x�2, with �x=10−3. The resonance peaks in the
M internal energy (Fig. 2), as expected, provide small
alues of the energy-transport velocity (Fig. 3) [17,18].
ecause of the magnetism, the transport velocity van-

shes even for cylinders with radius much smaller than
he wavelength (Rayleigh size region). The vanishing of
nergy-transport velocity for x�1 in a 3D disordered
agnetic medium has been reported in [7]. Qualitatively,

his means that the EM wave spends a long time (dwell
ime) inside the scatterers, leading to a decrease in vE and
hereby in the diffusion coefficient D=vE�* /3, where �* is
he transport mean free path [7,18,29]. This strong de-
rease in the transport velocity, and consequently in the
iffusion coefficient, is related to the single scatterer reso-
ances and leads to electromagnetic wave localization
18,29]. The decrease of vE in a 2D disordered magnetic

edium can be observed in Fig. 3 (for 0�x�2) and Fig. 5
for 0�x�100).

Note that the energy-transport velocity plotted as a
unction of the size parameter shows an oscillatory behav-
or. Because of the differences in the average EM energy
etween the parallel and perpendicular polarizations
Fig. 2), the behavior of the normalized transport velocity
s also different for both polarizations. Indeed, they show
pposite oscillatory tendencies for small size parameters:
hereas the oscillation amplitude of vE /c0 in the parallel
ode is reduced with increasing x, in the perpendicular
ode it is increased. This can be clearly observed in Fig.

.
In the interval 1�x�100, with �x=0.05, we show in

ig. 6 the profile of vE /c0 (parallel mode) for �1 /�=1000.
lthough the number of sharper drops in this size param-
ter region (for �x�0.05) is much larger than is repre-
ented here, one can observe the global oscillatory behav-
or of vE as a functions of x. In a particular configuration
or x=0.01, [7] has studied the quantity vE /c0 as a func-
ion of the relative magnetic permeability �1 /�.

. CONCLUSION
he time-averaged EM energy inside an irradiated mag-
etic cylinder, for a general case of oblique incidence, has
een analytically calculated for the TM and TE modes.
e have shown that, similar to dielectric [20] and mag-

etic [12] spheres with low absorption, the optical-
bsorption efficiency associated with a magnetic cylinder,
aken to be weakly absorptive, is related to its internal
nergy-enhancement factor. Indeed, this particular result,
hen compared to the one from single Mie scattering,

uggests a more general relation that does not depend on
he shape of the scattering center. If its universality is
alid, it can be applied to calculate in a simple way the
nergy-transport velocity in a disordered weakly absorp-
ive media, given only the volume and the absorption
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ross section of the particles imbedded in the medium. Fi-
ally, we have used the normalized internal EM energy to
etermine the energy-transport velocity for a 2D disor-
ered magnetic medium. We have shown, in particular,
he vanishing of the transport velocity even in the Ray-
eigh size region.

PPENDIX A: APPROXIMATIONS FOR
ORMAL INCIDENCE
ere we consider the scattering coefficients in the small-
agnetic-particle limit. Two other limits are obtained: the
ayleigh and the ferromagnetic. The scattering ampli-

udes are then calculated to address polarization in the
ayleigh limit.

. Small-Particle Limit
f x�1, we can approximate the values of the scattering
oefficients an and bn using the limiting cases of the cy-
indrical Bessel functions [19]. For simplicity, consider the
ylinder is normally illuminated ��=90° �. The values of
hese coefficients for n=0 and n=1 are

a0 �
i
D0�mx�

8m̃
x�4 − x2� +

i


32
x2�8 − x2�,

b0 �
i
m̃D0�mx�

8
x�4 − x2� +

i


32
x2�8 − x2�,

a1 �
− i
x2�m̃�8 − 3x2� − D1�mx�x�8 − x2��

32�D1�mx�x + m̃�
,

b1 �
− i
x2�8 − 3x2 − m̃D1�mx�x�8 − x2��

32�m̃D1�mx�x + 1�
. �A1�

. Rayleigh and Ferromagnetic Limits
n the Rayleigh approximation, x�1 and �m�x�1, which
eads to D0�mx��−mx /2−m3x3 /16 and D1�mx��1/mx
mx /4, we obtain

a0 � −
i


4 	m

m̃
− 1
x2 −

i


32	1 +
m3

m̃
− 2

m

m̃
x4,

b0 � −
i


4
�mm̃ − 1�x2 −

i


32
�1 + m3m̃ − 2mm̃�x4,

a1 � −
i


4 	mm̃ − 1

mm̃ + 1
x2 −
i


32�2m2 − 3mm̃ + 1

mm̃ + 1 �x4,

b1 � −
i


4 	m/m̃ − 1

m/m̃ + 1
x2 −
i


32�2m2 − 3m/m̃ + 1

m/m̃ + 1 �x4.

ote that, in the magnetic approach, the terms of order x2

n the coefficients a0 and b1 do not vanish. The expres-
ions presented in [19] for nonmagnetic scattering are re-
overed when m=m̃.
The ferromagnetic limit is also derived from the small-
article limit. However, we must consider both x�1 and

m�x
1. For large arguments, the logarithmic derivative
unction can be written as

Dn�mx� � −
1

mx
− tan�mx − �2n + 1�
/4�, �A2�

nd the ferromagnetic approximation is obtained by sub-
titution of D0�mx� and D1�mx� calculated from Eq. (A2)
nto the far-field scattering coefficients of the small-
article limit, Eqs. (A1).

. Polarization
or a normally irradiated cylinder, the degree of polariza-

ion of the scattered light is P=T11/T12, where T11
��T1�2− �T2�2� /2, T12= ��T1�2+ �T2�2� /2, and the amplitude

unctions are T1=b0+2�n=1
� bn cos�n�� and T2=a0

2�n=1
� an cos�n��, with �=180°−� [19].

Using Eqs. (A1) in the Rayleigh limit, one can write the
mplitude functions T1 and T2 in terms of order x2:

T1 � −
i


4
�mm̃ − 1�x2 −

i


2 	m/m̃ − 1

m/m̃ + 1
x2 cos �,

T2 � −
i


4 	m

m̃
− 1
x2 −

i


2 	mm̃ − 1

mm̃ + 1
x2 cos �.

t �=90°, the value of degree of polarization P of the
cattered light is not identically 1 for a magnetic cylinder:

P =
�mm̃ − 1�2 − �m/m̃ − 1�2

�mm̃ − 1�2 + �m/m̃ − 1�2
. �A3�

herefore, similar to the EM scattering by a magnetic
phere [9], the radiant intensity scattered by a magnetic
ylinder is not symmetrical about 90°.
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