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We analytically calculate the time-averaged electromagnetic energy stored inside a nondispersive magnetic
isotropic cylinder that is obliquely irradiated by an electromagnetic plane wave. An expression for the optical-
absorption efficiency in terms of the magnetic internal coefficients is also obtained. In the low absorption limit,
we derive a relation between the normalized internal energy and the optical-absorption efficiency that is not
affected by the magnetism and the incidence angle. This relation, indeed, seems to be independent of the shape
of the scatterer. This universal aspect of the internal energy is connected to the transport velocity and conse-
quently to the diffusion coefficient in the multiple scattering regime. Magnetism favors high internal energy
for low size parameter cylinders, which leads to a low diffusion coefficient for electromagnetic propagation in
2D random media. © 2010 Optical Society of America
OCIS codes: 290.0290, 290.4020, 290.5825, 290.5850, 290.4210.

1. INTRODUCTION

Interest in the study of magnetic materials and their op-
tical properties has recently increased in the applied sci-
ences. Applications of magnetic 2D and 3D photonic band-
gaps (PBGs) [1-4], microwave filters, metamaterials [5],
high density magnetic recording media [6], and weak lo-
calization of light [7,8] have been reported. All these
works explore the fact that, at microwave or radio fre-
quencies, the magnetic materials exhibit large values of
magnetic permeability [1,2].

Electromagnetic (EM) scattering by magnetic spheres
has been applied by Kerker et al. [9]. Some unusual fea-
tures present in single and multiple magnetic Mie scat-
tering, such as forward-backward asymmetry with pref-
erential backward scattering and resonance effects
[10,11] and vanishing of the energy-transport velocity
even for small size parameters [7,8], have been studied.
In a recent paper, we have calculated the EM energy
stored inside a magnetic sphere, and we have shown that,
even for size parameters much smaller than unity (Ray-
leigh size region), this quantity is strongly enhanced, with
sharp resonance peaks [12].

The problem of EM scattering by an isotropic circular
cylinder is not new [13,14]. For a general case of oblique
incidence and magnetic scatterers, an analytical solution
was provided some time ago by Wait [15] and has also
been treated by Lind and Greenberg [16] in the context of
dielectric infinite cylinders. Although expressions for the
stored energy in normally illuminated dispersive and
nondispersive dielectric cylinders have been documented
in the literature [17], no analytical study of the magne-
tism influence for a general case of oblique incidence has
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been so far performed. Our aim is to fill this gap with a
detailed study of a cylindrical magnetic scatterer illumi-
nated at an arbitrary incidence angle. We devote special
attention to the fields inside the scattering center and
their application to the calculation of the energy-
transport velocity in a disordered magnetic medium
[17,18].

The framework in which the scattering quantities are
calculated is presented in Section 2 of this description.
Essentially, we present the main expressions obtained
solving the macroscopic Maxwell’s equations for the EM
internal fields [15,19]. We have adopted the same nota-
tion as Bohren and Huffman [19]. In Section 3, for a gen-
eral case of oblique incidence, we use new relations
among Bessel functions to calculate the normalized aver-
age EM energy stored inside a magnetic infinitely long
cylinder. This extends the studies of [17,20] for nondisper-
sive scatterers. Also, in Section 4, we derive exact and ap-
proximated expressions for the optical-absorption effi-
ciency in terms of the internal coefficients. This last
result, which has an analog in single Mie scattering [12],
is important to link measurable quantities with the time-
averaged EM energy [12,20]. Numerical results are
shown in Section 5. Specifically, for a weakly absorptive
magnetic cylinder, we determine a relation between the
internal energy-enhancement factor and the absorption
efficiency that does not depend on the incidence angle and
the polarization of the incident EM wave. Comparing our
result with that obtained first in [20], we ascribe the
achieved differences only to the cylindrical and spherical
geometries. This geometrical consideration allows us to
write a relation that is independent of the shape of the
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scatterer. Following [17,18], we present an application of
our calculations to the study of the energy-transport ve-
locity. For a 2D disordered magnetic medium, we obtain
an oscillatory behavior of the energy-transport velocity as
a function of the size parameter, even in the Rayleigh size
region. Briefly, in Appendix A we present approximations
for the far-field scattering coefficients and some consider-
ation about the degree of polarigation for magnetic cylin-
ders at normal incidence.

2. BASIC THEORY

Let the scatterer be an infinite right circular cylinder
with finite radius a embedded in an infinite non-
absorptive medium. Both the cylinder and the surround-
ing medium are assumed to be linear, homogeneous, and
isotropic, with inductive capacities (€;,u;) and (e, ), re-
spectively. The incident EM wave that interacts with the
cylinder is a plane and monochromatic complex wave,
with time-harmonic dependence given by exp(—iwt)
[19,21]. The quantity w is the angular frequency and it is
considered to be the same for the incident and scattered
waves (elastic scattering). In addition, we assume that
these media are electromagnetically source-free and
adopt the international system of units. On account of
symmetry, the cylindrical scatterer imposes two basic lin-
ear polarizations for the incident EM wave [19,22]. They
are referred to as the TM (or case I) and TE (or case II)
modes [19]. In the former, the incident electric field is par-
allel to the xz plane, while in the latter it is perpendicular
to this plane [19,21-23]. For both cases, consider that { is
the angle between the wave vector k and the z axis,
where k=|k|=w(ue)? is the wavenumber.

Inside the cylinder (0 <r<a), the expansion of the in-
ternal EM field (E{,H;) in terms of cylindrical harmonics
M,, and N,, [19] is expressed as follows: for the TM and TE
modes, which are indicated by the indices (I) and (II), re-
spectively, one obtains

EP= > E [d"MY + PNV, (1)
M ; S Oy (49 N(8Y)

HY=-i— > E,[c"MD +dPNV; (2)
OU p=—oo

Ef=-i > E,[d"M + "NV, (3)
ky

HY=— — > E,[c"M + "NV, (4)
WY p=—oc

where E,,=rE(-i)"/py, with p;=kr(m2-cos? )2, and the
index (1) indicates the Bessel function «/,,(p;) to generate
the cylindrical harmonics [19]. The quantity m
=(ui€1/ ne)'? is the relative refraction index between the
cylinder and the surrounding medium, and k;=mk is the
wavenumber inside the cylinder.

To simplify the expressions of the internal (c,, d,) and
scattering (a,, b,) coefficients, consider the functions
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m
A= i&{ fJn(§)J,’L(7))% - 77J1,1(§)Jn(7]):| , 5)
B, = dmm &, (9J,(n) — nd ,(§)J o (m)], (6)
52
52
D, =n cos é“??HﬁLl)(f)Jn(n)(? - >, (8)

V, = dmmeH (T (n) = pH, V(O (9],  (9)

m
W, = ig{ nH, V(&) () - §H21)(§)J;(77)%} , (10)

where &=x sin ¢, p=x(m2-cos? )2, x=ka is the size pa-

rameter, HV=J,+iY, is the Hankel function, and m
=(ue;/ ur€)V? is the relative impedance between the cylin-
der and the surrounding medium. These functions
(5)—(10) are analogous to those presented in [19], and they
are the same for uw=pu; (nonmagnetic approach).

For the TM mode, the boundary conditions provide a
set of four linear equations connecting the coefficients ag),

bg), ¢P and dg) [15,19,22]. Solving the system of equa-

n b
tions, we obtain

) Cnvn - BnDn (11
a, =————,
"YW, +iD? )
B0 BW,+iC,D, 12
n 2
VW, +1D;
@ _ ﬂ 13
Cn e (13)
a VW, +1D;]
-2méD,
dy=———""-. (14)
am [V, W, +iD;]
Similarly, for the TE mode, we have
AV, -iC,D,
ay = —————, (15)
VW, +1D;
b(ID —_ iw (16)
" VW, +iD? "’
oD _ _ —2méDy (17)
n 27
VW, +1D;]
-2méy
df=——————, (18)
am[V,W, +iD;]

where the functions A,, B, C,, D,, V,, and W, are defined
in Egs. (5)—(10).
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For normal EM wave incidence to the cylinder axis
(£=90°), we have V=6 =" =gW=0, and [13]

e (x)e],(mx) — oJ, (x)J, (mx)
ey (mx)H!V(x) - J (mx)HV (x)”

_ 5,0 —
a,=a, |g=90° =

Jp(mx)d,' (x) — me, (mx)e ,(x)

b, = bg)‘§:90°= (1) — ., Dy
J(mx)H, " (x) —md, (mx)H,’ (x)
9
Cn = Cg)|g=90° = 1 i T
I (mx)H,V(x) — md, (mx)HY (x)
2i/mx
dy = d\") g0 =

e, (mx)H, D (x) - J (mx)HV(x)

where we have used the Wronskian H,'_L(l)(x)Jn(x)
D) (x) =20/ mx.

3. TIME-AVERAGED INTERNAL ENERGY

The time-averaged EM energy within a nondispersive fi-
nite cylinder with radius a¢ and length L is given by
[17,24]

a 2m L/2 )
W(a) =J d’"rj dd’f dz Re| —(|E1,|* + |E 4> + |E %)
0 0 L2 4

M1
+ Z(|H1r|2+ |H 4 + |le|2):|~ (19)

This expression takes € and u; as complex quantities
with positive real parts and small imaginary parts com-
pared to the real ones. In particular, for a cylinder with
the same optical properties as the surrounding medium,
one has

7Ta2
W0= T€|E0‘2L. (20)

To simplify the analytical expressions and thereby the nu-
merical calculations, it is common to use some relations
involving the Bessel functions. Specifically, for the aver-
age EM energy, [25] provides two equations in which the
integrals associated with the product of two cylindrical
Bessel functions are performed analytically. In our nota-
tion, for the situation in which there is absorption (m
#m”), we can define the function

Z,(n) lfad o) =2R {"*J"l(”*”"(”)}
W(m)=— | drrld(p)P=2Re| —5—5— |,
a? 0 ! 772—772

(21)
where py(r)=kr(m?-cos? 0)¥2 and 7%=pi(a). Using

L'Hospital’s rule and the recurrence relation o (p)
==+[nd,(p)/p-J,.1(p)], for real relative refractive index
(m), Eq. (21) can be rewritten as
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1 a
Z,(m) = ;J drrda(py) = gl Ta(0) = Ju (DT (7).
0

(22)

In addition, from the recurrence relations 2nJ,(p)

=plJp-1(p) +J,11(p)] and 2 (p)=J,_1(p) = .1(p), one can
readily show that

nd,(p) | * ne ,(p) 2
+2(A - BdJ,(p)

2|Ad,(p)-B
= |Ju-1(PA = B)? + |J,.1(p)(A + B)?, (23)

J.(p) |2 nd,(p) 2

n
2|AdJ,(p) +B +2]A - BdJ(p)

= (AP + [BPua(p) + [ a0
— 4 Im(AB ) Im[,,1(p) p-1(p )], (24)

for any functions A and B. Equations (23) and (24) are
original and they appear in the calculation of the average
energy associated with the components (r, ) of the EM
field at the oblique incidence.

Consider the internal fields defined by Eqs. (1)—(4) and
take separately each one of the field components in the
definition (19) For the TM polarization, the average EM
energy Wt (a) is given by

Wg)t=[ (I)+W(I) +W(I)]+[ (D) +W(I) +W(I)], (25)

with
I |2
€o
(I)(a) WORe(mfﬁ)[coszg — | Zy(p)
m
“ |J (P)| cos ¢
+ 2 - "D, (py)
n 2
+dP—| |, (26)
P1
S W)l
ng(a) =2W, Re(mnﬁ)z drr 21
n=1Jo a
cos{ 2
X -d\"D,(py) (27)
m P1
7 |2
Wi(a) = W, Re(mi) ‘ — | | le6’PZo(m)
mx
+2> |c£3>|22n<n)] , (28)
n=1
v [ e n
Wi (a) =2Wy Re(mm) >, | drr——— x | P —
n=1Jy P1
cos ¢ 2
- ——d'D,(py) (29)
m
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Wii4(a) = Wo Re(mm”) [ e 12Z4(7)

¢ | n(p )?

+2E — x| D, (1)

cos ¢ 2

-—dﬁ?— : (30)

m P1

Wiik(a) = 2W Re(mm") | — d<”|2z<n>, (31)

where Wy, =fdrrfd¢fdzRe(e)|Eq,|?/4, W,
=[drrfd¢fdzRe(u )|H;,/?/4, and so on, and D,(p;)
=J,(p1)/Jn(p1).

Because of the integrals in the radial component, ob-
serve that Eqgs. (26), (27), (29), and (30) cannot be solved
analytically. However, if one considers the contributions
WEr¢=(WEr+ WE(/)) and WHr<b=(WHr+ WH(/)) to the internal
energy, the expressions can be simplified by means of Egs.
(23) and (24). Explicitly, using Eq. (24), for A
=cV cos ¢/m and B=d', it follows from Egs. (26) and (27)
that

2
11(77)

(I)
W ¢(a) W, Re(mm)q cos? ¢ | —
m

(I) 2

+ 2 |:<cos | —
n=1 m

4cos ¢ A
+In+1(77)] - (12 Im

m

|d£f>|2> X [Z,_1(7)

Xf drrlm[Jn+1(P1)Jn—1(Pi)]:| . (32)

0

Also, employing Eq. (23), for A=cg) and B=d,(11) cos {/m,
we obtain from Eqgs. (29) and (30)

WHr¢>(a) W, Re(mm") |Co |211(77)

2

” os {
3 [l
n=1
cos |?
+ e+ dy)— %(n)] .33

Note that the integral in the last term in Eq. (32) cannot
be performed analytically. However, for normal incidence
(¢=90°:E;llz), it is clear that ng(ﬁ:Wg)z:
age EM energy is W§£1=Wg;+Wg)r 4 In this particular
case, it can be shown that Z,_{(y)+Z,.1(y)
=4Re[yd,(y)J,(y")/ (y*-y*?)], where y=mx, and thereby

0, and the aver-
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J,(mx)dJ} (m"x) .
m°-m

+m” Re(mr?z)]} le)?. (34)

tot=_ E

n=-o

When m and m are real quantities, by using L'Hospital’s
rule, Eq. (34) takes the simple form

| W()m -
Wtot =

n=-o

- men—l(mx)Jn+l(mx)]‘cn|2' (35)

! (mx) + mxd,(mx)?

For the TE polarization (case II), we obtain similar ex-
pressions:

Wiry@) = W (a) + Wiya) = W, Re(mm){ Gy (7)

“ cos (|2
+E[ df’ - c"—| Z,.4(n)
n=1
cos (|2
+ | e — Iml(n)”, (36)
Wil(a) = 2Wo Re(mim) | — P, (n), (37)
d(H) 2
WP (@) = Wy Re(mini ")y cos? (| — | Zy(7)

I | 2

o d!
+ 2 |:<cos2 Il —
n=1

4cosl d Wb
+Zn+l(77)] - 2 Im( )
a m

+ |c£3”|2)[1 1(m)

Xf drrIm[Jn+1(pl)Jn—1(pi)]] . (38)

0

Wi(a) = W, Re(mm*)

2
[ |d§)n)‘210( 7})

+2 Idif”z:fn(m] : (39)
n=1

For normal incidence ({=90°:E; 1 z), one obtains that
Wg? ngr) =0 and, therefore, the average EM energy is
given by Wg)lt ngb WH) Explicitly, we obtain

oW, = J(mx)d,(mx) |
thotz TO 2 Re{lwl[m Re(mnﬁ)
+m Re(mm)]} |d,,|?. (40)

If m and m are real quantities, Eq. (40) becomes Eq. (35),
replacing ¢, with d,,.
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In all equations above, we use the equalities Re(mm)
=Re(€;)/ €, which is associated with the electric field, and
Re(mm”)=|k1/wui|*Re(u1)/ €, which appears in the mag-
netic one. For dispersive cylinders, the expressions for the
internal energy must be modified according to the model
used to write the functions €;(w) and w(w) [17,24].

4. ABSORPTION EFFICIENCY

The efficiencies in the EM scattering by a non-optically
active infinite cylinder are

QL= {Ib<“l2+22 (s |a(1)|2)] (41)

n=1
Qi =— Relb(l) +2> b(”] (42)
n=1
Qis = Qlot ~ Qucn (43)

where Qg))t, Q(s?a, and Q;Igs are the extinction (or total),

scattering, and absorption efficiencies for the TM polar-

ization, respectively. Expressions for the TE mode are ob-

tained replacing ag) with b;H) and bg) with al(ln) [19].
Using the boundary conditions for the TM mode,

(el =mdd, (&) - HP(&bP], (44)

imnpd,(ndY =meH P (al, (45)

and the definitions for the magnetic internal coefficients
cg) and dg) given by Egs. (13) and (14), we obtain

mdV

0

where W, is defined in Eq. (10). In the same manner, us-
ing the boundary conditions for the TE mode,

() =imEH P (@b, (47)

2

©

2 imm
Q%:=—2>, Re |c<”|2 S T ) +

n=-w

a7 )& = 7AW,
289 HY (&) (7 - &)

IRG)
HY()

(46)

mnd, (ndy)" =mdd, (9 - H(9a"],  (48)

and the coefficients c D and d, (ID) given by Eqgs. (17) and

(18), we obtain

I
;b;_ 2 Re

n_—oc

% |:L7T772Jn(77*)(§2 - 7]*2)1}11 n‘jn(ﬂ)

2 ¢ (Im | 2

‘ ~ d(H)

2—77J 2(7)T () +
22 HYO@E - |HY(9

2
} , (49)
where V), is defined in Eq. (9).
If we consider in the last term of Eq. (46) the approxi-
mation 72~ 52, which means m2~m™2 (low absorption),
it can readily be shown that
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©

Qu-T% {cgw Imlm—ﬂc]n(ﬂ)f];z(ﬂ*)]
X m

n=-—w

+|d? Im[Tan(n)J;(n*)} } (50)
m

where we have used the Wronskian H,’L(l)(g)Jn(f)—Hfll)
X (&), (£€)=2i/w¢é. An analogous expression is obtained for
the TE polarization by replacing the index (I) with (II) in
Eq. (50).

It is important to emphasize that in Eq. (50) only the
terms that vanish for normal incidence are approximated
by using 72= 7"2. Therefore, when ¢=90°, it follows that

Lhe=m 2> Im[A ", (mx),(m'x)]le 2, (51)
Qups=T E Tm[7ie], (mx)J, (m %) )|d,, |2, (52)

which are exact expressions for the parallel and perpen-
dicular absorption efficiencies expanded in terms of the
magnetic internal coefficients ¢, and d,,. In the following,
we show an expected interrelation between the average
EM energy within a cylinder and its optical-absorption ef-
ficiency, provided that Re(m)>Im(m) and Re(m)>Im(m)
(low absorption limit).

5. NUMERICAL CALCULATIONS

Here we present some numerical results from the exact
expressions of the time-averaged EM energy within a
magnetic cylinder. All numerical calculations have been
performed by programs written for the free software for
scientific computation Scilab 5.1.1. As an upper limit N
for the truncated series En 1, we employ the expression
N=max(n,,|m|x)+(101.0+x)"2, with n,=x+4.05x3+2
[21]. The modification added in N in which we take the
value max(n,,|m|x) instead of only n, is introduced to give
more accurate sums even for large values of u{/u at small
values of x (Figs. 1-3). The exceptions are the Figs. 4-6,
where we replace max(n,,|m|x) with n,.

10°

104 —————— 100

tot

W IW

ka

Fig. 1. Normalized EM energy W/W, within a magnetic
(u1/#=10,100) and a nonmagnetic (u;/u=1) cylinder with € /€
=(1.4161+4.0 X 107°). Only the TM polarization is shown, with
{=60°.
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R (1), 100

— D), 100

ka
Fig. 2. Comparison between the normalized EM energy W, /W,
within a magnetic (u;/©=100) and a nonmagnetic (u;/u=1) cyl-
inder with €;/€=1.4161. The parallel and perpendicular polariza-
tions are indicated by (I) and (II), respectively.

Figure 1 shows a comparison between the magnetic
and nonmagnetic approach for the TM mode with {=60°
(oblique incidence). The quantities are calculated in the
interval 0<x <2, with &x=10"2. We have used in this cal-
culation the same value of €;/€ as [10] for a magnetic cyl-

Fig. 3. Comparison between the normalized energy-transport
velocity vg/co in a medium containing magnetic (u;/©=100) and
nonmagnetic (u;/u=1) cylinders with €;/e=1.4161 and volume
fraction f=0.36. The parallel and perpendicular polarizations are
indicated by (I) and (II), respectively.

Fig. 4. Normalized EM energy W /W, within a magnetic
(1/1=10,100) and a nonmagnetic (u/pn=1) cylinder with €,/€
=1.4161, parallel polarization.
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1.2+ [—

104 | 100

Fig. 5. Normalized energy-transport velocity vy/c, in a medium
containing magnetic (u;/u=10,100) and nonmagnetic (u;/pu=1)
cylinders with €;/e=1.4161 and volume fraction f=0.36, parallel
polarization.

inder with a small imaginary part added. The result
achieved in Fig. 1 is quite similar to the one we have ob-
tained for EM scattering by a magnetic sphere [12]. In
both cases, the average internal energy is much larger
than the one related to a scatterer with the same optical
properties as the surrounding medium even for x<1.

The series of sharp peaks in Fig. 1 as a function of the
size parameter are well-known and are generally referred
to as morphology-dependent resonances (MDR) [26]. For
the average internal energy, they are ascribed to the reso-
nances of the far-field scattering coefficients [27,28],
which are related to the internal coefficients by Eqs. (44),
(45), (47), and (48). Physically, these large values of the
normalized internal energy can be explained by the en-
hancement of the extinction efficiency @, whose sharp
peaks occur at the corresponding size parameters in
which the large values of W,,/W occur [17].

A. Weak Absorption

Similar to the case studied in [12,20], it can be shown that
for a cylindrical scatterer with weak absorption (wa)
there is a relation between the average EM energy and
the optical-absorption efficiency. For sake of simplicity,
consider Eq. (34) and assume that m;<m, and m;<m,,
where m=m,+im;, m=m,+im; are the complex relative

v /c
E

0.0 T 1
1 10 100
ka
Fig. 6. Normalized energy-transport velocity vy/c, in a medium
containing  magnetic  cylinders  (u;/u=1000), parallel
polarization.
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refraction and impedance indices, respectively. Approxi-
mating (m%2-m"?)=4im,m;, Re(mm")=m,m, and
Re(mm)=~m,m,, we have

1) ©
Wgot

= S P i o ) e, P (53)
Wo n=—o MX

Comparing Egs. (51) and (53), it results that

wiva m,
~ . 54
W() J— Qabs ( )

Relation (54) for cylindrical scatterers, which to the best
of our knowledge has not been determined previously,
holds for both TM and TE modes and it does not depend
on the incidence angle (90°-).

An analogous result has been obtained for the EM scat-
tering by a dielectric sphere [19] and a magnetic one [12].
Because of the system symmetry, the constant that asso-
ciates Wii/Wy with Qg4 for a homogeneous magnetic
sphere is not the same as that for an infinitely long cylin-
der: WEPR/Wo=3m, Q™ /(8m;x). In the special case of
the infinite cylinder with optical properties similar to the
surrounding medium, i.e., m,~1 and Wg"ta)%Wo, it fol-
lows that Q.= mmx. This last result is in agreement
with [22]. For the sphere, one has Q" ~8mx/3
[12,20,22].

As a curiosity, comparing the EM scattering by spheres
with infinite cylinders, both in the weak absorption re-
gime (m;<m,), we can rewrite Eq. (54) as

(wa)
Wtot aogm, Qabs My Oaps

= , (55)
WO 2V «x m; 2RV m;

where V is the volume of the scatterer, k£ is the wavenum-
ber of the incident EM wave, and o, and o,ps= Qa0 are
the geometrical and the absorption cross sections, respec-
tively. Note that although we explicitly consider two par-
ticular geometries in this derivation (a sphere of radius a
and a segment L of an infinite cylinder of radius a), Eq.
(55) does not depend on the shape of the scatterer. Of
course, Eq. (55) must be further investigated to verify if
its universality is valid or not.

B. Energy-Transport Velocity

Van Tiggelen et al. [18] have shown that, for simple 3D
dielectric scatterers, the energy-transport velocity vy is
related to the energy-enhancement factor W,/ W, by the
expression vg=co/[1+f(W,./Wy—1)], where ¢ is the wave
velocity in the host medium (e, x) and f'is the volume frac-
tion occupied by the scatterers. Ruppin [17] has success-
fully used this expression for vy as an application of the
average energy stored inside an infinite dielectric cylin-
der. As it has been reported in [17], this simple model to
calculate the transport velocity in a 2D medium repro-
duces well the results of Busch et al. [29] obtained in a
different context of the low-density approximation of the
Bethe—Salpeter equation.

Here, we extend the use of this expression for vy to the
calculation of the energy-transport velocity in a 2D disor-
dered magnetic medium ({=90°). We consider a random
collection of parallel isotropic cylinders with a packing
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fraction f=0.36, which is the same used in the experi-
ments with nonmagnetic scatterers TiO, [18]. Specially,
we assume the scatterers are magnetic and have negli-
gible losses, i.e., (e1,u;1) are real quantities. This last as-
sumption can be achieved in soft ferrites, which present
large values of w;/u with low magnetic losses at micro-
wave frequencies typically below 100 MHz [1].

The quantities in Figs. 2 and 3 are calculated in the in-
terval 0<x <2, with dv=1073. The resonance peaks in the
EM internal energy (Fig. 2), as expected, provide small
values of the energy-transport velocity (Fig. 3) [17,18].
Because of the magnetism, the transport velocity van-
ishes even for cylinders with radius much smaller than
the wavelength (Rayleigh size region). The vanishing of
energy-transport velocity for x<1 in a 3D disordered
magnetic medium has been reported in [7]. Qualitatively,
this means that the EM wave spends a long time (dwell
time) inside the scatterers, leading to a decrease in vz and
thereby in the diffusion coefficient D=vy(¢*/3, where £ is
the transport mean free path [7,18,29]. This strong de-
crease in the transport velocity, and consequently in the
diffusion coefficient, is related to the single scatterer reso-
nances and leads to electromagnetic wave localization
[18,29]. The decrease of vy in a 2D disordered magnetic
medium can be observed in Fig. 3 (for 0 <x<2) and Fig. 5
(for 0 <x<100).

Note that the energy-transport velocity plotted as a
function of the size parameter shows an oscillatory behav-
ior. Because of the differences in the average EM energy
between the parallel and perpendicular polarizations
(Fig. 2), the behavior of the normalized transport velocity
is also different for both polarizations. Indeed, they show
opposite oscillatory tendencies for small size parameters:
whereas the oscillation amplitude of vg/cq in the parallel
mode is reduced with increasing x, in the perpendicular
mode it is increased. This can be clearly observed in Fig.
3.

In the interval 1<x<100, with &x=0.05, we show in
Fig. 6 the profile of vg/cq (parallel mode) for wu;/u=1000.
Although the number of sharper drops in this size param-
eter region (for dx<0.05) is much larger than is repre-
sented here, one can observe the global oscillatory behav-
ior of vy as a functions of x. In a particular configuration
for x=0.01, [7] has studied the quantity vg/co as a func-
tion of the relative magnetic permeability wu/pu.

6. CONCLUSION

The time-averaged EM energy inside an irradiated mag-
netic cylinder, for a general case of oblique incidence, has
been analytically calculated for the TM and TE modes.
We have shown that, similar to dielectric [20] and mag-
netic [12] spheres with low absorption, the optical-
absorption efficiency associated with a magnetic cylinder,
taken to be weakly absorptive, is related to its internal
energy-enhancement factor. Indeed, this particular result,
when compared to the one from single Mie scattering,
suggests a more general relation that does not depend on
the shape of the scattering center. If its universality is
valid, it can be applied to calculate in a simple way the
energy-transport velocity in a disordered weakly absorp-
tive media, given only the volume and the absorption
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cross section of the particles imbedded in the medium. Fi-
nally, we have used the normalized internal EM energy to
determine the energy-transport velocity for a 2D disor-
dered magnetic medium. We have shown, in particular,
the vanishing of the transport velocity even in the Ray-
leigh size region.

APPENDIX A: APPROXIMATIONS FOR
NORMAL INCIDENCE

Here we consider the scattering coefficients in the small-
magnetic-particle limit. Two other limits are obtained: the
Rayleigh and the ferromagnetic. The scattering ampli-
tudes are then calculated to address polarization in the
Rayleigh limit.

1. Small-Particle Limit

If x<1, we can approximate the values of the scattering
coefficients a,, and b,, using the limiting cases of the cy-
lindrical Bessel functions [19]. For simplicity, consider the
cylinder is normally illuminated ({=90°). The values of
these coefficients for n=0 and n=1 are

imDy(mx) ) i 5 ,
~——x(4 -x%) + —x%(8 - x?),

ag 7 x(4 - x%) 32 (8 —x7)
. immDy(mx) ) i ) )
~—x(4 - —x%(8 —x?),
0 3 x(4 —x%) + 35* (8 —x%)

—imx[m(8 — 3x%) — D1(mx)x(8 - x?)]
= 32[D(mx)x + m] ’

. —imxY[8 - 3x - mD;(mx)x(8 — x2)] A
e 320D (mx)x + 1] - @y

2. Rayleigh and Ferromagnetic Limits

In the Rayleigh approximation, x<1 and |m|x <1, which
leads to Dy(mx)=~-mx/2-m3x3/16 and Di(mx)~1/mx
—-mx/4, we obtain

im(m i m?  m
ag=-—|=-1|a- | 1+—-2— 2%,
4 32

m m.m
i i
by~ — —(mi ~ 1)a® = —(1+m%i - 2mi)a,
4 32
im{mm-1 im| 2m? - 3mm + 1
ay~—-— x2—— - - x47
4 \mm+1 32 mm+1

im( min -1 im| 2m?-3m/m + 1
by=-—|——— || ————— |**

4 \m/m+1 32 m/m+1
Note that, in the magnetic approach, the terms of order x2
in the coefficients ay and b; do not vanish. The expres-
sions presented in [19] for nonmagnetic scattering are re-

covered when m=m.
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The ferromagnetic limit is also derived from the small-
particle limit. However, we must consider both x<1 and
|m|x>1. For large arguments, the logarithmic derivative
function can be written as

1
D,(mx) = - —— tan[mx — (2n + 1)7w/4], (A2)

and the ferromagnetic approximation is obtained by sub-
stitution of Dy(mx) and D(mx) calculated from Eq. (A2)
into the far-field scattering coefficients of the small-
particle limit, Eqgs. (Al).

3. Polarization
For a normally irradiated cylinder, the degree of polariza-
tion of the scattered light is P=T4,/T13, where T
=(|T12=|T9?) /2, T15=(T1>+|T2/*/2, and the amplitude
functions are Ti=bo+2%,_;b,cos(n®) and Ty=a,
+237_1a, cos(n®), with ®=180°-¢ [19].

Using Eqgs. (Al) in the Rayleigh limit, one can write the
amplitude functions T4 and T in terms of order x*:

T~ - Z(mﬁm— a? - —

2

i im{mim-1
mim+1

>x2 cos O,

m 2 \mm+1

imfm imfmm-1
To~—-—|—-1|x2-— x%cos 0.
m

At ©=90°, the value of degree of polarization P of the
scattered light is not identically 1 for a magnetic cylinder:

|mm - 1% = |m/m - 12

(A3)

mam - 12+ [mim - 12

Therefore, similar to the EM scattering by a magnetic
sphere [9], the radiant intensity scattered by a magnetic
cylinder is not symmetrical about 90°.
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