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2Centro Brasileiro de Pesquisas Fı́sicas, Rua Xavier Sigaud 150, 22290-180, Rio de Janeiro-RJ, Brazil

3National Institute of Science and Technology for Complex Systems, Rua Xavier Sigaud 150, 22290-180, Rio de Janeiro-RJ, Brazil
(Received 8 August 2010; published 22 December 2010)

We show through a nonlinear Fokker-Planck formalism, and confirm by molecular dynamics simula-

tions, that the overdamped motion of interacting particles at T ¼ 0, where T is the temperature of a

thermal bath connected to the system, can be directly associated with Tsallis thermostatistics. For

sufficiently high values of T, the distribution of particles becomes Gaussian, so that the classical

Boltzmann-Gibbs behavior is recovered. For intermediate temperatures of the thermal bath, the system

displays a mixed behavior that follows a novel type of thermostatistics, where the entropy is given by a

linear combination of Tsallis and Boltzmann-Gibbs entropies.
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Nonlinear Fokker-Planck equations (FPEs) [1] are fre-
quently employed to represent macroscopically physical
and chemical systems displaying anomalous diffusion be-
havior [2]. Scientifically and technologically important
examples of such systems include, among others, the
flow through porous media [3], the dynamics of surface
growth [4], the diffusion of polymerlike breakable micelles
[5], and the dynamics of interacting vortices in disordered
superconductors [6–8]. A typical nonlinear FPE may be
written in the general form [1,9]
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where the external force AðxÞ is associated with a potential
�ðxÞ [AðxÞ ¼ �d�ðxÞ=dx], and the analyticity of the po-
tential as well as the integrability of the force are assumed
to hold in all space. The functionals �½Pðx; tÞ� and
�½Pðx; tÞ� satisfy requirements of positiveness, integra-
bility, and differentiability with respect to Pðx; tÞ [9].
Moreover, in order to preserve the probability normaliza-
tion for all times, one should impose the probability dis-
tribution, together with its first derivative, as well as the
product AðxÞ�½Pðx; tÞ�, to be zero in the limits x ! �1.

An important result associated with nonlinear FPEs is
the H theorem and its generalizations [1,9–13]. In the case
of a system subjected to an external potential, the H
theorem leads to a well-defined sign for the time derivative
of the free-energy functional,

F ¼ U� �S; U ¼
Z 1

�1
dx�ðxÞPðx; tÞ; (2)

where � represents a positive Lagrange multiplier and the
entropy may be considered in a very general form as

S½P� ¼
Z 1

�1
g½Pðx; tÞ�dx;

gð0Þ ¼ gð1Þ ¼ 0;
d2g

dP2
� 0; (3)

with the condition that g½Pðx; tÞ� should be at least twice
differentiable. Considering the FPE (1), for dF=dt � 0
[9,13], we obtain

� �
d2g½P�
dP2

¼ �½P�
�½P� : (4)

A relevant outcome of Eq. (4) is that the ratio �½P�=�½P�
determines an entire class of FPEs associated with a single
entropic form [9,13]. Here we are interested on the follow-
ing type of nonlinear FPE [14,15]:
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where D is a constant, � is a real number, and the func-
tionals in Eq. (1) correspond to �½Pðx; tÞ� ¼ Pðx; tÞ and
�½Pðx; tÞ� ¼ D�½Pðx; tÞ���1. By substituting these quanti-
ties in Eq. (4), integrating and using the conditions (3), one
obtains Tsallis entropy [9,16,17], for which

g½P� ¼ k
½Pðx; tÞ�� � Pðx; tÞ

1� �
; (6)

where k � D=�. Considering an external force
AðxÞ ¼ ��x (� � 0), the solution for Eq. (5) with initial
condition Pðx; 0Þ ¼ �ðxÞ is given by the distribution

Pðx; tÞ ¼ BðtÞ½1þ �ðtÞð1� �Þx2�1=ð��1Þ
þ ; (7)

where ½y�þ ¼ y, for y > 0, and zero otherwise. The time-
dependent parameters BðtÞ and �ðtÞ are defined in such a
way as to preserve the norm and the form of the distribu-
tion for all times [14,15,18]. Equation (7) corresponds
exactly to the distribution obtained through extremization
of Tsallis entropy Eq. (6), for the energy defined as in
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Eq. (2), and under standard constraints of probability nor-
malization. It is important to notice that, by substituting
� ¼ 2� q in Eq. (7), one recovers precisely the usual
distribution of nonextensive statistical mechanics, known
as q Gaussian, as obtained through a more general defini-
tion for the internal energy [17].

Additionally, the way in which the system evolves dy-
namically, as well as its stationary state, provides distinc-
tive signatures of anomalous diffusion behavior. For small
times t � 1, it is possible to show that the diffusion
propagation front xðtÞ dictated by Eq. (5) advances as

hxðtÞi / t2=ð�þ1Þ [13]. In the limit t ! 1, the system ap-
proaches the stationary state given by

PstðxÞ ¼ B�½1� ��x2�1=ð��1Þ
þ ; (8)

depending on the initial time t0, �
� ¼ �ðt0Þ½B�=Bðt0Þ�2,

and B� ¼ ½�Bðt0Þ2=2D��ðt0Þ�1=ð1þ�Þ. One should stress
that this form of stationary distribution holds for any con-
fining potential �ðxÞ, by simply replacing in Eq. (8) the
term x2 with �ðxÞ [14].

Next we show that the microscopic behavior of a system
of interacting particles undergoing overdamped motion is
fully compatible with a continuum nonlinear diffusion
equation. Moreover, we find that such a continuum formu-
lation for a highly dissipative system corresponds to the
FPE (5) with � ¼ 2. We start by considering the equation
of motion for a particle i in a system of N overdamped
particles,

� ~vi ¼
X
j�i

~Jð~ri � ~rjÞ þ ~Feð~riÞ þ �ð ~ri; tÞ; (9)

where ~vi is the velocity of the ith particle,� is the effective
viscosity of the medium, the first term on the right accounts

for the interactions among particles, ~Feð~riÞ represents an
external force, and � corresponds to an uncorrelated ther-
mal noise with zero mean and variance h�2i ¼ kBT=�.
Here we consider a short-range repulsive particle-particle

interaction in the form ~Jð ~rÞ � Gðj~rj=	Þr̂, where r̂ is the
unit vector along the axis connecting each pair of particles
and 	 is a characteristic length of the short-range pairwise
interaction.

To obtain a continuum description of this system [6], we
perform a coarse graining of Eq. (9), starting from the
Fokker-Planck equation for the probability distribution of
the particle coordinates P ð~r1; . . . ; ~rN; tÞ,

�
@P
@t

¼ X
i

~rið� ~fiP þ kBT
~riP Þ; (10)

where ~fi is the force on the particle i given by Eq. (9).
By introducing the single particle density 
ð~r; tÞ �
hPi�

2ð ~r� ~riÞi, where the average is made over the distri-
bution P ð ~r1; . . . ; ~rN; tÞ, one obtains

�
@
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¼ � ~r

�Z
d2r0 ~Jð ~r� ~r0Þ
ð2Þð ~r; ~r0; tÞ þ ~Feð ~rÞ
ð~r; tÞ

�

þ kBTr2
ð~r; tÞ; (11)

where 
ð2Þð ~r; ~r0; tÞ is the two-point density. If we now

assume that the approximation 
ð2Þð ~r; ~r0; tÞ ’

ð~r; tÞ
ð~r0; tÞ is valid, we can then coarse grain the
particle-particle interaction force to obtain [6]

Z
d2r0 ~Jð~r� ~r0Þ
ð ~r0;tÞ’�a ~r
ð ~r;tÞ; a�

Z
d2r~r 	 ~Jð~rÞ=2;

(12)

where only length scales larger than 	 were considered.
Here we investigate the motion of particles in a two-

dimensional narrow channel of size Lx 
 Ly under an

external force in the x direction, ~Fe ¼ �AðxÞx̂. We then
assume that the concentration is only weakly dependent on
the transverse y coordinate, 
ðr; tÞ � 
ðx; tÞ. After collect-
ing all force terms, we obtain

�
@
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¼ @
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� AðxÞ
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@2


@x2
: (13)

Interestingly, by introducing the probability Pðx; tÞ ¼
ðLy=NÞ
ðx; tÞ, defining D ¼ ðaNÞ=ð�LyÞ, and setting

� ¼ 1 and T ¼ 0, we recover precisely the FPE (5) for
� ¼ 2. Herein we restrict our study to a restoring harmonic
force, AðxÞ ¼ ��x (� � 0). In the limit T ¼ 0, the steady-
state solution of Eq. (13) is given by


st ¼ �

2a
ðx2e � x2Þ; jxj< xe; (14)

with xe ¼ ð3Na=2�LyÞ1=3. This result is identical to

Eq. (8) if there one adopts � ¼ 2 and �� ¼ x�2
e .

We now show through direct molecular dynamics (MD)
simulations that the behavior of a typical overdamped
system at T ¼ 0 is fully compatible with the solution
(14), therefore representing a microdynamical realization
of Tsallis thermostatistics. As an example, we consider a
system of vortex lines moving on a type II superconductor
substrate [19,20], but the results presented here could
nevertheless be extended to other forms of short-range
repulsive interactions [8]. In this case, the effective viscos-
ity is given by� ¼ �0Hc2=!c2, where�0 is the magnetic
quantum flux, c is the speed of light, ! is the resistivity of
the normal phase, and Hc2 is the upper critical field.
Moreover, the commonly adopted vortex-vortex interac-

tion is ~Jð~rÞ � f0K1ðj ~rj=	Þr̂, where K1 is a modified Bessel
function decaying exponentially for j~rj> 	, the prefactor
is given by f0 ¼ �2

0=ð8�	3Þ, and 	 corresponds to the

London penetration length [21].
We perform MD simulations with N ¼ 800 flux lines

placed at random within a two-dimensional channel
of sizes Lx ¼ 100	, Ly ¼ 20	, where periodic boundary

conditions are imposed in the y direction. In these
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simulations, we first set T ¼ 0, and a confining external
force is applied in the x direction with restoring constant
� ¼ 10�3f0=	. The equations of motion (9) are numeri-
cally integrated and the system evolves in time until a
stationary state of mechanical equilibrium is reached,
which is identified here in terms of an invariant density
profile. As shown in Fig. 1, the obtained stationary profile
of particle density is clearly parabolic in shape, in perfect
agreement with the theoretical prediction of Eq. (14). The
least-squares fit to the simulation data of a quadratic func-
tion results in the parameter a � 2:41f0	

3. Strictly speak-
ing, the predicted value a ¼ �f0	

3, calculated from Eq.
(12), is valid only for unconfined systems, if we assume
that the density 
 varies slowly within the interaction range
of a particle. The discrete character of the interacting
particles therefore leads to a correction on this theoretical
prediction. In the absence of external forces, i.e., for � ¼
0, our results show that the front propagation at early times

evolves as hxðtÞi / t1=3 [6]. Once more, the compatibility
between this dynamical scaling and the anomalous
diffusion behavior intrinsically associated with Eq. (5)
for � ¼ 2 confirms the validity of our approach.

Having shown that overdamped particles in the limit of
T ¼ 0, typified as interacting flux lines on a type II super-
conductor substrate, obey Tsallis statistics with an entropic
index � ¼ 2, we now analyze the effect of finite T on this
system. From Eq. (13), one can envisage the competition
between two types of diffusion, which are associated,
respectively, with the strength of interactions between
vortices, controlled by the parameter a, or equivalently
D, and the temperature of the thermal bath T. In this
way, the ratio kBT=a plays a crucial role in the time
evolution of the system. As for the case T ¼ 0, in the

absence of external forces, i.e., for � ¼ 0, the diffusion
behavior of the system for kBT � a should be governed by
the anomalous features associated with the index � ¼ 2,

namely, hx2i / t2=3, whereas normal diffusion prevails for
kBT � a, i.e., hx2i / t. In the presence of a restoring
external force and for T > 0, a stationary-state analytical
solution for Eq. (13) can still be obtained,


ðxÞ ¼ kBT

a
W

�
a
ð0Þ
kBT

exp

�
a
ð0Þ
kBT

� �x2

2kBT

��
; (15)

where the W-Lambert function is defined implicitly

through the equation WðzÞeWðzÞ ¼ z (see [22] and referen-
ces therein). In order to test this prediction, extensive MD
simulations have been performed for different values of T.
As depicted in Fig. 2, we find very good agreement be-
tween the continuum model solution Eq. (15) and MD
results of density profiles at steady state. For consistency,
we consider the same numerical value used to adjust the
profile at T ¼ 0, namely, a ¼ 2:41f0	

3, while the parame-
ter 
ð0Þ in Eq. (15) has been determined by a conservation
constraint in the total number of particles,RLx=2
�Lx=2


ðxÞdx ¼ ðN=LyÞ.
The effect of increasing T is to gradually change the

density profile from a parabolic to a Gaussian shape.
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FIG. 1. Profile of the density of particles at stationary state and
T ¼ 0, obtained from molecular dynamics by integrating Eq. (9)
(empty circles), as compared to the theoretical estimate Eq. (14).
The best fit to the data of a quadratic function gives the
parameter a ¼ 2:41f0	

3 (full line). The position x is measured
in units of 	, whereas the steady-state density 
ðxÞ is expressed
in units 	�2.
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FIG. 2. Comparison between the density of particles profiles in
the stationary state obtained from molecular dynamics (empty
circles) and the theoretical prediction Eq. (15) (full lines), for
different values of the temperature of the thermal bath T. The
position x is measured in units of	, the density is in units	�2, and
T is given in units (f0	=kB). The parameter a ¼ 2:41f0	

3 is the
same adopted for T ¼ 0, whereas 
ð0Þ is determined by conser-
vation of the total number of particles in the system,RLx=2
�Lx=2


ðxÞdx ¼ ðN=LyÞ. For low values of T, e.g., T ¼
0:1f0	=kB, the density profile is approximately parabolic. At
intermediate values of T, the system can be described by a
W-Lambert function Eq. (15). At high values of T, the profile
becomes typically Gaussian, as illustrated from results at T ¼
4f0	=kB.
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Indeed these two limits correspond, respectively, to the
particular cases of Tsallis distribution with index � ¼ 2
and the standard Boltzmann-Gibbs statistics. Next we
show that the profiles obtained from Eq. (15), for finite
T, are in fact associated with a novel type of entropy form.
By comparing Eqs. (13) and (1), we obtain that
�½Pðx; tÞ� ¼ Pðx; tÞ and �½Pðx; tÞ� ¼ 2DPðx; tÞ þ kBT.
Substituting these quantities into Eq. (4), integrating twice,
and using the conditions (3), one gets

g½Pðx; tÞ� ¼ D

��
½Pðx; tÞ � P2ðx; tÞ�

� kBT

��
½Pðx; tÞ lnPðx; tÞ�; (16)

where �� is a positive Lagrange parameter defined through a
free-energy functional like the one given by Eq. (2), and x
is a conveniently rescaled variable. This functional leads to
the following entropic form:

S½P� ¼ D

��

�
1�

Z 1

�1
dxP2ðx; tÞ

�
� kBT

��

Z 1

�1
dxPðx; tÞ


 lnPðx; tÞ: (17)

Equation (17) is precisely the sum of Tsallis entropy with
� ¼ 2, which appears as a consequence of many-body
interactions, and Boltzmann-Gibbs entropy, which comes
from the thermal noise of the bath. The entropy is zero only
for D ¼ T ¼ 0. One may now extremize this mixed en-
tropy under the constraints

R1
�1 Pðx; tÞdx ¼ 1 and U ¼R1

�1½�ðxÞ ��0�Pðx; tÞdx, by defining the functional

�½Pðx; tÞ� ¼ ��

kBT
S½P� � a1

Z 1

�1
dxPðx; tÞ

� a2
Z 1

�1
dx½�ðxÞ ��0�Pðx; tÞ: (18)

The extreme condition ��=�P ¼ 0 finally leads to

PðxÞ exp
�
2D

kBT
PðxÞ

�
¼ expf�ð1þ a1Þ � a2½�ðxÞ ��0�g;

(19)

which may be written in terms of W-Lambert’s function,
i.e., in the same form as Eq. (15), by considering a har-
monic potential �ðxÞ ¼ �x2=2, multiplying both sides by
2D=ðkBTÞ, identifying a2 ¼ 1=ðkBTÞ, defining z as the
right term in Eq. (19), and WðzÞ ¼ 2DPðxÞ=ðkBTÞ. This
confirms that the entropy Eq. (17) is directly related to the
stationary solution Eq. (15) of the FPE (13).

In summary, we have shown through a nonlinear Fokker-
Planck formalism and confirmed through MD simulations
that a system of interacting particles undergoing over-
damped motion at T ¼ 0, where T is the temperature of
a thermal bath connected to the system, can be considered

as a physical realization of Tsallis thermostatistics with an
entropic index � ¼ 2 in Eq. (6). At high values of T, the
classical Boltzmann-Gibbs behavior is recovered. At inter-
mediate values of T, our approach, also confirmed by MD
simulations, leads to a stationary solution for the corre-
sponding nonlinear FPE that can be expressed in terms of
the W-Lambert function. As a consequence, we disclose a
novel mixed entropic form based on a linear combination
between Tsallis and Boltzmann-Gibbs entropies.
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