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Abstract. We study the critical behavior of the pair annihilation model (PAM)
with diffusion in one, two and three dimensions, using the pair approximation
(PA) and Monte Carlo simulation. Of principal interest is the dependence
of the critical creation rate, λc, on the diffusion probability D, in particular,
whether survival is possible at arbitrarily small creation rates, for sufficiently
rapid diffusion. Whilst the PA predicts that in any spatial dimension d ≥ 1,
λc → 0 at some diffusion probability D∗ < 1 Katori and Konno (1992 Physica
A 186 578) showed rigorously that, for d ≤ 2, one has λc > 0 for any D < 1.
Our simulation results are consistent with this theorem. In two dimensions, the
extinction region becomes narrow as D approaches unity. Our results are well
described by λc ∝ exp[−const./(1 − D)γ ], with γ = 1.43(2). In three dimensions
we find D∗ = 0.340 53(1). The simulation results confirm that the PAM belongs
to the directed percolation universality class.
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1. Introduction

In recent decades, general theories of phase transitions and critical phenomena have been
elaborated, unifying our understanding of equilibrium phase transitions in fluids, magnets
and other systems. In contrast, the study of nonequilibrium critical phenomena is still in
development. Since the transition rates in such systems do not satisfy detailed balance,
the steady-state probability distribution in these systems is not known a priori and the
analysis must be based upon the dynamics. Starting from the basic contact process [1],
many particle systems have been studied in efforts to characterize scaling properties
at nonequilibrium phase transitions [2]–[4]. These models, which involve creation and
annihilation of particles on a lattice, typically exhibit a phase transition to an absorbing
state (one allowing no escape) and so violate the detailed balance principle. An issue
that has attracted some interest is the combined effect of multiparticle rules and diffusion
(hopping), which tends to spread particles uniformly over the system.

Here we revisit the pair annihilation model (PAM) [2, 5]. In this model particles
diffuse on a lattice at a rate D, nearest-neighbor pairs of particles are annihilated at a
rate (1−D)/(1+λ) and particles attempt to create new particles at a rate (1−D)λ/(1+λ).
Double occupancy of sites is forbidden. The model exhibits active and absorbing phases,
separated by a continuous phase transition at λc(D). Using cluster approximations
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and Monte Carlo simulation, we determine the phase boundary in one, two and three
dimensions.

The pair approximation predicts that for a diffusion rate greater than a certain value,
D∗, the critical parameter λc = 0. (That is, for D > D∗, an arbitrarily small creation rate
is sufficient to maintain a nonzero particle density.) This prediction is known to be wrong
in dimensions d ≤ 2: Katori and Konno [6] proved that λc > 0 for any diffusion probability
D < 1, in one and two dimensions. Their theorem is based on a relation between the
PAM and the branching–annihilating random walk of Bramson and Gray [7]. Existence
of a D∗ < 1 is not ruled out in d ≥ 3 dimensions. The difference is connected with the
nonrecurrence of random walks in d ≥ 3 [6]. The precise manner in which λc tends to
zero as D → 1 is, however, unknown and the numerical value of D∗ in three or more
dimensions has not, to our knowledge, been determined. The principal motivation for the
present work is to determine λc(D) via numerical simulation. We also verify that the model
belongs to the directed percolation (DP) universality class, as expected on the basis of
symmetry considerations [8]–[10] and numerical simulations [11]. Our simulation results,
while consistent with the Katori–Konno theorem, show that, in the two-dimensional case,
λc becomes extremely small as D approaches unity, possibly suggesting the (incorrect)
impression that the critical value is actually zero at some finite diffusion rate.

The remainder of this paper is organized as follows. In section 2 we define the model
and discuss its limiting behaviors in the λ–D plane. Then in section 3 we present,
for completeness, the one-and two-site cluster approximations. Numerical results are
discussed in section 4, followed by a brief discussion in section 5.

2. The model

The PAM is defined on a lattice, in which sites can be either occupied by a particle
or vacant [2, 5]; we denote these states by σx = 1 (site x occupied) and σx = 0 (site x
vacant). There are three types of transitions: nearest-neighbor (NN) hopping (‘diffusion’),
creation and pairwise annihilation, with associated probabilities D, (1−D)λ/(1 + λ) and
(1 − D)/(1 + λ), respectively. (These represent the probability that the next attempted
transition is of a given kind. The probability of success, of course, depends on the details
of the configuration.)

In a hopping transition, a site x is chosen at random, along with a nearest-neighbor
site y of x. Then if σx �= σy, the states are exchanged. In a creation event, a site x is
chosen. If σx = 1, a nearest neighbor y is chosen, and if σy = 0 this variable is set to
one. Finally, in an annihilation event, a site x is chosen; if σx = 1, a nearest neighbor
y is chosen at random, and if σy = 1, both variables are set to zero. Each transition
corresponds to a time increment Δt = 1/Nsite, where Nsite is the number of lattice sites.

To improve efficiency, in simulations site x is chosen from a list of occupied sites;
then the time increment is Δt = 1/Np, with Np the number of particles in the system,
immediately prior to the transition. (One could, of course, take Δt as an exponentially
distributed random variable with mean 1/Np, but this procedure, although more faithful
to the continuous-time nature of the process, is not expected to have any influence on
asymptotic scaling properties.) In this implementation, the rate of annihilation of a given
NN particle pair is

Ran =
1

Δt

1 − D

1 + λ

2

Np

1

2d
=

1

d

1 − D

1 + λ
(1)
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Figure 1. Schematic phase diagram of the PAM in the λ–D plane. The results
of [6] imply that D∗ = 1 in one and two dimensions.

where the factor 2/Np arises because either particle in the pair can be selected from the
list of Np particles.

The particle-free configuration is absorbing. By analogy with the contact
process [1, 2], we expect that in the infinite-size limit the system undergoes a phase
transition between an active state (with nonzero stationary particle density) and an
absorbing one, as one crosses the critical line λc(D) in the λ–D plane. As creation
depends upon a single particle, the order parameter is the stationary density of particles,
ρ. Absorbing state phase transitions belong generically to the DP universality class;
this is expected to hold for the PAM, since it possesses no special symmetries or
conserved quantities. In fact, the PAM is essentially a continuous-time version of the
branching–annihilating random walk (BARW) process with a single offspring, for which
DP universality is well established in the one-dimensional case [10, 11].

When a new particle is created, it always forms a pair with the ‘parent’ particle,
making these two particles susceptible to annihilation. In the active stationary state,
increasing D at fixed λ tends to reduce the fraction of nearest-neighbor particle pairs
toward its random mixing value, ρ2. Thus we should expect λc to be a decreasing (or,
at least, nonincreasing) function of D. In the simplest mean-field theory analysis, the
annihilation rate is proportional to ρ2, so that for small ρ one has ρ̇ ∝ λρ − const. × ρ2,
which admits a stationary solution ρ ∝ λ for any nonzero creation rate. In the limit
D → 1 we expect mean-field theory to hold, so that λc → 0 in this limit. This raises the
question of whether λc vanishes at some diffusion probability D∗ strictly less than unity.
While the two-site approximation predicts D∗ < 1 in any dimension, the results of Katori
and Konno [6] imply that D∗ = 1 in dimensions d ≤ 2.

The phase diagram of the PAM is expected to have the form shown in figure 1. For
D < D∗ the behavior along the critical line λc(D) should be that of DP, given that such

doi:10.1088/1742-5468/2010/05/P05009 4
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behavior is generic for absorbing state phase transitions without special symmetries or
conserved quantities [8, 9]. If D∗ < 1, then we expect mean-field-like critical behavior as
λ → λc = 0 at fixed D > D∗. Within the absorbing phase, for 0 < λ < λc(D), an isolated
particle can produce an offspring, leading to annihilation of both the original and the
new particle. On the line λ = 0, this channel to annihilation is not available and isolated
particles cannot disappear. Thus the dynamics at long times, for D > 0, will be that of
the diffusive annihilation process A + A → 0, for which the particle density ρ(t) decays
∼1/

√
t in d = 1, ∼(ln t)/t in two dimensions, and ∼1/t in d ≥ 3 [12, 13].

The dependence on dimension is especially clear on the line λ = 0, when starting
with a single pair. The evolution is then described by a lattice random walk X (i.e. the
separation between the two particles), with the possibility of mutual annihilation when
|X| = 1. In one and two dimensions, the sites with |X| = 1 are visited infinitely often,
so that annihilation is certain for any D < 1. In three or more dimensions there is a
finite probability that the walk never revisits the neighborhood of the origin, and thus
the survival probability approaches a nonzero limiting value as t → ∞. This observation
furnishes a basis for determining D∗ in three or more dimensions.

At the point D = 1 the model corresponds to a collection of random walkers (their
number is strictly conserved), with double occupancy prohibited, i.e. a symmetric
exclusion process on Z

d. Finally, at the point λ = D = 0, starting from all sites
occupied, pairs are annihilated successively until only isolated particles remain. This
is equivalent to the random sequential adsorption (RSA) of dimers. (In the present case,
of course, dimers are removed, not adsorbed, so the final particle density is 1 − 2θ∞,
where θ∞ is the final coverage in RSA.) On the line, the final density of isolated particles
is e−2 = 0.135 335 · · · [14], while in two dimensions one has ρ∞ 
 0.093 108(8) [15]. One
may anticipate interesting crossover behaviors in the vicinity of one or another limit. In
the present work, however, we focus on determining the function λc(D) using Monte Carlo
simulation.

3. Cluster approximations

In this section we study the PAM through mean-field site and pair approximations [16].
In general, mean-field results provide a good qualitative description of the phase diagram
and give an order-of-magnitude estimate of the critical point. n-site approximations are
a natural way to improve the mean-field approach. The method consists of treating the
transitions inside clusters of n sites exactly, while transitions involving sites outside the
cluster are treated in an approximate manner.

3.1. One-site approximation

Let ρ = Prob(σx = 1) denote the density of particles. The density is governed by

dρ

dt
=

1

2d
(1 − D)

λ

1 + λ

∑

ê

P (σx = 0, σx+ê = 1) − 1

d

1 − D

1 + λ

∑

ê

P (σx = 1, σx+ê = 1)

−D
∑

ê

P (σx = 1, σx+ê = 0) + D
∑

ê

P (σx = 0, σx+ê = 1), (2)
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where the sums are over the 2d nearest neighbors of site x and P (σx, σx+ê) is a two-site joint
probability. Equation (2) couples the one-site probability ρ to the two-site probabilities,
which in turn depend on the three-site probabilities, and so forth, leading to an infinite
hierarchy of equations for the n-site probabilities. The site approximation consists in
truncating this hierarchy at n = 1, so that the two-site probabilities are replaced by
a product of two one-site probabilities. Assuming spatial homogeneity and isotropy we
obtain the following equation for ρ:

dρ

dt
=

1 − D

1 + λ

[
λρ − (2 + λ)ρ2

]
. (3)

The stationary solutions are ρ = 0 (unstable for λ > 0) and ρ = λ/(2 + λ). Thus, in
this approximation the critical parameter λc is zero in any dimension. Notice that in this
approximation the diffusion rate has no influence on the stationary solution.

3.2. Pair approximation

To derive the pair approximation equations, we consider the changes in the configuration
of a NN pair of sites (the central pair), given the states of the surrounding sites. Using the
symbols ◦ and • to represent, respectively, vacant and occupied sites, the states of a pair
are ◦◦, ••, •◦ and ◦•; the latter two have the same probability and may be treated as a
single class using appropriate symmetry factors. It is convenient to use (••) to denote the
fraction of •• pairs, and so on. Then we have for the site fractions (•) = ρ and (◦) = 1−ρ:

(•) = (••) + (•◦), (4)

(◦) = (◦◦) + (•◦). (5)

The pair fractions satisfy (◦◦) + 2(◦•) + (••) = 1. The pair approximation consists
in writing the joint probability of a set of three neighboring sites in the form (abc) =
(ab)(bc)/(b).

There are five possible transitions between the pair states. Consider, for example.
the transition ◦◦ → ◦•. This can occur via creation or via hopping if and only if the
rightmost site of the central pair has an occupied NN. Since its NN within the central
pair is vacant, at least one of its 2d − 1 NNs outside the central pair must be occupied.
The rate of transitions via creation is

R1,c = (1 − D)λ̃
2d − 1

2d

(◦◦)(◦•)
(◦) (6)

where we introduced λ̃ = λ/(1 + λ). Adding the contribution due to diffusion, we obtain
the total rate for this transition:

R1 =
2d − 1

2d

(◦◦)(◦•)
(◦) [D + (1 − D)λ̃]. (7)

Note that the contribution to the loss term for (◦◦) associated with this process is 2R1,
due to the mirror transition ◦◦ → •◦.
doi:10.1088/1742-5468/2010/05/P05009 6
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The rates for the other transitions are:
◦• → ◦◦:

R2 =
2d − 1

2d

(◦•)
(•) [D(◦•) + 2(1 − D)(1 − λ̃)(••)] (8)

◦• → ••:
R3 =

2d − 1

2d

(◦•)2

(◦) [D + (1 − D)λ̃] +
1

2d
(1 − D)λ̃(◦•) (9)

•• → ◦◦:
R4 =

1

d
(1 − D)(1 − λ̃)(••) (10)

•• → ◦•:
R5 =

2d − 1

2d

(••)
(•) [2(1 − D)(1 − λ̃)(••) + D(◦•)]. (11)

The equations of motion for the pair probabilities are then

d

dt
(◦◦) = 2R2 + R4 − 2R1 (12)

d

dt
(◦•) = R1 + R5 − R2 − R3 (13)

and
d

dt
(••) = 2R3 − R4 − 2R5. (14)

The active stationary solution of the above equations is

ρ =
λ[(4d − 3 + D)λ − 2(1 − 2dD)]

(4d − 3 + D)λ2 + 2[2d(D + 2) − 3]λ + 4(2d − 1)D
, (15)

and

(••) =
λ

λ + 2
ρ. (16)

For λ < 2(1−2dD)/(4d−3+D), only the trivial solution (ρ = 0) exists. If D ≥ D∗ = 1/2d,
however, the active solution exists for any λ > 0. The phase transition occurs at

λc =

⎧
⎨

⎩

2(1 − 2dD)

4d − 3 + D
, D < D∗ =

1

2d
0, D > D∗.

(17)

Thus the pair approximation predicts a nonzero critical creation rate only for diffusion
probabilities D < D∗ = 1/(2d); for larger values of D, there is a nonzero particle density
for any λ > 0, as in the one-site approximation. For D = 0, we have λc = 2, 2/5 and 2/9
in one, two and three dimensions, respectively; the corresponding values from simulation
are λc = 5.368(1), 1.0156(1) and 0.475(1). (We note that the pair approximation results
derived above differ slightly from those given in [2] since in the latter case the annihilation
rate for an NN particle pair is taken as (1 − D)/(1 + λ), i.e. d times the rate given in
equation (1).)

Katori and Konno [6] proved that the prediction of D∗ < 1, furnished by the pair
approximation, is wrong for d ≤ 2. That is, in one and two dimensions, λc > 0 for any
D < 1. In the following section we investigate how λc tends to zero as D → 1 in one and
two dimensions, and determine D∗ in the three-dimensional case.

doi:10.1088/1742-5468/2010/05/P05009 7
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4. Results

We use Monte Carlo simulations to obtain accurate values of the critical creation rate
λc(D) and the critical exponents of the PAM in one, two and three dimensions. In the
latter case, we determine the diffusion rate D∗ via a random walk analysis.

4.1. One dimension

4.1.1. Spreading behavior. A well-established method for determining the critical point
and certain critical exponents is through the study of the propagation of activity, starting
from a localized seed, as proposed long ago by Grassberger and de la Torre [17]. One
studies the activity averaged over a large set of trials, all starting from a configuration
very close to the absorbing state. Here the initial configuration is that of a single pair of
particles at the two central sites of an otherwise empty lattice. Each trial ends when it
reaches the absorbing state, or at a maximum time, tmax, chosen such that the activity
never reaches the edges of the system (in any trial) for t ≤ tmax.

For λ > λc there is a nonzero probability that the process survives as t → ∞; for
λ ≤ λc the process dies with probability one. Of primary interest are P (t), the probability
of surviving until time t or greater, n(t), the mean number of particles (averaged over all
trials), and R2(t), the mean-square distance of particles from the origin. At the critical
point these quantities follow asymptotic power laws:

P (t) ∝ t−δ (18)

n(t) ∝ tη (19)

R2(t) ∝ tzsp . (20)

The exponents δ, η and zsp satisfy the hyperscaling relation 4δ + 2η = dzsp, in d ≤ 4
dimensions [17]. (We note that zsp is related to the usual dynamic exponent z via
zsp = 2/z.)

We study activity spreading in one dimension using samples from 106 or 2×106 trials
for each λ value of interest. The maximum time tmax = 15 000 for D ≤ 0.7, 30 000 for
D = 0.8 and 0.9, and 60 000 for D = 0.95. (As D increases, the asymptotic power-law
behavior occurs at ever later times.) To ensure that activity never reaches the borders,
we use a lattice size of L = 50 000 for tmax = 15 000 and L = 80 000 for the longer studies.
A study performed at a given value of λ is used to generate results for nearby values via
sample reweighting [18].

To locate the critical point, we use the criterion of power-law behavior of n(t); figure 2
illustrates the analysis for D = 0.3. The main graph is a log–log plot of n(t) showing an
apparent power law for λ = 3.4687. The curves for nearby values (specifically λ = 3.4681,
3.4684, 3.4690 and 3.4693, obtained via reweighting), cannot be distinguished on the scale
of this graph, but if we plot n∗ ≡ n/tη, the curves for different λ values fan out (upper
inset), with the upward curvature indicating a supercritical value of λ and vice versa.

doi:10.1088/1742-5468/2010/05/P05009 8
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Figure 2. Main graph: n(t) on log scales for the one-dimensional PAM with
D = 0.3 and λ = 3.4687. Upper inset: n∗ = n/tη on log scales, for (lower to
upper) λ = 3.4681, 3.4684, 3.4687, 3.4690 and 3.4693. Lower inset: local slopes
η(t) for the same set of λ values.

The exponent η is estimated via analysis of the local slope, η(t), defined as the
inclination of a least-squares linear fit to the data (on logarithmic scales), on the interval
[t/a, at]. (The choice of the factor a represents a compromise between high resolution,
for smaller a, and insensitivity to fluctuations, for larger values; here we use a = 2.59.)
Plotting η(t) versus 1/t (lower inset of figure 2) allows one to estimate λc (the curves
for λ > λc veer upward, and vice versa), and to estimate the critical exponent η by
extrapolating η(t) to 1/t → 0. The main source of uncertainty in the exponent estimates
is the uncertainty in λc itself. An analogous procedure is used to estimate exponents δ
and zsp.

As expected, we find that the critical parameter, λc(D), becomes smaller with
increasing D. For example, λc(D = 0.0) = 5.3720(5), λc(D = 0.5) = 2.4473(1) and
λc(D = 0.95) = 0.3214(1), respectively.

For D = 0, the critical parameter for the PAM, λc(0) = 5.3720(5), is considerably
larger than that of the contact process (λc = 3.297 85(2)), as expected since here each
annihilation event removes two particles. (The fact that λc is less than twice the
corresponding value in the CP may be attributed to the tendency for particles to cluster:
removing two particles may eliminate additional pairs, thus reducing the effective rate of
annihilation.)

For all diffusion probabilities studied, our estimates for the critical exponents are in
good accord with the DP values δ = 0.159 47(3), η = 0.313 68(4) and z = 1.265 23(3) [2].
A plot of the phase boundary in the λ–D plane (see figure 3) suggests that λc → 0 as
D → 1, so that D∗ = 1, in agreement with the Katori–Konno theorem. Extrapolation of

doi:10.1088/1742-5468/2010/05/P05009 9
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Figure 3. Points along the critical line in the λ–D plane in one dimension, as
determined via simulation. Error bars are smaller than symbols. The solid line
is a quartic fit to the five points with largest D.

D versus λc, using a fourth-order polynomial fit to the data for D ≥ 0.6 yields D = 1.0005
for λc = 0, confirming to high precision that λc > 0 for D < 1.

4.2. Two dimensions

4.2.1. Spreading behavior. We studied the two-dimensional PAM (on the square lattice)
using spreading simulations as described above; results for λc are given in table 1. For
D = 0.7 the asymptotic power laws are evident only at long times (t > 50 000 or so); to
obtain precise estimates for λc the simulations were run to tmax = 3×105. Figure 4 shows
that for longer times the curves for n(t) for different λ values fan out, allowing one to
determine λc. For D = 0.8, the largest value studied, we used tmax = 3×106 and a lattice
size of L = 12 000.

4.2.2. Steady-state behavior. We use steady-state and quasistationary simulations to
investigate the static behavior of the model. In these studies we initialize the system with
all sites occupied and allow it to evolve until it attains a quasistationary (QS) regime, in
which bulk properties such as the particle density ρ, averaged over surviving realizations,
are time-independent. According to the finite-size scaling hypothesis [19, 20], the QS
properties depend on system size L through the ratio L/ξ, or equivalently through the
scaling variable ΔL1/ν⊥ , where Δ ≡ λ−λc. Expressing the order parameter as a function
of Δ and L, we have

ρ(Δ, L) ∝ L−β/ν⊥f(ΔL1/ν⊥) (21)

doi:10.1088/1742-5468/2010/05/P05009 10

http://dx.doi.org/10.1088/1742-5468/2010/05/P05009


J.S
tat.M

ech.
(2010)

P
05009

Phase diagram and critical behavior of the pair annihilation model

2.0

1.5

1.0

0.5

0.0

ln
 n

0 2 4 6 8 10 12 14
ln t

Figure 4. Main graph: n(t) on log scales for the two-dimensional PAM with
D = 0.7 and (lower to upper) λ = 0.009 44, 0.009 45 and 0.009 46. Inset:
n∗ = n/tη versus t on log scales.

Table 1. Critical creation rate λc(D) obtained via spreading, steady-state (SS)
and quasistationary (QS) simulations in two dimensions.

λc

D Spreading SS QS

0.00 1.0156(1) 1.0156(1) —
0.10 0.7877(1) 0.7875(1) —
0.20 0.5890(5) 0.5890(5) —
0.30 0.4167(3) 0.4166(1) —
0.40 0.2685(5) 0.2685(5) —
0.50 0.146 25(2) 0.1462(2) —
0.60 — 0.056(1) 0.056 32(3)
0.70 0.009 45(1) — 0.009 40(5)
0.73 — — 0.003 957(3)
0.78 — — 0.000 4815(7)
0.80 0.000 143(1) — 0.000 15(2)

with f(x) ∝ xβ as x → ∞. At the critical point, Δ = 0,

ρ(0, L) ∝ L−β/ν⊥ . (22)

Thus an asymptotic power-law dependence of ρ on L is a useful criterion for criticality.
We study the QS density as a function of system size to locate the critical point, using

sizes L = 25, 50, 100, . . . , 800. The relaxation time varies from τ = 800 for the smallest
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Figure 5. Scaling plot of the stationary density in the two-dimensional PAM
with D = 0. System sizes L = 16 (+), 32 (×), 64 (diamonds), 128 (•) and 256
(squares). The slope of the straight line is 0.583.

size to τ = 200 000 for the largest; the number of realizations varies from 500 to 10 000.
The results are listed in table 1.

In figure 5 we verify the scaling collapse of the order parameter, plotting x ≡ Lβ/ν⊥ρ
versus y ≡ ΔL1/ν⊥ for system sizes L =16, 32, 64, 128 and 256. A good collapse is
obtained using the DP values ν⊥ = 0.733 and β/ν⊥ = 0.795 [2]. The data are consistent
with the scaling law ρ ∝ Δβ , using the DP value β = 0.583(4) [2].

4.2.3. Quasistationary simulations. We complemented the studies reported above with
quasistationary (QS) simulations, which sample directly the QS probability distribution,
that is, the long-time distribution conditioned on survival. The details of the method
are explained in [21]. To obtain these results we use lattice sizes L = 100, 200, 400 and
800 for D = 0.7 and include studies of larger systems for higher diffusion rates (up to
L = 6400 for D ≥ 0.78). The critical point is determined via the criteria of power-law
scaling of the density and mean lifetime with system size, and convergence of the moment
ratio m = 〈ρ2〉/ρ2 to a finite limiting value as L → ∞, as discussed in [22]. (The lifetime
τ is expected to follow τ ∼ Lz.) Using this method we obtain the values listed in table 1.
We note that our results for β/ν⊥, z and the limiting moment ratio mc are consistent with
the known DP values of 0.795(10), 1.7674(6) and 1.3257(5), respectively [2, 18, 22].

4.2.4. Phase boundary. The results for λc obtained using the three simulation approaches
are mutually consistent. It appears that for roughly the same computational investment,
spreading simulations yield the most precise results. We were unable, however, to
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Figure 6. Critical line of the two-dimensional PAM. Inset: the same data plotted
as ln λc versus 1/(1 − D)1.43.

determine the critical creation rate for D > 0.8 using any of these methods. We estimate,
for example, that for D = 0.9, spreading studies would have to be run to tmax ∼ 3 × 107

time steps, with a lattice size L ∼ 40 000, to yield a useful result, which is beyond our
present computational resources.

The available data nevertheless show clearly that λc decreases very rapidly with
increasing diffusion probability. We find that λc(D) can be fitted quite well using an
expression of the form

λc = A exp

[
− C

(1 − D)γ

]
. (23)

Applied to the data for D ≥ 0.4, a least-squares procedure yields γ = 1.43(2), C = 0.95(2)
and A = 1.9(1). The good quality of the fit is evident in the inset of figure 6. Thus, while
a plot of the data on a linear scale might suggest that λc → 0 at some diffusion rate
between 0.8 and 1 (see figure 6, main graph), our results are, in fact, consistent with λc

nonzero, though very small, for diffusion rates between 0.7 and 1.

4.3. Three dimensions

4.3.1. Determination of D∗. In three or more dimensions, D∗ can be determined via
analysis of the following random walk problem4. Consider realizations of the PAM starting
with a single pair of particles occupying neighboring sites. As noted in section 2, in d ≥ 3,
when λ = 0, there is a finite probability that the particles escape to infinity before they
mutually annihilate, so that the survival probability Ps(t) → P∞ > 0 when t → ∞. Now

4 We thank the referee for suggesting this approach.
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suppose that particle creation occurs at a very small rate, λ � 1. The initial stage of the
evolution is the same as that with λ = 0, but if the pair survives long enough, then at
some time τc ∼ 1/[(1−D)λ] one of the particles undergoes a creation event. At this point,

the two original particles are typically separated by a distance ∼τ
1/2
c � 1, so that the

fate of the new pair (parent and offspring) is essentially independent of the other, isolated
particle. In the aftermath of the creation event, the population either drops to one (if the
new pair annihilates) or increases to three (if they separate before annihilating). At the
critical point these outcomes are equally likely, i.e. arbitrarily weak creation causes neither
exponential growth nor exponential decay of the survival probability. To determine D∗,
we locate the value of D such that (with λ = 0), the original pair escapes to infinity with
probability P∞ = 1/2.

It is convenient to analyze this problem using a transfer matrix approach. Let x1,i and
x2,i be the positions of the two particles after the ith event, and let Xi = x2,i − x1,i, with
X0 = (1, 0, 0). Xi is a random walk on Z

3 with the origin excluded; annihilation is possible
only for |Xi| = 1. For |Xi| > 1 the next event is always a jump to a nearest-neighbor
site; the six possibilities occur with equal likelihood. For |Xi| = 1 there are three possible
outcomes: annihilation, with probability (1−D)/(5D +1), hopping to a nearest neighbor
different from the origin, with probability D/(5D+1) for each of the five possibilities, and
no change, with probability D/(5D + 1). (The latter corresponds to an attempted jump
to the origin, which is a reflecting boundary for diffusion.) Organizing these transition
probabilities into a transfer matrix, one readily determines the probability distribution
P (Xi) via iteration.

Using the approach outlined above, we determine the survival probability Ps,i(D) up
to i = 500, using double-precision arithmetic. To extrapolate P∞(D) from these results,
we note that at long times the density in the vicinity of the origin decays ∼i−3/2, so that
the dominant correction term decays ∼i−1/2. We therefore fit the data for Ps,i versus i−1/2

(for i ≥ 100) with a quadratic polynomial. (Using a higher-order fit yields no significant
change.) Finally, interpolating the resulting estimates for P∞(D) yields D∗ = 0.340 53(1).
This is consistent with an estimate obtained via spreading simulations: D∗ = 0.3404(12).
To within numerical precision we have D∗ = π3, where π3 = 0.340 537 329 544 · · · is the
probability that the simple random walk on Z

3 returns to the origin [23]. We have not,
however, found an argument demonstrating equality of D∗ and π3.

4.3.2. Quasistationary simulations. We employed quasistationary simulations to determine
λc(D) for the PAM on the simple cubic lattice (see table 2 and figure 7). For relatively
small diffusion rates, good results are obtained using lattice sizes L = 8, 16, 24, 36 and
54. For diffusion rates greater than about 0.25, however, there are substantial finite-size
effects, and to observe clear signs of DP-like scaling we need to study larger systems
(L = 80 and 120 for D = 0.32, and up to 400 for D = 0.33). As shown in the inset of
figure 7, λc appears to approach zero via a power law:

λc ∼ (D∗ − D)κ, (24)

with κ = 1.358(3). The critical exponents determined via finite-size scaling analysis,
β/ν⊥ = 1.40(1) and z = 1.94(2), are once again in good agreement with the literature
values of 1.39(3) and 1.919(4), respectively [2]. Our study yields the moment ratio value
m = 1.47(1) for three-dimensional models in the DP universality class; to our knowledge
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Figure 7. Critical line of the PAM in three dimensions; error bars are smaller
than symbols. Inset: λc versus D∗ − D on log scales; the slope of the straight
line is 1.358.

Table 2. Critical parameters obtained through quasistationary simulations in
three dimensions.
D λc

0.0 0.473 90(5)
0.1 0.2943(1)
0.2 0.1420(1)
0.25 0.077 90(5)
0.28 0.044 87(3)
0.31 0.017 62(2)
0.32 0.010 3(1)
0.325 0.007 03(1)
0.33 0.004 30(5)

this quantity has not been determined previously. For D > D∗, the particle density is
expected to tend to zero linearly with λ, as the reproduction rate approaches zero. We
verified this behavior (down to λ = 10−4) for D = 0.8.

5. Discussion

We study the phase boundary of the pair annihilation model in the reproduction rate–
diffusion probability (λ–D) plane. Our simulation results are consistent with the theorem
proven some time ago by Katori and Konno [6], namely that in one and two dimensions,
λc > 0 for any D < 1. The pair approximation is in conflict with this result, as it
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predicts that, in any number of dimensions, there is a diffusion probability D∗ < 1, above
which λc = 0. In one dimension the behavior (in simulations) is straightforward, as
λc ∝ 1 − D for D 
 1. In two dimensions, however, it is quite subtle, as λc becomes
exponentially small as D → 1, and a cursory analysis could well give the impression that
λc is actually zero at some value of D between 0.8 and 1. Finally in three dimensions
we find D∗ = 0.340 53(1) via analysis of a random walk problem. (In this case the pair
approximation yields D∗ = 1/6.) For D < D∗, our data are well described by a power
law, λc ∼ (D∗ − D)κ. Intuitively, the unusual behavior of λc(D) in two dimensions can
be understood as a consequence of d = 2 marking a critical dimension for the recurrence
of a random walk. Our simulation results for critical exponents and the moment ratio
m are consistent with the directed percolation values, as expected. Given the qualitative
failure of the pair approximation in one and two dimensions, it is natural to ask whether
approximations using larger clusters would predict the phase diagram correctly. This
strikes us as unlikely, since cluster approximations have been found to be insensitive to
subtle effects involving diffusion and/or multiparticle rules in other cases [16, 24, 25].

Finally, we note that our fits to the data for λc(D) in two and three dimensions
involve power-law exponents, denoted γ and κ, respectively. Since there is no theoretical
basis for the fitting forms (equations (23) and (24)), we have no reason to expect these
exponents to be universal. Some insight into this question might be gained from studies of
the model on other two-and three-dimensional lattices (as well as on the four-dimensional
hypercubic lattice), a task we defer to future studies.
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