

Universidade Federal do Ceará

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Fraturas de Caminho Ótimo

José S. Andrade Jr.

(1) ETH, Zurich, Switzerland
(2) UFC, Fortaleza, Brazil
Colaboradores:

Erneson A. Oliveira (UFC) André A. Moreira (UFC) Hans J. Herrmann (ETH)

Optimal path in disordered media: some definitions and previous related studies

1) On an n-dimensional lattice, we assign to each site i a given "energy" value εi according to a given probability distribution P(ε). The energy of a P9th is the top of the lattice that has the smallest connecting the bottom to the top of the lattice that has the smallest energy [Kirkpatrick & Toulouse, J. Phys. Lett. (1985); Kertesz, Horvath & Weber, Fractals (1992); Barabasi, Phys. Rev. Lett. (1996)].

3) Optimal paths extracted from energy landscapes generated with weak disorder are self-affine and belong to the same universality class of directed polymers [Schwartz, Nazaryev & Havlin, *Phys. Rev. E* (1998)].

4) In the strong disorder limit, optimal paths are self-similar with fractal dimensions given by Df≈1.22 and 1.43 in two and three-dimensions, respectively [Cieplak, Maritan & Banavar, Phys. Rev. Lett. (1994), (1996);
Porto, Havlin, Schwarzer & Bunde, Phys. Rev. Lett. (1997)].
5) In complex networks, the role of disorder is to destroy the essential small-world behavior of the system [Albert & Barabasi, Rev. Mod. Phys. (2002); Braunstein, Buldyrev, Cohen, Havlin & Stanley, Phys. Rev. Lett. (2003)].

What do you

do

1) How and when will the transportation network collapse?

2) What is the role of disorder on the performance of We perform num**ehicalistic his** network?

Square lattice of size L with fixed BC's at the top and bottom and periodic BC's in the transversal direction.

 $\mathcal{E}_i = \exp[\beta(p_i-1)]$ > Disorder is introduced by assigning to each site i an energy ϵi given by:

where e_{pi}^{β} is $\frac{1}{r}$ and $\frac{1}{r}$

Algorithm

Oliveira, Moreira, Herrmann & JSA, submitted (2009)

1) The Dijkstra algorithm [Dijkstra, Num. Math. (1959)] is used to calculate the first OP connecting the bottom to the top of the 29^{tmmek};site in the OP having the highest energy is permanently blocked (i.e., a "micro-crack" is formed);

3) The next OP is calculated, from which the highest energy site is again removed and so on, and so forth;

4) The process continues iteratively until the system is disrupted, i.e., we can no longer find any path connecting bottom to top.

$$\beta = 0.6$$
 $\beta = 6.0$ $\beta = 60.0$

Results: weak disorder

Results: intermediate disorder

isolated clusters (reduced)

Results: strong disorder

Quantitative Results

> Simulations with 1000 realizations of lattices for each different size $32 \le L \le 512$ and gistinct values of the disorder parameter β .

Quantitative Results

> Transition from weak to strong disorder.

Transition from weak to strong disorder

Watersheds in Real Landscapes

> CPC's and water drainage divides (i.e., watersheds) are identical.

Conclusions

> The backbone of the fracture constituted of OPC's is apparently (not proved) disorder independent. It is also a self-similar object This dimension is (statistically) similar to the ones obtained for with tractal dimension DD≈1.22. OP's under strong disorder [Schwartz et al., PRE (1998)], Disordered Polymers [Cieplak et al., PRL (1994)], strands in Invasion Percolation [Cieplak et al., PRL (1996)], and paths on Minimum Spanning Trees [Dobrin et al., PRL (2001)]. > The fracture generated with CPC's has a fractal dimension of Df≈1.21.

The role of disorder is to dramatically reduce the total number of blocked sites before the system collapses:

weak disorder $\implies M_t \sim L^2$ $\implies M_t \rightarrow M_b \sim L^{1.22}$

> This information can be used to improve a given transportation network or in the design of systems with enhanced performance.

