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I. Introduction

In the dynamics of continuous fluids, a tracer is a particle that travels with the local fluid
velocity, but that has otherwise no influence on the properties of this fluid. It is apassive
particle. The motion of passive tracers in fully developed, isotropic and homogeneous
turbulence is well described by Brownian motion. Macroscopically it satisfies a Fick’s
type, local transport equation, and microscopically it is described by a random walk with
Gaussian statistics.
However, in a turbulent system which contains coherent structures like vortices and mag-
netic islands that may trap particles for long times, and of zonal flows that advect tracers
over long distances, this theory breaks down. Trapping in coherent structures and the
presence of zonal flows will lead to ’memory’ effects, to non-Markovian behavior, and
imply that the tracer will undergo Ĺevy flights that will lead to non-Gaussian statistics.
In this Section we will develop a model for a random walk that incorporates memory
effects in time and non-local effects in space. We will abandon the conditions that the
walker, i..e. the particle, makes independent steps of fixed length at fixed points in time.
We will adopt the model that a particle makes a stepx after a timet. Then it waits again
some time and makes another step. We will treat space and time as continuous variable
and we will introduce the distributionψ(x, t) , which is the pdf that the walker takes a
stepx after a time intervalt.
Transport of passive particles in a system with coherent structures will be characterized
asstrange diffusionand will lead to diffusion equations that containfractional operators.
In this regime we expect to find that the mean square displacement behaves like

< (∆x− < ∆x >)2 >∝ tα, α 6= 1 . (1)

In this Section we will frequently make use of Fourier transform and of the Laplace trans-
form. These transforms and their inverses are defined by

n̂(k, s) =

∫ ∞

0

dt

∫ +∞

−∞
ddx n(x, t)e−st+ik·x,

n(x, t) =
1

2πi

1

(2π)d

∫ +∞

−∞
ddk

∫ c+i∞

c−i∞
ds n̂(k, s)e−ik·x+st

The Bromwich contour in the complexs-plane has to be taken to the right of any singu-
larity that might occur in̂n((k, s).
The transforms of convolution integrals are

FT

∫
ddx′ f(x′)g(x− x′) = f̂(k)ĝ(k)

LT

∫ t

0

dt′ f(t′)g(t− t′) = f̂(s)ĝ(s).
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II. The Continuous Time Random Walk (CTRW)

Suppose that the probability distribution function that the walker is at some arbitrary po-
sitionx at some timet = 0 is n(x, 0) = n0(x). We want to know the pdfn(x, t) that the
walker is at some positionx at after a timet.

The walker (particle) arrives at the positionx′ at timet′. Then it remains immobile for
a time intervalt − t′. At time t he jumps to the positionx. The pdf of this process is
ψ(x, t;x′, t′). we will assume that the system is homogeneous in space and in time, so
thatψ(x, t;x′, t′) = ψ(x − x′, t − t′). Thus, the probability distribution function (pdf)
ψ(x, t) is the pdf that the walker takes a stepx after a time intervalt.
The probability that a step of arbitrary length is taken after a timet is

Ψ(t) =

∫
ddx ψ(x, t). (2)

This is thewaiting time distribution.
The pdf that at least one step is taken somewhere in the interval(0, t) is

∫ t

0
Ψ̂(τ)dτ, and

the probability that no step is taken during a timet is

Φ(t) = 1−
∫ t

0

dt′ Ψ(t′) =

∫ ∞

t

dt′Ψ(t′), Φ(0) = 1, Φ(∞) = 0, (3)

which is the pdf that the time interval between steps is greater thant. The average waiting
time isT =

∫ ∞
0
dt tΨ(t), if this integral exists.

The pdfn(x, t) that the walker is atx at timet is given bya generalized master equation

n(x, t) =

∫
ddx′

∫ t

0

dt′ ψ(x− x′, t− t′)n(x′, t′) + Φ(t)n0(x). (4)

The system is assumed to be homogeneous in space and in time. The integrand of the first
term on the right gives the pdf that, given that the walker is atx′ at t′, he makes a step
x−x′ in a time intervalt− t′. The second term is the probability density that the particle
does not make a step at all in the intervalt, but remains at its initial position.

The Fourier-Laplace transform of (4) is

n̂(k, s) =
1− Ψ̂(s)

s

1

1− ψ̂(k, s)
n̂0(k). (5)

This is theMontroll-Weiss equation[1]. Here,

Φ̂(s) =
1− Ψ̂(s)

s
(6)
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is the LT ofΦ(t) defined in (3). The density is completely determined when the function
ψ̂(k, s) is known.
Rewrite equation (5) as follows.

sn̂(k, s)− n̂0(k) = K̂(k, s)n̂(k, s) (7)

with
K̂(k, s) =

s

1− Ψ̂(s)
[ψ̂(k, s)− Ψ̂(s)] (8)

Applying the inverse Laplace -Fourier transform yields

∂n(x, t)

∂t
=

∫
ddx′

∫ t

0

dt′ K(x− x′, t− t′)n(x′, t′), (9)

where the kernel is given by

K(x, t) =
1

2πi

∫ c+i∞

c−i∞
ds

sest

1− Ψ̂(s)
[ψ̂(x, s)− Ψ̂(s)δ(x)]. (10)

Equation (9) is another version of thegeneralized, non-Markovian master equation (4). It
is nonlocal and contains memory effects.

An important case occurs if the jump lengths in space and the steps in time are inde-
pendent

ψ(x, t) = Ψ(t)p(x). (11)

Here,Ψ(t) is the memory kernel that introduces non-Markovian behavior, whereasp(x)
is responsible for spatial correlations.
Equation (11) implieŝψ(k, s) = Ψ̂(s)p̂(k), so that

K̂(k, s) = −χ̂(s)[1− p̂(k], (12)

with

χ̂(s) =
sΨ̂(s)

1− Ψ̂(s)
. (13)

Then, the master equation (7) can be written as

sn̂(k, s)− n̂0(k) = −χ̂(s)[1− p̂(k]n̂(k, s) (14)

and (9) becomes

∂n(x, t)

∂t
=

∫ t

0

dt′ χ(t− t′)){ − n(x, t′) +

∫
ddx′p(x− x′)n(x′, t′)}, (15)

This is theMontroll-Shlesinger equation[2].
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A. A derivation of the Montroll-Weiss equation (5)

In order to derive equation (5) we introduce two additional pdf’s.
The pdf that the walker arrives at the positionx at time t at the jth step is denoted by
nj(x, t). The initial position att = 0 is obtained from the pdfn0(x).
Further, we introduce the functionQ(x, t) which denotes the pdf that the walker arrives
atx at timet.
Then, it is clear that

Q(x, t) =
∑
j=0

nj(x, t)

and

nj+1(x, t) =

∫
ddx′

∫ t

0

dt′ψ(x− x′, t− t′)nj(x
′, t′).

By summing the latter expression over all steps taken during the time t, one obtains

Q(x, t) =

∫
ddx′

∫ t

0

dt′ψ(x− x′, t− t′)Q(x′, t′) + n0(x)δ(t).

The pdf that the walker is at the positionx at time t is given by the probability that it
arrives atx at an earlier timeτ and stays there until timet

n(x, t) =

∫ t

0

dτΦ(t− τ)Q(x, τ),

whereΦ(t), given by (3), is the pdf that no step occurs during the timet.
Take the Fourier-Laplace transform of the last two expressions. This yields

Q̂(k, s) = ψ̂(k, s)Q̂(k, s) + n̂0(k)

and
n̂(k, s) = Φ̂(s)Q̂(k, s).

Upon eliminatingQ̂(k, s) from the last equation and applying (6) one recovers the Montroll-
Weiss equation (5).

B. A discrete version of the generalized master equation

A spatially discrete version of the generalized master equation (4) for continuous time
and for non-local spatial jumps is [3]

nj(t) =

∫ t

0

dτ{
∞∑

n=1

Aj,n(t− τ)nj−n(τ) +
∞∑

n=1

Bj,n(t− τ)nj+n(τ)}+ Φ(t)δj,m. (16)

The first term represents jumps to the ’right’and the second one jumps to the ’left’. The
summations overn mean that jumps from all other sitesj ± n to the sitej are possible.
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The last term is the probability that the particle does not make a jump but stays at its initial
sitem, δj,m being the Kronecker symbol.
The limit of a continuous distribution of jumps is obtained by taking the limitsj →
x, j − n→ x′ in the first term on the right of (16) andj → x, j + n→ x′ in the second
term

n(x, t) =

∫ t

0

dτ{
∫ x

−∞
dx′A(x′, x−x′, t−τ)n(x′, τ)+

∫ ∞

x

dx′B(x′, x−x′, t−τ)n(x′, τ)}

+Φ(t)n0(x).

Assume that the functionsA andB can be factorized as follows,

A(x′, x−x′, t−τ) = A(x′)ψ(x−x′, t−τ), B(x′, x−x′, t−τ) = B(x′)ψ(x′−x, t−τ).

The dependence ofA andB on x′ means that the probability to make a step|x − x′| in
a time t − τ depends on the initial positionx′. The discrete master equation (16) now
becomes

n(x, t) =

∫ t

0

dτ

∫ +∞

−∞
dx′Λ(x, x′, t− τ)n(x′, τ) + Φ(t)n0(x), (17)

with

Λ(x, x′, t− τ) = ψ(|x− x′|, t− τ)[A(x′)θ(x− x′) +B(x′)θ(x′ − x)],

θ(x) being the Heaviside function. The normalization requiresA(x) + B(x) = 1. If
jumps to the left and to the right have equal probabilities, thenA = B = 1/2.

C. Non-Markovian and Gaussian limits

The time stepping is a Markov process if the probabilityΦ(t) that no step occurs in the
interval(t, t+ ∆t) is independent oft and equal to1−∆t/T . Then,

Φ(t+ ∆t) = Φ(t)(1− ∆t

T
) (18)

so that

Φ(t) = exp− t

T
, Ψ(t) =

1

T
exp− t

T
, (19)

whereT =
∫ ∞

0
dt tΨ(t) is the average waiting time .

The Laplace transforms of these functions are

Ψ̂(s) =
1

1 + sT
, Φ̂(s) =

T

1 + sT
, (20)

so that (12) becomes
K̂(k, s) = T−1[p̂(k)− 1]. (21)
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The Fourier-Laplace transform (14) of the master equation now reads

sn̂(k, s)− n̂0(k) =
1

T
[p̂(k)− 1]n̂(k, s) (22)

This equation is Markovian.
Let us assume that, in addition, the distribution of step sizes is Gaussian,

p(x) =
1√
2πσ

e−x2/2σ, p̂(k) = e−σk2/2 ≈ 1− 1

2
σk2.

Upon substitution of this expression into (22) one obtains the Laplace-Fourier transform
of the master equation in the form,

(s−Dk2)n̂(k, s) = n̂0(k), D =
σ

2T
. (23)

This is the Laplace-Fourier transform of our classical diffusion (Fick’s) equation of Part
I.

III. Distributions with long tails

Since we deal with diffusion problems, we are interested in the behavior of systems on
long time- and length-scales, actually we want to find out what happens on macroscopic
scales. We do not need to know what happens on small scales. From this point of view,
the CRTW master equation contains far too much information for the description of trans-
port on macroscopic scales. We do not require a full kinetic description of the underlying
random walk, but we are interested in the continuum (fluid) limit of the master equation.
The information we are looking for is contained in the large scales i.e. in the tails of the
probability distribution functionΨ(t) andp(x). In Laplace-Fourier space this means that
we do not need to know the full pdf’ŝΨ(s) and p̂(k) but basically we need only their
asymptotic limits fors → 0,k → 0. We already applied this point of view at the end of
the previous section.

Let us consider the situation where the waiting time distributionΨ(t) does not decay
exponentially, like (18), but decays as a power oft for larget,

Ψ(t) =
A

t1+β
, 0 < β ≤ 1, t→∞. (24)

This term represents thet → ∞ tail of the distribution. The total probability
∫
dtΨ(t) is

equal to unity and exists forβ > 0 and the average waiting time
∫
dttΨ(t) exists and is

finite for β > 1.

Consider the expansion of the Laplace transformΨ̂(s) for small values ofs. Forβ > 1,
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the total probability is given bŷΨ(s = 0) = 1 and the average waiting time byT =
−dΨ̂(s)/ds|s=0. Hence, the leading order terms in the smalls expansion read

Ψ̂(s) = 1− Ts. (25)

Upon substitution this expression into (13), it is seen that we recover (22), i.e., for large
times we recover the Markovian limit! Therefore, we limit the discussion of (24) to the
interval0 < β ≤ 1.
The Laplace transform of (24) for0 < β ≤ 1 is in the limit of small values ofs

Ψ̂(s) = 1− τβ
Ds

β, (26)

with A = βΓ−1(1 − β)τβ
D. The constantτD is only equal to the average waiting time if

β = 1,

< t >= − d

ds
Ψ̂|s=0 = βτβ

Ds
β−1|s=0.

Making use of the Tauberian theorem that says that the inverse Laplace transform of a
power ins yields a power int,

L−1[sγ] =
−γ

Γ(1− γ)
t−1−γ, s > 0, (27)

it is seen that (24) is recovered.
The appearance of power laws in representations of pdf’s means that these distributions
are scale invariant. The algebraic decay ofΨ(t) and /orp(x) implies that there is not a
characteristic transport scale. It also means that the distribution of trapping and/or flight
events is self-similar.
Further, we assume that the spatial distribution corresponds to a Lévy-type distribution
which behaves like

p̂(k) = 1− bα|k|α, k → 0, 0 < α ≤ 2. (28)

We have seen in Part I that this corresponds to Lévy distributions and to Ĺevy flights.
The Fourier-Laplace transform of the CTRW master equation (14) (or (5)) reads to leading
order

sn̂(k, s)− n̂0(k) = −χ̂(s)bαkαn̂(k, s), 0 < α ≤ 2, 0 < β ≤ 1, s, k → 0, (29)

with, to leading order,
χ̂(s) = s1−β. (30)

This expression depends

- on the global dimensionalityd,

- on the two exponentsα andβ,

- on the characteristic timeτD and the characteristic lengthb.
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A. The density profile

The expression (29) can be written in the form

n̂(k, s) =
τβ
Ds

β−1

τβ
Ds

β + bα|k|α
n̂0(k). (31)

Its inverse Laplace-Fourier transform is obtained from

n(x, t) =
1

2πi

1

(2π)d

∫ +∞

−∞
ddk

∫ c+i∞

c−i∞
ds n̂(k, s)e−ik·x+st. (32)

Substitute (31) and introduce the variables

ŝ =
τDs

(bαkα)1/β
, t̂ = (bαkα)1/β t

τD
(33)

Then,

n(x, t) =

∫ +∞

−∞

ddk

(2π)d
n̂0(k)e−ik·x

∫ c+i∞

c−i∞

dŝ

2πi
eŝt̂ ŝ

β−1

ŝβ + 1
. (34)

The function that appears under the integral

ŝβ−1

ŝβ + 1

is just the Laplace transform of the Mittag-Leffler functionEβ(−t̂β), which is defined as

Eβ(z) =
∞∑

n=0

zn

Γ(βn+ 1)
, β > 0, z ε C. (35)

This is an entire function ofβ and approachesexp z in the limit β → 1. The behavior of
the Mittag-Leffler function for large values of its argument is

Eβ(z) ≈ −sinβ
β

Γ(β)

z
.

It follows that (32) can be written as

n(x, t) =

∫ +∞

−∞

ddk

(2π)d
n̂0(k)e−ik·xEβ(−bαkαtβ/τd

−β) (36)

Introducing the variables

k̂ = b(
t

τD
)β/αk, x̂ =

x

b
(
τD
t

)β/α, (37)

one obtains in the one-dimensional case

n(x, t) = b−1(
t

τD
)−β/α

∫
dk̂

2π
e−ik̂x̂Eβ(−k̂α), (38)

where we have taken the initial conditionn0(x) = δ(x) i.e. n̂(k, 0) = 1. This expression
shows that the solution to (29) has the scaling form

n(x, t) = t−β/αGαβ(
x

tβ/α
). (39)
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B. The mean-square displacement

The form of the functionG depends on the parametersα andβ and on the diffusion
regime. Equation (39) leads immediately to the following expression for the mean square
displacement

< x2(t) >αβ=

∫
dx x2t−β/αGαβ(

x

tβ/α
). (40)

This means that we have obtained the scaling relation

< x2(t) >αβ= Mαβt
µ, Mαβ =

∫
dq q2Gαβ(q), (41)

with diffusion exponent

µ =
2β

α
. (42)

This leads to a criterium for the character of the diffusion process:

- β < α/2 ≤ 1 sub-diffusive, strange,

- β = α/2 ≤ 1 diffusive, classical, anomalous,

- α/2 < β ≤ 1 super-diffusive,strange,

- β = α ≤ 1 free-streaming, strange.

Note that not only the scaling of the second moment, but that the scaling of all moments
can be obtained from (39),

< xp(t) >∝ tpβ/α. (43)
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C. The diffusion equation

Let us return to the CTRW master equation in the form (29) and rewrite this expression
as follows

(sβ + |k|α)n̂(k, s) = sβ−1n̂0(k), (44)

where we have takenτDs → s andbk → k (with t/τD → t andx/b → x). The inverse
transform of this equation can be expressed in terms offractional derivatives. One can
write

c
0D

β
t n(x, t) = Dα

|x|n(x, t), (45)

where

−|k|α → ∂α

∂|x|α
= Dα

|x| (46)

is theRiesz fractional derivativeand

sβ f̂(s)− sβ−1f(t = 0) →c
0 D

β
t f(t) (47)

is theCaputo fractional derivative.
There exists an extensive literature on fractional derivatives. The definitions of the frac-
tional derivatives are given in the Section VI together with a few calculational rules.

IV. The Standard Long Tail CTRW (SLT-CTRW)

An important subclass occurs forα = 2 when the spatial distribution is Gaussian with
b = σ/

√
2d. This case is called theStandard Long Tail CTRW.

The CTRW master equation (31) reads

n̂(k, s) =
τβ
Ds

β−1

τβ
Ds

β + b2|k|2
n̂0(k), 0 < β ≤ 1, s, k → 0. (48)

In this case one can easily derive the mean square displacement.
From (48) one finds

−∂
2n̂(k, s)

∂k.∂k
|k=0 = 2db2τ−β

D s−β−1. (49)

According to a Tauberian theorem, the inverse Laplace transform of a power ins yields a
power int, so that we obtain the MSD

< r2(t) >= −∂
2n̂(k, t)

∂k.∂k
|k=0 =

2db2

Γ(β + 1)
(
t

τD
)β, b = σ/

√
2d. (50)

Hence, the exponentβ that occurs in the waiting time distributionΨ(t), determines the
diffusion exponent in the MSD. It is seen that the SLT-CTRW implies strange andsub-
diffusive transport for0 < β < 1.
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Diffusion in a stochastic magnetic field would correspond to the exponentβ = 1/2.

Equation (48) can be rewritten in the form

sn̂(k, s)− n̂(k, 0) = −χ̂(s)k2n(k, s), χ̂(s) = s1−β (51)

The inverse FL transforms yield

∂n

∂t
= D0

∫ t

0

dt1 χ(t1)∇2n(x, t− t1), (52)

whereχ(t) is the inverse Laplace transform ofχ̂(s) = s1−β. Equation (52) is thenon-
Markovian diffusion equation.
The inverse transform of the long time contribution toχ̂(s) is

χ(t) = −1− β

Γ(β)

1

t2−β
(53)

However, there will also exists a contribution to the waiting time distribution at shorter
times so that

Ψ(t) = f(t) +
A

t1+β
.

Let’s assume that this contributionf(t) is Markovian. This means thatf(t) ∝ exp−t/T .
Using (19) and (??) it follows that this bulk contributes a constant toχ̂(s) for larger values
of s, so that we find instead of (53)

χ(t) = Aδ(t)− 1− β

Γ(β)

1

t2−β
. (54)

It follows that we can write the non-Markovian diffusion equation (52) in the form

∂n

∂t
−D0∇2n(x, t) = −D0

1− β

Γ(β)

∫ t

tmin

dt1
1

t2−β
1

∇2n(x, t− t1), (55)

where we have introduced a cut-off in the integral on the right in order to avoid the singu-
larity.
The left-hand side of this diffusion equation is just the classical Fick’s equation. The
right-hand side represents the anomalous part. Note that this contribution vanishes for
β = 1, as it should!
The introduction of the cut-off seems to be quite arbitrary. However, it can be justified as
follows.
Multiply (55) with x2 and integrate over space. It is found that in 1D the MSD satisfies
the equation

∂

∂t
< x2(t) > −2D0 = −2D0

1− β

Γ(β)

∫ t

tmin

dt
1

t2−β
.
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The RHS contains a term proportional tot−1+β and a constant term. Sinceβ < 1, this
constant would dominate fort → ∞. This is a spurious effect, so that this term has to
cancel against the constant term on the left. The result is

tmin = Γ(β)−1/(1−β) (56)

so that the MSD is

< x2(t) >= 2D0
tβ

Γ(1 + β)
. (57)

Upon comparing this expression with the general scaling law (41) forα = 2, we see that
(57) has the correct behavior in time. It can be shown that this will also be the case for all
higher moments of the distribution function at the same value oftmin.
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V. L évy walks

In a discrete random walk with steps of finite size, the walker can only travel a limited
distance in N steps. This idea of a diffusion front beyond which the probability is zero,
gets lost in the continuous time limit. In this limit, there exist always a positive probability
for the walker to be at some place at any time. A diffusion front can be obtained in CTRW
by considering a coupled space-time memory.
Therefore, let us return to equation (11) and consider the spatio-temporal coupled memory
kernel

ψ(x, t) = p(x|t)Ψ(t) (58)

with
Ψ(t) = At−1−β (59)

for large values oft, and

p(x|t) = δ(r − V (r)t), V (r) = Brα. (60)

The pdfp(x|t) is the conditional probability that the length of the flight isx, given that it
took a timet to complete, andΨ(t) is the probability that the flight time ist.
This kernel couples the step size with the waiting time. Steps of arbitrary lengths may be
taken, but larger distances take longer times. In a fixed time the particle will reach a finite
shell in space. This kernel allows for enhanced, super-diffusion.
An obvious case occurs when the velocityV does not depend on the step length, but is
constant. This represents ballistic motion.
In the Richardson model of turbulence, that was discussed in Part III, the energy increases
with the size of the eddy. This means that also the velocity increases with size. If the
energy flux through the scales is taken to be invariant, one findsV (r) ∝ r1/3, leading to
the Kolmogorov spectrumk−5/3 (see Part III). Values0 < α < 1 correspond toν > 1.
Valuesα < 0 i.e. ν > 1 would correspond to cases where the velocity decreases for larger
scale lengths.
Write (58)-(60) in the equivalent form

ψ(x, t) = At−1−βδ(r − tν), (61)

with ν = 1/1− α > 0.
An obvious case occurs when the velocityV does not depend on the step length, but is
constant. This represents ballistic motion and occurs forα = 0, i.e. ν = 1.
In the Richardson model of turbulence, that was discussed in Part III, the energy increases
with the size of the eddy. This means that also the velocity increases with size. If the en-
ergy flux through the scales is taken to be invariant, one findsV (r) ∝ r1/3, leading to the
Kolmogorov spectrumk−5/3 (see Part III). Values0 < α < 1 correspond toν > 1.
Valuesα < 0, i.e. ν < 1, would correspond to cases where the velocity decreases for
larger scale lengths.
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The Laplace transform of the space-averaged waiting time distribution is

Ψ̂(s) =

∫ ∞

0

dt

∫
ddxψ(x, t)e−st = ASd

∫ ∞

a

dt

∫
drrd−1t−β−1δ(r − tν)e−st

= ASd

∫ ∞

a

dt t−µ−1e−st, µ = β − ν(d− 1)

We requireµ > 0, so that the waiting time probability can be normalized,Ψ̂(s =
0) =

∫ ∞
0
dtψ(t) = 1. Further, forµ > 1 the average waiting time exists,< t >=

−dΨ̂(s)/ds|s=0. These considerations lead to the following asymptotic expressions for
small values ofs

Ψ̂(s) = 1− Csµ, 0 < µ ≤ 1, (62)

and
Ψ̂(s) = 1− τDs, µ > 1. (63)

Further, considering the two-dimensional case (Sd = 2π), one finds

ψ̂(s,k)− Ψ̂(s) = A

∫ ∞

a

dt e−st

∫
rdr

∫ π

−π

dθ(eikrcosθ − 1)t−β−1δ(r − tν).

This leads to the following result

ψ̂(s,k)− Ψ̂(s) = 2πA

∫ ∞

a

dt t−µ−1[J0(kt
ν)− 1]e−st, (64)

where we have used the expression for the Bessel functionJ0(z) = (1/π)
∫ π

0
dθeizcosθ.

In the asymptotic limit
ktν << st, (65)

where the Bessel function does not change very much during the decay ofe−st, we may
expand this function for small values of its argument,J0(z) ≈ 1 − k2t2ν/4. Then, we
obtain

ψ̂(s,k)− Ψ̂(s) ≈ −π
2
Ak2

∫ ∞

a

dt t−µ−1+2νe−st, (66)

The integral on the right exists for−µ+2ν < 0, so that we have to leading order in small
quantities

ψ̂(s,k)− Ψ̂(s) ≈ C1k
2, − µ+ 2ν < 0. (67)

For−µ+ 2ν > 0, this integral does not exists and one obtains

ψ̂(s,k)− Ψ̂(s) ≈ −C1k
2sµ−2ν , − µ+ 2ν > 0. (68)

From the preceding discussion it is clear that four different cases exist.
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I. The first case occurs for1 < µ < 2ν. In this range of values of the exponents we
have found

ψ̂(s,k) ≈ 1− τDs− C1k
2sµ−2ν , Ψ̂(s) = 1− τDs.

The Laplace-Fourier transform of the pdf (5) is

n̂(k, s) =
τDs

2ν−µ

τDs1+2ν−µ + C1k2
. (69)

This yields the mean square displacement

< x2(t) >= − ∂2

∂k · ∂k
n̂(k, t)|k=0 =

4C1

τD

t1+2ν−µ

Γ(2 + 2ν − µ)
(70)

This case describes super-diffusion.

II. The second case occurs whenµ > 1, 2ν. In this range we have found

ψ̂(s,k) ≈ 1− τDs− C1k
2, Ψ̂(s) = 1− τDs.

Upon substituting these expressions into (5) and takingn̂0(k) = 1, one obtains

n̂(k, s) =
τD

τDs+ C1k2
. (71)

Here, we recover classical diffusion,

< x2(t) >= − ∂2

∂k · ∂k
n̂(k, t)|k=0 =

4C1

τD
t. (72)

III. The third case is found for0 < µ < 1, µ < 2ν. Then,

ψ̂(s,k) ≈ 1− Csµ − C1k
2sµ−2ν , Ψ̂(s) = 1− Csµ.

The Fourier-Laplace transform of the pdfn(x, t) is

n̂(k, s) =
Cs2ν−1

Cs2ν + C1k2
, (73)

which leads to the MSD

< x2(t) >=
4C1

C

t2ν

Γ(1 + 2ν)
. (74)

In this interval of values of the exponents, either sub-diffusion (ν < 1/2), classical diffu-
sion (ν = 1/2), or super-diffusionν > 1/2) occurs.

IV. The fourth case is0 < µ < 1, µ > 2ν. In this regime we have found

ψ̂(s,k) ≈ 1− Csµ − C1k
2, Ψ̂(s) = 1− Csµ,
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so that

n̂(k, s) =
Csµ−1

Csµ + C1k2
. (75)

This gives the MSD

< x2(t) >=
4C1

C

tµ

Γ(1 + µ)
(76)

This regime has a sub-diffusive character.
Note that for Ĺevy walks the Fourier-Laplace transform of the pdfn(x, t) can be written
such that it has the same structural form as in the case of decoupled space and time steps
that was discussed in Section III (see equation (29)).

In the case of Richardson diffusion we haveα = 1/3 in (60), so thatν = 3/2. The t3

behavior of the MSD can be recovered in case III (or, equivalently, in case II forµ = 1).
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VI. Fractional integration and differentiation

Until 20 years ago fractional integration and differentiation were unknown in physics.
Since then, physicists have discovered that fractional calculus may be very useful in the
description of anomalous and ’strange’ diffusion problems. Fractional diffusion equations
generalize Fick’s and Fokker-Planck equations and represent memory and non-local as-
pects.

A way to introduce fractional calculus is to start from n-fold repeated integration,

aI
n
x f(x) =

∫ x

a

∫ y1

a

......

∫ yn

a

dy1....dynf(yn) =
1

Γ(n)

∫ x

a

dy (x− y)n−1f(y), (77)

where

Γ(z) =

∫ ∞

0

tz−1e−tdt, Rez > 0, (78)

is the Gamma function. The Gamma function diverges for negative integer values of its
argument. Further we have used Dirichlet’s formula∫ x

a

dy1

∫ y1

a

dy2f(y1, y2) =

∫ x

a

dy2

∫ x

y2

dy1f(y1, y2).

The n-tuple integral (77) can be generalized toa fractional integral of arbitrary orderα

aI
α
x f(x) =

1

Γ(α)

∫ x

a

dy (x− y)α−1f(y), x ≥ a, (79)

whereα is positive real.This is the Riemann-Liouville fractional integral.

A. On the basis of (79) we can definethe fractional derivative of orderα

aD
α
xf(x) =

dn

dxn aI
n−α
x f(x) =

1

Γ(n− α)

dn

dxn

∫ x

a

dy (x− y)n−α−1f(y), x ≥ a. (80)

where n is a positive integer such that0 < n − 1 < Re α < n. More precisely, this is
the left Riemann-Liouville fractional derivative. The right Riemann-Liouville fractional
derivative is

xD
α
b f(x) =

(−1)n

Γ(n− α)

dn

dxn

∫ b

x

dy (x− y)n−α−1f(y), x ≤ b. (81)

It is easily seen thataIα
x =a D

−α
x andxI

α
b =x D

−α
b .

B. Note that the definitions (80) and (81) are not unique. It is clear that the following
definitions are also valid,

c
aD

α
xf(x) =a I

n−α
x

dn

dxn
f(x) =

1

Γ(n− α)

∫ x

a

dy (x− y)n−α−1 d
n

dyn
f(y), x ≥ a, (82)
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and
c
xD

α
b f(x) =

(−1)n

Γ(n− α)

∫ b

x

dy (x− y)n−α−1 d
n

dyn
f(y), x ≤ b. (83)

These equations form the Caputo definition of the fractional derivatives. The Riemann-
Liouville and Caputo fractional derivatives differ by boundary terms of the functionf(x)
and its derivatives.

C A third derivative that plays a role in fractional diffusion is the symmetric derivative

Dα
|x| =

1

2cosπα/2
[−∞D

α
x + xD

α
∞]. (84)

This is theRiesz fractional derivative.
Below we list a number of properties of fractional integrals and derivatives.

I . The fractional integrals satisfy the group property

aI
α
x aI

β
x =a I

α+β
x . (85)

The proof is as follows.

aI
α
x aI

β
x f(x) =

1

Γ(α)Γ(β)

∫ x

a

dξ
1

(x− ξ)1−α

∫ ξ

a

dτ
f(τ)

(ξ − τ)1−β

=
1

Γ(α)Γ(β)

∫ x

a

dτ
f(τ)

(ξ − τ)1−β

∫ x

τ

dξ
1

(x− ξ)1−α

Apply the transformation of variablesξ → s with ξ = τ + s(x− τ). Then, it follows that

aI
α
x aI

β
x f(x) =

1

Γ(α)Γ(β)

∫ x

a

dτ
f(τ)

(x− τ)1−α−β

∫ 1

0

ds
1

s1−β(1− s)1−α

=
B(α, β)

Γ(α)Γ(β)

∫ x

a

dτ
f(τ)

(x− τ)1−α−β
=a I

α+β
x f(x).

Here,B(α, β) is the Beta-function

B(α, β) =

∫ 1

0

sα−1(1− s)β−1ds =
Γ(α)Γ(β)

Γ(α+ β)
. (86)

II . It is seen from (80) and (81) that

aD
α
xf(x) =

d

dx
aD

α−1
x f(x), xD

α
b f(x) = − d

dx
xD

α−1
b f(x). (87)

III . From the definition of the fractional derivative it follows that

0D
α
xx

µ =
Γ(µ+ 1)

Γ(µ− α+ 1)
xµ−α. (88)
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This is equivalent to

aD
α
x (x− a)µ =

Γ(µ+ 1)

Γ(µ− α+ 1)
(x− a)µ−α. (89)

This result can be obtained as follows. According to (80) we have

0D
α
xx

µ =
1

Γ(n− α)

dn

dxn

∫ x

0

dy (x− y)n−α−1yµ

=
1

Γ(n− α)

dn

dxn
xn−α+µ

∫ 1

0

dy yµ(1− y)n−α−1

=
Γ(µ+ 1)

Γ(µ− α+ 1)
xµ−α,

where we have used definition (86) of the Beta function.
The Riemann-Liouville fractional derivative of a function that may be Taylor expanded
aroundx = a,

f(x) =
∑

p

(x− a)p

Γ(1 + p)
f (p)(a),

is according to (89)

aD
α
xf(x) =

1

Γ(1− α)

f(a)

(x− a)α
+

1

Γ(2− α)

f ′(a)

(x− a)−1+α
+

∞∑
p=0

f (p+2)(a)

Γ(p− α+ 3)
(x−a)p−α+2.

(90)
The first two terms are written separately because they are singular for1 < α < 2. The
Caputo derivative takes care of these singularities,

c
aD

α
xf(x) =

∞∑
p=0

f (p+2)(a)

Γ(p− α+ 3)
(x− a)p−α+2. (91)

IV . The rule (88) implies that the derivative of a constant does not vanish unless the order
of integration is an integer,

0D
α
xC = C

x−α

Γ(1− α)
. (92)

On the other hand, the Caputo derivative of a constant vanishes

c
xD

α
b C = 0. (93)

V. The derivative of the exponential function is

0D
α
xe

x =
dn

dxn

1

Γ(n− α)

∫ x

0

dy (x− y)n−α−1e−y
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= exγ(−α, x)
Γ(−α)

, (94)

where

γ(α, x) =
1

Γ(α)

∫ x

0

e−ttα−1, Reα > 0,

is the incomplete gamma function.

VI . From
c
−∞D

α
xe

ikx = (−ik)αeikx, c
xD

α
∞e

ikx = (ik)αeikx, (95)

follows hat the Fourier transform of the Riemann-Liouville fractional derivatives are

FT c
−∞D

α
xf(x) = (−ik)αf̂(k), c

xD
α
∞e

ikx = (ik)αf̂(k). (96)

The Fourier transform of a fractional integral is

FT−∞I
α
x f(x) = (−ik)−αf̂(k). (97)

This can be shown as follows

FT−∞I
α
x f(x) =

∫ ∞

−∞
dx eikx 1

Γ(α)

∫ x

−∞
dx′

f(x′)

(x− x′)1−α

=

∫ ∞

−∞
dx eikx 1

Γ(α)

∫ ∞

0

ds
f(x− s)

s1−α
=
f̂(k)

Γ(α)

∫ ∞

0

ds
eiks

s1−α

= (−ik)−αf̂(k)
1

Γ(α)

∫ −i∞

0

dz zα−1e−z = (−ik)−αf̂(k).

In the same way one can also find the FT of the fractional derivatives.

VII . The Laplace transform of the left Riemann-Liouville fractional derivative for0 <
α < 1 is

LT 0D
α
t f(t) =

∫ ∞

0

dt
1

Γ(1− α)
e−st d

dt

∫ t

0

dy(t− y)−αf(y).

= −0D
α−1
t f |t=0 + s

∫ ∞

0

dt
e−st

Γ(1− α)

∫ t

0

dy(t− y)−αf(y)

= sαf̂(s)− 0D
α−1
t f |t=0. (98)

This Laplace transform depends on the initial value of the fractional derivative. This is
not very convenient since the initial value of the functionf(t) is usually given.

IX . The Laplace transform of the Caputo fractional derivative (82) is

LT c
0D

α
t f(t) =

∫ ∞

0

dt e−st 1

Γ(1− α)

∫ t

0

dy
df/dy

(t− y)α
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=
1

Γ(1− α)

∫ ∞

0

dy
df

dy

∫ ∞

y

dt e−st(t− y)−α,

which gives
LT c

0D
α
x = sαf̂(s)− sα−1f(0). (99)

The Laplace transform of the Caputo fractional derivative depends on the initial value of
the function itself.
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