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. Percolation

Percolation theory deals with the formation of long-rangareectivity in random (dis-
ordered) systems (like porous rocks, but also turbulentdlaind plasmas) and contains
elements of probability theory and of geometry. One migitteat it is a branch of statis-
tical geometry. Percolation is not based upon a dynamiealifas a model describing in
simple terms the behavior of very complex dynamical systédmthat sense it resembles
the random walk studied in previous chapters.

Percolation theory is an important tool in the study of t@ors and equilibrium
in such diverse fields as the conduction of current in allofyganducting and non-
conducting materials, the flow of liquids in porous media thffusion of charged par-
ticles in magnetized plasmas etc.. In percolation theoeydisorder of the medium is
prescribed, is assumed to be given and not created by thegs®g under consideration.

The standard percolation geometry is a regular lattieceadifmnensions which becomes
a random network by assigning to the sites (vertices) oracettges (bonds) @robabil-
ity of occupancy. A site may be occupied or empty, in that case nothing is daddita
bonds. On the other hand, bonds may be active or inactiveitagld® not play a role.
In this Section we will consider two-dimensional systems=(2). Each site (or bond) of
a very large lattice is occupied independently of its neggeb No correlations between
sites or between bonds are allowed. The lattice should lfieisutly large that boundary
effects can be ignored. The probabilityhat a site is occupied is also called, for obvious
reasons, the concentration. Each site has a certain nurhipeighbors. This number
depends on the geometry of the lattice and the number of diimes. Nearest occupied
sites or vertices fornslusters A site and its neighbors belong to the same cluster if they
are both occupied. A site is isolated if all its neighbors emgpty. Percolation theory
deals with the properties of these cluste¥hen the probability is small, only small
clusters will exist. With increasing values pf the number of sites per cluster, i.e. the
average size of the clusters will increase. At a critpaicolation thresholg.., the long-
range connectivity, the infinite cluster will first appear.

As an example, consider the problem of conduction of an dectirrent through a
medium that consists of a mixture of conducting and isojpsimbstances. In this case we
call a site occupied if it consists of conducting materiad @ampty or vacant if it consists
of non-conducting material. The alloy is bounded by two fpk@lates over which a
voltage is applied. The ratio between the current and thtagelis the conductivity of the
medium. If the probability that the site is occupied is small, no electrical path betwee
the two plates will exist. This means that the conductiviilf e zero. Largep means
that the size of the (conducting) clusters will be larger. Wherows, the clusters will
grow until suddenly, whep reaches a critical valug., the medium starts to conduct an
electric current. This means that at the threshglthe long-range connectivity, the infi-
nite cluster, appear3hese geometrical phase transitions described by peicol#teory
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Figure 1: Definition of percolation and its clusters (fronf)[1

Figure 2. Example of percolation for two values of p (from)[1]

exhibit all the characteristic features of physical phasasitions.

The number ok-clusters per site, i.e. the probability that a given sitlobgs to an
s-cluster, is

ne =Y guap’(1—p)". (1)

Here,s is the number of sites of a cluster, also called its mass{ #agberimeter, i.e.,
the number of neighboring, empty sites of the cluster. Furth, is a form factor that
depends on cluster geometry, but also on the type of lattetds adopted. It can easily be
seen that the numbef neighboring empty sites differs for different clusteogeetries.
The sum is over all geometric forms that can be formed witbnnected sites (bonds).

At p = p. theinfinite cluster appears and exists for> p.. The probability of a site
to belong to this infinite cluster is denoted By..



The probabilityn, is a basic concept of percolation theory. Several prolghinc-
tions are based upon this notion.

- sng is the probability thatiny site belongs to ae-cluster,
- sng/p is the probability that anccupiedsite belongs to an s-cluster,

- Y. sns = pis the probability that an arbitrary site belongs to any ®ugp < p.).
Forp > p,. there is an infinite cluster and this relation becohéssn, + Ps, = p,

- wy, = sng/ Y sng is the probability that the cluster to which an arbitrarycagied
site belongs is as-cluster,

- S = sws =Y, s*ns/ >, sns is the average cluster size.

Analogously to the radius of gyration in polymer physicse alefines a distance

1< 1 <
- ’rz‘—r0|2 =52 [t — 1%,
S = 252 J

i,j=1

wherer, = ) . r;/s is the center of mass. This squared distance is directljeta the
average squared distance between two sites ef@unster,

s

bl 2 N~
RS_8(8—1)2|1 ]|7 (2)

2,7=1
s(s — 1)/2 being the number of pairs of sites in aitluster.

The correlation functiory(r) is defined as the probability that a site at a distance
from an occupied site is also occupied and belongs to the shrsier.

The average number of sites to which an occupied site is abethés _ g(r). This
average number is equal to the average cluster size

S = Zg(r). (€))

The sum is over all sites. The correlation or connectivibyglh is defined in terms of the
mean square distance between two sites belonging to thedaster

2 _ > r2g(r) _ > R2s’n,
>-g(r) > 82ng

where the sums are over all clusters. Note that in this Seefidengths are normalized
to the size of the cell.

(4)
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The large clusters and the infinite cluster will not form h@®aoeous clouds of sites,
in particular not near the percolation threshold. They wdlhtain many holes of a wide
variety of sizes. This is typical for fractal structures.eldoncept of fractal dimension will
enable us to express the siZgof a cluster in terms of the number of sitesf the cluster.
The mass, i.e., the number of sites of a cluster within a eadia a in d-dimensions is

m(r) ~ ¥, (5)
whered; is the fractal dimension. From(R,) ~ R¥ = sfollows a scaling forR;

R, ~ 5"/, (6)
The probability that an arbitrary site belongs to the inéirgluster isf < p.)

a’s

The central assumption in percolation theory is the follayscaling hypothesis. In the
remainder of this Section | follow largely Chapters 13 and fithe book by Balescu [2].

The probability that a given site belongs to an s-clusternveg by a scaling formula
involving only two characteristic exponents

ns(p) = 57" fo(|p — pe|/7s). (8)

This scaling is assumed to hold for all dimensions and aidatstructures and to be valid
in the limitp — p.ands — oc. The critical probabilityp. depends on the geometry of the
lattice. The coefficients and 7 are universal, they depend only on the dimensionality
and have the same value above and below the percolatiorhibicesThe functiory’, ()

is defined forr > O i.e. forp > p.and f_(z) for z < 0 i.e. forp < p.. Their form is not
universal but depend on the lattice structure.

There exist a crossover size= |p — pe| 7V
fe(z) — constant x<<1 ide. s<<sg,

fi(x) — 0 (veryfast) x>>1 ide. s>> s

The first of these statements implies that at the percoldatieeshold,n.(p = p.) has a
power law behavior,

ns(pe) = s 7. 9)

It should be stressed that this scaling law (8) is an assompti holds either analytically
or numerically for many lattice structures and dimensidng, has not been proven for
general structures and dimensions from first principles.



The scaling law (8) implies the scaling of most quantitiesamtered in this Section,
in particular near the percolation threshold. Substit8jer(to thekth moment ofn,,

My, = Z sPng(p) — /ds ST (Ip — pe|V7s) = |p — pe| TRV /da: T fu ().

s

Hence, one finds the scaling

My = s*ny(p) oc [p —pe| 077 (10)

The average cluster size§s= " s?n,/ > sn, = p~! My, so that we obtain the scaling

_ 3—T
SO( |p_pc| 'y’ Y= p ) (|p_pc| <<pc)' (11)

The correlation length (4) is

o DRI, Mayoa,

a” = o |p — pe| 7,

Sos?n, My
where we have used (6) in (10). Thus, the correlation lengjésdike
. 1
a X ’p_pc’ ) V= —. (12)
O'df

The exponent takes the value= 4/3 in 2D, v =~ 0.9 in 3D, andv = 1/2 for the Bethe
network [1]. For p < p., (12) is a measure for the size of a cluster. On the other hand f
p > pe, (12) measures the size of a hole in the infinite cluster!

The probabilityP,, of a site to belong to the infinite cluster is

Poo:_ans+p:p_pc_zsns+zsns(pc)

=p—p.+ / ds s'"7f(0) — /ds s ().
This yields the scaling

T—2
o

For sizes below the correlation length, the infinite clugeself-similar (fractal). Accord-
ing to (7) and (12) P, o %~ o< a% 4, so that we find the scaling

Pu o< |p — pe| 149, (14)
Equations (13) and (14) give the following relation betwésmexponents

df:d—é. (15)
1%

6



Another concept that we will need in a later section is theml perimeter or hull
of a cluster. The hull consists of sites of a cluster that Imeay vacant sites that are
connected to the outside world. One could imagine that ao@mndalker that is hopping
onempty sitesind that starts at the outside of the system, will hit thetehest one of the
sites of this external perimeter (the walker cannot petettee cluster). Some of these
sites will be easily encountered, other will be hidden inpigerds. The hull turns out to
be a multi-fractal curve

L =~ a% (16)

with dimension ,
&y = —2, (17)

1%

In 2 dimensionsy = 4/3 so thatd;,, = 7/4; this is an exact result [6]!

Finally, let us consider the conduction problem introduse&ection I. The config-
uration is given in figure 3. The alloy consists of a latticedirdimensions. In each
direction the sample ha¥ sites, so that the surface of the plate consist&/6f! sites.
The plates are separated by a distahc&he global conductivity is the ratio between the
total current/ and the voltagé’, I = SV. Write 3 in the form

Nd—l
L

The conductivity? is independent of the size of the plates and their distamckdapends
only on the composition of the alloy, = X(p). It is clear that=(0) = 0 andX(1) =

1, where the conductivity is assumed to be normalized to uhitye sample is purely
conducting. As long ag < p. no current will flow through the system. It is only when
the infinite cluster appears,< p., that a current will flow. It turns out that

N(p) o< (p—p)', P> pe (18)

The exponent: is not equal to the exponeftas appears in (13) for the probabilify of
the infinite cluster. This can be understood from the obgienvahat the infinite cluster
contains many dead ends and dangling bonds, so that onlygfasehe "backbone’ par-
ticipates in the process.

3= .

Einstein’s relation between conductivity and diffusivigads ((see Part I)

6271

E — TDP
This relation will also hold in a percolative medium so thae diffusivity has the same
behavior as the conductivity

(19)

Dp X (p - pc)'ua P > Pe- (20)



Figure 3: Conduction in a disordered alloy (from [2])

II. Percolation and diffusion

In previous Parts we have explored the relation betweensidh and random walks. In
this Section we will continu this subject in a different cextt Here, we are interested
in diffusion processes in disordered systems that are rieatlak percolative structures.
In the description of percolation in the previous Sectiametdid not play a role. The

occurrence of random walks on a percolative lattice willodtice time as a new variable
in percolation.

The problem of diffusion in a percolative lattice was coined3] as "the ant in the
labyrinth”. The ant (particle) may move from an occupieé sita nearest neighbor that is
also occupied. At = 0 the ant starts and looks if there is a nearest site that igpaedult
chooses one at random and moves to that site. If there is npi@ctnearest neighbor the
ant stays where it is. At= 1 the process is repeated and so forth. After a tirttee ant
will have travelled a distancet) from its initial position. This whole process is repeated
by starting from any other initial site. Since we are studytfiffusion we are interested
in the mean square displacement (or mean square deviati®) M3?(t) >. This MSD
will depend on the geometry of the lattice and on the valug. dh this Section we will
employe percolation theory in order to explore the scalifipe distance over which the
ant can travel. Here, we will denote this distancefby

When the probability that a site is occupied vanishgs = 0), the ant has to stay
where it is and cannot move so thatr?(t) >= 0 . In the opposite limip — 1, all sites
are occupied and, thus, available to the ant, and the anpwifbrm a classical random



walk with
R* =< r*(t) >= 2dDt. (21)

Next, consider intermediate valuesof Below the percolation threshold, < p < p,,
all clusters are finite. This means that the ant can diffuselinthe cluster, but can never
leave it. This clearly means

R?* — constant, t — oo, 0<p<pe. (22)

This constant will be a function dp. — p|. In the case of finite clusters, all sites of a
cluster will be equally probable for long times. The proliaibdf a site to belong to an
s-Cluster issn,. The size of such a cluster, thus, the distance over whichrihean travel,

is R,. Hence, the mean square distance of the random walk of the ant

R? = Zssnng X (pe — p)ﬁ_z”. (23)

Here, | have used (6) and (8) in (1@);andg are defined by (12) and (13), respectively.
When the probability of occupation is larger than the petgatethreshold(p > p.), an
infinite cluster exists. This means that the ant may travatrary far from its initial po-
sition. However its "diffusive mobility” is limited with repect to the case represented by
(21) due to

- the presence of finite clusters in the system which act @s ti@r any ant that starts
from a site inside such a cluster,

- the infinite cluster encloses many holes and contains maag énds. The infinite
cluster really looks as a labyrinth to the ant!

As a result, near the percolation threshold the MSD will naiwglinearly with time
as in (21) but will increase at a lower rate

R* = At™, o<1, Pe <p <1 (24)

This representsub-diffusion The diffusion exponeni(p, d) will be a function of the
probabilityp and of the dimensionality. Numerical simulations have shown thép,.) ~
2/3ford =2, a =~ 0.4 ford = 3, and thate — 1 for p — 1. Actually, (24) is valid
for long but not not too long times. For really large times whe’ grows beyond the
correlation length, the ant does not feel the fractal ctiaraanymore, and beyond some
cross-over time one will find — 1 for ¢t — oo.

For values op abovep,., we must reobtain Einstein’s relation between the conditigti
and the diffusion coefficient, « D, (see (20)). In a percolative lattice the conductivity
will depend on the differencé,. — p| according toX « (p — p.)*, but otherwise be
independent of time. Hence, we must have

R? = Dyt o t(p — p.)". (25)

9



In order to cover all these limits, we assume tiRdtscales with time and with — p.
according to

R o t°G(|p = pe|t?). (26)
Forp < p. the validity of both (23) and (26) requires+ =(5 — 2v) = 0 and forp > p,.
the validity of both (25) and (26) lead to+ px = 1. This means that the exponents in
the scaling formula (26) are

2v— 1
e =" 27
“Tuwru-p T wap-p @7

lll. Diffusion equation

Now we are ready to consider in more detail a few aspects aidora walk on a fractal,
percolative structure. The probability distribution of arficle to be at the positior at
time ¢t might be calculated from a master equation with the spetificaf all transition
probabilities between sites.

Let P;(t) be the conditional probability that the ant is at positi@t timet, given that
it starts at = 0 att = 0, i.e., Py(0) = 1, P;(0) = 0 for i # 0. This P;(t) obeys a master
equation

Bi(t+1) = B(t) = X504 05(t) — 053 (1)), (28)
whereo;; is the probability for the ant to hop from sité¢o the nearest neighbor sifeln
the limit of long times, we may write this equation as

dP,(t)
dt
This probability P; will be an extremely complicated and irregular function ankil con-
tain singularities on all scales.

Here, we will not continue this approach, but, instead,t$tam Fick’s law for the
densityn(x, t) and generalize this equation for the description of diffnsbn a fractal
substrate [4]. The resulting densityx, t) will be the smoothed envelope of the actual,
irregular probability density.

Fick’s law for the density profile in a d-dimensional space is
on _ -V, TI'=-DV. (30)
ot
The Laplacian on the right-hand-side can be expressed pe(hgpherical coordinates.

For initial conditions that depend only on the radius (e.gdetta function), we may
average over the angles

on or on
;= - I'=—-Dr o (32)

10



This equation can be looked at as a diffusion equation in ememsion with a space
dependent diffusion coefficient. The interpretation of tiven on the left is that it is the
time rate of change of the probability(r) o« r¢~1n(r,t) of finding a particle in a shell
between- andr + dr. Here,r¢~! is proportional to the number of sites in the shell and
n(r, t) is the probability per fractal site of finding a particle(att). This diffusion equa-
tion is generalized a follows.

-In a fractal structure embedded in an Euclidean space, Ihsites are accessible to a
particle like on an regular, Euclidean lattice. Therefdine,number of occupied sites that
are accessible to the particle is not proportionattd but tor? ~!, so that the probability
of finding a particle in a shell igu(r) o r%~In(r, t).

- For the same reason and in a similar way we generalize thé ftax

on

[ = —Dr¥?
" or

- In a fractal structure it is not obvious that the diffusiasetficient is a constant. Since
we deal with sub-diffusion we write

D= D(r)=Kr™*
in order to account for a slower growth with distance.

With these generalizations, the one-dimensional diffugiquation (31) becomes

on K 9 4,140n(rt)

ot rdi1 arr or (32)
This is thegeneralized diffusion equatiaterived in [4].
The diffusion equation (32) has self-similar solutionsta form
rduw
n(r, t) = t_d5/2F(T). (33)

The substitution of this expression into (32) and the rezqaent that the probability can
be normalized, which means that% ~'n(r, t)dr = constant, yield the relations

2d,

s = ) dy =2+86. 34
240 + (34)

The mean square displacement that follows from (33) is

<7r?(t) >= /derdfrdf_ln(n t) = Cyt®, a=—=—", (35)

11



(5 being a constant independent of space-time. Tdiffision on a fractal substrate is
sub-diffusivelt is seen that the exponefin (32) is at the origin of thistrange diffusion

The full solution to (32) which satisfies the initial conditin(r,0) = 6(r) is [4]

2+0 1 2460

n(rt) = T(d;/(2 +6)) Koo

.
K(2+0)2t

44/ 240 excp [ — ) (36)

This can easily be checked by substitution.
A Gaussian distribution is reobtained féf = d = 2,0 = 0. Using this expression to
find < r%(t) >, gives (17) with

_ P(%> 2 714/ du
Cy = A (2 + 0)2K]Y 4. (37)

240

The probability of return to the origin is according to (36)
n(0,t) = L=24/dw(t) = [74(¢),  L(t) x VKt, (38)

L(t) being the diffusion lengthd, is called thefractonor spectral dimension. Equation
(38) is the generalization of the Gaussi@n = 2,0 = 0) resultn(0,t) = L=%(t) where
L(t) < /Dt is the diffusion length.

Again, we recall the Einstein relation (19). According t@)3he diffusion coefficient
is space dependenh), = D = Kr~’. In addition, we must take into account that the
diffusion takes only place on the infinite cluster only, satth, = Kr=?P.(|p — p.|).
Thus, Einstein’s relation takes the form

% oc D(r) P (p — pe)- (39)
According to (20) and (13) this yields
[p = pel* o< p = pel”. (40)
This will hold in particular for the correlation lengih~ ¢ ~ |p — p.| ™", so that

u—ﬁ'

0= (42)
14
It follows that the exponent in (35) is
3 2v

This exponent differs from the exponemthat is derived in the previous Section and is
given in (27). That difference is due to the fact that in thest®n the random walk takes

12



place on the infinite cluster only, while in the previous 8atthe diffusion was consid-
ered on the whole lattice.

Using (15) and (41), the spectral dimension (34) can be ssprkin terms of the basic
exponents

Qdf dv — 6
= - = 2—

dy, v+ p—pf3
It is found numerically thatl, = 4/3 is an excellent approximation far> 2. Ford < 6
it is even an exact result.

ds (43)

V. Percolation and continuous fluids

Diffusive transport in turbulent fluids consists of a numbgextremely complicated pro-
cesses. One of the complicating factors is the existencengf-tange correlations. In
this Section we will apply the concepts of fractality andq@éation to continuous fluids
in order to catch some aspects of this problem. First we il dvith mono-scale fluids
that are characterized by a single scale-lerigthd a single velocity’. This mono-scale
model will be generalized to a multi-scale model for a paatieé fluid. An effective
way to describe turbulent transport is the use of scalingesgmtations of characteristic
parameters to interpret experimental results. Many agfitins of percolation theory for
the description of turbulent diffusion are considered i [8

Assume that the system under consideration is an incomplegD fluid system.
Then, we may introduce the representation,

v(x,t) = e, x Vi(x,1). (44)

wherev is the fluctuating fluid velocity ang the streaming potential. Sinee Vi = 0,

the fluid parcels follow the instantaneous flow linges= constant. The level curves
of ¥ (x) are the fractal stream lines. The characteristic value> ain the scald is
U(l) = [V (l). The characteristit’ (/) represents the "intensity” of the particular stream-
line with scalel. The most intense streamlines will contribute most to thedport.

At fixed time the streaming potential(z) can be imagined as a landscape with val-
leys and mountains connected by passes (saddle pointspoSaiphat all valleys with
(x) < h, whereh is a constant, are flooded and form lakes. Whes small there are
only a few lakes in an area with many mountains and one woultb@@ble to cross the
y-landscape by boat. For larger valuesiadhe water level rises and some lakes become
connected because the water level becomes higher thangbéeaveen the correspond-
ing valleys. For higher and higher values/ofnore and more lakes will be formed that
also become more and more connected. The landscape nowbtesenore a system of
some large lakes with a few rising mountains. Above somécalivalueh,, the lakes
are so much connected that one would be able to cross taedscape over water. The

13



Figure 5:

transition from a landscape dominated by mountains to omeirtiied by water occurs
quite abrupt. One could say that at this critical valyghere occurs a phase transition.
Such transitions and critical phenomena are typical patiooi problems.

Percolation is a physical process that describes trandigbween two states of a sys-
tem. It deals with such diverse phenomena as the flow of Igjthdough semi-porous
media, electrical conductivity of alloys of conducting aisdlating materials, diffusion
of charged particles in a turbulent plasma, the percolaifomater through a thin tissue,
forest fires, etc.. All these phenomena may be captured uhdéreading otliffusion in
disordered media

Here, we will consider a 2D random flow from the point of viewparcolation. We

14



are interested in the behavior of large isolines i.e. lines

»(x) = h. (45)

The system is illustrated in the figure 3. The mountains aearitaxima of the stochastic
function ¢ (z,y), the valleys are the minima, and the passes are the saddies pbi).
The steepest descend curves through a saddle points thregatsrtwo neighboring min-
ima form the bonds of the system. A bond is 'conducting’ if treger level is higher than
the elevation of the saddle point,< h. The coast lines, i.e., the contours of constant
form the perimeters of the percolation clusters. The lem&l ¢ (x) = h through a ran-
domly chosen point is closed with probability one, i.e. mgdssters are finite. Exactly
one open line exists at the critical level= k.. The appearance of the infinite cluster at
h = h. is the phase transition occurring in such a system.

The streaming potential is bounded, statistically sign meyatnic, homogeneous and
isotropic, and does not contain degeneracies like peitalor singularities.

The probability of conduction associated with differenhtde must be independent.
This requires that the correlation functieny(x):(x’) > should decay sufficiently fast
with the distancex — x/|.

Up to now the time did not play a role in our discussion of p&tion. This means
for the physical system upon which we want to apply this thebay,the Eulerian time
on which the global geometry varies is required to be muchdonigan the Lagrangian
time in which a patrticle circulates around a contodir= constant. This implies that the
model is applicable to systems with long correlation timasesponding to large Kubo
numbers.

This picture of continuum percolation was first discussetiagpplied to diffusion in a
magnetized plasma by the authors of [5].

A. Mono-scale flow and percolation

Let us first consider the case of a mono-scale streamingfpaitenth characteristic length
[ and characteristic valué ~ V'I. This model has been introduced in Part Ill.

In order to apply percolation theory to this physical mode have to choose a small-
ness parameter that is equivalent to the distaipce p.| to the percolation threshold. On
the basis of the discussion in the previous section, we chibaspercolation parameter
to be the distance to the critical value,

‘h_hcy _

T €, e — 0. (46)

|p_pc| ~

15



This is the smallness parameter that describes the clasemé®e percolation threshold.
The maximum size of an contour is the correlation lerggtbf the mono-scale level lines

SN p—p
l C
Here,v is the percolation exponent whichis= 4/3 in 2D geometry. The diameter of
the contour is equivalent to the size of the percolationtelus\ contour with a diameter
larger tharg, is an exponentially improbable event. Therefore, for carga < &, we
have

|7V ~ e, 47

|h - h0| _
—\If —

(gl_h)l/u < hf;) _ (%)fl/l{ (48)

This implies the scaling
a=le”, (49)

which illustrates that percolation theory applies to systeavith long range correlations.
In equation (48)L(a) is the distance between two= constant levels

Y
h(a) = Ay ~ w(a)|V| =~ w(a)T.
The lengthw(a) is taken to be the width of the percolation laydihe stream function

(or the magnetic flux function) forms regular curves outsideh a layer. This yields the
following scaling for the width of the percolation layer

w(a) = €l. (50)

The contour of diameter with relative lengthZ /[ is a fractal curve with the dimension

of a hull Ny
a, — L/ (51)

~ —Inl/a’

which yields the scaling (2D)

L 1
<= (%)dh ~ e, dy=1+". (52)

This is equivalent to the scalinf = e 'a. Thus, we have derived the scaling that is
appropriate for the applicability of the percolation motte&d mono-scale 2D flow

L ssamie” >>1>>w e (53)
€

The fraction of area occupied by an a-web is

Pla) ¥ ——— =~ €. (54)

CL2 a~ —v
D.ss(e) = 7@(&) R e (55)
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Figure 6: FIGURE SCALE-LENGTHS

a being the correlation length;, the correlation time, and(a) the percolation fraction
(54).

The minimum lifetimer of a percolation streamline is determined by the ballistnet
L/V it takes for a fluid parcel to complete a flow line. This eddytorer time must be
small as compared with the global tifieduring which the flow pattern exists. Thus, we
have

L
V <7<<T. (56)

i. The ratiol/T is a measure for the slow velocity with which a cell changesitape,
so that the minimum correlation time holds when the batlistne L/V is equal to the
time w7/l it takes for a saddle point to cross the percolation widthictvivould imply
an essential change of the cell,
el it (57)

This is related to the condition that the flow is incomprelesili also means that ~ 7'
Collisions do not play a role.

Equation (57) leads to a relation between the percolatioarpatere and the Kubo
numberk, = VT/I,

1
Then, one obtains from (56) the diffusion coefficient
I 2
Dejp = =K vin/itvdn — — |07 K >>1, (59)

T T

where we have used the 2D values- 4/3 andd;, = 7/4. This is the percolation limit of
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diffusion at large Kubo numbers.

ii. Suppose that the correlation timein (55) and (56) is set by the slow collisional
diffusion through the percolation layer in stead of by th@sthange of the configuration
as in the previous case. The diffusion timehrough the layer is

w®  (Ay)?
= — = ~ Top-
Dy V2D,

Here, 7, may be interpreted as the ‘field line diffusion time’. Theat®nr, ~ [/V
implies that as many particles flow into the percolation tag® are carried away along
the streamlines. This leads to a relation between the sessllparameterand the Peclet
numberP, = IV/D,

Td (60)

LD,

~ _ 3/13
€r P (lv) . (61)

Upon substituting (60) and (61) into (56) one obtains fordfiective diffusion coefficient

Djp ~ IV P3/13, (62)

B. StochasticE x B transport [7]

Let us apply the previous results to transport in electtmst@aves in a plasma that is
embedded in a strong magnetic field. At low-frequenciesofehe gyration frequency)
and for long wavelength (larger than the gyro-radius), tti¢ mhotion of a guiding center
particle is
&= < . 63)
o = Ve + 7 x Vo(z,y,z,t) (
The magnetic field if3e., ¢ is the random electric potential, andthe velocity along the
magnetic field. The field is taken to be homogeneous and umifdihen,v| is constant,
so that the parallel component of (63) can be integrates 2, + v|t. Hence, (63) can be
written in the form (44) with

V(e t) = Ho(@y. 20 + vt b) (64)

Typical wavelengths argk, , k| ), with & ~ 1/qR for a tokamak. We will take for the
widths of the spectrum\k, ~ &k, andAkj = k. Then, the Eulerian life tim&" and the
fundamental lengthin the system are
1 1
T=— l~ — 65
max(ws, kyvy)’ ki’ (65)
wherew, is the drift-frequency. Inserting these values into théudibn coefficient of

percolation (59) gives

L 03,cP 07
D~ ()3 (=
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where® is the characteristic value of the electric potential. Tfieat of collisions has
been neglected, which means that the collision tigg has to be longer thafi and the
mean free path.,; longer than the length of a flow line.

In case of stochastic magnetic fields in a system with a stb@aoggground magnetic
field Bye., the field can be represented as

B = By(e. + e, x V). (67)

Here, ¢ (z,y, 2) is the random magnetic flux function. The stochastic fieldeschke
db/By ~ 1 /1. The field line equations in the transverse plane are

dx =e, x V. (68)
dz

This is equivalent to (44). The diffusion coefficient is n@noc W),

V. Multi-scale flows

In this Section we will extent the self-similar mono-scaledul to a multi-scale-model.
We will deal with the scaling properties of transport prasssin systems with a hierarchy
of superimposed flows. These flows are spatially coupled aadacterized by a nested
system of scales.

The hierarchy of spatial scaléss
lo>1 >0y > ... > 1. (69)
The total velocity field is the sum of the velocities on eacilec
v(z) = vo(z) +vi(x) + .o + v (). (70)
The characteristic velocity on each scale is defined by
Vi(ly) = V< (i 4+ 1;) — vi(2))? >, (71)

and are assumed to obey the self-similar scaling

l; Li g
V= (Z—)M_le = (Z—)M Vo (72)
m 0
This is equivalent to equation (6) of PART Il with = M — 1. Here,l may denote ei-
ther the scale-length along or the scale-length perpendicular to the stream lines or to
some other specific direction set by the physics of the pmlaiehand. In the anisotropic
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case we will deal with the hierarchy, o lﬁ”‘l. This means, e.g., that drift effects in the
perpendicular direction depend on longitudinal scales.

Two different situations occur with respect to the valuébf The first case i3/ > 1.
This corresponds to
Vo>Vi>Vo> .. >V, (73)

The characteristic features of transport are determinethéymaximum value of for
such a system.

Similar estimates have been considered for the Kolmogoienatchy of scales. The
Komolgorov scaling of the energy irspace £ (k) oc k%3, impliesV}, o< k~'/3, which
means/ (1) oc ['/3. This corresponds t&/ = 4/3 > 1.

The case of greatest interest, however, arises Wen 1. Then we have
Ww<W<Va<..... < V. (74)

This means that the small-scale fidld ; causes small-scale, large amplitude perturba-
tions of the large-scale field. One might also say that the large-scale fiélds a locally
homogeneous, small perturbation of the small-scale Tiglg

If the random velocity can be represented by a streamingnpatev = e, x V),
then we adopt, in agreement with (70),

Y(x) = Yo(x) + U1(X) + ... + V(X). (75)

The characteristic value af on the scalé is ¥ (/) ~ [V/() and is assumed to depend on
the spatial scaleasV; ~ \Ifo(li/lo)M, in agreement with (72).

The physical smallness parameter is

i i -
€ = V = ()" M<1 (76)
‘/;'4’1 liJrl

Power spectrum
The Wiener-Khinchin theorem says that the power spectruenstétionary random pro-
cess is the Fourier transform of the correlation function,

P() = [ dpCip)e™ 1)

The velocity correlation function i€'(p) =< v(z)v(z + p) >. The inverse transform is
1 R .

Clp) =< v(ao(e +p) >= o / kP (k)e ™, (78)
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with P(k)6(k + k') =< vzuw >. Apply this to the velocity field on the scale Consider
the self-similar casé.; = rl; with » < 1. The power spectrun® (k) is the Fourier
transform of the correlation function

<v’>= Y P(k). (79)

r<kl;<1

Assume that the power spectrum is isotropic in d dimensionsi@an algebraically de-
caying function ofk, A
P(k) = AkSE™, (80)

herek; = 27 /L is the global scale. Each intervak kl; < 1 contains many modes so
that we may approximate

1 ki=1
Z - — dk. (81)
r<ki<l ki Jri=r
This yields the following expression

kl=1
<v?>=A / dk k77 = AS, / dk ka1 (82)

kl=r

A
= d_Siju — e,

According to (72) we also have the scalingg) = A;/*~!. From (82) one obtains the
following relations between the exponents and coefficients

AS,
d—ry

—d
M=1+1" A=

(1—rt)] 72 (83)

We also have
C(p) = SP(k)e*» — A / A%k ke,
This yields
O(p) - gdAp2M7 ZO <p< lm7 (84)
with
kop )
fd = Sd/ d$ $_1_2M€m
k

mp
In the limitskyp — 0 andk,,,p — oo, the existence of the integral requirgs < 0.

VI. Multi-scale flows and percolation

Consider the multi-scale streaming potential (75). The @ased scales and velocities
are given by (69) and (74). The physical smallness pararnseggren by (76).
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Figure 7: conservation

The scaling (72) with\/ < 1 implies that the large scale field_; is a locally ho-
mogeneous, small perturbation of the small-scale fieldrhis means that the field,_,
causes a change in the critical levie(:) of 1,

hc = hc(l) + wi,l,i\vwi\ (85)
so that with¥; = V;/I;, the smallness parameter of the percolation model is

_ ’h - hc(i)‘ . Wi—1,

€ T, T (86)
The multi-scale correlation lengths scales like
i1~ lie”. (87)
In agreement with (52), the length of a contour on the scalgisf
Li ~ (5L ydn, dp =1+ 1/v. (88)

l;

The smallness parameteof percolation theory is not a physically observable quan-
tity. Therefore, we introduce a renormalization by relgtinto the physical smallness
parametet,. Let us assume that

Vo o liiw

o~ — — a+v 89
i o €p = € (89)

and chooser = 1. This choice implies
Vzelazel,z' ~ V;wifl,i (90)
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Two-dimensional random flow
near the percolation threshold

. The longest streamline that is responsible for anomalous
transport

Figure 8: NOTES// ISICHENCO

or

D1V = Vi, (91)

whereVy; = a,_1,;V;/L; is the slow drift of the particle across the correlation lgnand
i1, L T+

By gy o DL (92)

i—1,
is the area fraction covered by a streamline that extendsabeerrelation length;_ ;.
Thus, the slow drift on the i'th scale has the same scalingaselocity on thei — 1)’th
scale.

The lengthsy;_; ; anda,_; ; can now be expressed in terms of the physical smallness
parameter or in terms of the ratio of the scale lengths
Wi—1,i . Iy \1-m Qi-1i 1 l; | zva-an)

= ( = ()T (93)

pr— 6 _— 60
l; 0 ’ l;

The ordering

...li+1 < Qg1 < Wim14 < l; < i1 < oeen , (94)
requires
1
—— <M< 1. (95)
1%

These inequalities guarantee that the perturbation is weak and quasi-homogeneous
with respect ta);.
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A. Application to a tokamak [9]

Consider a torial plasma with magnetic field

B:RBJw+r&V0+B:BA%+E%%)+VX¢V¢ (96)

where

- ¢ and# are the tora@al and poliédal angles,
- r is the minor radius,

- R = R(1 + ecos ) is the major radius,

-e¢ = r/R << 1 is the ratio of the minor to the major axis (not to be confuseth w
the percolation parameter),

- RBy =~ constant in a low-3 plasma,
- ¢ = rB,/RBy is the inverse rotational transform,
-B = V¢ x V¢ is the fluctuating magnetic field.

Consider turbulence with frequencies of the order of the thefjuency
wrw, =k cT/eBl,, l, =n/|Vn|,
l,, being the density scale-length. These waves have long amaytkls parallel to the main
field and short perpendicular wavelengths
kll’l ~ qR, kTt = pi.
The widthAw of the spectrum satisfies
Aw < wy < wy, wy; = Uy /qRo,

wy; being the thermal ion transit frequency.

We adopt the standard mixing length ril& ~ Vnq to get an estimate for the random
electric potentiafd
e b (97)
un T ]CJ_Ln
The toroidal electric field has to be small in a high temperplasma. This means that
contribution from the vector potential is of the same ordette one from the electric

potential,




This implies the following scaling foB

B ki 1

B~ Ry,  kiqRo (%8)

The motion of the guiding center along the magnetic field igheined by the parallel
electric field and the magnetic mirror foree.(B/B) - VB,

e R quiR sin 6. (99)

u, = v +ug+ug, (100)

where . )
up = Ew x V& (101)

is the ' x B velocity andup is the magnetic drift velocity of the electrons

vl +2[B VB

Y T . BB
v+ ZUﬁ
~ ——LVox VR (102)
wce

The first term on the right of (99) is small as compared withsbeond term,
(SB)puBS) " 2 a1 (103)

Hence, the fluctuating field has hardly any influence on thaanailong the magnetic
field. This means that the number of trapped and circulatartjgbes is not affected by
the fluctuations.

In principle, (99) can be solved for the parallel motion @dhe background field.
This solution can be used to eliminate the dependence oratiadlgd coordinate in (100).
The fluctuating part of the contribution (¢)3/B can be incorporated in a generalized
potential. The guiding center motion can then be written as

dr | B c = UH(t) ~

pm —ngxV(B(I) Iz Y) +ug. (104)
where the fluctuating potentials are functiong(aff,¢). The time dependence consists
of a contribution with frequency ~ w, and of a part with "frequencykv; ~ v /qR,
which is introduced as a result of the elimination of the paraoordinate.
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Figure 9: YUSMANOV

The ratio of the fluctuating part of the guiding center veipto the magnetic drift

velocity is -

Ug

up - vk L pi (w*, CJRO) - (ln’ Uti). (105)
Thus, the typical levels of the random velocity exceed thgnete drift, which means
that the deviation of the particle from the magnetic surfescgetermined by the fluctuat-
ing fields, not by the magnetic drift. The magnetic drift e#glocan be considered as a
large scale perturbation of the fluctuating part of the véacThis is the essential point
of this treatment.

Now we are in the position to apply the multi-scale percolatnodel of the proceed-
ing section. We takep = V; andu, = V;. The physical smallness parameter is

Vo Up
_ 0 _'B 106
€o i @g ( )
According to (87), (88), and (89), the correlation lengthgs= lleg”/”“” and the length
of a streamline on the scaleis L = lleg”dh/H”. The patrticle runs around a flux line in

the timer = L/V;. During this time the particle drifts over a distance of tloerelation
lengthag;. The average drift velocity of such a particle is (see 91) @)

ap1 aop1 —v/14v Ug \v/1+v
Vim — ~ —V) = ¢ Vi = ()

T L upg
This can be written a®(,V; =~ ug. Thus, in the percolation region the drift velocity is
enhanced ovei g by the area fraction.
The effective diffusion coefficient is

up >> upg. (107)

2 ~

Dep ~ B2 81V 27, s b r (—2)47, (108)
Te up

where the correlation time is set by the dependence on taguéncy’r, ' ~ w, = v /¢R

of the streaming potential.
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