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I. Percolation

Percolation theory deals with the formation of long-range connectivity in random (dis-
ordered) systems (like porous rocks, but also turbulent fluids and plasmas) and contains
elements of probability theory and of geometry. One might say that it is a branch of statis-
tical geometry. Percolation is not based upon a dynamical law, it is a model describing in
simple terms the behavior of very complex dynamical systems. In that sense it resembles
the random walk studied in previous chapters.

Percolation theory is an important tool in the study of transport and equilibrium
in such diverse fields as the conduction of current in alloys of conducting and non-
conducting materials, the flow of liquids in porous media, the diffusion of charged par-
ticles in magnetized plasmas etc.. In percolation theory the disorder of the medium is
prescribed, is assumed to be given and not created by the processes under consideration.

The standard percolation geometry is a regular lattice ofd-dimensions which becomes
a random network by assigning to the sites (vertices) or to the edges (bonds) aprobabil-
ity of occupancyp. A site may be occupied or empty, in that case nothing is said about
bonds. On the other hand, bonds may be active or inactive and sites do not play a role.
In this Section we will consider two-dimensional systems (d = 2). Each site (or bond) of
a very large lattice is occupied independently of its neighbors. No correlations between
sites or between bonds are allowed. The lattice should be sufficiently large that boundary
effects can be ignored. The probabilityp that a site is occupied is also called, for obvious
reasons, the concentration. Each site has a certain number of neighbors. This number
depends on the geometry of the lattice and the number of dimensions. Nearest occupied
sites or vertices formclusters. A site and its neighbors belong to the same cluster if they
are both occupied. A site is isolated if all its neighbors areempty. Percolation theory
deals with the properties of these clusters.When the probabilityp is small, only small
clusters will exist. With increasing values ofp, the number of sites per cluster, i.e. the
average size of the clusters will increase. At a criticalpercolation thresholdpc, the long-
range connectivity, the infinite cluster will first appear.

As an example, consider the problem of conduction of an electric current through a
medium that consists of a mixture of conducting and isolating substances. In this case we
call a site occupied if it consists of conducting material and empty or vacant if it consists
of non-conducting material. The alloy is bounded by two parallel plates over which a
voltage is applied. The ratio between the current and the voltage is the conductivity of the
medium. If the probabilityp that the site is occupied is small, no electrical path between
the two plates will exist. This means that the conductivity will be zero. Largerp means
that the size of the (conducting) clusters will be larger. When p grows, the clusters will
grow until suddenly, whenp reaches a critical valuepc, the medium starts to conduct an
electric current. This means that at the thresholdpc the long-range connectivity, the infi-
nite cluster, appears.These geometrical phase transitions described by percolation theory
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Figure 1: Definition of percolation and its clusters (from [1])

Figure 2: Example of percolation for two values of p (from [1])

exhibit all the characteristic features of physical phase transitions.

The number ofs-clusters per site, i.e. the probability that a given site belongs to an
s-cluster, is

ns =
∑

t

gstp
s(1 − p)t. (1)

Here,s is the number of sites of a cluster, also called its mass, andt its perimeter, i.e.,
the number of neighboring, empty sites of the cluster. Further, gst is a form factor that
depends on cluster geometry, but also on the type of lattice that is adopted. It can easily be
seen that the numbert of neighboring empty sites differs for different cluster geometries.
The sum is over all geometric forms that can be formed withs connected sites (bonds).

At p = pc the infinite cluster appears and exists forp > pc. The probability of a site
to belong to this infinite cluster is denoted byP∞.
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The probabilityns is a basic concept of percolation theory. Several probability func-
tions are based upon this notion.

- sns is the probability thatanysite belongs to ans-cluster,

- sns/p is the probability that anoccupiedsite belongs to an s-cluster,

-
∑

s sns = p is the probability that an arbitrary site belongs to any cluster (p < pc).
Forp > pc there is an infinite cluster and this relation becomes

∑

s sns + P∞ = p,

- ws = sns/
∑

sns is the probability that the cluster to which an arbitrary, occupied
site belongs is ans-cluster,

- S =
∑

s sws =
∑

s s
2ns/

∑

s sns is the average cluster size.

Analogously to the radius of gyration in polymer physics, one defines a distance

1

s

s
∑

i=1

|ri − r0|2 =
1

2s2

s
∑

i,j=1

|ri − rj|2,

wherer0 =
∑

i ri/s is the center of mass. This squared distance is directly related to the
average squared distance between two sites of ans-cluster,

R2
s =

2

s(s− 1)

s
∑

i,j=1

|ri − rj|2, (2)

s(s− 1)/2 being the number of pairs of sites in ans-cluster.

The correlation functiong(r) is defined as the probability that a site at a distancer
from an occupied site is also occupied and belongs to the samecluster.

The average number of sites to which an occupied site is connected is
∑

g(r). This
average number is equal to the average cluster size

S =
∑

g(r). (3)

The sum is over all sites. The correlation or connectivity length is defined in terms of the
mean square distance between two sites belonging to the samecluster

a2 =

∑

r2g(r)
∑

g(r)
=

∑

R2
ss

2ns
∑

s2ns
, (4)

where the sums are over all clusters. Note that in this Section all lengths are normalized
to the size of the cell.
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The large clusters and the infinite cluster will not form homogeneous clouds of sites,
in particular not near the percolation threshold. They willcontain many holes of a wide
variety of sizes. This is typical for fractal structures. The concept of fractal dimension will
enable us to express the sizeRs of a cluster in terms of the number of sitess of the cluster.
The mass, i.e., the number of sites of a cluster within a radius r < a in d-dimensions is

m(r) ≈ rdf , (5)

wheredf is the fractal dimension. Fromm(Rs) ≈ R
df
s = s follows a scaling forRs

Rs ≈ s1/df . (6)

The probability that an arbitrary site belongs to the infinite cluster is (p ≤ pc)

P∞ ≈ adf

ad
. (7)

The central assumption in percolation theory is the following scaling hypothesis. In the
remainder of this Section I follow largely Chapters 13 and 14 of the book by Balescu [2].

The probability that a given site belongs to an s-cluster is given by a scaling formula
involving only two characteristic exponents

ns(p) = s−τf±(|p− pc|1/σs). (8)

This scaling is assumed to hold for all dimensions and all lattice structures and to be valid
in the limitp→ pc ands→ ∞. The critical probabilitypc depends on the geometry of the
lattice. The coefficientsσ andτ are universal, they depend only on the dimensionalityd,
and have the same value above and below the percolation threshold. The functionf+(x)
is defined forx > 0 i.e. forp > pc andf−(x) for x < 0 i.e. forp < pc. Their form is not
universal but depend on the lattice structure.

There exist a crossover sizesξ = |p− pc|−1/σ

f±(x) → constant x << 1 i.e. s << sξ,

f±(x) → 0 (veryfast) x >> 1 i.e. s >> sξ.

The first of these statements implies that at the percolationthreshold,ns(p = pc) has a
power law behavior,

ns(pc) ≈ s−τ . (9)

It should be stressed that this scaling law (8) is an assumption. It holds either analytically
or numerically for many lattice structures and dimensions,but has not been proven for
general structures and dimensions from first principles.
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The scaling law (8) implies the scaling of most quantities encountered in this Section,
in particular near the percolation threshold. Substitute (8) into thekth moment ofns,

Mk =
∑

s

skns(p) →
∫

ds sk−τf±(|p− pc|1/σs) = |p− pc|(τ−k−1)/σ

∫

dx xk−τf±(x).

Hence, one finds the scaling

Mk =
∑

s

skns(p) ∝ |p− pc|(τ−k−1)/σ. (10)

The average cluster size isS =
∑

s2ns/
∑

sns = p−1M2, so that we obtain the scaling

S ∝ |p− pc|−γ , γ =
3 − τ

σ
, (|p− pc| << pc). (11)

The correlation length (4) is

a2 =

∑

R2
ss

2ns
∑

s2ns
=
M2+2/df

M2

∝ |p− pc|−2/σdf ,

where we have used (6) in (10). Thus , the correlation length sales like

a ∝ |p− pc|−ν , ν =
1

σdf
. (12)

The exponent takes the valueν = 4/3 in 2D, ν ≈ 0.9 in 3D, andν = 1/2 for the Bethe
network [1].For p < pc, (12) is a measure for the size of a cluster. On the other hand for
p > pc, (12) measures the size of a hole in the infinite cluster!

The probabilityP∞ of a site to belong to the infinite cluster is

P∞ = −
∑

sns + p = p− pc −
∑

sns +
∑

sns(pc)

= p− pc +

∫

ds s1−τf(0) −
∫

ds s1−τf±(x).

This yields the scaling

P∞ ≈ (p− pc)
β, β =

τ − 2

σ
< 1, p ≥ pc. (13)

For sizes below the correlation length, the infinite clusteris self-similar (fractal). Accord-
ing to (7) and (12),P∞ ∝ rdf−d ∝ adf−d, so that we find the scaling

P∞ ∝ |p− pc|−ν(df−d). (14)

Equations (13) and (14) give the following relation betweenthe exponents

df = d− β

ν
. (15)
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Another concept that we will need in a later section is the external perimeter or hull
of a cluster. The hull consists of sites of a cluster that neighbor vacant sites that are
connected to the outside world. One could imagine that a random walker that is hopping
onempty sitesand that starts at the outside of the system, will hit the cluster at one of the
sites of this external perimeter (the walker cannot penetrate the cluster). Some of these
sites will be easily encountered, other will be hidden in deep fjords. The hull turns out to
be a multi-fractal curve

L ≈ adh (16)

with dimension

dh =
1 + ν

ν
. (17)

In 2 dimensions,ν = 4/3 so thatdh = 7/4; this is an exact result [6]!

Finally, let us consider the conduction problem introducedin Section I. The config-
uration is given in figure 3. The alloy consists of a lattice ind dimensions. In each
direction the sample hasN sites, so that the surface of the plate consists ofNd−1 sites.
The plates are separated by a distanceL. The global conductivity is the ratio between the
total currentI and the voltageV , I = Σ̂V . Write Σ̂ in the form

Σ̂ =
Nd−1

L
Σ.

The conductivityΣ is independent of the size of the plates and their distance, and depends
only on the composition of the alloy,Σ = Σ(p). It is clear thatΣ(0) = 0 andΣ(1) =
1, where the conductivity is assumed to be normalized to unityif the sample is purely
conducting. As long asp < pc no current will flow through the system. It is only when
the infinite cluster appears,p ≤ pc, that a current will flow. It turns out that

Σ(p) ∝ (p− pc)
µ, p > pc. (18)

The exponentµ is not equal to the exponentβ as appears in (13) for the probabilityP of
the infinite cluster. This can be understood from the observation that the infinite cluster
contains many dead ends and dangling bonds, so that only paret of it, the ’backbone’ par-
ticipates in the process.

Einstein’s relation between conductivity and diffusivityreads ((see Part I)

Σ =
e2n

T
Dp. (19)

This relation will also hold in a percolative medium so that the diffusivity has the same
behavior as the conductivity

Dp ∝ (p− pc)
µ, p > pc. (20)
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Figure 3: Conduction in a disordered alloy (from [2])

II. Percolation and diffusion

In previous Parts we have explored the relation between diffusion and random walks. In
this Section we will continu this subject in a different context. Here, we are interested
in diffusion processes in disordered systems that are modelled as percolative structures.
In the description of percolation in the previous Section, time did not play a role. The
occurrence of random walks on a percolative lattice will introduce time as a new variable
in percolation.

The problem of diffusion in a percolative lattice was coinedin [3] as ”the ant in the
labyrinth”. The ant (particle) may move from an occupied site to a nearest neighbor that is
also occupied. Att = 0 the ant starts and looks if there is a nearest site that is occupied. It
chooses one at random and moves to that site. If there is no occupied nearest neighbor the
ant stays where it is. Att = 1 the process is repeated and so forth. After a timet the ant
will have travelled a distancer(t) from its initial position. This whole process is repeated
by starting from any other initial site. Since we are studying diffusion we are interested
in the mean square displacement (or mean square deviation MSD) < r2(t) >. This MSD
will depend on the geometry of the lattice and on the value ofp. In this Section we will
employe percolation theory in order to explore the scaling of the distance over which the
ant can travel. Here, we will denote this distance byR.

When the probabilityp that a site is occupied vanishes(p = 0), the ant has to stay
where it is and cannot move so that< r2(t) >= 0 . In the opposite limitp → 1, all sites
are occupied and, thus, available to the ant, and the ant willperform a classical random
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walk with
R2 =< r2(t) >= 2dDt. (21)

Next, consider intermediate values ofp. Below the percolation threshold,0 < p < pc,
all clusters are finite. This means that the ant can diffuse inside the cluster, but can never
leave it. This clearly means

R2 → constant, t→ ∞, 0 < p < pc. (22)

This constant will be a function of|pc − p|. In the case of finite clusters, all sites of a
cluster will be equally probable for long times. The probability of a site to belong to an
s-cluster issns. The size of such a cluster, thus, the distance over which theant can travel,
isRs. Hence, the mean square distance of the random walk of the antis

R2 = ΣssnsR
2
s ∝ (pc − p)β−2ν . (23)

Here, I have used (6) and (8) in (10);ν andβ are defined by (12) and (13), respectively.
When the probability of occupation is larger than the percolation threshold(p > pc), an
infinite cluster exists. This means that the ant may travel arbitrary far from its initial po-
sition. However its ”diffusive mobility” is limited with respect to the case represented by
(21) due to

- the presence of finite clusters in the system which act as traps for any ant that starts
from a site inside such a cluster,

- the infinite cluster encloses many holes and contains many dead ends. The infinite
cluster really looks as a labyrinth to the ant!

As a result, near the percolation threshold the MSD will not grow linearly with time
as in (21) but will increase at a lower rate

R2 = Atα, α < 1, pc ≤ p < 1. (24)

This representssub-diffusion. The diffusion exponentα(p, d) will be a function of the
probabilityp and of the dimensionalityd. Numerical simulations have shown thatα(pc) ≈
2/3 for d = 2, α ≈ 0.4 for d = 3, and thatα → 1 for p → 1. Actually, (24) is valid
for long but not not too long times. For really large times when R2 grows beyond the
correlation length, the ant does not feel the fractal character anymore, and beyond some
cross-over time one will findα→ 1 for t→ ∞.

For values ofp abovepc, we must reobtain Einstein’s relation between the conductivity
and the diffusion coefficient,Σ ∝ Dp (see (20)). In a percolative lattice the conductivity
will depend on the difference|pc − p| according toΣ ∝ (p − pc)

µ, but otherwise be
independent of time. Hence, we must have

R2 ≈ Dpt ∝ t(p− pc)
µ. (25)
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In order to cover all these limits, we assume thatR2 scales with time and withp − pc
according to

R2 ∝ tαG(|p− pc|tx). (26)

For p < pc the validity of both (23) and (26) requiresα + x(β − 2ν) = 0 and forp > pc
the validity of both (25) and (26) lead toα + µx = 1. This means that the exponents in
the scaling formula (26) are

α =
2ν − β

2ν + µ− β
, x =

1

2ν + µ− β
. (27)

III. Diffusion equation

Now we are ready to consider in more detail a few aspects of a random walk on a fractal,
percolative structure. The probability distribution of a particle to be at the positionx at
time t might be calculated from a master equation with the specification of all transition
probabilities between sites.

LetPi(t) be the conditional probability that the ant is at positioni at timet, given that
it starts ati = 0 at t = 0, i.e.,P0(0) = 1, Pi(0) = 0 for i 6= 0. ThisPi(t) obeys a master
equation

Pi(t+ 1) − Pi(t) = Σj[σjiPj(t) − σijPi(t)], (28)

whereσij is the probability for the ant to hop from sitei to the nearest neighbor sitej. In
the limit of long times, we may write this equation as

dPi(t)

dt
= Σj[σjiPj(t) − σijPi(t)]. (29)

This probabilityPi will be an extremely complicated and irregular function andwill con-
tain singularities on all scales.

Here, we will not continue this approach, but, instead, start from Fick’s law for the
densityn(x, t) and generalize this equation for the description of diffusion on a fractal
substrate [4]. The resulting densityn(x, t) will be the smoothed envelope of the actual,
irregular probability density.

Fick’s law for the density profile in a d-dimensional space is

∂n

∂t
= −∇ · Γ, Γ = −D∇2n. (30)

The Laplacian on the right-hand-side can be expressed in (hyper-)spherical coordinates.
For initial conditions that depend only on the radius (e.g. adelta function), we may
average over the angles

rd−1∂n

∂t
= −∂Γ

∂r
, Γ = −Drd−1∂n

∂r
. (31)
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This equation can be looked at as a diffusion equation in one dimension with a space
dependent diffusion coefficient. The interpretation of theterm on the left is that it is the
time rate of change of the probabilitym(r) ∝ rd−1n(r, t) of finding a particle in a shell
betweenr andr + dr. Here,rd−1 is proportional to the number of sites in the shell and
n(r, t) is the probability per fractal site of finding a particle at(r, t). This diffusion equa-
tion is generalized a follows.

-In a fractal structure embedded in an Euclidean space, not all sites are accessible to a
particle like on an regular, Euclidean lattice. Therefore,the number of occupied sites that
are accessible to the particle is not proportional tord−1 but tordf−1, so that the probability
of finding a particle in a shell iŝm(r) ∝ rdf−1n(r, t).

- For the same reason and in a similar way we generalize the fluxΓ to

Γ̂ = −D̂rdf−1∂n

∂r
.

- In a fractal structure it is not obvious that the diffusion coefficient is a constant. Since
we deal with sub-diffusion we write

D̂ = D̂(r) = Kr−θ

in order to account for a slower growth with distance.

With these generalizations, the one-dimensional diffusion equation (31) becomes

∂n

∂t
=

K

rdf−1

∂

∂r
rdf−1−θ ∂n(r, t)

∂r
. (32)

This is thegeneralized diffusion equationderived in [4].

The diffusion equation (32) has self-similar solutions of the form

n(r, t) = t−ds/2F (
rdw

t
). (33)

The substitution of this expression into (32) and the requirement that the probability can
be normalized, which means that

∫

rdf−1n(r, t)dr = constant, yield the relations

ds =
2df

2 + θ
, dw = 2 + θ. (34)

The mean square displacement that follows from (33) is

< r2(t) >=

∫

drr2dfr
df−1n(r, t) = C2t

ᾱ, ᾱ =
2

dw
=

2

2 + θ
, (35)

11



C2 being a constant independent of space-time. Thus,diffusion on a fractal substrate is
sub-diffusive. It is seen that the exponentθ in (32) is at the origin of thisstrange diffusion.

The full solution to (32) which satisfies the initial conditionn(r, 0) = δ(r) is [4]

n(r, t) =
2 + θ

Γ(df/(2 + θ))
[

1

K(2 + θ)2t
]df/(2+θ) exp[− r2+θ

K(2 + θ)2t
]. (36)

This can easily be checked by substitution.
A Gaussian distribution is reobtained fordf = d = 2, θ = 0. Using this expression to
find< r2(t) >, gives (17) with

C2 =
Γ(

df+4

2+θ
)

Γ(
df

2+θ
)

[(2 + θ)2K]4/dw . (37)

The probability of return to the origin is according to (36)

n(0, t) = L−2df/dw(t) = L−ds(t), L(t) ∝
√
Kt, (38)

L(t) being the diffusion length.ds is called thefractonor spectral dimension. Equation
(38) is the generalization of the Gaussian(df = 2, θ = 0) resultn(0, t) = L−d(t) where
L(t) ∝

√
Dt is the diffusion length.

Again, we recall the Einstein relation (19). According to (32), the diffusion coefficient
is space dependent,Dp = D̂ = Kr−θ. In addition, we must take into account that the
diffusion takes only place on the infinite cluster only, so thatDp = Kr−θP∞(|p − pc|).
Thus, Einstein’s relation takes the form

Σ ∝ D̂(r)P∞(p− pc). (39)

According to (20) and (13) this yields

|p− pc|µ ∝ r−θ|p− pc|β. (40)

This will hold in particular for the correlation lengthr ≈ ξ ≈ |p− pc|−ν , so that

θ =
µ− β

ν
. (41)

It follows that the exponent in (35) is

ᾱ =
2ν

2ν + µ− β
. (42)

This exponent differs from the exponentα that is derived in the previous Section and is
given in (27). That difference is due to the fact that in this Section the random walk takes
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place on the infinite cluster only, while in the previous Section the diffusion was consid-
ered on the whole lattice.

Using (15) and (41), the spectral dimension (34) can be expressed in terms of the basic
exponents

ds =
2df
dw

= 2
dν − β

2ν + µ− β
(43)

It is found numerically thatds = 4/3 is an excellent approximation ford ≥ 2. Ford ≤ 6
it is even an exact result.

IV. Percolation and continuous fluids

Diffusive transport in turbulent fluids consists of a numberof extremely complicated pro-
cesses. One of the complicating factors is the existence of long-range correlations. In
this Section we will apply the concepts of fractality and percolation to continuous fluids
in order to catch some aspects of this problem. First we will deal with mono-scale fluids
that are characterized by a single scale-lengthl and a single velocityV . This mono-scale
model will be generalized to a multi-scale model for a percolative fluid. An effective
way to describe turbulent transport is the use of scaling representations of characteristic
parameters to interpret experimental results. Many applications of percolation theory for
the description of turbulent diffusion are considered in [8].

Assume that the system under consideration is an incompressible 2D fluid system.
Then, we may introduce the representation,

v(x, t) = ez ×∇ψ(x, t). (44)

wherev is the fluctuating fluid velocity andψ the streaming potential. Sincev · ∇ψ = 0,
the fluid parcels follow the instantaneous flow linesψ = constant. The level curves
of ψ(x) are the fractal stream lines. The characteristic value ofψ on the scalel is
Ψ(l) ≈ lV (l). The characteristicV (l) represents the ”intensity” of the particular stream-
line with scalel. The most intense streamlines will contribute most to the transport.

At fixed time the streaming potentialψ(x) can be imagined as a landscape with val-
leys and mountains connected by passes (saddle points). Suppose that all valleys with
ψ(x) < h, whereh is a constant, are flooded and form lakes. Whenh is small there are
only a few lakes in an area with many mountains and one would not be able to cross the
ψ-landscape by boat. For larger values ofh the water level rises and some lakes become
connected because the water level becomes higher than the pass between the correspond-
ing valleys. For higher and higher values ofh more and more lakes will be formed that
also become more and more connected. The landscape now resembles more a system of
some large lakes with a few rising mountains. Above some critical valuehc, the lakes
are so much connected that one would be able to cross theψ landscape over water. The
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Figure 4: The equivalent percolation lattice of a random functionψ(x, y).

Figure 5:

transition from a landscape dominated by mountains to one dominated by water occurs
quite abrupt. One could say that at this critical valuehc there occurs a phase transition.
Such transitions and critical phenomena are typical percolation problems.

Percolation is a physical process that describes transition between two states of a sys-
tem. It deals with such diverse phenomena as the flow of liquids through semi-porous
media, electrical conductivity of alloys of conducting andisolating materials, diffusion
of charged particles in a turbulent plasma, the percolationof water through a thin tissue,
forest fires, etc.. All these phenomena may be captured underthe heading ofdiffusion in
disordered media.

Here, we will consider a 2D random flow from the point of view ofpercolation. We
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are interested in the behavior of large isolines i.e. lines

ψ(x) = h. (45)

The system is illustrated in the figure 3. The mountains are the maxima of the stochastic
functionψ(x, y), the valleys are the minima, and the passes are the saddle points ofψ.
The steepest descend curves through a saddle points that connects two neighboring min-
ima form the bonds of the system. A bond is ’conducting’ if thewater level is higher than
the elevation of the saddle point,ψ < h. The coast lines, i.e., the contours of constantψ
form the perimeters of the percolation clusters. The level lineψ(x) = h through a ran-
domly chosen point is closed with probability one, i.e. mostclusters are finite. Exactly
one open line exists at the critical levelh = hc. The appearance of the infinite cluster at
h = hc is the phase transition occurring in such a system.

The streaming potential is bounded, statistically sign symmetric, homogeneous and
isotropic, and does not contain degeneracies like periodicities or singularities.

The probability of conduction associated with different bonds must be independent.
This requires that the correlation function< ψ(x)ψ(x′) > should decay sufficiently fast
with the distance|x − x

′|.

Up to now the time did not play a role in our discussion of percolation. This means
for the physical system upon which we want to apply this theory, that the Eulerian time
on which the global geometry varies is required to be much longer than the Lagrangian
time in which a particle circulates around a contourψ = constant. This implies that the
model is applicable to systems with long correlation times corresponding to large Kubo
numbers.

This picture of continuum percolation was first discussed and applied to diffusion in a
magnetized plasma by the authors of [5].

A. Mono-scale flow and percolation

Let us first consider the case of a mono-scale streaming potential with characteristic length
l and characteristic valueΨ ≈ V l. This model has been introduced in Part III.

In order to apply percolation theory to this physical model,we have to choose a small-
ness parameter that is equivalent to the distance|p− pc| to the percolation threshold. On
the basis of the discussion in the previous section, we choosethis percolation parameter
to be the distance to the critical valuehc,

|p− pc| ≈
|h− hc|

Ψ
= ǫ, ǫ→ 0. (46)
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This is the smallness parameter that describes the closeness to the percolation threshold.
The maximum size of an contour is the correlation lengthξh of the mono-scale level lines

ξh
l
≈ |p− pc|−ν ≈ ǫ−ν . (47)

Here,ν is the percolation exponent which isν = 4/3 in 2D geometry. The diameter of
the contour is equivalent to the size of the percolation cluster. A contour with a diameter
larger thanξh is an exponentially improbable event. Therefore, for contoursa ≤ ξh, we
have

|h− hc|
Ψ

= (
ξh
l

)−1/ν ≤ h(a)

Ψ
= (

a

l
)−1/ν . (48)

This implies the scaling
a ≈ lǫ−ν , (49)

which illustrates that percolation theory applies to systems with long range correlations.
In equation (48),h(a) is the distance between twoψ = constant levels

h(a) ≈ ∆ψ ≈ w(a)|∇ψ| ≈ w(a)
Ψ

l
.

The lengthw(a) is taken to be the width of the percolation layer.The stream function
(or the magnetic flux function) forms regular curves outsidesuch a layer. This yields the
following scaling for the width of the percolation layer

w(a) ≈ ǫl. (50)

The contour of diametera with relative lengthL/l is a fractal curve with the dimension
of a hull

dh =
lnL/l

− ln l/a
, (51)

which yields the scaling (2D)

L

l
= (

a

l
)dh ≈ ǫ−νdh , dh = 1 +

1

ν
. (52)

This is equivalent to the scalingL = ǫ−1a. Thus, we have derived the scaling that is
appropriate for the applicability of the percolation modelto a mono-scale 2D flow

L ≈ a

ǫ
>> a ≈ lǫ−ν >> l >> w ≈ ǫl. (53)

The fraction of area occupied by an a-web is

Φ(a) ≈ w(a)L(a)

a2
≈ ǫν . (54)

This is the percolation fraction of space. The effective, classical coefficient of diffusion is

Deff (ǫ) ≈
a2

τ
Φ(a) ≈ a2

τ
ǫν ≈ l2

τ
ǫ−ν , (55)

16



Figure 6: FIGURE SCALE-LENGTHS

a being the correlation length,τ the correlation time, andΦ(a) the percolation fraction
(54).

The minimum lifetimeτ of a percolation streamline is determined by the ballistic time
L/V it takes for a fluid parcel to complete a flow line. This eddy turn-over time must be
small as compared with the global timeT during which the flow pattern exists. Thus, we
have

L

V
≤ τ << T. (56)

i. The ratiol/T is a measure for the slow velocity with which a cell changes its shape,
so that the minimum correlation time holds when the ballistic timeL/V is equal to the
timewT/l it takes for a saddle point to cross the percolation width, which would imply
an essential change of the cell,

1

τ
≈ V

L
≈ l/T

w
. (57)

This is related to the condition that the flow is incompressible. It also means thatτ ≈ ǫT .
Collisions do not play a role.

Equation (57) leads to a relation between the percolation parameterǫ and the Kubo
numberKu = V T/l,

ǫ ≈ 1

K
1/1+νdh
u

. (58)

Then, one obtains from (56) the diffusion coefficient

Deff =
l2

T
K νdh/1+νdh

u =
l2

T
K0.7
u , K >> 1, (59)

where we have used the 2D valuesν = 4/3 anddh = 7/4. This is the percolation limit of
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diffusion at large Kubo numbers.

ii. Suppose that the correlation timeτ in (55) and (56) is set by the slow collisional
diffusion through the percolation layer in stead of by the slow change of the configuration
as in the previous case. The diffusion timeτd through the layer is

τd =
w2

D0

≈ (∆ψ)2

V 2D0

≈ τψ. (60)

Here, τψ may be interpreted as the ’field line diffusion time’. The relation τd ≈ l/V
implies that as many particles flow into the percolation layer as are carried away along
the streamlines. This leads to a relation between the smallness parameterǫ and the Peclet
numberPe = lV/D0

ǫ ≈ 1

P
1/(3+ν)
e

= (
D0

lV
)3/13. (61)

Upon substituting (60) and (61) into (56) one obtains for theeffective diffusion coefficient

Deff ≈ lV P−3/13
e . (62)

B. StochasticE × B transport [7]

Let us apply the previous results to transport in electrostatic waves in a plasma that is
embedded in a strong magnetic field. At low-frequencies (below the gyration frequency)
and for long wavelength (larger than the gyro-radius), the drift motion of a guiding center
particle is

dx

dt
= v‖ez +

c

B
ez ×∇φ(x, y, z, t). (63)

The magnetic field isBez, φ is the random electric potential, andv‖ the velocity along the
magnetic field. The field is taken to be homogeneous and uniform. Then,v‖ is constant,
so that the parallel component of (63) can be integrated,z = z0 + v‖t. Hence, (63) can be
written in the form (44) with

ψ(x, y, t) =
c

B
φ(x, y, z0 + v‖t, t). (64)

Typical wavelengths are(k⊥, k‖), with k‖ ≈ 1/qR for a tokamak. We will take for the
widths of the spectrum∆k⊥ ≈ k⊥ and∆k‖ ≈ k‖. Then, the Eulerian life timeT and the
fundamental lengthl in the system are

T =
1

max(ω∗, k‖v‖)
, l ≈ 1

k⊥
, (65)

whereω∗ is the drift-frequency. Inserting these values into the diffusion coefficient of
percolation (59) gives

D ≈ (
1

k2
⊥T

)0.3(
cΦ

B
)0.7, (66)
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whereΦ is the characteristic value of the electric potential. The effect of collisions has
been neglected, which means that the collision timeτcoll has to be longer thanT and the
mean free pathλcoll longer than the lengthL of a flow line.

In case of stochastic magnetic fields in a system with a strongbackground magnetic
fieldB0ez, the field can be represented as

B = B0(ez + ez ×∇ψ). (67)

Here,ψ(x, y, z) is the random magnetic flux function. The stochastic field scales like
δb/B0 ≈ ψ/l. The field line equations in the transverse plane are

dx

dz
= ez ×∇ψ. (68)

This is equivalent to (44). The diffusion coefficient is nowD ∝ Ψ0.7
0 .

V. Multi-scale flows

In this Section we will extent the self-similar mono-scale model to a multi-scale-model.
We will deal with the scaling properties of transport processes in systems with a hierarchy
of superimposed flows. These flows are spatially coupled and characterized by a nested
system of scales.

The hierarchy of spatial scalesl is

l0 > l1 > l2 > ..... > lm. (69)

The total velocity field is the sum of the velocities on each scale

v(x) = v0(x) + v1(x) + ........+ vm(x). (70)

The characteristic velocity on each scale is defined by

Vi(li) =
√

< (vi(x+ li) − vi(x))2 >, (71)

and are assumed to obey the self-similar scaling

Vi = (
li
lm

)M−1Vm = (
li
l0

)M−1V0. (72)

This is equivalent to equation (6) of PART III withh = M − 1. Here,l may denote ei-
ther the scale-lengthl‖ along or the scale-lengthl⊥ perpendicular to the stream lines or to
some other specific direction set by the physics of the problem at hand. In the anisotropic

19



case we will deal with the hierarchyV⊥ ∝ lM−1
‖ . This means, e.g., that drift effects in the

perpendicular direction depend on longitudinal scales.

Two different situations occur with respect to the value ofM . The first case isM > 1.
This corresponds to

V0 > V1 > V2 > ...... > Vm. (73)

The characteristic features of transport are determined bythe maximum value ofl for
such a system.

Similar estimates have been considered for the Kolmogorov hierarchy of scales. The
Komolgorov scaling of the energy ink-space,E(k) ∝ k−5/3, impliesV̂k ∝ k−1/3, which
meansV (l) ∝ l1/3. This corresponds toM = 4/3 > 1.

The case of greatest interest, however, arises whenM < 1. Then we have

V0 < V1 < V2 < ...... < Vm. (74)

This means that the small-scale fieldVi+1 causes small-scale, large amplitude perturba-
tions of the large-scale fieldVi. One might also say that the large-scale fieldVi is a locally
homogeneous, small perturbation of the small-scale fieldVi+1.

If the random velocity can be represented by a streaming potential, v = ez × ∇ψ,
then we adopt, in agreement with (70),

ψ(x) = ψ0(x) + ψ1(x) + ....+ ψm(x). (75)

The characteristic value ofψ on the scalel is Ψ(l) ≈ lV (l) and is assumed to depend on
the spatial scalel asΨi ≈ Ψ0

(

li/l0
)M

, in agreement with (72).

The physical smallness parameter is

ǫ0 =
Vi
Vi+1

= (
li
li+1

)M−1, M < 1. (76)

Power spectrum
The Wiener-Khinchin theorem says that the power spectrum ofa stationary random pro-
cess is the Fourier transform of the correlation function,

P̂ (k) =

∫

dρC(ρ)eikρ (77)

The velocity correlation function isC(ρ) =< v(x)v(x+ ρ) >. The inverse transform is

C(ρ) =< v(x)v(x+ ρ) >=
1

2π

∫

dkP̂ (k)e−ikρ, (78)
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with P̂ (k)δ(k+ k′) =< vkvk′ >. Apply this to the velocity field on the scaleli. Consider
the self-similar caseli+1 = rli with r < 1. The power spectrum̂P (k) is the Fourier
transform of the correlation function

< v2 >=
∑

r<kli<1

P̂ (k). (79)

Assume that the power spectrum is isotropic in d dimensions and is an algebraically de-
caying function ofk,

P̂ (k) = AkdLk
−γ, (80)

herekL = 2π/L is the global scale. Each intervalr < kli < 1 contains many modes so
that we may approximate

∑

r<kl<1

→ 1

kdL

∫ kl=1

kl=r

ddk. (81)

This yields the following expression

< v2 >= A

∫

ddk k−γ = ASd

∫ kl=1

kl=r

dk k−γ+d−1 (82)

=
ASd
d− γ

(1 − rd−γ)lγ−d.

According to (72) we also have the scalingv(l) = A1l
M−1. From (82) one obtains the

following relations between the exponents and coefficients

M = 1 +
γ − d

2
, A1 = [

ASd
d− γ

(1 − rd−γ)]1/2. (83)

We also have

C(ρ) = ΣP̂ (k)eikρ → A

∫

ddk k−γeikρ.

This yields
C(ρ) = ξdAρ

2M , l0 < ρ < lm, (84)

with

ξd = Sd

∫ k0ρ

kmρ

dx x−1−2Meix

In the limitsk0ρ→ 0 andkmρ→ ∞, the existence of the integral requiresM < 0.

VI. Multi-scale flows and percolation

Consider the multi-scale streaming potential (75). The associated scales and velocities
are given by (69) and (74). The physical smallness parameteris given by (76).
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Figure 7: conservation

The scaling (72) withM < 1 implies that the large scale fieldVi−1 is a locally ho-
mogeneous, small perturbation of the small-scale fieldVi. This means that the fieldψi−1

causes a change in the critical levelhc(i) of ψi,

hc = hc(i) + wi−1,i|∇ψi| (85)

so that withΨi = Vi/li, the smallness parameter of the percolation model is

ǫ =
|h− hc(i)|

Ψi

≈ wi−1,i

li
. (86)

The multi-scale correlation lengths scales like

ai−1,i ≈ liǫ
−ν . (87)

In agreement with (52), the length of a contour on the scale ofli is

Li ≈ li(
ai−1,i

li
)dh , dh = 1 + 1/ν. (88)

The smallness parameterǫ of percolation theory is not a physically observable quan-
tity. Therefore, we introduce a renormalization by relating ǫ to the physical smallness
parameterǫ0. Let us assume that

V0

V1

≈ (
l1
l0

)1−M = ǫ0 = ǫα+ν (89)

and chooseα = 1. This choice implies

Vi−1ai−1,i ≈ Viwi−1,i (90)
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Figure 8: NOTES// ISICHENCO

or
Φi−1,iVdi ≈ Vi−1, (91)

whereVdi = ai−1,iVi/Li is the slow drift of the particle across the correlation length, and

Φi−1,i ≈
wi−1,iLi
a2
i−1,i

≈ ǫ
ν

1+ν

0 (92)

is the area fraction covered by a streamline that extends over a correlation lengthai−1,i.
Thus, the slow drift on the i’th scale has the same scaling as the velocity on the(i− 1)’th
scale.

The lengthswi−1,i andai−1,i can now be expressed in terms of the physical smallness
parameter or in terms of the ratio of the scale lengths

wi−1,i

li
= ǫ

1
1+ν

0 = (
li
li−1

)
1−M
1+ν ,

ai−1,i

li
= ǫ

−ν
1+ν

0 = (
li
li−1

)
−ν(1−M)

1+ν . (93)

The ordering
...li+1 < ai,i+1 < wi−1,i < li < ai−1,i < ....., (94)

requires

−1

ν
< M < 1. (95)

These inequalities guarantee that the perturbationψi−1 is weak and quasi-homogeneous
with respect toψi.
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A. Application to a tokamak [9]

Consider a toröıdal plasma with magnetic field

B = RBφ∇φ+ rBθ∇θ + B̃ = Bφ(eφ +
r

qR
eθ) + ∇× ψ̃∇φ, (96)

where

- φ andθ are the toröıdal and polöıdal angles,

- r is the minor radius,

- R = R(1 + ǫ cos θ) is the major radius,

- ǫ = r/R << 1 is the ratio of the minor to the major axis (not to be confused with
the percolation parameter),

- RBφ ≈ constant in a low-β plasma,

- q = rBφ/RBθ is the inverse rotational transform,

- B̃ = ∇ψ̃ ×∇φ is the fluctuating magnetic field.

Consider turbulence with frequencies of the order of the drift frequency

ω ≈ ω∗ = k⊥cT/eBln, ln = n/|∇n|,
ln being the density scale-length. These waves have long wavelengths parallel to the main
field and short perpendicular wavelengths

k−1
‖ ≈ qR, k−1

⊥ ≈ ρi.

The width∆ω of the spectrum satisfies

∆ω < ω∗ < ωti, ωti = vti/qR0,

ωti being the thermal ion transit frequency.

We adopt the standard mixing length rule∇ñ ≈ ∇n0 to get an estimate for the random
electric potential̃Φ

ñ

n0

≈ eΦ̃

T
≈ 1

k⊥Ln
. (97)

The toroidal electric field has to be small in a high temperature plasma. This means that
contribution from the vector potential is of the same order as the one from the electric
potential,

Φ̃

qR0

≈ ω

cR0

ψ̃.
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This implies the following scaling for̃B

B̃

B
≈ k⊥ψ̃

R0

≈ 1

k⊥qR0

. (98)

The motion of the guiding center along the magnetic field is determined by the parallel
electric field and the magnetic mirror force−µ(B/B) · ∇B,

dv‖
dt

=
e

m
Ẽ‖ − µB

ǫ

qR
sin θ. (99)

The guiding center motion is given by

ug = v‖
B

B
+ uE + uB, (100)

where
uE =

c

B
∇φ×∇Φ̃ (101)

is theE ×B velocity anduB is the magnetic drift velocity of the electrons

uB = −
v2
⊥ + 2v2

‖

2ωce

B

B
× ∇B

B

=
v2
⊥ + 2v2

‖

2ωce
∇φ×∇R. (102)

The first term on the right of (99) is small as compared with thesecond term,

(
e

m
Ẽ‖)(µB

ǫ

qR
)−1 ≈ ρi

ǫln
<< 1. (103)

Hence, the fluctuating field has hardly any influence on the motion along the magnetic
field. This means that the number of trapped and circulating particles is not affected by
the fluctuations.

In principle, (99) can be solved for the parallel motion along the background field.
This solution can be used to eliminate the dependence on the parallel coordinate in (100).
The fluctuating part of the contributionv‖(t)B̃/B can be incorporated in a generalized
potential. The guiding center motion can then be written as

dr⊥
dt

= ∇φ×∇(
c

B
Φ̃ − v‖(t)

B
ψ̃) + uB. (104)

where the fluctuating potentials are functions of(r, θ, t). The time dependence consists
of a contribution with frequencyω ≈ ω∗ and of a part with ’frequency’k‖v‖ ≈ v‖/qR0,
which is introduced as a result of the elimination of the parallel coordinate.
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Figure 9: YUSMANOV

The ratio of the fluctuating part of the guiding center velocity to the magnetic drift
velocity is

ũg
uB

= max
R

vtik⊥ρi
(ω∗,

v‖
qR0

) = max (
R

ln
,
v‖
vti

). (105)

Thus, the typical levels of the random velocity exceed the magnetic drift, which means
that the deviation of the particle from the magnetic surfaceis determined by the fluctuat-
ing fields, not by the magnetic drift. The magnetic drift velocity can be considered as a
large scale perturbation of the fluctuating part of the velocity. This is the essential point
of this treatment.

Now we are in the position to apply the multi-scale percolation model of the proceed-
ing section. We takeuB = V0 andũg = V1. The physical smallness parameter is

ǫ0 =
V0

V1

=
uB
ũg
. (106)

According to (87), (88), and (89), the correlation length isa01 = l1ǫ
−ν/1+ν
0 and the length

of a streamline on the scalel1 is L = l1ǫ
−νdh/1+ν
0 . The particle runs around a flux line in

the timeτ = L/V1. During this time the particle drifts over a distance of the correlation
lengtha01. The average drift velocity of such a particle is (see 91) and(92))

Vd ≈
a01

τ
≈ a01

L
V1 ≈ ǫ

−ν/1+ν
0 V1 = (

ũg
uB

)ν/1+νuB >> uB. (107)

This can be written asΦ01Vd ≈ uB. Thus, in the percolation region the drift velocity is
enhanced overuB by the area fraction.

The effective diffusion coefficient is

Deff ≈ Φ01
a2

01

τc
≈ ǫ

ν/1+ν
0 V 2

d τc ≈ u2
Bτc(

ũg
uB

)4/7, (108)

where the correlation time is set by the dependence on the ’frequency’τ−1
c ≈ ωt = v‖/qR

of the streaming potential.

26



References

[1] D. Stauffer and A. Aharony, Introduction to PercolationTheory, Routledge, London,
2003.

[2] Radu Balescu, Statistical Dynamics, Imperial College, 1997.

[3] P.G. de Gennes, La Recherche,7 919 (1976).

[4] B. O’Shaughnessy, I. Procacia, Phys.Rev.A 32 3073 (1985).

[5] B.B. Kadomtsev, O.P. Pogutse, Plasma Phys. And Controlled Nuclear Fusion Re-
search, Proceedings of the 7-thInternational Conference (IAEA Vienna) 1 649 (1978).

[6] H. Saleur, B. Duplantier, Phys.Rev.Lett.582325 (1987).

[7] M.B. Isichenko, W. Horton W, Comments Plasma Phys. Controlled Fusion 14 249
(1991).

[8] M.B. Isichenko, Rev. Mod. Phys. 64 961 (1992).

[9] P.N. Yushmanov, Comments Plasma Phys. Controlled Fusion 14 313 (1992).

27


