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PART THREE: TURBULENCE AND DIFFUSION



. Richardson’s model of turbulence

A. Kolmogorov spectrum

Richardson proposed a model of stationary turbulence faidluiith a large Reynold’s

number
Vi
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whereV is the typical velocity of the fluidy, its characteristic length, i.e. the length scale
at which the fluid is stirred, andis the coefficient of viscosity. The Reynold’s numlgr
measures the ratio of the nonlinear inertial tekm,Vv, and the viscous ternyV>2v, in
the Navier-Stokes equation. Thus, large Reynold’s numlades to fluids that are highly
nonlinear in which viscous effects play a subdominant role.

R, > 1. 1)

The smallest scale in the system is the viscous scale

I, = 7 2)
V., being the characteristic velocity at that scale. In the pse model the turbulence
is composed of 'eddies’ of different sizes. The larger esldiee unstable and break up
in smaller ones. At each level the turbulence is assumed tsdbepic and the eddies
are supposed to be characterized by a single scale |éngtie model is sketched in the
figure below.

The range of scales where inertia is not important
L, <<l <ly, lo <L 3)

is called the inertial rangel. is the size of the device. The range belwis the dissipa-
tion range. The second inequality is required for the assimmghat boundary effects do
not play a role in what follows.

A convenient definition of the characteristic velocity orcalgel can be given in terms
of the Eulerian (spatial) correlation function of the vetpancrement within each eddy
of scalel

V2 =< V3(r,]) >=<[v(r +1) —v(r)]* > . (4)

It is easily seen that a simple, linear relationship holdsvben the correlation function
C(l) = V2 =< V*(r,l) > and the Euclidean spatial correlation functiop of Part II.
The time-scale associated with the veloditys the eddy turn-over time

Kinetic energy is put into the system at scileThe energy of this original eddy will be
divided over the smaller ones and transported down thesoatae inertial regime.
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Figure 1. The energy cascade. At each step the eddies arefdpag.

The interactions are nonlocal in space, but we assume that they have a’local’ charac-
ter in the sensethat the energy transfer intheinertial rangeis between nearby scales. This
process of energy transfer continues until the energy esattte viscosity scale where it
will be dissipated. This mechanism requires a 3-dimensisystem. Due to constraints
that are inherent to the Navier-Stokes equations in theiaeegime, in two dimensions
the energy flux is actually towards large scales.

Two important assumptions are made:

- the cascade iself-similar in the inertial range, i.e., there exist a scaling exponenich
that
V) =r"V(1), r<l. (6)

An important class of self-similar functions is the one adstiisg of power laws.

- the flow has a nonvanishing mean rate of dissipation permags. This rate of dissi-

patione scales as follows
3

€ X l—” (7)
There is no energy input nor energy dissipation in the iakeréinge. Since the energy is
transported locally, it follows that the energy flux is indepgent of the scale and equal to
the energy dissipation rateat the scalé,, so that

3 3(p. 1 3
GOCV_U(XMOCV_L (8)
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This means that

- the self-similarity exponent in (6) is = 1/3,

- since the odd, 3rd moment does not vanish, the turbuleatitgifield is non-Gaussian,
- the characteristic velocities decrease with decreasiagdength); = V;(1/15)'/°.

The invariant energy flux can be used to express the scale lengths in terms of the
guantities that define the system. From (2) and (7) folloveskiblmogorov dissipation
scale

V3 1
b= ()" (9)

and from (7) and (8) one obtains a relationship between thieaglscale and the viscous
scale,
lo < I, R34, (10)

According to (8) the energy density scales like
1
§vf o €2/31%/3, (11)

The power spectrum is the Fourier transform of the corm@teftinction (Wiener-Khinchin

theorem),

1
B(k) =3 / dl V2 exp ikl. (12)

This means that the spectral energy density in the inedgbn behaves like
E(k) o e/3=/3 (13)

at large wave numbers. This is the famd(dmogorov spectrum for stationary fluid
turbulence. The Kolmogorov theory predicts thepectrum rather well. However, exper-
imentally observed spectra are steeper thiai?.

It follows from the self-similar model and from V3(r, ) > €l that the higher order
structure functions, =< V?(r,l) > scale like

Sp = cpep/3lp/3.

For larger values o, measured structure functions do, however, deviate frasnstal-
ing. See the discussion in [1].

In the preceding pages we have explored the Richardson mothed spatial domain.
In the time domain one could conclude from the invariancyhaf ¢nergy flux that the
velocity fluctuations scale lik&}? o et. This would imply classical transport (Brownian
motion). This is a kind of paradox in this theory of fluid tukboice.
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Figure 2: The energy cascade according tg#tmodel. With each step the eddies become
less space filling.

B. (-model of fluid turbulence

The self-similarity of the system can also be introduceddmuiring that at each step in
the cascade the scale of the substructure is a facsonaller than its parent structure,
l,, = rl,_1, SO that

L, =1"ly, n=0,1,2...., 0<r<l. (24)
In mathematical terms one would say tlia set S of eddies is self-similar if S is the
union of N non-overlapping subsets each of which is scaled down by a factor » from the

original and isidentical in all statistical aspectsto r(.5). The 'local’ energy flux at scale
[ is the energy transferred from the scalé! to the scale'l.

The eddies are space filling if the numbérof sub-eddies per parent eddy is
N =11 — =3 (15)

However, if the volume is filled with structures witHfractal geometry, then the effective
volume, i.e., the volume filled with active elements, is darahan the nominal volume.
This is illustrated in Figure 2.

In the fractal case, the number of substructures per pairctigre can be expressed
asNI? =[P ie.NrP =1, sothat

n—11

~ InN
CInl/r

(16)



D is thefractal dimension. This dimension is only defined for self-similar fractals.

Suppose that at each step in the cascade the effective vaduan&actions of the
volume of the parent structure
NI =313 _. (17)

It follows that

§= (-t yp. (18)

ln—l
The fraction of the space that is active within an eddy of sizer”[, is

[ 3
pl:gn:(%)3 Pl —o. (19)

This is also the probability that two points a distardiagart belong to the same fractal
set.3 — D, orin generall — D, is called the codimension.

The energy per unit mass associated with stae

[ o
Emmwzw%w3? (20)

and the energy flux o< E;/7; through the scales is

3 3
€ X Ve x V—I(L)E‘*D. (21)
lo [l

It is seen that the scaling of the characteristic velociges

V, o €Y/3157%7 (22)
Thus, the self-similarity exponentin (6) is
1 3-D
h=-———. 23
3 3 (23)

Note that forD < 2, the self-similarity exponent becomes negative, so treatharacter-
istic velocity V; increases with decreasing scale-length

Following the same reasoning as before one finds for the iIgpettergy density at
large wave numbers

B, = ! / dIV;? exp ikl o / dl?/3P1/3=(3=D)/3]3=D
2

so that
E, o ¢2/3};~15/3+(3-D)/3] (24)



This spectrum is steeper than the Kolmogorov spectrum (@6jch is recovered for
D = 3.

REMARK

Other definitions of a fractal dimension that often play arivl theories of turbulence
are:

- box-counting dimension. The number of boxes of dizhat are needed to cover a
structure (per unit volume) i¥b”s = 1, so that

~ InN
~Inl/b

B (25)

- divider dimension. obtained by measuring a curve with alstck of length. For a
self-similar curve like a coastline, one h&g$? = 1 so that

In N

D, = .
47 ot

(26)

II.  Non-locality: Richardson’s law of relative diffusion

Relative diffusion was first analyzed by Richardson in 1926.0 particles placed in a
turbulent fluid and initially close together, have a separakt at timet,

R(t) = x2(t) — x1(t). (27)

In the spirit of the theory of single particle diffusion Riecdaon introduced the mean
square relative displacementR?(t) >.

Initially the particles move apart under the action of theallest eddies. When the
particle distance becomes larger, more and more eddiegmiuthe motion, although
the eddy of the size of the inter-particle distance will be thost important one. When
the particles separation further increases the eddy wehatgest energy will become
dominant. Finally the distance between the particles valsb large that their separation
will be governed by the random walk of each individual paetic

The analysis of experimental data of atmospheric diffugdrRichardson to the con-
clusion that atmospheric diffusion differs in a essentialvirom the standard, classical
proces. His investigations led to the following expresdmrthe time dependence of the
separation between two particles

1d < R*(t) >

=A< R (t) >* . 2
5 o < R*(t) > (28)
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This yields the scaling
< R(t) >oc 3 (29)

This result differs essentially from the classical diffiesscaling, which would yielg<
R%*(t) >~ 4Dst. Richardson’s law (28) implies an accelerated growth of #ative
distance, which can not be explained on the basis of a stamiiffusion equation with a
constant coefficient. From the point of view of a spatial splaw we deal with

Dp x< R(t) >3 (30)

In fact his expression mirrors the non-local character ahgport under conditions of
atmosphere turbulence, where the separation betweersiddfyparticles significantly

changes under the influence of vortex motions. Richardsoatf@buted the non-local

character to the increasing scale of eddies that take p#neiprocess. In his approach
the diffusion coefficienDy, is a function of the characteristic inter-particle distamdich

is the characteristic scalef an eddy (See section IIl.1).

Richardson suggested to use a diffusion equation for thaigéea of the evolution
of the probability densityP(/, ) to find two particles, which are initially close together,
on a distanceé from one another at time

oP(t) _ 0 OP(.1)

ot ot o

(31)

with

Dp(l) oc 143 (32)
Later, this idea was exploited by Kolmogorov and Obuchowinithe framework of the
theory of stationary, isotropic turbulence in fluids. Thessumption that the rate of en-

ergy dissipation rate is scale independent in the inertial range, yields the dsioeal
estimateDx(1) ~ ¢'/31%/3,

An alternative interpretation was discussed by Batchelbg @onsidered the diffusion
coefficientDy to be the result of statistical averaging and used the teahgoaling for
Dg. Within this approach, dimensional considerations ledatiéocexpression

< R2(t) >
O(f()(

The diffusion equation (31) can be solved for both modelsuftsing a point-sourcé&(l)
of particles, we obtain for the Richardson model (32)

Dp(t) ()] oc £, (33)

8 (9\*? 912/3
whereas for the Batchelor model (33) we obtain:
1 372 2
P = — - .
(1) (27r < I2(1) >) P ( 2 <I2(1) >) (35)
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Thus the models (32) and (33) into (31) give widely differeggults in spite of the same
underlying law (28).

The arguments in favor of either model have a qualitativeattar and it cannot be
decided which one is correct. Moreover, the combinationat lpproaches, wheieyr
depends algebraically on both the distance | and the time t,

Dp o [2=2)2/3¢ (36)

might also be relevant. The solution to (31) with; given by (36) for aj(l/) source at

t=0Is
l(1+a)2/3

G(l,t) = Cyt™3/% exp —Cy (37)

t(1+a) -

The nonlocal character, either in space or in time, inheterat turbulent process that
yields (28), can not be accounted for by the local approxonaf31) to the diffusion
process. In order to deal with non-localities, the conweral description of diffusion in
terms of a transport equation that is second order in spatérahorder in time, has to
be abandoned.

Many models have been put forward to improve the diffusioma¢ign. Besides the
different phenomenological methods, non-local effectsloaalso described in terms of
a random walk model.
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