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I. Richardson’s model of turbulence

A. Kolmogorov spectrum

Richardson proposed a model of stationary turbulence for fluids with a large Reynold’s
number

Re =
V l0
ν

>> 1. (1)

whereV is the typical velocity of the fluid,l0 its characteristic length, i.e. the length scale
at which the fluid is stirred, andν is the coefficient of viscosity. The Reynold’s numberRe

measures the ratio of the nonlinear inertial term,v · ∇v, and the viscous term,ν∇2
v, in

the Navier-Stokes equation. Thus, large Reynold’s numbers refer to fluids that are highly
nonlinear in which viscous effects play a subdominant role.

The smallest scale in the system is the viscous scale

lν =
ν

Vν

, (2)

Vν being the characteristic velocity at that scale. In the proposed model the turbulence
is composed of ’eddies’ of different sizes. The larger eddies are unstable and break up
in smaller ones. At each level the turbulence is assumed to beisotropic and the eddies
are supposed to be characterized by a single scale lengthl. The model is sketched in the
figure below.

The range of scales where inertia is not important

lν << l < l0, l0 < L (3)

is called the inertial range.L is the size of the device. The range belowlν is the dissipa-
tion range. The second inequality is required for the assumption that boundary effects do
not play a role in what follows.

A convenient definition of the characteristic velocity on a scalel can be given in terms
of the Eulerian (spatial) correlation function of the velocity increment within each eddy
of scalel

V 2
l =< V 2(r, l) >=< [v(r + l) − v(r)]2 > . (4)

It is easily seen that a simple, linear relationship holds between the correlation function
C(l) = V 2

l =< V 2(r, l) > and the Euclidean spatial correlation functionCE of Part II.
The time-scale associated with the velocityVl is the eddy turn-over time

tl =
l

Vl

. (5)

Kinetic energy is put into the system at scalel0. The energy of this original eddy will be
divided over the smaller ones and transported down the scales in the inertial regime.
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Figure 1: The energy cascade. At each step the eddies are space filling.

The interactions are nonlocal in space, but we assume that they have a ’local’ charac-
ter in the sense that the energy transfer in the inertial range is between nearby scales. This
process of energy transfer continues until the energy reaches the viscosity scale where it
will be dissipated. This mechanism requires a 3-dimensional system. Due to constraints
that are inherent to the Navier-Stokes equations in the inertial regime, in two dimensions
the energy flux is actually towards large scales.

Two important assumptions are made:

- the cascade isself-similar in the inertial range, i.e., there exist a scaling exponenth such
that

V (rl) = rhV (l), r < 1. (6)

An important class of self-similar functions is the one consisting of power laws.

- the flow has a nonvanishing mean rate of dissipation per unitmass. This rate of dissi-
pationǫ scales as follows

ǫ ∝
V 3

ν

lν
. (7)

There is no energy input nor energy dissipation in the inertial range. Since the energy is
transported locally, it follows that the energy flux is independent of the scale and equal to
the energy dissipation rateǫ at the scalelν , so that

ǫ ∝
V 3

0

l0
∝

< V 3(r, l) >

l
∝

V 3
l

l
. (8)
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This means that
- the self-similarity exponent in (6) ish = 1/3,
- since the odd, 3rd moment does not vanish, the turbulent velocity field is non-Gaussian,
- the characteristic velocities decrease with decreasing scale-length,Vl = V0(l/l0)

1/3.

The invariant energy fluxǫ can be used to express the scale lengths in terms of the
quantities that define the system. From (2) and (7) follows the Kolmogorov dissipation
scale

lν = (
ν3

ǫ
)1/4, (9)

and from (7) and (8) one obtains a relationship between the global scale and the viscous
scale,

l0 ∝ lν R3/4
e . (10)

According to (8) the energy density scales like

1

2
V 2

l ∝ ǫ2/3l2/3. (11)

The power spectrum is the Fourier transform of the correlation function (Wiener-Khinchin
theorem),

E(k) =
1

2

∫

dl V 2
l exp ikl. (12)

This means that the spectral energy density in the inertial region behaves like

E(k) ∝ ǫ2/3k−5/3 (13)

at large wave numbers. This is the famousKolmogorov spectrum for stationary fluid
turbulence. The Kolmogorov theory predicts thek-spectrum rather well. However, exper-
imentally observed spectra are steeper thank−5/3.

It follows from the self-similar model and from< V 3(r, l) >∝ ǫl that the higher order
structure functionsSp =< V p(r, l) > scale like

Sp = cpǫ
p/3lp/3.

For larger values ofp, measured structure functions do, however, deviate from this scal-
ing. See the discussion in [1].

In the preceding pages we have explored the Richardson model in the spatial domain.
In the time domain one could conclude from the invariancy of the energy flux that the
velocity fluctuations scale likeV 2

l ∝ ǫt. This would imply classical transport (Brownian
motion). This is a kind of paradox in this theory of fluid turbulence.
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Figure 2: The energy cascade according to theβ-model. With each step the eddies become
less space filling.

B. β-model of fluid turbulence

The self-similarity of the system can also be introduced by requiring that at each step in
the cascade the scale of the substructure is a factorr smaller than its parent structure,
ln = rln−1, so that

ln = rnl0, n = 0, 1, 2...., 0 < r < 1. (14)

In mathematical terms one would say thatthe set S of eddies is self-similar if S is the
union of N non-overlapping subsets each of which is scaled down by a factor r from the
original and is identical in all statistical aspects to r(S). The ’local’ energy flux at scale
l is the energy transferred from the scaler−1l to the scalerl.

The eddies are space filling if the numberN of sub-eddies per parent eddy is

N =
l3n−1

l3n
= r−3. (15)

However, if the volume is filled with structures with afractal geometry, then the effective
volume, i.e., the volume filled with active elements, is smaller than the nominal volume.
This is illustrated in Figure 2.

In the fractal case, the number of substructures per parent structure can be expressed
asNlDn = lDn−1, i.e. NrD = 1, so that

D =
ln N

ln 1/r
. (16)
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D is thefractal dimension. This dimension is only defined for self-similar fractals.

Suppose that at each step in the cascade the effective volumeis a fractionβ of the
volume of the parent structure

Nl3n = βl3n−1. (17)

It follows that

β = (
ln

ln−1

)3−D. (18)

The fraction of the space that is active within an eddy of sizel = rnl0 is

pl = βn = (
l

l0
)3−D, l → 0. (19)

This is also the probability that two points a distancel apart belong to the same fractal
set.3 − D, or in generald − D, is called the codimension.

The energy per unit mass associated with scalel is

El ∝ plV
2
l = V 2

l (
l

l0
)3−D. (20)

and the energy fluxǫ ∝ El/τl through the scales is

ǫ ∝
V 3

0

l0
∝

V 3
l

l
(

l

l0
)3−D. (21)

It is seen that the scaling of the characteristic velocitiesis

Vl ∝ ǫ1/3l
1

3
−

3−D

3 . (22)

Thus, the self-similarity exponenth in (6) is

h =
1

3
−

3 − D

3
. (23)

Note that forD < 2, the self-similarity exponent becomes negative, so that the character-
istic velocityVl increases with decreasing scale-lengthl.

Following the same reasoning as before one finds for the spectral energy density at
large wave numbers

Ek =
1

2

∫

dlV 2
l exp ikl ∝

∫

dlǫ2/3l2[1/3−(3−D)/3]l3−D

so that
Ek ∝ ǫ2/3k−[5/3+(3−D)/3]. (24)
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This spectrum is steeper than the Kolmogorov spectrum (16),which is recovered for
D = 3.

REMARK

Other definitions of a fractal dimension that often play a role in theories of turbulence
are:

- box-counting dimension. The number of boxes of sizeb that are needed to cover a
structure (per unit volume) isNbDB = 1, so that

DB =
ln N

ln 1/b
. (25)

- divider dimension. obtained by measuring a curve with a yardstick of lengthδ. For a
self-similar curve like a coastline, one hasNδD

d = 1 so that

Dd =
ln N

ln δ−1
. (26)

II. Non-locality: Richardson’s law of relative diffusion

Relative diffusion was first analyzed by Richardson in 1926. Two particles placed in a
turbulent fluid and initially close together, have a separation R at timet,

R(t) = x2(t) − x1(t). (27)

In the spirit of the theory of single particle diffusion Richardson introduced the mean
square relative displacement< R2(t) >.

Initially the particles move apart under the action of the smallest eddies. When the
particle distance becomes larger, more and more eddies influence the motion, although
the eddy of the size of the inter-particle distance will be the most important one. When
the particles separation further increases the eddy with the largest energy will become
dominant. Finally the distance between the particles will be so large that their separation
will be governed by the random walk of each individual particle.

The analysis of experimental data of atmospheric diffusionled Richardson to the con-
clusion that atmospheric diffusion differs in a essential way from the standard, classical
proces. His investigations led to the following expressionfor the time dependence of the
separation between two particles

1

2

d < R2(t) >

dt
= A < R2(t) >2/3 . (28)

7



This yields the scaling
< R2(t) >∝ t3. (29)

This result differs essentially from the classical diffusive scaling, which would yield<
R2(t) >≈ 4DT t. Richardson’s law (28) implies an accelerated growth of the relative
distance, which can not be explained on the basis of a standard diffusion equation with a
constant coefficient. From the point of view of a spatial scaling law we deal with

DR ∝< R2(t) >2/3 . (30)

In fact his expression mirrors the non-local character of transport under conditions of
atmosphere turbulence, where the separation between diffusing particles significantly
changes under the influence of vortex motions. Richardson [2]attributed the non-local
character to the increasing scale of eddies that take part inthe process. In his approach
the diffusion coefficientDR is a function of the characteristic inter-particle distance which
is the characteristic scalel of an eddy (See section III.1).

Richardson suggested to use a diffusion equation for the description of the evolution
of the probability densityP (l, t) to find two particles, which are initially close together,
on a distancel from one another at timet

∂P (l, t)

∂t
=

∂

∂l
DR

∂P (l, t)

∂l
, (31)

with
DR(l) ∝ l4/3. (32)

Later, this idea was exploited by Kolmogorov and Obuchov within the framework of the
theory of stationary, isotropic turbulence in fluids. Theirassumption that the rate of en-
ergy dissipation rateǫ is scale independent in the inertial range, yields the dimensional
estimateDR(l) ≈ ǫ1/3l4/3.

An alternative interpretation was discussed by Batchelor, who considered the diffusion
coefficientDR to be the result of statistical averaging and used the temporal scaling for
DR. Within this approach, dimensional considerations lead tothe expression

DR(t) ∝
< R2(t) >

t
∝ [l2(t)]2/3

∝ t2. (33)

The diffusion equation (31) can be solved for both models. Assuming a point-sourceδ(l)
of particles, we obtain for the Richardson model (32)

P (l, t) =
8

315π8/2

(

9

4t

)3/2

exp

(

−
9l2/3

4t

)

, (34)

whereas for the Batchelor model (33) we obtain:

P (l, t) =

(

1

2π < l2(t) >

)3/2

exp

(

−
l2

2 < l2(t) >

)

. (35)
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Thus the models (32) and (33) into (31) give widely differentresults in spite of the same
underlying law (28).

The arguments in favor of either model have a qualitative character and it cannot be
decided which one is correct. Moreover, the combination of both approaches, whereDR

depends algebraically on both the distance l and the time t,

DR ∝ l(2−α)2/3tα, (36)

might also be relevant. The solution to (31) withDR given by (36) for aδ(l) source at
t = 0 is

G(l, t) = C1t
−3/2 exp−C2

l(1+α)2/3

t(1+α)
. (37)

The nonlocal character, either in space or in time, inherentto a turbulent process that
yields (28), can not be accounted for by the local approximation (31) to the diffusion
process. In order to deal with non-localities, the conventional description of diffusion in
terms of a transport equation that is second order in space and first order in time, has to
be abandoned.

Many models have been put forward to improve the diffusion equation. Besides the
different phenomenological methods, non-local effects can be also described in terms of
a random walk model.
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