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I. Diffusion and Autocorrelation Functions

In spite of considerable progress in the understanding of anomalous transport, many ques-
tions and issues raised in the early papers in this field of research are still of interest today.
In this Section we will briefly discuss some of these issues. In particular the role of the
concept of correlation functions in the search for modifications of the conventional diffu-
sion equations and for scaling laws, in order to describe non-classical diffusion.

Turbulent diffusion can also be viewed within the context ofcorrelation functions. A
direct relationship between the diffusion coefficient and the autocorrelation function of
the velocity was introduced by Taylor [1]. Actually, he introduced a new ”tool” for the
analysis of diffusion processes. Following the ideas of Einstein and Langevin, Taylor in-
troduced a stochastic equation for the motion of a Lagrangian test particle in a random
field.

Consider the equation for the trajectory of a fluid parcel in a turbulent velocity field
u(x, t),

dx

dt
= u(x, t). (1)

Since the velocity on the right hand side (rhs) depends on thetrajectoryx(t), (1) is highly
nonlinear!

Suppose we follow a particle along its Lagrangian trajectory. It is obvious that the La-
grangian velocityv(x0, t) is equal to the Eulerian field valueu(x, t) if the particle trajec-
toryx(t) which starts atx0 passes through the pointx at timet, i.e.,v(x0, t) = u(x(t), t).

Figure 1: Lagrangian coordinates
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Figure 2: Integration domains

The formal solution of (1) is

∆x(t) = x(t) − x(0) =

∫ t

0

dτ v(x0, τ). (2)

This solution represents the trajectory of a fluidparcel/particle parametrized by the timet.
It is quite general and appears in many circumstances, e.g. it may also describe magnetic
field lines. Then,v(x0, t) represents the magnetic field strength witht being an appropri-
ate parameter that indicates the position along a field line.Equation (1) is also called the
V-Langevin equation, in contrast to thea-Langevin equationintroduced in Part I.

We assume that the average velocity and, thus, the average displacement of a fluid
parcel/particle vanishes,< v(x0, t) >= 0 and< ∆x(t) >= 0.

The mean square displacement follows from (2)

< (∆xi)
2(t) >=<

∫ t

0

dt1

∫ t

0

dt2 vi(t1)vi(t2) >, (3)

= 2

∫ t

0

dt′
∫ t′

0

dτ < vi(t
′)vi(t

′ − τ) >. (4)

Here, it is assumed that we have released att = 0 a large number of particles at differ-
ent positions in the fluid. The average is taken over the trajectories of all these particles.
It clearly requires that the turbulence is homogeneous in space. Since the average is over
trajectories, the integrand of (4) is the two-pointLagrangiancorrelation function of the
velocity of a single particle.We will also assume that the turbulence is stationary in time,
so that the Lagrangian autocorrelation function of the velocity only depends on the time
difference

CLii(|t1 − t2|) =< vi(t1)vi(t2) > . (5)

Note that forstationary turbulencethe average square of the turbulent velocity does not
depend on time,< v2

i (t) >=< v2
i (0) >.
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Upon partial integrating (4), one obtains the following expression for the mean square
displacement

< (∆xi)
2(t) >= 2

∫ t

0

dτ (t − τ)CLii(τ). (6)

The ’running’ diffusion coefficientis defined as

DT i(t) =
1

2

d < (∆xi)
2(t) >

dt
=

∫ t

0

dτ CLii(τ). (7)

This running diffusion coefficient is determined by theturbulentvelocity field.

The Lagrangian integral time-scaleτL is defined by

τL =

∫ ∞

0

dτ RL(τ) (8)

where

RL(τ) =
< vi(t)vi(t − τ) >

< v2
i (t) >

(9)

is the normalized correlation function. The MSD can be written as

< (∆x)2
i (t) >= 2 < v2

i (t) >

∫ t

0

dτ (t − τ)RL(τ). (10)

The Lagrangian Taylor micro-scalet < τL corresponds toτ → 0. In this limit, RL(τ) →
1 so that

< (∆xi)
2(t) >≈< v2

i (t) > t2. (11)

This corresponds tofree streaming.

It is quite natural to require that events that are widely separated in space and/or time
become uncorrelated. This implies thatRL(τ) → 0 for τ → ∞. This limit defines the
Lagrangian macro scalet > τL

< (∆xi)
2(t) >≈ 2 < v2

i (t) > (tτL − constant). (12)

This means that for very long times the turbulent diffusion coefficient becomes constant

DT i = lim
t→∞

DT i(t) =

∫ ∞

0

dτ CLii(τ) ≈< v2
i (t) > τL. (13)

This expression is appropriate for processes where decorrelation in time is dominant.
Since long-term correlations and trapping in structures (e.g. magnetic islands, vortices)
are neglected, (13) is only valid for small Kubo numbers (seenext section).
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In case spatial decorrelation is dominant, one has< v2
i >≈ λ2

c/τ
2, whereλc is the

correlation length, set by the average wavelength in the problem at hand, andτ the time
it takes for the particle to travel over a distanceλc. Then, the diffusion coefficient is

DT ≈ λ2
c

τ
. (14)

In PART ONE it has been shown that the diffusion coefficient ofthe standard model of
the random walk scales like

D ≈ λ2
c

τc

, (15)

whereλc is the correlation length andτc the correlation time. In that case< v2(t) >≈
λ2

c/τ
2
c with τc being the Lagrangian correlation timeτL, and the coefficients (13), (14),

and (15) scale identically.

The classical regime, where (13) is valid, will never be reached in case of turbulence
with strong memory effects where long time correlations exist or in case of nonlocal
interactions with correlations over long distances. In many cases we will find that the
mean square displacement scales algebraically with time according to

< (∆xi)
2(t) >∝ tα, (16)

whereα is the diffusion exponent.H = α/2 is called the Hurst factor. We will encounter
the following regimes

0 < α < 1 subdifussive regime,strangediffusion

α = 1 classical regime oranomalousdiffusion

1 < α < 2 superdiffusive regime,strangediffusion

α = 2 free streaming orstrangediffusion.

In the classical regime the diffusion process is collision dominated withα = 1.

Following [4], we distinguish between anomalous and strange diffusion.Strange dif-
fusion is characterized byα 6= 1. Anomalous diffusionis defined as a diffusive process
(α = 1), but with a diffusion coefficient that depends on variables unrelated to collisions,
like amplitudes of fluctuating fields, that characterize thedisorder and randomness of the
medium.
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A. Fractional Brownian motion (fBm)

The positionx(t) of a Brownian particle is a stochastic variable. This position could also
be introduced as follows. Let the displacement of the particle be given by

x(t) − x(t0) ∝ ξ|t − t0|H , t > t0, (17)

for any two times(t, t0). Here,ξ is a random variable that may or may not be Gaussian
distributed. H is the Hurst factor.
If ξ is Gaussian distributed, then the mean square displacementmay be written as

< (x(t) − x(t0))
2 >= 2Dτ(

|t − t0|
τ

)2H (18)

This is calledfractional Brownian motion. ForH = 1/2 classical diffusion is recovered.

Fractinal Brownian motion was introduced by Mandelbrot as a generalization of clas-
sical diffusion forH = 1/2 to any arbitrary number on the interval0 < H < 1. Fractional
Brownian motion hasinfinitely long time correlations. The correlation between past and
future displacements is

< (x(t0) − x(−t))(x(t) − x(t0)) > .

Take for simplicityx(t0) = 0. Then, using< (x(t) − x(−t))2 >= 2 < x2(t) > −2 <
x(t)x(−t) >, one obtains the normalized correlation

C(t) =
− < x(−t)x(t) >

< x(t)2 >
= 22H−1 − 1. (19)

Note that forH = 1/2 the correlation vanishes. This the classical regime. The range
0 < H < 1/2 corresponds to sub-diffusive behavior, while1/2 < H < 1 corresponds to
super-diffusive behavior.

B. Velocity shear

In dealing with super-diffusion one must take care to deal with true diffusion processes.
The presence of velocity shear could lead to wrong conclusions.

The particle trajectories are given by

dx

dt
= vx(t),

dy

dt
= vy(t) + bx(t). (20)

Here,vx,y(t) = vx,y(x(t), y(t), t) are the fluctuating Lagrangian velocities andbx is an
additional sheared velocity field in they-direction.
The formal solutions of (20) are

x(t) =

∫ t

0

dt′ vx(t
′), (21)
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y(t) =

∫ t

0

dt′ vy(t
′) + b

∫ t

0

dt′
∫ t′

0

dt′′ vx(t
′′). (22)

Consider a velocity field with the following statistical properties.

a. The average velocities vanish

< vx >=< vy >= 0.

This implies< x >= 0, < y >= 0.

b. Thex- andy-velocities are statistically independent

< vxvy >= 0.

c. The turbulence is uniform in time and the velocities areδ-correlated

< vx(t)vx(t
′ >) = Dxxδ(t − t′), < vy(t)vy(t

′ >= Dyyδ(t − t′),

whereDxx =< v2
x > τ0, Dyy =< v2

y > τ0, τ0 being the short timescale of the random
process. This requires timescales that are large as compared with the time scale set by
viscosity (see section on the Langevin approach).

The mean square displacements are obtained from (21) and (22),

< x2(t) >=

∫ t

0

dt′
∫ t

0

dt′′ < vx(t
′)vx(t

′′) >, (23)

< y2(t) >=

∫ t

0

dt′
∫ t

0

dt′′ < vy(t
′)vy(t

′′) > + (24)

b2

∫ t

0

dt′
∫ t′

0

dt′′
∫ t

0

ds

∫ s

0

ds′ < vx(t
′′)vx(s

′) > .

This yields

< x2(t) >= 2

∫ t

0

dτ (t − τ) < v2
x > τ0δ(τ) = 2Dxxt (25)

and

< y2(t) >= 2

∫ t

0

dt′
∫ t′

0

dt′′ < vy(t
′)vy(t

′′) > +

b2

∫ t

0

dt′
∫ t

0

ds(t − t′)(t − s) < vx(t
′)vx(s) >

= 2Dyyt +
2

3
b2Dxxt

3. (26)

It looks if the last contribution represents super-diffusion (even faster than free streaming)
in the direction of the shear flow. However, this motion in they-direction is a combined
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effect of standard diffusion alongx and of shear flow alongy. Due to diffusion the parti-
cle travels to positions inx with larger< x2 >. At this position the particle undergoes a
larger shear velocity alongy.

Independent coordinates can be found as follows. Writeŷ = y − αx and determineα
from the condition< xŷ >= 0. Since< xy >= bDxxt

2 one obtainsα = bt/2. It follows
that the independent coordinates are(x, ŷ) with

ŷ = y − 1

2
btx. (27)

The mean square displacement is

< ŷ2 >=< y2 > −bt < xy > +
1

4
b2t2 < x2 >

= 2Dyyt +
1

6
b2t3Dxx. (28)

On the basis of the Central Limit Theorem, the probability density for the position of a
particle (a random walker) starting atx = 0, y = 0 at timet = 0 is,

n(x, y, t) =
1

√

4π2 < x2 >< ŷ2 >
exp(− x2

2 < x2 >
− ŷ2

2 < ŷ2 >
), (29)

where< x2 >, ŷ and< ŷ2 > are given by (7), (9) and (10), respectively.

Equations (25), (28), and (29) correspond to eqs (18), (19),and to (13) of [3], respec-
tively. It can be shown by substitution that (29) is the solution to the diffusion equation,

∂n

∂t
+ bx

∂n

∂x
= Dxx

∂2n

∂x2
+ Dyy

∂2n

∂y2
. (30)

II. The Corrsin approximation

The quantity that appears in the Lagrangian correlation function (5) is the product of the
velocities at two different times along the same trajectory. The average is taken over all
trajectories in the volume. This theory requires a knowledge of Lagrangian trajectories.
However, these Lagrangian quantities cannot be determinedexperimentally. The quantity
that is accessible to measurements is the correlation function in Eulerian coordinatesi.e.
at fixed points in space

CEij(x, t) =< ui(x1, t1)uj(x1 + x, t1 + t) > . (31)

This is the average over the product of the velocities at positions that are a distancex apart
in space andt in time. One could also say that the Eulerian average is the result of many
fluid particles passing through two measuring points over a periodt. These positions are
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in general not connected by particle trajectories.

This difference between Lagrangian and Eulerian correlation functions is one of the
essential difficulties in the theory of turbulence. In orderto proceed it seems necessary
to find the relationship between Lagrangian and Eulerian coordinates. However, to find
such a relationship would practically mean that we are able to solve the general problem
of turbulence!

A famous approximation that allows to express the Lagrangian correlation function in
terms of the Eulerian one was introduced by Corrsin. The Lagrangian correlation can be
expressed as follows

CLij(t) =

∫

ddxCc
Eij[x, t|x(t) = x]ρ(x, t). (32)

whereEc
ij is the Eulerian velocity correlation under the condition that the trajectory is at

x at timet,
Cc

Eij =< ui(0, 0)uj(x, t) > |
x=x(t), (33)

andρ(x, t) is the probability density that the particle is on the particular trajectoryx =
x(t).

The Corrsin approximation consists of two elements.
1. At long diffusion times the pdf of the particle displacements and the one of he Eulerian
velocity field become independent of each other. The particle trajectories are statistically
independent of the stochastic velocity field. This means that the Lagrangian character of
Ec

ij is neglected and thatCc
Eij may be replaced by the Eulerian correlationCEij.

CLij(t) =

∫

ddxCEij(x, t)ρ(x, t). (34)

Note thatx in ρ(x, t) is the difference between two positions along a trajectory,while in
CEij(x, t) it is the difference between the positions of two arbitrary points.
2. The Lagrangian orbits have a diffusive character, i.e., the displacements have a Gaus-
sian distribution

ρ(x, t) =
1

(2π < x2(t) >)d/2
exp− x2

2 < x2(t) >
. (35)

If the process is diffusive one has< x2(t) >= 2dDt.

III. Anisotropy and double diffusion

In this Section we will consider diffusion processes in which the anisotropy of the medium
plays an important role. We consider systems in which the particles undergo a classical
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Figure 3: A layered medium with random jets.

diffusive motion in, let’s say, the longitudinal directionand an additional stochastic mo-
tion in the perpendicular direction. Transport in such anisotropic media is either charac-
terized by super-diffusive or by sub-diffusive processes.The transverse displacement (i.e.
the root mean square displacement) is described by the scaling law,

λ⊥ ∝ tH . (36)

Here,H is the Hurst factor. In the case of classical diffusive behavior we findH = 1/2.

A. A model with super-diffusion

A physical model of particle behavior under the influence of strongly anisotropic diffu-
sion, was considered by Dreizin and Dykhnes [2]. The basic idea is the following.

A conducting fluid (plasma) is embedded in a magnetic field. The particles experience
a ”seed” diffusion with coefficientD‖ in the direction of the field. During its diffusive
motion along magnetic field lines, the particle travels through a set of perpendicular layers
of width a. The time it takes to diffuse through such a layer is

τ =
a2

2D‖

(37)

In these layers, random jets with velocity±V0 translate these particles in the perpendic-
ular plane creating narrow convective flows of widtha. During this diffusion timeτ the
particle will take a stepV0τ either to the right or to the left. The diffusion coefficient in
the transverse directionD⊥ will depend on the number of times a particle returns to the
same layer during its motion along the magnetic field.

The transverse diffusion is described by

D⊥ ≈ λ2
⊥

t
, λ2

⊥ ≈ V 2
0 t2P, P =

Nr

N̂
. (38)
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Here,λ⊥ =
√

< x2
⊥ > is the transverse displacement during the timet andP is the

relative number of ”non-compensated” fluctuations. The number ofdifferentshear flows
intersected by the particle during its longitudinal motionis

N ≈
√

2D‖t

a
, (39)

while thetotal number of shear flows crossed in timet is

N̂ ≈ t

τ
≈ 2D‖t

a2
. (40)

The number of times a particle visits the same layer along itsdiffusive trajectory is de-
noted byNr.

The particle undergoes a classical random walk in thez-direction along the field lines.
The probability densityρ(z, t) to find the walker at a distancez at timet is

ρ(z, t) =
1

(4πD‖t)1/2
exp

( −z2

4D‖t

)

. (41)

The limit z → 0 corresponds to the probability of return to the initial layer

ρ(0, t)a =
a

√

4πD‖t
. (42)

This yields

Nr ≈ N̂
a

√

4πD‖t
∝

√

t

τ
≈

√

N̂ . (43)

Thus, one obtains from (38)

λ2
⊥ ≈ V 2

0 t2
Nr

N̂
≈ V 2

0 a
√

4πD‖

t3/2 >> t (44)

and

D⊥ ≈ V 2
0 a

√

t

4πD‖

. (45)

This is thesuper-diffusive regime with a Hurst factorH = 3/4.

Consider the correlation function in the form,

C(t1, t2) =

∫ ∞

−∞

< V (0)V (z) > ρ(z, t2 − t1)dz, (46)

whereρ(z, t2 − t1) is given by (41) Here,V (z) is the velocity of the flow at the point
z. This representation corresponds to the Corrsin conjectureof the diffusive nature of
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decorrelations.

The probability to return to the initial point is given by thelimit z → 0 in (41). In this
limit, one obtains the expression,

C(t1, t2) = C(τ) ≈ V 2
0 a

√

4πD‖τ
, τ = t1 − t2. (47)

It is seen thatC(τ) ≈ V 2
0 /N(τ).

The correlation function (47) leads to the diffusion coefficient,

D⊥ =
d

dt
λ2
⊥ =

∫ t

0

C(τ)dτ, (48)

so that

λ2
⊥ ≈ V 2

0 a
√

4πD‖

∫ t

0

∫ t

0

dt1dt2√
t1 − t2

≈ V 2
0 a

√

4πD‖

t3/2. (49)

This is identical to (45).

It is concluded that even a small number of uncompensated flowsP = Nr/N̂ ≈
1/

√

N̂ , leads to a considerable deviation of transport from the standard diffusive behav-
ior.

B. Diffusion in a stochastic magnetic field: sub-diffusion

Next we analyze the ”double diffusion” scaling law, which isone of the first models of
anisotropic diffusion in a magnetic field.
Consider a plasma embedded in a magnetic field. This field consists of a strong, homo-
geneous and uniform axial fieldB0ez and a stochastic fieldB⊥ = B0b(x⊥, z) in the
transverse plane,

B(x⊥, z) = B0(ez + b(x⊥, z)), (50)

wherex⊥ = (x, y, 0). The field line equation is given by

dx

Bx

=
dy

By

=
dz

B0

, (51)

which can be written as
dx⊥

dz
= b(x⊥, z). (52)

This equation is equivalent to equation (1) for the trajectory of a fluid parcel, the normal-
ized magnetic field strength plays the role of the velocity and the positionz along the field
line the role of time.
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Figure 4: Stochastic field lines.

The magnetic field lines execute a random motion in the transverse plane. Analo-
gously to the treatment in the previous sections we will now find a magnetic diffusion
coefficientDm. For stochastic variablesbx andby that are independent, have zero aver-
ages, and equal variances, we have

Dm =
1

4

∫ +∞

−∞

dz < bx(x⊥(z), z)bx(0, 0) + by(x⊥(z), z)by(0, 0) > . (53)

Assume that thex⊥-dependence in the right hand side of (52) is weak and may be ne-
glected. This is the quasi-linear approximation.Then, the magnetic analogue of (13)
is

Dm =
1

2

∫ +∞

−∞

dz < bx(0, z)bx(0, 0) >≈ b2
0λ‖, (54)

where< b2
x >=< b2

y >= b2
0, andλ‖ is the correlation length along the main field. The

displacement of the magnetic field line in the transverse plane over a distancel‖ in the
longitudinal direction [4] is

λ2
⊥ ≈ 2Dml‖. (55)

The approximation (54) clearly requiresb0λ‖ << l⊥, where l⊥ is the characteristic
scale of the magnetic field in the transverse directions. Equation (54) corresponds to
the quasi-linear approximation and is only valid for small magnetic Kubo number,Km =
b0λ‖/l⊥ << 1.

The relationship between particle diffusion and the stochastic motion of the field lines
is in general quite complex. Let us assume that the particlesare tied to the magnetic field
lines, so that while moving along field lines, they wander stochastically in the transverse
plane. Since the particles are tied to the field lines, the perpendicular particle motion is
also stochastic with the same standard deviationλ2

⊥. Further, assume that the particles
undergo a classical diffusion process along the field lines with diffusion coefficient

l‖ =
√

2D‖t, D‖ =
λ2

coll

τcoll

. (56)
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Hence, the particles undergo a double diffusion process: a stochastic motion in the trans-
verse plane and a classical diffusion process along the fieldlines. From (53) and (56) one
obtains the following estimate for the particle diffusion

λ2
⊥ ≈ 2Dml‖ ≈ 2Dm

√

2D‖t. (57)

This is much smaller thant for larget. Thus, the scaling law for the transverse displace-
ment of the particles has asub-diffusiveform with Hurst factorH = 1/4. This sub-
diffusive character is absent if the motion along the magnetic field is ”ballistic”, l‖ ≈ V t.
Thus, the character of transverse diffusion is determined by the actual longitudinal trans-
port mechanism.

IV. Kubo and Péclet numbers

A. Kubo number

The Kubo number is the ratio of the distance covered by a particle in the correlation time
τc to the correlation lengthλc of the stochastic field

K =
V τc

λc

, (58)

where
- V is the characteristic amplitude of thefluctuatingvelocity,
- λc the average wavelength in the Eulerian velocity correlation functionCE(∆, t),
- τc correlation time ofCE(∆, t).
These are all Eulerian quantities. However, the Kubo numbercan also be interpreted as
the ratio of the Eulerian timeτc to the Lagrangian timeλc/V .
In case of standard diffusion processes,V ≈ λc/τc so thatK ≈ 1.
Analogous to equation (58), we may define on the basis of (52) amagnetic Kubo number

Km =
b0l‖
l⊥

, (59)

whereb0 is the characteristic value of the fluctuating field,l‖ the correlation length in the
direction along the main field (the coordinate along this field plays the role of time), and
l⊥ the correlation length in the transverse plane.

A.1 Small K

The particle covers only a small distance as compared with the correlation length,λ ∝
V τc < λc, before it is decorrelated. The particle cannot explore thespatial structure of the
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Figure 5: Schematic trajectory of a particle forK >> 1.

field. This corresponds todecorrelation in time. The scaling of the diffusion coefficient
with K is

D ≈ λ2

2τc

∝ V 2τc = K2λ2
c

τc

. (60)

This thequasi-linear regime.Examples were discussed in section II.

A.2 Large K

The spatial step is the correlation length of the stochasticfield, λ ≈ λc << V τc. This is
decorrelation in space. This regime is valid in case of long-term correlations and trap-
ping in field structures where particles execute semi-periodic motions before they escape
again. The time step

τ =
λc

V
=

τc

K
<< τc. (61)

is much smaller than the correlation time. If trapping does not occur, the diffusion coeffi-
cient is

D ≈ λ2
c

τ
≈ V 2τ = K

λ2
c

τc

. (62)

The total length of the diffusive path covered in timeτc contains many correlation
lengths

L ≈ V τc ≈ Nλc (N ≈ K >> 1). (63)

The diffusion length covered in timet = Nτ is much smaller

ldiff ≈
√

2Dt =
√

2DNτ = λc

√
N. (64)

In case of trapping in a field structure, one might expect to obtain an approximate expres-
sion for the decorrelation time likeτ = τt + λc/V , whereτt represents the trapping time.
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Then, one would find

D ≈ λ2
c

λc/V + τt

=
λ2

c

τc

K

1 + Kτt/τc

. (65)

B. Peclet number

The Peclet number is a measure for the strength of the convective transport with respect
to diffusive transport

Pe =
V l

D
, (66)

whereV is the characteristic velocity of the fluid,l its characteristic length (e.g.l−1 ≈
∇V/V ), andD its diffusivity.

For large values of the Kubo numberK, one finds with (58) and (62)

Pe =
V l

D
≈ l

λc

. (67)

Thus,Pe ≈ 1 for large values ofK if the scale-lengthl and the correlation lengthλc are
of the same order of magnitude.

For small Kubo numbers one finds, using (58) and (60)

Pe ≈
l

Kλc

. (68)

If the scale-lengthl is smaller than or of the order of the correlation lengthλc, small Kubo
numbers imply large values of the Péclet number.

This case can be illustrated with an example of 2D streaming ,the convective cell (see
figure). Here, the cell sizel is of the same order as the correlation length. The width of
the layer is the diffusive displacement across the streamlines in a time of the order of the
rotation around the celll/V

D ≈ δ2

l/V
(69)

this leads to

δ ≈ (
Dl

V
)1/2 = lP−1/2

e . (70)

Since the model requiresδ << l, the convective cell only exists at largePe values and,
thus, for small Kubo numbers.
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Figure 6: A convective cell
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