DIFFUSION: FROM CLASSICAL TO FRACTIONAL

Theo J. Schep

Technical University of Eindhoven, P.O.Box 513, 5600 MB Eindhoven, The Netherlands
e-mail: t.schep4@kpnplanet.nl theo.schep@wanadoo.fr

I. Diffusion and Autocorrelation Functions

In spite of considerable progress in the understanding of anomalous transport, many questions and issues raised in the early papers in this field of research are still of interest today. In this Section we will briefly discuss some of these issues. In particular the role of the concept of correlation functions in the search for modifications of the conventional diffusion equations and for scaling laws, in order to describe non-classical diffusion.

Turbulent diffusion can also be viewed within the context of correlation functions. A direct relationship between the diffusion coefficient and the autocorrelation function of the velocity was introduced by Taylor [1]. Actually, he introduced a new "tool" for the analysis of diffusion processes. Following the ideas of Einstein and Langevin, Taylor introduced a stochastic equation for the motion of a Lagrangian test particle in a random field.

Consider the equation for the trajectory of a fluid parcel in a turbulent velocity field $\mathbf{u}(\mathbf{x}, t)$,

$$
\begin{equation*}
\frac{d \mathbf{x}}{d t}=\mathbf{u}(\mathbf{x}, t) . \tag{1}
\end{equation*}
$$

Since the velocity on the right hand side (rhs) depends on the trajectory $\mathbf{x}(t),(1)$ is highly nonlinear!

Suppose we follow a particle along its Lagrangian trajectory. It is obvious that the Lagrangian velocity $\mathbf{v}\left(\mathbf{x}_{0}, t\right)$ is equal to the Eulerian field value $\mathbf{u}(\mathbf{x}, t)$ if the particle trajectory $\mathbf{x}(t)$ which starts at \mathbf{x}_{0} passes through the point \mathbf{x} at time t, i.e., $\mathbf{v}\left(\mathbf{x}_{0}, t\right)=\mathbf{u}(\mathbf{x}(t), t)$.

Figure 1: Lagrangian coordinates

Figure 2: Integration domains

The formal solution of (1) is

$$
\begin{equation*}
\Delta \mathbf{x}(t)=\mathbf{x}(t)-\mathbf{x}(0)=\int_{0}^{t} d \tau \mathbf{v}\left(\mathbf{x}_{0}, \tau\right) \tag{2}
\end{equation*}
$$

This solution represents the trajectory of a fluidparcel/particle parametrized by the time t. It is quite general and appears in many circumstances, e.g. it may also describe magnetic field lines. Then, $\mathbf{v}\left(\mathbf{x}_{0}, t\right)$ represents the magnetic field strength with t being an appropriate parameter that indicates the position along a field line. Equation (1) is also called the V-Langevin equation, in contrast to the a-Langevin equation introduced in Part I.

We assume that the average velocity and, thus, the average displacement of a fluid parcel/particle vanishes, $<\mathbf{v}\left(\mathbf{x}_{0}, t\right)>=0$ and $<\Delta \mathbf{x}(t)>=0$.

The mean square displacement follows from (2)

$$
\begin{gather*}
<\left(\Delta x_{i}\right)^{2}(t)>=<\int_{0}^{t} d t_{1} \int_{0}^{t} d t_{2} v_{i}\left(t_{1}\right) v_{i}\left(t_{2}\right)>, \tag{3}\\
=2 \int_{0}^{t} d t^{\prime} \int_{0}^{t^{\prime}} d \tau<v_{i}\left(t^{\prime}\right) v_{i}\left(t^{\prime}-\tau\right)> \tag{4}
\end{gather*}
$$

Here, it is assumed that we have released at $t=0$ a large number of particles at different positions in the fluid. The average is taken over the trajectories of all these particles. It clearly requires that the turbulence is homogeneous in space. Since the average is over trajectories, the integrand of (4) is the two-point Lagrangian correlation function of the velocity of a single particle. We will also assume that the turbulence is stationary in time, so that the Lagrangian autocorrelation function of the velocity only depends on the time difference

$$
\begin{equation*}
C_{L i i}\left(\left|t_{1}-t_{2}\right|\right)=<v_{i}\left(t_{1}\right) v_{i}\left(t_{2}\right)>. \tag{5}
\end{equation*}
$$

Note that for stationary turbulence the average square of the turbulent velocity does not depend on time, $\left\langle v_{i}^{2}(t)\right\rangle=\left\langle v_{i}^{2}(0)\right\rangle$.

Upon partial integrating (4), one obtains the following expression for the mean square displacement

$$
\begin{equation*}
<\left(\Delta x_{i}\right)^{2}(t)>=2 \int_{0}^{t} d \tau(t-\tau) C_{L i i}(\tau) \tag{6}
\end{equation*}
$$

The 'running' diffusion coefficient is defined as

$$
\begin{equation*}
D_{T i}(t)=\frac{1}{2} \frac{d<\left(\Delta x_{i}\right)^{2}(t)>}{d t}=\int_{0}^{t} d \tau C_{L i i}(\tau) . \tag{7}
\end{equation*}
$$

This running diffusion coefficient is determined by the turbulent velocity field.
The Lagrangian integral time-scale τ_{L} is defined by

$$
\begin{equation*}
\tau_{L}=\int_{0}^{\infty} d \tau R_{L}(\tau) \tag{8}
\end{equation*}
$$

where

$$
\begin{equation*}
R_{L}(\tau)=\frac{\left.<v_{i}(t) v_{i}(t-\tau)\right\rangle}{<v_{i}^{2}(t)>} \tag{9}
\end{equation*}
$$

is the normalized correlation function. The MSD can be written as

$$
\begin{equation*}
<(\Delta x)_{i}^{2}(t)>=2<v_{i}^{2}(t)>\int_{0}^{t} d \tau(t-\tau) R_{L}(\tau) \tag{10}
\end{equation*}
$$

The Lagrangian Taylor micro-scale $t<\tau_{L}$ corresponds to $\tau \rightarrow 0$. In this limit, $R_{L}(\tau) \rightarrow$ 1 so that

$$
\begin{equation*}
<\left(\Delta x_{i}\right)^{2}(t)>\approx<v_{i}^{2}(t)>t^{2} . \tag{11}
\end{equation*}
$$

This corresponds to free streaming.
It is quite natural to require that events that are widely separated in space and/or time become uncorrelated. This implies that $R_{L}(\tau) \rightarrow 0$ for $\tau \rightarrow \infty$. This limit defines the Lagrangian macro scale $t>\tau_{L}$

$$
\begin{equation*}
<\left(\Delta x_{i}\right)^{2}(t)>\approx 2<v_{i}^{2}(t)>\left(t \tau_{L}-\text { constant }\right) . \tag{12}
\end{equation*}
$$

This means that for very long times the turbulent diffusion coefficient becomes constant

$$
\begin{equation*}
D_{T i}=\lim _{t \rightarrow \infty} D_{T i}(t)=\int_{0}^{\infty} d \tau C_{L i i}(\tau) \approx<v_{i}^{2}(t)>\tau_{L} \tag{13}
\end{equation*}
$$

This expression is appropriate for processes where decorrelation in time is dominant. Since long-term correlations and trapping in structures (e.g. magnetic islands, vortices) are neglected, (13) is only valid for small Kubo numbers (see next section).

In case spatial decorrelation is dominant, one has $\left\langle v_{i}^{2}>\approx \lambda_{c}^{2} / \tau^{2}\right.$, where λ_{c} is the correlation length, set by the average wavelength in the problem at hand, and τ the time it takes for the particle to travel over a distance λ_{c}. Then, the diffusion coefficient is

$$
\begin{equation*}
D_{T} \approx \frac{\lambda_{c}^{2}}{\tau} . \tag{14}
\end{equation*}
$$

In PART ONE it has been shown that the diffusion coefficient of the standard model of the random walk scales like

$$
\begin{equation*}
D \approx \frac{\lambda_{c}^{2}}{\tau_{c}} \tag{15}
\end{equation*}
$$

where λ_{c} is the correlation length and τ_{c} the correlation time. In that case $\left\langle v^{2}(t)>\approx\right.$ $\lambda_{c}^{2} / \tau_{c}^{2}$ with τ_{c} being the Lagrangian correlation time τ_{L}, and the coefficients (13), (14), and (15) scale identically.

The classical regime, where (13) is valid, will never be reached in case of turbulence with strong memory effects where long time correlations exist or in case of nonlocal interactions with correlations over long distances. In many cases we will find that the mean square displacement scales algebraically with time according to

$$
\begin{equation*}
<\left(\Delta x_{i}\right)^{2}(t)>\propto t^{\alpha}, \tag{16}
\end{equation*}
$$

where α is the diffusion exponent. $H=\alpha / 2$ is called the Hurst factor. We will encounter the following regimes
$0<\alpha<1 \quad$ subdifussive regime, strange diffusion
$\alpha=1 \quad$ classical regime or anomalous diffusion
$1<\alpha<2 \quad$ superdiffusive regime, strange diffusion
$\alpha=2 \quad$ free streaming or strange diffusion.
In the classical regime the diffusion process is collision dominated with $\alpha=1$.
Following [4], we distinguish between anomalous and strange diffusion. Strange diffusion is characterized by $\alpha \neq 1$. Anomalous diffusion is defined as a diffusive process ($\alpha=1$), but with a diffusion coefficient that depends on variables unrelated to collisions, like amplitudes of fluctuating fields, that characterize the disorder and randomness of the medium.

A. Fractional Brownian motion (fBm)

The position $x(t)$ of a Brownian particle is a stochastic variable. This position could also be introduced as follows. Let the displacement of the particle be given by

$$
\begin{equation*}
x(t)-x\left(t_{0}\right) \propto \xi\left|t-t_{0}\right|^{H}, \quad t>t_{0} \tag{17}
\end{equation*}
$$

for any two times $\left(t, t_{0}\right)$. Here, ξ is a random variable that may or may not be Gaussian distributed. H is the Hurst factor.
If ξ is Gaussian distributed, then the mean square displacement may be written as

$$
\begin{equation*}
<\left(x(t)-x\left(t_{0}\right)\right)^{2}>=2 D \tau\left(\frac{\left|t-t_{0}\right|}{\tau}\right)^{2 H} \tag{18}
\end{equation*}
$$

This is called fractional Brownian motion. For $H=1 / 2$ classical diffusion is recovered.
Fractinal Brownian motion was introduced by Mandelbrot as a generalization of classical diffusion for $H=1 / 2$ to any arbitrary number on the interval $0<H<1$. Fractional Brownian motion has infinitely long time correlations. The correlation between past and future displacements is

$$
<\left(x\left(t_{0}\right)-x(-t)\right)\left(x(t)-x\left(t_{0}\right)\right)>.
$$

Take for simplicity $x\left(t_{0}\right)=0$. Then, using $<(x(t)-x(-t))^{2}>=2<x^{2}(t)>-2<$ $x(t) x(-t)>$, one obtains the normalized correlation

$$
\begin{equation*}
C(t)=\frac{-<x(-t) x(t)>}{<x(t)^{2}>}=2^{2 H-1}-1 \tag{19}
\end{equation*}
$$

Note that for $H=1 / 2$ the correlation vanishes. This the classical regime. The range $0<H<1 / 2$ corresponds to sub-diffusive behavior, while $1 / 2<H<1$ corresponds to super-diffusive behavior.

B. Velocity shear

In dealing with super-diffusion one must take care to deal with true diffusion processes. The presence of velocity shear could lead to wrong conclusions.

The particle trajectories are given by

$$
\begin{equation*}
\frac{d x}{d t}=v_{x}(t), \quad \frac{d y}{d t}=v_{y}(t)+b x(t) \tag{20}
\end{equation*}
$$

Here, $v_{x, y}(t)=v_{x, y}(x(t), y(t), t)$ are the fluctuating Lagrangian velocities and $b x$ is an additional sheared velocity field in the y-direction.
The formal solutions of (20) are

$$
\begin{equation*}
x(t)=\int_{0}^{t} d t^{\prime} v_{x}\left(t^{\prime}\right) \tag{21}
\end{equation*}
$$

$$
\begin{equation*}
y(t)=\int_{0}^{t} d t^{\prime} v_{y}\left(t^{\prime}\right)+b \int_{0}^{t} d t^{\prime} \int_{0}^{t^{\prime}} d t^{\prime \prime} v_{x}\left(t^{\prime \prime}\right) \tag{22}
\end{equation*}
$$

Consider a velocity field with the following statistical properties.
a. The average velocities vanish

$$
<v_{x}>=<v_{y}>=0 .
$$

This implies $\langle x\rangle=0,\langle y\rangle=0$.
b. The x - and y-velocities are statistically independent

$$
<v_{x} v_{y}>=0
$$

c. The turbulence is uniform in time and the velocities are δ-correlated

$$
<v_{x}(t) v_{x}\left(t^{\prime}>\right)=D_{x x} \delta\left(t-t^{\prime}\right), \quad<v_{y}(t) v_{y}\left(t^{\prime}>=D_{y y} \delta\left(t-t^{\prime}\right)\right.
$$

where $D_{x x}=<v_{x}^{2}>\tau_{0}, \quad D_{y y}=<v_{y}^{2}>\tau_{0}, \tau_{0}$ being the short timescale of the random process. This requires timescales that are large as compared with the time scale set by viscosity (see section on the Langevin approach).

The mean square displacements are obtained from (21) and (22),

$$
\begin{gather*}
<x^{2}(t)>=\int_{0}^{t} d t^{\prime} \int_{0}^{t} d t^{\prime \prime}<v_{x}\left(t^{\prime}\right) v_{x}\left(t^{\prime \prime}\right)> \tag{23}\\
<y^{2}(t)>=\int_{0}^{t} d t^{\prime} \int_{0}^{t} d t^{\prime \prime}<v_{y}\left(t^{\prime}\right) v_{y}\left(t^{\prime \prime}\right)>+ \tag{24}\\
b^{2} \int_{0}^{t} d t^{\prime} \int_{0}^{t^{\prime}} d t^{\prime \prime} \int_{0}^{t} d s \int_{0}^{s} d s^{\prime}<v_{x}\left(t^{\prime \prime}\right) v_{x}\left(s^{\prime}\right)>.
\end{gather*}
$$

This yields

$$
\begin{equation*}
<x^{2}(t)>=2 \int_{0}^{t} d \tau(t-\tau)<v_{x}^{2}>\tau_{0} \delta(\tau)=2 D_{x x} t \tag{25}
\end{equation*}
$$

and

$$
\begin{gather*}
<y^{2}(t)>=2 \int_{0}^{t} d t^{\prime} \int_{0}^{t^{\prime}} d t^{\prime \prime}<v_{y}\left(t^{\prime}\right) v_{y}\left(t^{\prime \prime}\right)>+ \\
b^{2} \int_{0}^{t} d t^{\prime} \int_{0}^{t} d s\left(t-t^{\prime}\right)(t-s)<v_{x}\left(t^{\prime}\right) v_{x}(s)> \\
=2 D_{y y} t+\frac{2}{3} b^{2} D_{x x} t^{3} \tag{26}
\end{gather*}
$$

It looks if the last contribution represents super-diffusion (even faster than free streaming) in the direction of the shear flow. However, this motion in the y-direction is a combined
effect of standard diffusion along x and of shear flow along y. Due to diffusion the particle travels to positions in x with larger $\left\langle x^{2}\right\rangle$. At this position the particle undergoes a larger shear velocity along y.

Independent coordinates can be found as follows. Write $\hat{y}=y-\alpha x$ and determine α from the condition $<x \hat{y}\rangle=0$. Since $<x y>=b D_{x x} t^{2}$ one obtains $\alpha=b t / 2$. It follows that the independent coordinates are (x, y) with

$$
\begin{equation*}
\hat{y}=y-\frac{1}{2} b t x . \tag{27}
\end{equation*}
$$

The mean square displacement is

$$
\begin{gather*}
<\hat{y}^{2}>=<y^{2}>-b t<x y>+\frac{1}{4} b^{2} t^{2}<x^{2}> \\
=2 D_{y y} t+\frac{1}{6} b^{2} t^{3} D_{x x} . \tag{28}
\end{gather*}
$$

On the basis of the Central Limit Theorem, the probability density for the position of a particle (a random walker) starting at $x=0, y=0$ at time $t=0$ is,

$$
\begin{equation*}
n(x, y, t)=\frac{1}{\sqrt{4 \pi^{2}<x^{2}><\hat{y}^{2}>}} \exp \left(-\frac{x^{2}}{2<x^{2}>}-\frac{\hat{y}^{2}}{2<\hat{y}^{2}>}\right), \tag{29}
\end{equation*}
$$

where $\left\langle x^{2}\right\rangle, \hat{y}$ and $<\hat{y}^{2}>$ are given by (7), (9) and (10), respectively.
Equations (25), (28), and (29) correspond to eqs (18), (19), and to (13) of [3], respectively. It can be shown by substitution that (29) is the solution to the diffusion equation,

$$
\begin{equation*}
\frac{\partial n}{\partial t}+b x \frac{\partial n}{\partial x}=D_{x x} \frac{\partial^{2} n}{\partial x^{2}}+D_{y y} \frac{\partial^{2} n}{\partial y^{2}} . \tag{30}
\end{equation*}
$$

II. The Corrsin approximation

The quantity that appears in the Lagrangian correlation function (5) is the product of the velocities at two different times along the same trajectory. The average is taken over all trajectories in the volume. This theory requires a knowledge of Lagrangian trajectories. However, these Lagrangian quantities cannot be determined experimentally. The quantity that is accessible to measurements is the correlation function in Eulerian coordinates i.e. at fixed points in space

$$
\begin{equation*}
C_{E i j}(\mathbf{x}, t)=<u_{i}\left(\mathbf{x}_{1}, t_{1}\right) u_{j}\left(\mathbf{x}_{1}+\mathbf{x}, t_{1}+t\right)>. \tag{31}
\end{equation*}
$$

This is the average over the product of the velocities at positions that are a distance x apart in space and t in time. One could also say that the Eulerian average is the result of many fluid particles passing through two measuring points over a period t. These positions are
in general not connected by particle trajectories.
This difference between Lagrangian and Eulerian correlation functions is one of the essential difficulties in the theory of turbulence. In order to proceed it seems necessary to find the relationship between Lagrangian and Eulerian coordinates. However, to find such a relationship would practically mean that we are able to solve the general problem of turbulence!

A famous approximation that allows to express the Lagrangian correlation function in terms of the Eulerian one was introduced by Corrsin. The Lagrangian correlation can be expressed as follows

$$
\begin{equation*}
C_{L i j}(t)=\int d^{d} x C_{E i j}^{c}[\mathbf{x}, t \mid \mathbf{x}(t)=\mathbf{x}] \rho(\mathbf{x}, t) \tag{32}
\end{equation*}
$$

where $E_{i j}^{c}$ is the Eulerian velocity correlation under the condition that the trajectory is at x at time t,

$$
\begin{equation*}
C_{E i j}^{c}=<u_{i}(0,0) u_{j}(\mathbf{x}, t)>\left.\right|_{\mathbf{x}=\mathbf{x}(t)}, \tag{33}
\end{equation*}
$$

and $\rho(\mathbf{x}, t)$ is the probability density that the particle is on the particular trajectory $\mathbf{x}=$ $\mathbf{x}(t)$.

The Corrsin approximation consists of two elements.

1. At long diffusion times the pdf of the particle displacements and the one of he Eulerian velocity field become independent of each other. The particle trajectories are statistically independent of the stochastic velocity field. This means that the Lagrangian character of $E_{i j}^{c}$ is neglected and that $C_{E i j}^{c}$ may be replaced by the Eulerian correlation $C_{E i j}$.

$$
\begin{equation*}
C_{L i j}(t)=\int d^{d} x C_{E i j}(\mathbf{x}, t) \rho(\mathbf{x}, t) \tag{34}
\end{equation*}
$$

Note that \mathbf{x} in $\rho(\mathbf{x}, t)$ is the difference between two positions along a trajectory, while in $C_{E i j}(\mathbf{x}, t)$ it is the difference between the positions of two arbitrary points.
2. The Lagrangian orbits have a diffusive character, i.e., the displacements have a Gaussian distribution

$$
\begin{equation*}
\rho(\mathbf{x}, t)=\frac{1}{\left(2 \pi<x^{2}(t)>\right)^{d / 2}} \exp -\frac{x^{2}}{2<x^{2}(t)>} . \tag{35}
\end{equation*}
$$

If the process is diffusive one has $\left\langle x^{2}(t)\right\rangle=2 d D t$.

III. Anisotropy and double diffusion

In this Section we will consider diffusion processes in which the anisotropy of the medium plays an important role. We consider systems in which the particles undergo a classical

Figure 3: A layered medium with random jets.
diffusive motion in, let's say, the longitudinal direction and an additional stochastic motion in the perpendicular direction. Transport in such anisotropic media is either characterized by super-diffusive or by sub-diffusive processes. The transverse displacement (i.e. the root mean square displacement) is described by the scaling law,

$$
\begin{equation*}
\lambda_{\perp} \propto t^{H} \tag{36}
\end{equation*}
$$

Here, H is the Hurst factor. In the case of classical diffusive behavior we find $H=1 / 2$.

A. A model with super-diffusion

A physical model of particle behavior under the influence of strongly anisotropic diffusion, was considered by Dreizin and Dykhnes [2]. The basic idea is the following.

A conducting fluid (plasma) is embedded in a magnetic field. The particles experience a "seed" diffusion with coefficient $D_{\|}$in the direction of the field. During its diffusive motion along magnetic field lines, the particle travels through a set of perpendicular layers of width a. The time it takes to diffuse through such a layer is

$$
\begin{equation*}
\tau=\frac{a^{2}}{2 D_{\|}} \tag{37}
\end{equation*}
$$

In these layers, random jets with velocity $\pm V_{0}$ translate these particles in the perpendicular plane creating narrow convective flows of width a. During this diffusion time τ the particle will take a step $V_{0} \tau$ either to the right or to the left. The diffusion coefficient in the transverse direction D_{\perp} will depend on the number of times a particle returns to the same layer during its motion along the magnetic field.

The transverse diffusion is described by

$$
\begin{equation*}
D_{\perp} \approx \frac{\lambda_{\perp}^{2}}{t}, \quad \lambda_{\perp}^{2} \approx V_{0}^{2} t^{2} P, \quad P=\frac{N_{r}}{\hat{N}} \tag{38}
\end{equation*}
$$

Here, $\lambda_{\perp}=\sqrt{\left\langle\mathrm{x}_{\perp}^{2}\right\rangle}$ is the transverse displacement during the time t and P is the relative number of "non-compensated" fluctuations. The number of different shear flows intersected by the particle during its longitudinal motion is

$$
\begin{equation*}
N \approx \frac{\sqrt{2 D_{\|} t}}{a} \tag{39}
\end{equation*}
$$

while the total number of shear flows crossed in time t is

$$
\begin{equation*}
\hat{N} \approx \frac{t}{\tau} \approx \frac{2 D_{\|} t}{a^{2}} . \tag{40}
\end{equation*}
$$

The number of times a particle visits the same layer along its diffusive trajectory is denoted by N_{r}.

The particle undergoes a classical random walk in the z-direction along the field lines. The probability density $\rho(z, t)$ to find the walker at a distance z at time t is

$$
\begin{equation*}
\rho(z, t)=\frac{1}{\left(4 \pi D_{\|} t\right)^{1 / 2}} \exp \left(\frac{-z^{2}}{4 D_{\|} t}\right) . \tag{41}
\end{equation*}
$$

The limit $z \rightarrow 0$ corresponds to the probability of return to the initial layer

$$
\begin{equation*}
\rho(0, t) a=\frac{a}{\sqrt{4 \pi D_{\|} t}} . \tag{42}
\end{equation*}
$$

This yields

$$
\begin{equation*}
N_{r} \approx \hat{N} \frac{a}{\sqrt{4 \pi D_{\|} t}} \propto \sqrt{\frac{t}{\tau}} \approx \sqrt{\hat{N}} . \tag{43}
\end{equation*}
$$

Thus, one obtains from (38)

$$
\begin{equation*}
\lambda_{\perp}^{2} \approx V_{0}^{2} t^{2} \frac{N_{r}}{\hat{N}} \approx \frac{V_{0}^{2} a}{\sqrt{4 \pi D_{\|}}} t^{3 / 2} \gg t \tag{44}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{\perp} \approx V_{0}^{2} a \sqrt{\frac{t}{4 \pi D_{\|}}} \tag{45}
\end{equation*}
$$

This is the super-diffusive regime with a Hurst factor $H=3 / 4$.
Consider the correlation function in the form,

$$
\begin{equation*}
C\left(t_{1}, t_{2}\right)=\int_{-\infty}^{\infty}<V(0) V(z)>\rho\left(z, t_{2}-t_{1}\right) d z \tag{46}
\end{equation*}
$$

where $\rho\left(z, t_{2}-t_{1}\right)$ is given by (41) Here, $V(z)$ is the velocity of the flow at the point z. This representation corresponds to the Corrsin conjecture of the diffusive nature of
decorrelations.

The probability to return to the initial point is given by the limit $z \rightarrow 0$ in (41). In this limit, one obtains the expression,

$$
\begin{equation*}
C\left(t_{1}, t_{2}\right)=C(\tau) \approx \frac{V_{0}^{2} a}{\sqrt{4 \pi D_{\|} \tau}}, \quad \tau=t_{1}-t_{2} \tag{47}
\end{equation*}
$$

It is seen that $C(\tau) \approx V_{0}^{2} / N(\tau)$.
The correlation function (47) leads to the diffusion coefficient,

$$
\begin{equation*}
D_{\perp}=\frac{d}{d t} \lambda_{\perp}^{2}=\int_{0}^{t} C(\tau) d \tau \tag{48}
\end{equation*}
$$

so that

$$
\begin{equation*}
\lambda_{\perp}^{2} \approx \frac{V_{0}^{2} a}{\sqrt{4 \pi D_{\|}}} \int_{0}^{t} \int_{0}^{t} \frac{d t_{1} d t_{2}}{\sqrt{t_{1}-t_{2}}} \approx \frac{V_{0}^{2} a}{\sqrt{4 \pi D_{\|}}} t^{3 / 2} . \tag{49}
\end{equation*}
$$

This is identical to (45).
It is concluded that even a small number of uncompensated flows $P=N_{r} / \hat{N} \approx$ $1 / \sqrt{\hat{N}}$, leads to a considerable deviation of transport from the standard diffusive behavior.

B. Diffusion in a stochastic magnetic field: sub-diffusion

Next we analyze the "double diffusion" scaling law, which is one of the first models of anisotropic diffusion in a magnetic field.
Consider a plasma embedded in a magnetic field. This field consists of a strong, homogeneous and uniform axial field $B_{0} \mathbf{e}_{z}$ and a stochastic field $\mathbf{B}_{\perp}=B_{0} \mathbf{b}\left(\mathbf{x}_{\perp}, z\right)$ in the transverse plane,

$$
\begin{equation*}
\mathbf{B}\left(\mathbf{x}_{\perp}, z\right)=B_{0}\left(\mathbf{e}_{z}+\mathbf{b}\left(\mathbf{x}_{\perp}, z\right)\right), \tag{50}
\end{equation*}
$$

where $\mathbf{x}_{\perp}=(x, y, 0)$. The field line equation is given by

$$
\begin{equation*}
\frac{d x}{B_{x}}=\frac{d y}{B_{y}}=\frac{d z}{B_{0}}, \tag{51}
\end{equation*}
$$

which can be written as

$$
\begin{equation*}
\frac{d \mathbf{x}_{\perp}}{d z}=\mathbf{b}\left(\mathbf{x}_{\perp}, z\right) \tag{52}
\end{equation*}
$$

This equation is equivalent to equation (1) for the trajectory of a fluid parcel, the normalized magnetic field strength plays the role of the velocity and the position z along the field line the role of time.

Figure 4: Stochastic field lines.
The magnetic field lines execute a random motion in the transverse plane. Analogously to the treatment in the previous sections we will now find a magnetic diffusion coefficient D_{m}. For stochastic variables b_{x} and b_{y} that are independent, have zero averages, and equal variances, we have

$$
\begin{equation*}
D_{m}=\frac{1}{4} \int_{-\infty}^{+\infty} d z<b_{x}\left(\mathbf{x}_{\perp}(z), z\right) b_{x}(0,0)+b_{y}\left(\mathbf{x}_{\perp}(z), z\right) b_{y}(0,0)> \tag{53}
\end{equation*}
$$

Assume that the \mathbf{x}_{\perp}-dependence in the right hand side of (52) is weak and may be neglected. This is the quasi-linear approximation. Then, the magnetic analogue of (13) is

$$
\begin{equation*}
D_{m}=\frac{1}{2} \int_{-\infty}^{+\infty} d z<b_{x}(0, z) b_{x}(0,0)>\approx b_{0}^{2} \lambda_{\|} \tag{54}
\end{equation*}
$$

where $<b_{x}^{2}>=<b_{y}^{2}>=b_{0}^{2}$, and $\lambda_{\|}$is the correlation length along the main field. The displacement of the magnetic field line in the transverse plane over a distance $l_{\|}$in the longitudinal direction [4] is

$$
\begin{equation*}
\lambda_{\perp}^{2} \approx 2 D_{m} l_{\|} \tag{55}
\end{equation*}
$$

The approximation (54) clearly requires $b_{0} \lambda_{\|} \ll l_{\perp}$, where l_{\perp} is the characteristic scale of the magnetic field in the transverse directions. Equation (54) corresponds to the quasi-linear approximation and is only valid for small magnetic Kubo number, $K_{m}=$ $b_{0} \lambda_{\|} / l_{\perp} \ll 1$.

The relationship between particle diffusion and the stochastic motion of the field lines is in general quite complex. Let us assume that the particles are tied to the magnetic field lines, so that while moving along field lines, they wander stochastically in the transverse plane. Since the particles are tied to the field lines, the perpendicular particle motion is also stochastic with the same standard deviation λ_{\perp}^{2}. Further, assume that the particles undergo a classical diffusion process along the field lines with diffusion coefficient

$$
\begin{equation*}
l_{\|}=\sqrt{2 D_{\|} t}, \quad D_{\|}=\frac{\lambda_{\text {coll }}^{2}}{\tau_{\text {coll }}} \tag{56}
\end{equation*}
$$

Hence, the particles undergo a double diffusion process: a stochastic motion in the transverse plane and a classical diffusion process along the field lines. From (53) and (56) one obtains the following estimate for the particle diffusion

$$
\begin{equation*}
\lambda_{\perp}^{2} \approx 2 D_{m} l_{\|} \approx 2 D_{m} \sqrt{2 D_{\|} t} \tag{57}
\end{equation*}
$$

This is much smaller than t for large t. Thus, the scaling law for the transverse displacement of the particles has a sub-diffusive form with Hurst factor $H=1 / 4$. This subdiffusive character is absent if the motion along the magnetic field is "ballistic", $l_{\|} \approx V t$. Thus, the character of transverse diffusion is determined by the actual longitudinal transport mechanism.

IV. Kubo and Péclet numbers

A. Kubo number

The Kubo number is the ratio of the distance covered by a particle in the correlation time τ_{c} to the correlation length λ_{c} of the stochastic field

$$
\begin{equation*}
K=\frac{V \tau_{c}}{\lambda_{c}} \tag{58}
\end{equation*}
$$

where

- V is the characteristic amplitude of the fluctuating velocity,
- λ_{c} the average wavelength in the Eulerian velocity correlation function $C_{E}(\Delta, t)$,
- τ_{c} correlation time of $C_{E}(\Delta, t)$.

These are all Eulerian quantities. However, the Kubo number can also be interpreted as the ratio of the Eulerian time τ_{c} to the Lagrangian time λ_{c} / V.
In case of standard diffusion processes, $V \approx \lambda_{c} / \tau_{c}$ so that $K \approx 1$.
Analogous to equation (58), we may define on the basis of (52) a magnetic Kubo number

$$
\begin{equation*}
K_{m}=\frac{b_{0} l_{\|}}{l_{\perp}} \tag{59}
\end{equation*}
$$

where b_{0} is the characteristic value of the fluctuating field, $l_{\|}$the correlation length in the direction along the main field (the coordinate along this field plays the role of time), and l_{\perp} the correlation length in the transverse plane.

A. 1 Small K

The particle covers only a small distance as compared with the correlation length, $\lambda \propto$ $V \tau_{c}<\lambda_{c}$, before it is decorrelated. The particle cannot explore the spatial structure of the

Figure 5: Schematic trajectory of a particle for $K \gg 1$.
field. This corresponds to decorrelation in time. The scaling of the diffusion coefficient with K is

$$
\begin{equation*}
D \approx \frac{\lambda^{2}}{2 \tau_{c}} \propto V^{2} \tau_{c}=K^{2} \frac{\lambda_{c}^{2}}{\tau_{c}} \tag{60}
\end{equation*}
$$

This the quasi-linear regime. Examples were discussed in section II.

A. 2 Large K

The spatial step is the correlation length of the stochastic field, $\lambda \approx \lambda_{c} \ll V \tau_{c}$. This is decorrelation in space. This regime is valid in case of long-term correlations and trapping in field structures where particles execute semi-periodic motions before they escape again. The time step

$$
\begin{equation*}
\tau=\frac{\lambda_{c}}{V}=\frac{\tau_{c}}{K} \ll \tau_{c} . \tag{61}
\end{equation*}
$$

is much smaller than the correlation time. If trapping does not occur, the diffusion coefficient is

$$
\begin{equation*}
D \approx \frac{\lambda_{c}^{2}}{\tau} \approx V^{2} \tau=K \frac{\lambda_{c}^{2}}{\tau_{c}} \tag{62}
\end{equation*}
$$

The total length of the diffusive path covered in time τ_{c} contains many correlation lengths

$$
\begin{equation*}
L \approx V \tau_{c} \approx N \lambda_{c} \quad(N \approx K \gg 1) \tag{63}
\end{equation*}
$$

The diffusion length covered in time $t=N \tau$ is much smaller

$$
\begin{equation*}
l_{d i f f} \approx \sqrt{2 D t}=\sqrt{2 D N \tau}=\lambda_{c} \sqrt{N} . \tag{64}
\end{equation*}
$$

In case of trapping in a field structure, one might expect to obtain an approximate expression for the decorrelation time like $\tau=\tau_{t}+\lambda_{c} / V$, where τ_{t} represents the trapping time.

Then, one would find

$$
\begin{equation*}
D \approx \frac{\lambda_{c}^{2}}{\lambda_{c} / V+\tau_{t}}=\frac{\lambda_{c}^{2}}{\tau_{c}} \frac{K}{1+K \tau_{t} / \tau_{c}} \tag{65}
\end{equation*}
$$

B. Peclet number

The Peclet number is a measure for the strength of the convective transport with respect to diffusive transport

$$
\begin{equation*}
P_{e}=\frac{V l}{D} \tag{66}
\end{equation*}
$$

where V is the characteristic velocity of the fluid, l its characteristic length (e.g. $l^{-1} \approx$ $\nabla V / V)$, and D its diffusivity.

For large values of the Kubo number K, one finds with (58) and (62)

$$
\begin{equation*}
P_{e}=\frac{V l}{D} \approx \frac{l}{\lambda_{c}} . \tag{67}
\end{equation*}
$$

Thus, $P_{e} \approx 1$ for large values of K if the scale-length l and the correlation length λ_{c} are of the same order of magnitude.

For small Kubo numbers one finds, using (58) and (60)

$$
\begin{equation*}
P_{e} \approx \frac{l}{K \lambda_{c}} \tag{68}
\end{equation*}
$$

If the scale-length l is smaller than or of the order of the correlation length λ_{c}, small Kubo numbers imply large values of the Péclet number.

This case can be illustrated with an example of 2D streaming , the convective cell (see figure). Here, the cell size l is of the same order as the correlation length. The width of the layer is the diffusive displacement across the streamlines in a time of the order of the rotation around the cell l / V

$$
\begin{equation*}
D \approx \frac{\delta^{2}}{l / V} \tag{69}
\end{equation*}
$$

this leads to

$$
\begin{equation*}
\delta \approx\left(\frac{D l}{V}\right)^{1 / 2}=l P_{e}^{-1 / 2} \tag{70}
\end{equation*}
$$

Since the model requires $\delta \ll l$, the convective cell only exists at large P_{e} values and, thus, for small Kubo numbers.

Figure 6: A convective cell

References

[1] J. Taylor, Proc.Roy.Soc. 1921
[2] Y. A. Dreizin and A. M. Dykhne, Sov. Phys. JETP 36127 (1973)
[3] V.P. Lakhin, Diffusion in Flows with a Linearly Nonuniform Velocity Profile, JETP Lett. 85461 (2007)
[4] Radu Balescu, Statistical Dynamics, Matter out of Equilibrium, Imperial College Press, Cambridge, 1997

