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PART TWO: CORRELATION FUNCTIONS and DIFFUSION



|. Diffusion and Autocorrelation Functions

In spite of considerable progress in the understandingaiatous transport, many ques-
tions and issues raised in the early papers in this field efres are still of interest today.
In this Section we will briefly discuss some of these issuagpdrticular the role of the
concept of correlation functions in the search for modifare of the conventional diffu-
sion equations and for scaling laws, in order to describectassical diffusion.

Turbulent diffusion can also be viewed within the contextofrelation functions. A
direct relationship between the diffusion coefficient ahe autocorrelation function of
the velocity was introduced by Taylor [1]. Actually, he iotiuced a new "tool” for the
analysis of diffusion processes. Following the ideas oktgim and Langevin, Taylor in-
troduced a stochastic equation for the motion of a Lagranggat particle in a random
field.

Consider the equation for the trajectory of a fluid parcel inrddlent velocity field
u(x,t),
i u(x,t). (1)
Since the velocity on the right hand side (rhs) depends otrdfectoryx(t), (1) is highly
nonlinear!

Suppose we follow a particle along its Lagrangian trajgctliis obvious that the La-
grangian velocity (xo, t) is equal to the Eulerian field valugx, t) if the particle trajec-
tory x(t) which starts ak, passes through the powtat timet, i.e.,v(xq, t) = u(x(t),1).

Figure 1: Lagrangian coordinates
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Figure 2: Integration domains

The formal solution of (1) is

Ax(t) =x(t) —x(0) = /0 dr v(xg, T). (2

This solution represents the trajectory of a fluidparcetipi@ parametrized by the time

It is quite general and appears in many circumstances,tergyi also describe magnetic
field lines. Theny(xy, t) represents the magnetic field strength witkeing an appropri-
ate parameter that indicates the position along a field Eagiation (1) is also called the
V-Langevin equationn contrast to th@-Langevin equatiomtroduced in Part I.

We assume that the average velocity and, thus, the averaglakment of a fluid
parcel/particle vanishes; v(xo, t) >= 0 and< Ax(t) >= 0.

The mean square displacement follows from (2)

< (AZL‘Z)2(t) >=< /t dtl /t dtg Ui(tl)vi(tg) >, (3)

:2/0 dt/o dr < v(thv(t' — 1) > 4)

Here, it is assumed that we have released-at) a large number of particles at differ-
ent positions in the fluid. The average is taken over thedtajees of all these particles.
It clearly requires that the turbulence is homogeneousacepSince the average is over
trajectories, the integrand of (4) is the two-polrggrangiancorrelation function of the
velocity of a single particl&Ve will also assume that the turbulence is stationary in time,
so that the Lagrangian autocorrelation function of the \otip only depends on the time
difference

CLii(’tl — tg‘) =< Ul'(tl)UZ’(tQ) > . (5)

Note that forstationary turbulencehe average square of the turbulent velocity does not
depend on timex vZ(t) >=< v?(0) >.



Upon patrtial integrating (4), one obtains the following eegsion for the mean square
displacement

t
< (Azy)*(t) >= 2/ dr (t — 7)Cru(T). (6)
0
The 'running’ diffusion coefficiens defined as
1 Ax;)*(t K
0

This running diffusion coefficient is determined by tinebulentvelocity field.

The Lagrangian integral time-scaitg is defined by

TL = /OOO dr Rp(T) (8)

where
 <u(tu(t—T1) >

= 9
() <2 > ©)
is the normalized correlation function. The MSD can be wntas
t
< (AT2(H) 5= 2 < 02(t) > / dr (t — ) Ru(7). (10)
0

The Lagrangian Taylor micro-scale< 7, corresponds te — 0. In this limit, R, (7) —
1 so that
< (Ax)?(t) >~< vi(t) > % (11)

This corresponds tfyee streaming

It is quite natural to require that events that are widelyasafed in space and/or time
become uncorrelated. This implies that(7) — 0 for 7 — oo. This limit defines the
Lagrangian macro scate> 7,

< (Az)?(t) >~ 2 < v2(t) > (tTp — constant). (12)

This means that for very long times the turbulent diffusioeficient becomes constant

Dp; = tllHl D (t) = / dr CLii (T) ~< U? (t) > Tr. (13)
— 00 0

This expression is appropriate for processes where déatore in time is dominant.

Since long-term correlations and trapping in structureg. (enagnetic islands, vortices)

are neglected, (13) is only valid for small Kubo humbers (g4 section).



In case spatial decorrelation is dominant, one has? >~ \?/7%, where). is the
correlation length, set by the average wavelength in thblpno at hand, and the time
it takes for the particle to travel over a distance Then, the diffusion coefficient is

2
A
T

In PART ONE it has been shown that the diffusion coefficienthaf standard model of
the random walk scales like

Dy (14)

2

A
D~ =<, (15)

Te

where )\, is the correlation length antd the correlation time. In that case v?(t) >~
A\? /72 with 7. being the Lagrangian correlation timg, and the coefficients (13), (14),
and (15) scale identically.

The classical regime, where (13) is valid, will never be heaitin case of turbulence
with strong memory effects where long time correlationssewir in case of nonlocal
interactions with correlations over long distances. In yneases we will find that the
mean square displacement scales algebraically with timerding to

< (Ax)?(t) >oc t°, (16)

whereq is the diffusion exponentd = «/2 is called the Hurst factor. We will encounter
the following regimes

l<a<l1 subdifussive regimestrangediffusion
a=1 classical regime canomaloudiffusion
1 <a<?2 superdiffusive regimestrangediffusion
a=2 free streaming ostrangediffusion.
In the classical regime the diffusion process is collisiomthated withoe = 1.
Following [4], we distinguish between anomalous and steadiiffusion. Strange dif-
fusionis characterized by # 1. Anomalous diffusios defined as a diffusive process
(a = 1), but with a diffusion coefficient that depends on variableselated to collisions,

like amplitudes of fluctuating fields, that characterizedisorder and randomness of the
medium.



A. Fractional Brownian motion (fBm)

The positionz(¢) of a Brownian particle is a stochastic variable. This positould also
be introduced as follows. Let the displacement of the parbe given by

z(t) — x(to) o< &t —to]™, > 1o, (17)

for any two times(t, t,). Here,£ is a random variable that may or may not be Gaussian
distributed. H is the Hurst factor.
If £ is Gaussian distributed, then the mean square displacemagnbe written as

< (a(t) — a(to))? >= 2Dr(! _T“)')?H (18)

This is calledfractional Brownian motionFor H = 1/2 classical diffusion is recovered.

Fractinal Brownian motion was introduced by Mandelbrot asmegalization of clas-
sical diffusion forH = 1/2 to any arbitrary number on the intervak H < 1. Fractional
Brownian motion ha#finitely long time correlationsThe correlation between past and
future displacements is

< (#(to) — 2(=1))(x(t) — z(to)) > .

Take for simplicityz(ty) = 0. Then, using< (z(t) — z(—t))* >= 2 < z%(t) > -2 <
z(t)x(—t) >, one obtains the normalized correlation

o) = — <ji&?f9 ) (19)

Note that forHH = 1/2 the correlation vanishes. This the classical regime. Thgea
0 < H < 1/2 corresponds to sub-diffusive behavior, whil& < H < 1 corresponds to
super-diffusive behavior.

B. Velocity shear
In dealing with super-diffusion one must take care to dedhwie diffusion processes.
The presence of velocity shear could lead to wrong conahgsio

The particle trajectories are given by

dx dy
_:xtu o
= ) dt

Here,v, ,(t) = v,,(z(t),y(t),t) are the fluctuating Lagrangian velocities dndis an
additional sheared velocity field in thedirection.
The formal solutions of (20) are

vy (t) + bx(t). (20)

() = /0 d' v, (1), (21)
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y(t) = / it oy (t) + b / Lt / " (1), (22)

Consider a velocity field Witf] the following s(;atisticfal pexpies.

a. The average velocities vanish

< vy >=< v, >= 0.

This implies< z >=0, <y >= 0.

b. Thex- andy-velocities are statistically independent

< vy >= 0.
c. The turbulence is uniform in time and the velocities &eorrelated
< (v (t' >) = Dyd(t —t), < wvy(t)v,(t' >= Dy,0(t —t),

whereD,, =< v2 > 19, D,, =< v > 7, 1o being the short timescale of the random
process. This requires timescales that are large as cochpatte the time scale set by
viscosity (see section on the Langevin approach).

The mean square displacements are obtained from (21) ahd (22

t t
< 2%(t) >= / dt’ / dt” < v (t) v (") >, (23)
0 0
t t
< () >= / dt’ / dt" < v, ()0, (") > + (24)
0 0
t t/ t s
62/ dt'/ dt"/ ds/ ds" < v (t"vg(s") > .
0 0 0 0
This yields
t
< 23(t) >= 2/ dr (t — 1) < v2 > 76(7) = 2Dt (25)
0
and

t t/
<y (t) >= 2/ dt’/ dt” < v, (), (t") > +
0 0

b’ /Ot dt’ /Ot ds(t —t')(t — s) < v(t)ve(s) >

2
=2D,,t + §b2Dmt3. (26)

It looks if the last contribution represents super-difars{even faster than free streaming)
in the direction of the shear flow. However, this motion in ghdirection is a combined
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effect of standard diffusion alongand of shear flow along. Due to diffusion the parti-
cle travels to positions in with larger < 22 >. At this position the particle undergoes a
larger shear velocity along.

Independent coordinates can be found as follows. Writey — ax and determinex
from the condition< xj >= 0. Since< xy >= bD,,t* one obtaingy = bt /2. It follows
that the independent coordinates arey) with

1
J=vy— ébtac. (27)
The mean square displacement is

1
<P >s=<y?> bt <ay> +Zb2t2 <zt>

1
= 2Dyt + 6b2t3D”' (28)
On the basis of the Central Limit Theorem, the probabilitysignfor the position of a
particle (a random walker) startingat= 0,y = 0 at timet = 0 is,
1 ( x? 7>
expl(— —
P> " 2c 72 >

n(x,y,t) = ), (29)

AT <2 >< P >
where< z? >, ) and< ¢? > are given by (7), (9) and (10), respectively.

Equations (25), (28), and (29) correspond to eqs (18), @) to (13) of [3], respec-
tively. It can be shown by substitution that (29) is the soluto the diffusion equation,

on on 9°n 9°n
—|— bx— = D + Dyya—yZ.

ot TVay = Py (30)

lI. The Corrsin approximation

The quantity that appears in the Lagrangian correlationtfan (5) is the product of the
velocities at two different times along the same trajectdilye average is taken over all
trajectories in the volume. This theory requires a knowéedfjLagrangian trajectories.
However, these Lagrangian quantities cannot be deternexyerimentally. The quantity
that is accessible to measurements is the correlationiumict Eulerian coordinates.e.
at fixed points in space

Crij(x,t) =< u;(x1, t1)u;(x1 + x, 41 + 1) > . (31)

This is the average over the product of the velocities atijpos that are a distanceapart
in space and in time. One could also say that the Eulerian average is thdtref many
fluid particles passing through two measuring points ovegréod¢. These positions are
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in general not connected by patrticle trajectories.

This difference between Lagrangian and Eulerian corafuinctions is one of the
essential difficulties in the theory of turbulence. In orteproceed it seems necessary
to find the relationship between Lagrangian and Euleriamdinates. However, to find
such a relationship would practically mean that we are ab#olve the general problem
of turbulence!

A famous approximation that allows to express the Lagrangaarelation function in
terms of the Eulerian one was introduced by Corrsin. The Lragiean correlation can be
expressed as follows

Cris(t) = / 0%, [x, Hx(t) = X]p(x,t). (32)

whereEY; is the Eulerian velocity correlation under the conditioattthe trajectory is at
x at timet,
Chiy =< ui(0,0)u; (X, 1) > |x=x(t) (33)

andp(x, t) is the probability density that the particle is on the paiac trajectoryx =
x(t).

The Corrsin approximation consists of two elements.
1. At long diffusion times the pdf of the particle displacertseand the one of he Eulerian
velocity field become independent of each other. The partiejectories are statistically
independent of the stochastic velocity field. This meansttielLagrangian character of
Ef; is neglected and thaty,;; may be replaced by the Eulerian correlat@g;;.

CLij (t) = /dd.fL"CEij<X, t)p()g t) (34)

Note thatx in p(x, t) is the difference between two positions along a trajectwhyle in
Crij(x,t) itis the difference between the positions of two arbitraojngs.

2. The Lagrangian orbits have a diffusive character, ihe displacements have a Gaus-
sian distribution

1 x?

or < 22(t) )2 P2 < a2(t) > (35)

p(x,t) = (

If the process is diffusive one hasz?(t) >= 2dDt.

lll.  Anisotropy and double diffusion

In this Section we will consider diffusion processes in viitice anisotropy of the medium
plays an important role. We consider systems in which thégbes undergo a classical
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Figure 3: A layered medium with random jets.

diffusive motion in, let’s say, the longitudinal directi@amd an additional stochastic mo-
tion in the perpendicular direction. Transport in such ain@gpic media is either charac-
terized by super-diffusive or by sub-diffusive proces3d® transverse displacement (i.e.
the root mean square displacement) is described by thexgdaiv,

AL ot (36)

Here, H is the Hurst factor. In the case of classical diffusive bétrawe find # = 1/2.

A. A model with super-diffusion

A physical model of particle behavior under the influencetadrggly anisotropic diffu-
sion, was considered by Dreizin and Dykhnes [2]. The ba®a id the following.

A conducting fluid (plasma) is embedded in a magnetic fielae fdticles experience
a "seed” diffusion with coefficienD) in the direction of the field. During its diffusive
motion along magnetic field lines, the particle travels tigloa set of perpendicular layers
of width a. The time it takes to diffuse through such a layer is

(12

’7':2—l)H

(37)

In these layers, random jets with velociyl;, translate these particles in the perpendic-
ular plane creating narrow convective flows of widthDuring this diffusion timer the
particle will take a step/y7 either to the right or to the left. The diffusion coefficient i
the transverse directioP; will depend on the number of times a particle returns to the
same layer during its motion along the magnetic field.

The transverse diffusion is described by

N~ VAP, P = N (38)
0 N
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Here, A\, = /< x2 > is the transverse displacement during the tinend P is the
relative number of "non-compensated” fluctuations. The banofdifferentshear flows
intersected by the particle during its longitudinal motisn

A/ 2D||t
N~ ——, (39)
a
while thetotal number of shear flows crossed in tiris
A t ZDHt

N~ — =~
T a?

: (40)

The number of times a particle visits the same layer alondiftasive trajectory is de-
noted byN,..

The particle undergoes a classical random walk irztd@ection along the field lines.
The probability density(z, t) to find the walker at a distanceat timet is

1 —22

The limit z — 0 corresponds to the probability of return to the initial laye

a

0,t)a = ——.
p( )CL 1/47TDHt

(42)

This yields

~ a t <
N, ~ N—— -~ VN. 43
" \/47TD||2fO<\/: ( )

Thus, one obtains from (38)

N, W2
A2 VR A 0D 432 Sy (44)
N~ /irD,

and

t
D, ~V? N . 45
+ Vba 47TDH ( )

This is thesuper-diffusive regime with a Hurst factéf = 3/4.

Consider the correlation function in the form,

C(ty,ta) = /00 < V(0)V(2) > p(z,ts — t1)dz, (46)

[e.o]

wherep(z,ty — t1) is given by (41) Here)/(z) is the velocity of the flow at the point
z. This representation corresponds to the Corrsin conjectutiee diffusive nature of
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decorrelations.

The probability to return to the initial point is given by thenit = — 0 in (41). In this
limit, one obtains the expression,

2
Via

A /47TD||7"

C(tl,tg) = C(T) ~ T =1 —to. (47)

It is seen thaC(7) ~ VZ/N (7).
The correlation function (47) leads to the diffusion coédint,
= —)\2 / C(r (48)

so that

2N

/ / dhdty V0@ a2 (49)
\/47TD \/tl—tg \/47TDH

This is identical to (45).

It is concluded that even a small number of uncompensated flows N, /N ~

1/ VN , leads to a considerable deviation of transport from thendtad diffusive behav-
ior.

B. Diffusion in a stochastic magnetic field: sub-diffusion

Next we analyze the "double diffusion” scaling law, whichoise of the first models of
anisotropic diffusion in a magnetic field.

Consider a plasma embedded in a magnetic field. This field £tsnsh a strong, homo-
geneous and uniform axial fielBye. and a stochastic fiel8, = Byb(x,,z) in the
transverse plane,

B<XJ_7’Z> :BO(eZ+b(XL7Z))7 (50)
wherex, = (z,y,0). The field line equation is given by
L& (51)
B, B, Dy
which can be written as J
% =b(x,,2). (52)

This equation is equivalent to equation (1) for the trajactd a fluid parcel, the normal-
ized magnetic field strength plays the role of the velocity e position: along the field
line the role of time.
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Figure 4: Stochastic field lines.

The magnetic field lines execute a random motion in the tenssvplane. Analo-
gously to the treatment in the previous sections we will nowd &2 magnetic diffusion
coefficientD,,. For stochastic variables, andb, that are independent, have zero aver-
ages, and equal variances, we have

1 [t
D,, = Z_l/ dz < by(x1(2),2)b,(0,0) + by (x1(2), 2)by(0,0) > . (53)
Assume that the | -dependence in the right hand side of (52) is weak and may be ne-
glected. This is the quasi-linear approximatioithen, the magnetic analogue of (13)
IS 1 +o00

D, — 5/ dz < b,(0,2)b,(0,0) >~ b)), (54)

where< b2 >=< b2 >= bj, and)\| is the correlation length along the main field. The
displacement of the magnetic field line in the transversaelaver a distancg in the
longitudinal direction [4] is

[ee)

The approximation (54) clearly requirés\; << [, wherel, is the characteristic
scale of the magnetic field in the transverse directions. akon (54) corresponds to

the quasi-linear approximation and is only valid for smadignetic Kubo numbery,,, =
b[))\H/lJ_ << 1.

The relationship between particle diffusion and the stettbanotion of the field lines
is in general quite complex. Let us assume that the partirkesied to the magnetic field
lines, so that while moving along field lines, they wandecksstically in the transverse
plane. Since the particles are tied to the field lines, thegmticular particle motion is
also stochastic with the same standard deviadin Further, assume that the particles
undergo a classical diffusion process along the field liniés effusion coefficient

)\2
Ly = /2Dyt, D”:TC—"”. (56)
coll
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Hence, the particles undergo a double diffusion procesmchastic motion in the trans-
verse plane and a classical diffusion process along theliiredsl. From (53) and (56) one
obtains the following estimate for the particle diffusion

)\i ~ 2Dml|| ~ 2Dm\/2D||t. (57)

This is much smaller thanfor larget. Thus, the scaling law for the transverse displace-
ment of the particles has sub-diffusiveform with Hurst factord = 1/4. This sub-
diffusive character is absent if the motion along the magriietid is "ballistic”, [} ~ V.
Thus, the character of transverse diffusion is determirnyetthd actual longitudinal trans-
port mechanism.

V. Kubo and Péclet numbers

A. Kubo number

The Kubo number is the ratio of the distance covered by agbait the correlation time
7. to the correlation length,. of the stochastic field

B Vr,

K
A

(58)
where

- V is the characteristic amplitude of tHactuatingvelocity,

- A\ the average wavelength in the Eulerian velocity corretetimctionCr (A, t),

- 7. correlation time olCg (A, 1).

These are all Eulerian quantities. However, the Kubo nurobaralso be interpreted as
the ratio of the Eulerian time. to the Lagrangian time../V.

In case of standard diffusion processgsy \./7. so thatK = 1.

Analogous to equation (58), we may define on the basis of (B2agnetic Kubo number

_ boli

K = (59)

I’

whereby is the characteristic value of the fluctuating fididthe correlation length in the
direction along the main field (the coordinate along thigifighys the role of time), and
[, the correlation length in the transverse plane.

A.1 Small K

The particle covers only a small distance as compared wétcthrelation length) o
V1. < A, before itis decorrelated. The particle cannot exploresgiagial structure of the
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Figure 5: Schematic trajectory of a particle f@r>> 1.

field. This corresponds tdecorrelation in time The scaling of the diffusion coefficient
with K is \2 \2
x Vi1, = K?~<. (60)

Te Te
This thequasi-linear regimeExamples were discussed in section Il.

D =~

A.2 Large K

The spatial step is the correlation length of the stochdigtid, A ~ \. << V7. This s
decorrelation in spaceThis regime is valid in case of long-term correlations aragh+
ping in field structures where particles execute semi-parimotions before they escape

again. The time step
Ae e
T Tl << Te (61)
is much smaller than the correlation time. If trapping doetsatcur, the diffusion coeffi-
cientis \2 \2
D~ Vir=K><. (62)
T Te
The total length of the diffusive path covered in timecontains many correlation
lengths

L~Vr.~ N\, (N~ K >>1). (63)
The diffusion length covered in time= N7 is much smaller

lus = V2Dt = V2DNT = \VN. (64)

In case of trapping in a field structure, one might expect taiokan approximate expres-
sion for the decorrelation time like= 7, + \./V, wherer, represents the trapping time.
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Then, one would find
A2 B A2 K

C

D~ — =< 65
A V+1 1,14 Kn/, (65)

B. Peclet number

The Peclet number is a measure for the strength of the comeernsport with respect
to diffusive transport

Vi
=5
whereV is the characteristic velocity of the fluidjts characteristic length (e.d-* ~
VV/V), andD its diffusivity.

P, (66)

For large values of the Kubo numbét, one finds with (58) and (62)

Vi [
P=—=~—. 67
‘=D~ (67)

Thus, P, ~ 1 for large values of{ if the scale-lengtli and the correlation length, are
of the same order of magnitude.

For small Kubo numbers one finds, using (58) and (60)

l
KX\

P, ~ (68)
If the scale-lengtlhis smaller than or of the order of the correlation lengthsmall Kubo
numbers imply large values of th&é&let number.

This case can be illustrated with an example of 2D streantimg convective cell (see
figure). Here, the cell sizkis of the same order as the correlation length. The width of
the layer is the diffusive displacement across the stregslin a time of the order of the
rotation around the cel)/V'

52
D =~ l/_V (69)
this leads to
Di 1/2 -1/2
0~ (7) =[P /" (70)

Since the model requires << [, the convective cell only exists at lardg& values and,
thus, for small Kubo numbers.

16



Y

Figure 6: A convective cell
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