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INTRODUCTION

Diffusion can be defined as the motion of some quantity from a region of high concen-
tration to a region of low concentration. It is clear that under this definition diffusion
phenomena are ubiquitous in nature and will play a role in many aspects of every day life.
Every day life examples are the spreading of odors in air, like the spreading of smoke
or the perfume of a lady in a room, the spreading of seasoning in the marinade in your
kitchen, or the global spreading of a virus in these times with intensive air traffic. Diffu-
sion denotes the mixing of two or more substances and is the net result on the macro-scale
from interactions on the micro-scale with some individual agents, like collisions with
molecules. One can say that diffusion is the ensemble average over microscopic interac-
tions. Such processes are studied in numerous sciences and play a role in such diverse
areas as chemistry, economy, biology, physics, physiology, etc.. A well known example
from sociology is the spreading of information under a population and from biology the
spreading of diseases in life stock and bird populations.

In physics, diffusion processes belong to the larger field oftransport phenomena. A
transport phenomenon is any mechanism by which particles orquantities are moved from
one place to another. There exist three main categories in transport theory
. mass transfer
. heat transfer
. momentum transfer
A standard example of the first process is the spreading of heavy particles in a fluid of
lighter particles. This is related with Brownian motion. Thestandard example of the
second process is the conduction of heat through a solid. A typical case of momentum
diffusion is the loss of momentum of heavy particle or a solidobject moving through a
fluid due to collisions with the background particles. All three phenomena play a role in
transport in fluids and plasmas.

Usually transport phenomena are divided into three main areas: diffusion, convection,
and radiation. Quite often, these phenomena occur simultaneously in a process. However,
in this course we will only consider the first subject, diffusion processes.

A cornerstone in the history of diffusion theory is the work by Fick, published some
150 years ago. His work was theoretical and can best be characterized as phenomeno-
logical. Fifty years later Einstein offered an explanationfor Brownian motion in terms of
a random walk and gave a molecular basis to Fick’s diffusive law. Gaussian probability
distribution functions are at the heart of this by now classical theory of diffusion, which
imply that the mean square displacement is proportional to time

< (∆x)2(t) >= 2Dt,

D being the diffusion coefficient. The brackets denote some appropriate statistical aver-
aging.
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However, collisions on the micro-scale are not the only cause of diffusion. In mag-
netized plasmas, like those observed in tokamaks and stellarators, e.g., there is a large
discrepancy between the diffusion processes as given by classical or neoclassical theories
and the experimentally observed transport phenomena. Suchdeviations from classical
theory are observed in many other fields. This has turned the attention toanomalous dif-
fusion, i.e., to transport caused by fluctuating fields. This subject of diffusion in turbulent
media is an extremely broad area of research.

Turbulence is a regime that is characterized by chaotic, stochastic changes in the prop-
erties of the system under consideration. Examples are
- the streaming of water around the supports of a bridge,
- mixing layers in the atmosphere and in ocean currents,
- smoke rising from a cigarette,
- turbulent flow behind a car and the wings of an airplane.
In a turbulent medium, unsteady regular structures, like vortices and magnetic islands, are
generated on many different scale-lengths. In regular fluids, most of the energy input is
in the larger scales. This energy cascades to smaller scaleswhere it is dissipated.

In spite of considerable efforts, turbulence is still poorly understood. It has a wide
variety of causes and appearances, and contains fluctuations on many scales. This leads
to non-standard diffusion processes.

The large variety of forms in which turbulence manifests itself, requires a wide variety
of approaches and a wide variety of methods in the analysis ofdiffusion processes. Not
only standard tools like the random walk (Brownian motion), but also the concepts like
fractality, scaling laws and the theory of percolation are nowadays applied in diffusion
theory.

In addition, often several different types of transport might exist simultaneously in
turbulent diffusion. Regions with chaotic magnetic fields may exist next to regions with
magnetic islands and regular magnetic surfaces. Just like regions with regular streaming,
with sheared velocity fields, and with vortex motions might coexist in fluids and plasmas.
Different diffusion processes are often associated with different spatial directions in the
system. Therefore it is important to take into account the anisotropy of a configuration.
This anisotropy is particularly important in magnetized plasmas.

In the field of controlled thermonuclear fusion, e.g., a major obstacle on the way to
the realization of fusion in closed magnetic configuration devices is commonly attributed
to the existence of anomalous losses of particles, momentum, and energy across the con-
fining magnetic field.

The diffusion of particles and energy in tokamak devices exceeds by a factor10− 102
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the (neo)classical values for electrons and by a factor 1-10the (neo)classical values for
ions. The large variety of instabilities in a magnetized plasma will lead to different types
of turbulence. The anomalous transport is related to this turbulent character of the plasma
behavior. In spite of considerable efforts, this problem isstill far from understood.

The classical diffusion models are based upon processes that are local in space and
do not have any memory on the history of the system. These properties of spatial locality
and absence of memory are often violated in turbulent media.Long temporal and/or spa-
tial correlations might exist due, e.g., to trapping of particles in coherent structures like
vortices or islands or to advection by zonal flows.

In the dynamics of continuous fluids, a tracer is a particle that travels with the local
fluid velocity, but that has otherwise no influence on the properties of this fluid. It is a
particle that is passively advected by the fluid. The motion of passive tracers in fully de-
veloped, isotropic and homogeneous turbulence is well described by Brownian motion.
Macroscopically it satisfies a Fick’s type, local transportequation, and microscopically a
random walk with Gaussian statistics. However, in a turbulent system which contains co-
herent structures like vortices and magnetic islands that may trap particles for long times,
and zonal flows that advect tracers over long distances, thistheory breaks down. Trapping
in coherent structures and the presence of zonal flows will lead to ’memory’ effects, to
non-Markovian behavior, and imply that the tracer will undergo Lévy flights that will lead
to non-Gaussian statistics.

Such processes result into anomalous diffusion laws where the mean square displace-
ment behaves as

< (∆x)2(t) >∝ tγ.

Diffusion processes withγ 6= 1 are often called ’strange’. They are coined super-diffusive
for γ > 1 and sub-diffusive forγ < 1. This ’strange’ diffusion leads to Fokker-Planck
type equations containing fractional derivatives. Transport of passive particles in a sys-
tem with coherent structures will lead tostrange diffusionand to diffusion equations that
containfractional operators. In general, sub-diffusion occurs in systems with geometric
constraints like fractals, doped crystals and magnetic fields, while super-diffusion is en-
countered in turbulent fluids.

Since we deal with diffusion problems, we are interested in the behavior of systems on
long time- and length-scales, actually we want to find out what happens on macroscopic
scales. We do not need to know what happens on small scales. From this point of view, the
kinetic equations and e.g the master equation for continuous time random walk (CTRW)
contain often far too much information for the description of transport on macroscopic
scales. We do not require a full kinetic description of the underlying random walk, but we
are interested in the continuum (fluid) limit of these equations. The information we are
looking for is contained in the large scales i.e. in the tailsof the probability distribution
functions.

5



Roughly speaking, one could discern three main directions indiffusion theory.
A. The most fundamental method starts with the kinetic equation for the distribution func-
tion F (x, v, t) of a single particle. The dynamics is induced by external randomE and
B fields and by collisions. To determine macroscopic transport laws, the system has to
be averaged over phase-space and over all realizations of the fluctuating fields. This pro-
gramme seems to be an impossible task.
B. A second direction starts from the Langevin equation for the motion of test particles
and use a Fokker-Planck type equations or the hybrid kineticequation to find the macro-
scopic solution.
C. Finally, methods exist that have abandoned any deterministic dynamical law in the
description of the motion of a test particle. Examples are the application of percolation
models and the theory of the continuous time random walk. In both cases, the dynamical
laws are replaced by statistical models.
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PART ONE: CLASSICAL DIFFUSION AND RANDOM WALKS

I. Classical diffusion

The modern theory of diffusion processes started in the nineteenth century. One of the
important building blocks is Fick’s law (1855). Another oneis the understanding of Brow-
nian motion.

A. Fick’s law

In the physics of continuous fluids, Fick’s first law (Adolf Fick 1829-1901) is a phenomo-
logically obtained constitutive equation that relates theflux of some quantity with the
concentration of that quantity,

ΓD = nvD = −D∇n, (1)

where
ΓD is the diffusive flux inm−2s−1,
vD is the diffusion velocity inms−1,
n the concentration or density inm−3,
D is the diffusion coefficient inm2s−1.
This relationship says that differences in concentration of the substance under consider-
ation generate fluxes that transport the substance from places with high concentration to
regions of low concentration.

The dynamical equation of particle conservation reads,

∂n

∂t
+ ∇ · Γ = 0, Γ = nv. (2)

Here, we are not interested in the streaming of the fluid due toany other cause than
diffusion. Thus, assuming that the flux is only due to diffusive processes,Γ = ΓD, one
obtains from (2)

∂n

∂t
= D∇2n. (3)

This is Fick’s second law and has become known as thestandard diffusion equation. It is
a macroscopic law that does not refer to any microscopic process! This diffusion equation
has been applied to model transport processes in numerous fields of the sciences : foods,
fluids and plasmas, semiconductor physics, population dynamics, etc..

In an unbounded space, the diffusion equation can be solved as follows. Assume a
d-dimensional space and apply to (3) the Fourier transform

n̂(k, t) =

∫

ddx n̂(x, t) exp ik · x.
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The result is
∂n̂(k, t)

∂t
= −k2Dn(k, t).

The solution to this equation is

n̂(k, t) = n̂(k, 0) exp−k2Dt.

Its inverse Fourier transform is

n(x, t) =
1

(2π)d

∫

ddk n̂(k, 0) exp (−ik · x − k2Dt)

=
1

(2π)d

∫

ddk exp(−k2Dt)

∫

ddx′ n(x′, 0) exp ik · (x′ − x).

This leads to the solution of (3)

n(x, t) =

∫

ddx′ P (x − x′; t)n(x′, 0), (4)

whereP (x − x′; t) is the Gaussian or normal distribution

P (x − x′; t) =
1

(2πDt)d/2
exp−Σi(xi − x′

i)
2

4Dt
. (5)

This solution suggests the following interpretation. If properly normalized (
∫

nddx = 1),
we may interpretn(x, t)ddx as being the probability of finding a particle in a small vol-
umeddx around the positionx andP (x−x′, t) as the transition probability that a particle
that is atx′ at t = 0 makes a jump(x − x′) in a time intervalt.

For a particle that starts atx′ = 0, one hasn(x′, 0) = δ(x′). Then,

n(x, t) =
1

(2πDt)d/2
exp−Σix

2
i

4Dt
. (6)

The length
√

4Dt is called the diffusion length.It is clear that (6) is not an equilibrium
distribution. The distribution broadens and its maximum value decreases in time.

The mean square displacement (MSD) of a particle is according to (6)

< x2
i (t) >=

∫

ddx x2
i n(x, t) = 2Dt. (7)

The mean square displacement is proportional to the diffusion coefficient and increases
linearly with time.
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This interpretation is based upon the description of diffusion processes with the Chapman-
Kolmogorov functional equation for the probability density of a stationary and homoge-
neous Markov process(see Appendix)

n(x, t + τ) =

∫ ∞

−∞

G(∆, τ)n(x − ∆, t)d∆. (8)

Here,n(x, t) is the probability density that the stochastic variable takes the valuex at time
t andG(∆, τ) is the transition probability that the stochastic variablemakes a jump∆ in
time intervalτ . This equation isnonlocal in space-time.

The basic assumption is that the jumps are small as compared with the characteristic
scale ofn(x, t), which means thatn depends only weakly on∆. It also implies that
G(∆, τ) is a strongly peaked function of∆. Then, in the limitt/τ → ∞, (8) can be
transformed into a local diffusion equation

∂n

∂t
+ V0

∂n

∂x
= D

∂2n

∂x2
, (9)

where

V0 = lim

∫ ∞

−∞

d∆
∆

τ
G(∆, τ), D ≡ lim

∫ ∞

−∞

d∆
∆2

2τ
G(∆, τ). (10)

This is the local version of (8). Equation (9) is a Fokker-Planck type equation and is equiv-
alent to Fick’s law. Its solution is given by (4) and (5) withx replaced bŷx = x − V0t.
As will be shown in the next section, (6) is also the pdf for a Gaussian random walk (
Brownian motion).

The approach described in this section leads to a diffusion equation that only describes
local effects. In many systems, however, transport phenomena can not be described on
the basis of such processes that are local in space and/or time with a constant diffusion
coefficient. These more complex diffusion processes are called anomalous. Nevertheless,
this local proces still acts as a bench mark for systems which exhibit anomalous transport.

REMARKS
I . Note that the standard diffusion equation (3) is invariantunder the scaling transforma-
tion

t̂ = αt, x̂ →
√

αx. (11)

Requiring mass conservationn(x, t)dx = n(x̂, t̂)dx̂ one finds that in addition the relation

n(
√

αx, αt) = α−1/2n(x, t) (12)

must hold. This scaling of the density is determined by the Gaussian distribution (5). It
means that the distribution of

√
αX(αt) is the same as that forX(t). Hence, the fluctua-

tions are generated on each scale in a statistically identical manner. If the fluctuations are
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known on the interval[αt, t], they are also known on the extended interval[t, t/α] and
on the contracted interval[α2t, αt].
A distribution that is invariant under a transformation that scales time and space by dif-
ferent factors is calledaffine. A distribution is calledself-similarif it is invariant under a
transformation that scales space and time by the same factor.
II . If the diffusion coefficient is not a constant, then Fick’s law reads in 1D

∂n

∂t
=

∂

∂x
D

∂

∂x
n.

If D = D(x) depends onx, then there does not exist a simple relation betweenD and
the MSD.This can be seen as follows. Consider an infinite domain(−∞,∞) and assume
that the density vanishes sufficiently fast at|x| → ∞. Then,

d < x >

dt
=

d

dt

∫

dx xn =

∫

dx x
∂

∂x
D

∂

∂x
n =

∫

dx n
∂D

∂x

and
d < x2 >

dt
=

∫

dx x2 ∂

∂x
D

∂

∂x
n = 2

∫

dx n(D + x
∂D

∂x
).

If D = constant, one obtains

d < x >

dt
= 0,

d

dt
(< x2 > − < x >2) = 2D.

This latter relationship is lost when∂D/∂x 6= 0.
III . In case the fluid also has an average flow velocityV0, then the total flux is given

Γ = nV0 − D∇n,

so that we find instead of (3)

∂n

∂t
+ V0 · ∇n = D∇2n.

Its solution is given by (4) and (5) withx replaced bŷx = x − V0t.
IV . In this section we have assumed the diffusion process to be isotropic. In the general
case, the diffusive flux is given by

ΓD = −D · ∇n,

with D being a tensor. In many cases this tensor will be diagonal

D = D1e1e1 + D2e2e2 + D3e3e3,

whereei is the unit vector in the i-direction. In case of a strongly magnetized plasma,
the magnetic field introduces a privileged direction and theplasma will have a gyrotropic
symmetry,

D = D⊥(e1e1 + e2e2) + D‖e3e3,
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the magnetic field being in the 3-direction.
V. Other constitutive relations that are analogous to Fick’slaw are e.g Ohm’s law, Darcy’s
law, and Fourier’s law.
Ohm’s law (1827) describes the relation between the currentdensity and the electric field.
In the electrostatic case whereE = −∇φ, it reads

J = σE = −σ∇φ.

Fourier’s law gives a relation between the heat flow and the temperature

q = −κ∇T

Actually, Fick formulated his first law in analogy to this relationship.
Darcy’s law (1856) is an equation that describes the flow through a porous medium

q = −κ

µ
(∇P − ρgez).

Here,P is the pressure andgez the gravity force; the constantsκ andµ represent the
permeability and the coefficient of viscosity, respectively.

B. Brownian motion

Brownian motion is the irregular movement of a heavy particlesuspended in a liquid or
a gas. It is named after the botanist Robert Brown who studied pollen particles floating
in water under a microscope. These observations were made in1827 and published in
1828. Brown was, however, not the first to observe such motion.The dutch physicist
Jan Ingenhousz described the movement of coal dust on the surface of alcohol in 1785.
Nevertheless, the phenomenon is traditionally regarded asbeing discovered by Brown.

The size of a pollen is about103nm, while the size of a water molecule is10−1nm.
Thus a Brownian particle is really a heavy particle in a light fluid. Due to the many colli-
sions with the fluid particles, the velocity of the particle undergoes irregular jumps. At a
certain velocity the particle will experience more collisions in front causing an inbalance
in force.

Einstein was the first to understand that the quantity of interest is not the average
velocity but the mean square displacement of the particle. Looking at the irregular tra-
jectory of a Brownian particle in the figure below, it is clear that the vector parallel to
the trajectory is not an useful quantity. Also, experimentally, it is not the velocity but the
position of the particle that is observed. The interval between two successive observations
is long compared to the correlation time of the velocity. Hence, what is observed is the
net displacement of a particle after many variations of the velocity. This displacement is
a random variable. Each displacement, is to a good approximation, independent of the
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Figure 1: Brownian motion, taken from [1]. The top figure represents the statistical dis-
tribution of displacements and the lower figure the trajectory. The circles correspond to
fractions and multiples of the mean square displacementΣ(< x2

i (t) > − < xi >2).
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previous one. This means thatBrownian motion is a Markov process(see Appendix).

The trajectory of a Brownian particle is represented in Figure 1. This trajectory is a
fractal curve. This was already noticed by Jean Perrin [1, 2], who got the Nobel prize in
1926 for his experimental research on the atomic and molecular character of matter. In his
words: ”If we would plot the particle positions at time intervals hundred times smaller,
every linear segment of the trajectory would take a polygonal shape as complicated as the
whole trajectory....”.

Let us represent the Brownian motion as a random walk. At each time step∆ the
walker hops to one of the sites on a d-dimensional lattice. After n steps, the net displace-
ment isr(n) = Σn

i=1ei, so that

r2(n) = Σn
i=1e

2
i + 2Σi>jei · ej. (13)

Assume that the steps are independent, and the pdf of each step is such that all steps have
zero average< ei >= 0 and the same variance< e2

i >= l2. Then,< ei · ej >= 0 for
i 6= j, and we have

< r2(n) >= nl2. (14)

Hence, taking the limit of continuous timen∆ → t, ∆ being the size of the time step, one
obtains the mean square displacement

< r2(t) >= 2dt
l2

2d∆
= 2tdD. (15)

This expression is equivalent to (7). The diffusion coefficient is

D =
l2

2d∆
. (16)

This is Einstein’s relation which connects the macroscopicdiffusion coefficientD with
the microscopic jumps. It is a bridge between the microscopic and macroscopic world.
Relation (15) is also frequently called the Einstein-Smoluchovski relation.

In equilibrium situations, the diffusion coefficient (16) can be expressed in terms of
macroscopic quantities characterizing the system,

D =
T

νM
(17)

This is Einstein’s second relation. Here,T is the equilibrium temperature,M the mass of
the particle andν is the damping exponent of the fluid. In order to derive this relation, we
follow the approach introduced by Langevin.
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C. The Langevin approach

The equation of motion of a particle under the action of a random forcef(t) and a restor-
ing forceνv(t) is

dv

dt
= −νv + f(t). (18)

This equation is normalized on the mass of the particle. The first term on the right repre-
sents viscous damping. The random forcef(t) represents the rapid kicks exerted by the
fluid particles. This force has zero average and is taken to beδ-correlated in time,

< f >= 0, < f(t1)f(t2) >= Aδ(t1 − t2). (19)

The right-hand-side of (18) with the properties specified by(19) is called a Langevin
force and (18) the Langevin equation. The random kicks tend to spread the velocity over
a wider and wider range, while the damping tries to reduce thevelocity to zero.

Equation (18) can easily be solved,

v(t) = v(0) exp−νt +

∫ t

0

dτ f(τ) exp ν(τ − t). (20)

This gives< v(t) >= v(0) exp−νt. The correlation function is

< v(t1)v(t2) >= v2(0) exp−ν(t1 + t2)

+

∫ t1

0

dτ

∫ t2

0

ds < f(τ)f(s) > exp[−ν(t1 + t2) + ν(τ + s)]

= (v2(0) − A

2ν
) exp−ν(t1 + t2) +

A

2ν
exp−ν|t1 − t2|. (21)

For long times,νt >> 1, i.e. for times long as compared with the damping timeν−1,
the influence of the initial velocity will disappear. Further, the system is assumed to be
in equilibrium, so that (22) has to be averaged over a Maxwellian velocity distribution
(indicated below by the subscriptv0). Then, the mean square velocity for large times
must be

< v2(t) >v0
=

A

2ν
=

kT

M
. (22)

The interpretation of this process is that the kicks due to the random forcef(t) tend to
spread the velocity over a larger range, while the damping brings the velocity back to its
equilibrium value.

The mean square displacement is

< (x(t) − x(0))2 >=

∫ t

0

∫ t

0

dt1dt2 < v(t1)v(t2) >

14



=
2T

νM
[t − 1

ν
(1 − exp−νt)].

For short times, inertial effects, that are absent in Brownian motion, will dominate. For
large times we find

< (x(t) − x(0))2 >≈ 2T

νM
t. (23)

Upon comparing (23) and (15) ford = 1 one obtains (17).

Applying (18) to an electron population with particle density n0, we may interpret
n0e

2/mν as the conductivity of the medium, so that (17) can be writtenas

Σ =
n0e

2

T
D. (24)

II. The classical random walk

The random walk as a model for a stochastic process occurs notonly in numerous branches
of physics, but also in many other sciences. In this Section we consider some aspects of
the discrete-time random walk.

A. The relationship with the Gaussian and the binomial distribution

It will be shown that in the limit of a large number of steps thepdf of a random walker
to be at the positionx at timet is a Gaussian. It is shown that this normal distribution
follows in the limit from the binomial distribution.

Suppose that the walker takesm steps to the right, each with probabilityp, andn−m
steps to the left, each with probabilityq = 1 − p. For simplicity we take all steps to be of
equal lengthl. The time step is∆.

At stepn, i.e. at timet = n∆, the walker is at

x = [mp − (n − m)q]l = (m − nq)l, (25)

The probabilityP (m,n) to makem steps to the right andn − m steps to the left is the
binomial distribution

P (m,n) =
n!

m!(n − m)!
pm(1 − p)n−m. (26)

It follows that

n
∑

m=0

P (m,n) = 1,
n

∑

m=0

mP (m,n) = np,
n

∑

m=0

m2P (m,n) = np+n(n−1)p2, (27)
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so that the average position and the mean square displacement are

< x >= n(p − q)l, < (x− < x >)2 >= npql2. (28)

Interpretingn as the time, it is seen that the first term represents a displacement with con-
stant velocity. The second term is the variance, which, as wehave seen in the previous
section, is related with the diffusion coefficient.

It will be shown thatthe normal distribution is obtained from the binomial distribution
in the limit of largen at fixed probabilityp.

Introduce the variable

λ =
m− < m >√

npq
=

x− < x >√
2Dt

, D = pq
l2

2∆
, (29)

and use Stirling’s formulaln n! ≈ (n + 1/2) ln n − n + ln
√

2π + O(n−1).
Then, from (26) one obtains

P (m,n) ≈ 1√
2πnpq

exp {(1
2

+ np + λ
√

npq) ln(1 +
λq√
npq

)−1

+(
1

2
+ nq − λ

√
npq) ln(1 − λp√

npq
)−1}.

For simplicity we take equal probability for a step to the left and for one to the right
p = q = 1/2, so that the average displacement vanishes. Using the expansionln(1+x) ≈
x − x2/2 andp(λ, n)∆λ = Σ∆mP (m,n), one obtains in the limitn → ∞ the Gaussian
distribution

P (λ, n) =
1√
2π

exp−λ2

2
. (30)

Finally, with p(λ, n)dλ = P (x, t)dx, the distribution function is found as a function of
space-time

P (x, t) =
1√

4πDt
exp− x2

4Dt
. (31)

This is the pdf to find the random walker at the positionx at timet.

Problem

1. Proof the relations (27). Use

n
∑

m=0

P (m,n) = (p + q)n = 1.

16



B. The standard diffusion equation

The relationship between the standard diffusion equation and the random walk process
can be seen as follows.

Since the steps are independent, the probability of the walker being at m at stepn + 1
is equal to the sum of the probability that the walker is am − 1 at timen and makes a
step to the right at the next time step, and the probability that the walker is atm + 1 and
makes a step to the left,

Pn+1(m) = pPn(m − 1) + qPn(m + 1) (32)

Rewrite this equation as follows

Pn+1(m) − Pn(m) = p[Pn(m − 1) − Pn(m)] + q[Pn(m + 1) − Pn(m))].

and take the continuous time limitn∆ → t. This yields,

∂P (m)

∂t
=

p

∆
[P (m − 1) − P (m)] +

q

∆
[P (m + 1) − P (m)]. (33)

This the master equation for thecontinuous time random walk. Taking ml → x and
expanding aroundx yields

∂P (x, t)

∂t
= −A

∂P (x, t)

∂x
+ D

∂2P (x, t)

∂x2
(34)

with

A = (p − q)
l

∆
, D =

l2

2∆
. (35)

This is the Fokker-Planck equation. ForA = 0 it is identical in form to the standard
diffusion equation (3). The Fokker-Planck equation is usually obtained from themaster
equation(see Appendix).

C. The central limit theorem

The reason that the Gaussian or normal distribution is dominant in so many fields of statis-
tics is thecentral limit theorem.

The central limit theorem is a statement about the sum of a large number of random
variables. It says that if the random variables are
1. independent and identically distributed (IID) and
2. the distribution function of each random variable has a finite variance,
then the sum of the random variables approaches aGaussian distribution.
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All other things being equal, a sequence of coin flips and a sequence of dice rolls are
IID. The displacements of a heavy particle in Brownian motionmay be considered as
IID. The sum of the random variables may, e.g., represent theposition of a particle as a
consequence of the cumulative effect of a large number of collisions. The position of a
random walker after a large number of steps is a standard example of such a variable.

Although we take the random walk as a standard example to illustrate the theory
of stochastic variables, one should keep in mind that the symbol X may represent any
stochastic variable. It may e.g. represent the variation ofthe electric or magnetic field, of
the local velocity of a fluid or of the temperature of some substance.

In many cases of physical interest,< X2 > represents an energy density. This implies
that the variance must be finite so that condition 2. of thecentral limit theoremis satisfied
on physical grounds.

Let X1, X2, ........., Xn, .... be a set of independent variables, each having the same
distribution function with average< Xi >= µ and varianceσ, < X2

i > − < Xi >2= σ2.
This means that for the sum ofn of such IID random variables one has

<
n

∑

1

Xi >= nµ, <
n

∑

1

(Xi − µ)2 >= nσ2. (36)

Thus, the average value of the sum grows withn and its variance with
√

n.

Introduce the variablesyi and the sumssn,

yi =
Xi − µ

σ
√

n
, sn =

∑

n

yi, (37)

and writelimn→∞ sn = s.
The central limit theorem states that in the limit of largen, the distribution function ofsn

approaches the Gaussian distribution

lim
n→∞

P (sn) = P (s) =
1√
2π

exp−s2. (38)

This is an asymptotic distribution. A finite number of observations may already lead to
a reasonable approximation of the distribution close to itspeak. To determine the tails
requires a large number of observations. In d-dimensions one also obtains (38), but with√

2π replaced by(2π)d/2.

On the basis of the central limit theorem it is clear that the Brownian motion intro-
duced in section B is described by a Gaussian distribution function.
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The proof of the theorem is remarkably simple. The characteristic function of the
distribution functionp(yi) is

p̂yi
(k) =

∫ +∞

−∞

dyi p(yi) exp ikyi. (39)

Since< yi >= 0 and< y2
i >= 1/n, this may be approximated fork2/n → 0 by

p̂yi
(k) = 1 − 1

2

k2

n
+ o(

k2

n
), n → ∞, (40)

whereo(k2/n) indicates a function that goes to zero faster thank2/n. Since allyi are
independent, the probabilityP (sn) can be written as

P (sn) = <δ(sn −
∑

yi)>

=

∫

dy1

∫

dy2....

∫

dyn P (y1, y2, ...., yn)δ(sn −
∑

yi)

=

∫

dy1....

∫

dyn P (y1, ...., yn)

∫

dk

2π
exp−ik(sn −

∑

yi)

=

∫

dk

2π
p̂n

yi
(k) exp(−iksn). (41)

This means that the characteristic function of the sum is equal to the product of the indi-
vidual characteristic functions,̂Psn(k) = p̂n

yi
(k).

Since all random variablesyi are identically distributed, the characteristic functionof sn

for small values ofk2/n may be approximated by

P̂sn(k) = [1 − 1

2

k2

n
+ o(

k2

n
)]n → e−k2/2, n → ∞. (42)

The inverse FT (41) of this expression gives the Gaussian (38).

D. Number of returns

A random walker may return many times to any previous position. This will strongly
depend on the dimensions of the space. We will analyze this Brownian trajectory with
self-intersection with a specific 1D model.

Consider a 1D random walk in a layered medium. A particle diffuses in thex-direction
through the layers. The width of a layer is large as compared with the step size. The
particle will diffuse through the layer of thicknessa in a timeτD,

a =
√

2DτD. (43)
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Figure 2:

In a timet = NτD, the particle diffuses though N layers. On the other hand, the diffusion
length isl =

√
2DNτD = a

√

t/τD = a
√

N . This means that the average number of
differentlayers visited in a timet is

√
N .

The probability to be in the first layer at timet is obtained from (31)

P (0, t)a =
1√

4πDt
a. (44)

This will be equal to the relative number of times that the walker returns to the first layer
in a timet. Hence, the number of times the particle returns to the first layer is

Nr =
a√

4πDt
N ≈ N

√

t/τD

≈
√

N. (45)

III. L évy flights

In this section we reconsider the random walk. The walker is assumed to take steps at
fixed points in time. Again we assume that all steps are independent and identically dis-
tributed (IID). However,we do not assume a constant step size. We do not even assume a
priori that the mean value or the variance of the pdf of a step exist. Thus, the conditions
for the validity of the central limit theorem and the occurrence of Gaussian distributions
are not necessarily satisfied.

The probability functionPn(r) for the walker to be at the positionr at thenth step can
be obtained from

Pn(r) =

∫

dr′ Pn−1(r
′)p(r − r′), P0(r) = δ(r), (46)
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Figure 3: Classical random walk (left) and Lévy flights (right).

wherep(r) is the probability density to make a stepr. Use the characteristic function

P̂n(k) =

∫

dr Pn(r) exp ik · r. (47)

Then, one obtains from (46),̂Pn(k) = P̂n−1(k)p̂(k), so that

P̂n(k) = p̂n(k), (48)

and

Pn(r) =
1

(2π)d

∫

dk p̂n(k) exp(−ik · r). (49)

This is the solution to the random walk problem. It depends only on the pdfp(r) which is
also called the structure function.

A. A structure function with a long tail

Assume that for large values of the (microscopic) step sizey, the pdfp(y) is isotropic and
decays according to some power ofy = |y|,

p(y) = (1 − α)δ(y) +
A

yl
H(y − y0). (50)

The first term represents the bulk of the distribution, whichis not of interest in the present
discussion. The second term represents the tail, the functionH being the Heavyside func-
tion. This tail is aLévy distribution. It corresponds to large but infrequent steps, so-called
rare events.

From the normalization
∫

ddy p(y) =
∫

dydΩ yd−1p(y) = 1 follows that

A =
α

Sd

fyf
0 , f = l − d > 0,
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with Sd being the solid angle,S1 = 1, S2 = 2π, S3 = 4π. ( This can be generalized to
Sd = 2πd/2/Γ(d/2))). Hence, we have

p(y)ddy = (1 − α)δ(y)ddy +
α

Sd

fyf
0

yf+1
H(y − y0)dΩdy. (51)

The powerf is called themicroscopic step index.

A. It is seen that forf > 2 the mean square step exists,

< y2 >=

∫

ddy y2p(y) = αy2
0

f

f − 2
.

As a consequence, the average mean square position after n steps

< r2 >= n < y2 >= t < y2 > (52)

also exists and the central limit theorem tells us that the distributionlim Pn(r) in (49) is
Gaussian.

B. For 1 < f < 2 the mean square displacement does not exist, but the mean step is still
finite

< y >=

∫

ddy yp(y) = αy0

f

f − 1
,

so that< r >= n < y >= t < y >.

C. In the interval0 < f < 1 even the mean step size does not exist.

Next, we consider the probabilityPn given by (49) for large values ofn. The Fourier
transform of the characteristic functionp(y) is

p̂(k) =

∫

dy p(y) exp ik · y = 1 +
α

Sd

∫ ∞

y0

dy

∫

dΩ
fyf

0

y1+f
[exp(ik · y) − 1] (53)

≈ 1 − D(ky0)
f , D = constant, k = |k|,

which gives withn → t

p̂n(k) ≈ [1 − D(ky0)
f ]n ≈ exp(−Dn(ky0)

f ) = exp(−Dt(ky0)
f ). (54)

Substitution into (49) gives

P (r, t) = lim
n→∞

Pn(r) =

∫

ddk

(2π)d
exp(−ik · r − tDkµyµ

0 ), (55)

with - f > 2, < r2 > exists andµ = 2 on the basis of the central limit theorem,

- f < 2, < r2 > does not exist andµ = f .

22



B. Stable probability distributions functions

Consider the pdfn(x) of a d-dimensional random process. Its characteristic function is

n̂(k) =

∫

ddx n(x)expik · x. (56)

Any probability distribution function whose characteristic function satisfies the form-
invariance property

n̂(a1k)n̂(a2k) = n̂(ak) (57)

is called astable law. For simplicity we will consider only symmetric pdf’s that depend
on r =

√
x · x.

Writing n̂(ak) = exp A(ak), (57) gives

A(ak) = A(a1k) + A(a2k).

It follows that the general solution is the power lawA(k) = −Ckµ. The constantsa, a1, a2

must satisfy
−C(aµ

1 + aµ
2) = −Caµ.

Givena1 anda2, this relationship determinesa. Hence, the characteristic function of a
stable law reads

n̂(k) = exp(−C|k|µ). (58)

The inverse transform is

n(x) = (2π)−d

∫

ddk exp(ik · x − C|k|µ). (59)

Any pdf of this form is called asymmetric Ĺevy distribution function.

For convergence the constantC must be positive. Regularity of̂n(k) atk = 0 requires
µ > 0. The inverse Fourier transform (59) requiresµ ≤ 2, since it is not everywhere pos-
itive on the domain forµ > 2.

The mean square displacement is

< r2(t) >= − ∂2n̂(k)

∂k · ∂k
|k=0 = Cµ[(µ + d − 2)|k|µ−2]||k|=0.

This limit does not exist forµ < 2. Forµ = 2 one finds< r2(t) >= 2dC, which yields
the classical result withC = σ2t. For µ > 2 it follows that < r2(t) >= 0, which is
only possible if the pdfn(x, t) is not everywhere positive on the domain. Note hat the
distributions (59) are properly normalized

∫

n(x)ddx =

∫

ddk δ(k) exp−C|k|µ = 1. (60)
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The Gaussian distribution withµ = 2 corresponds to the solution of the standard
diffusion equation,

n̂(k) = e−|k|2 , n(x) =
1

2π1/2
e−x2

. (61)

Forµ = 1 one obtains the Cauchy distribution,

n̂(k) = e−|k|, n(x) =
1

π(1 + x2)
. (62)

Forµ = 3/2 one finds the Holtsmark distribution [],

n̂(k) = e−|k|3/2

, n(x) =
x

(1 + x2)3/2
. (63)

Note that all these probability densities, except the Gaussian withµ = 2, have power
”tails” for large values ofx. In Part V it will be discussed that forµ < 2, the distributions
(62) are associated with diffusion equations withfractional derivatives.

NOTE
Let n(x) be the pdf of a d-dimensional random variablex. Then, the pdfna(x) of a
random variabley = a−1x is of the formn(x) = Cana(a

−1x). Both pdf’s are normalized
to unity, so thatCa = a−d. Hence we find

na(x) = a−dn(a−1x).

In Fourier space this relation reads

n̂a(k) = n̂(ak).

C. The inverse transform

First, we derive an approximate expression for the integral(59) in 2 dimensions(d = 2).
We start from the expression

n(x, t) =

∫

d2k

(2π)2
exp(−ik ·x−C|k|µ) =

2

(2π)2

∫ ∞

0

∫ π

0

kdkdθ exp(ikrcosθ−Ckµ).

(64)
Use the integral representation for the Bessel function

J0(z) =
1

π

∫ π

0

dθ eiz cos θ,

and subsequently the representation

J0(z) =
2

π

∫ ∞

1

dy
sinzy

√

y2 − 1
.
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Then, (71) becomes

n(r, t) =
1

π2
Re i

∫ ∞

1

dy
√

y2 − 1

∫ ∞

0

dk ke−ikry−Ckµ

.

Extend this integral into the complexk-plane and close the contour in the fourth quadrant
along the negative imaginary axis (k → −iq). Further, we extend the integral up tok0,
wherek0 >> 1 is such thatk0r >> kµ

0 . Then, the integral along the real axis is converted
into the asymptotic integral,

n(r, t) ≈ 1

π2
Re i

∫ ∞

1

dy
√

y2 − 1

∫ ∞

0

dq (−q)e−qry(1 − Cqµe−iπµ/2).

The first term on the right does not give any contribution, so that

n(r, t) ≈ 1

π2
Csin

πµ

2

∫ ∞

1

dy
√

y2 − 1

∫ ∞

0

dq qµ+1e−qry

≈ 1

π2
sin

πµ

2

C

rµ+2
Γ(µ + 2)

∫ ∞

1

dy

yµ+2
√

y2 − 1
.

The integral can be expressed in terms of the Beta function(y = v−1/2),
∫ ∞

1

dy

yµ+2
√

y2 − 1
=

∫ 1

0

dv
vµ

√
1 − v

=
1

2
B(µ/2 + 1, 1/2) =

1

2

Γ(µ/2 + 1)Γ(1/2)

Γ(µ/2 + 3/2)
.

Thus, we finally obtain the approximate expression

n(r, t) ≈ C

2π2
sin

µπ

2

Γ(µ + 2)Γ(µ/2 + 1)Γ(1/2)

Γ(µ/2 + 3/2)
r−µ−2. (65)

The coefficient can be further simplified by using relationships between the Gamma func-
tions.

Next we derive an asymptotic expression for large values ofx of the integral (62) in
the one dimensional case(d = 1),

n(x, t) =

∫

dk

(2π)
exp(−ikx − C|k|µ) =

1

π
Re

∫ ∞

0

dk exp(ikx − Ckµ). (66)

Extend the integral in the complex plane and close the integral in the fourth quadrant
along the negative imaginary axis (k → −iq). Further, we extend the integral up tok0,
wherek0 >> 1 is such thatk0x >> kµ

0 ,

n(x, t) =
−1

π
Re i

∫ ∞

0

dq (1−Cqµ exp iπµ/2) exp−qx =
1

π
sin

πµ

2
Γ(1+µ)

1

x1+µ
. (67)
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D. Lévy distributions

Non-local effects can be also described in terms of a random walk model. Such a model
leads to a description in terms of an integral equation.

In the case of homogeneous turbulence, the Chapman-Kolmogorov functional equa-
tion can be written as

∂n(x, t)

∂t
=

∫ ∞

−∞

G(x − x′)n(x′, t)ddx′. (68)

This equation is Markovian and cannot describe memory effects. It is non-local in space
but local in time. Introducing the Fourier transform with respect to space, this equation
becomes,

∂n̂(k, t)

∂t
= Ĝ(k)n̂(k, t). (69)

In case of isotropic turbulence the kernel will be a functionk = |k|. If the kernel has the
form

Ĝ(k) = −Dk2, (70)

(70) yields the classical diffusion equation after application of the inverse Fourier trans-
form.

This has led to different phenomenological methods to improve the diffusion equation,
The discussion in the previous section suggests that the form

Ĝ(k) = −A|k|µ, (71)

whereA has the dimensionscmµs−1, is relevant for the description of turbulent diffusion.
Then, we have

∂n̂(k, t)

∂t
= −A|k|µn̂(k, t). (72)

In Part V it will be shown that the Fourier transform of the right hand side corresponds to
a symmetric Riesz fractional derivative.

The solution of (68) is

n̂(k, t) = n̂(k, 0) exp(−A|k|µt). (73)

With n(x, 0) = δ(x), the inverse transform yields the integral (62) withC = At.
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IV. APPENDIX

A. Stochastic variables

A stochastic or random variableX is defined by a set of valuesx that it can attain and
by a probability distributionP (x) over this set. This set is also called the ’sample space’
or ’range’. This space may be either continuous or discrete or a mixture of the two. The
total probability has to be equal to unity

∫

range

dx P (x) = 1, ΣnPn = 1. (74)

The discrete case can be recovered from the continuous case with P (x) = Σn Pnδ(x−
xn).

Thenth moment ofP (x) is defined as

µm =< xm >=

∫

dx xmP (x). (75)

The first moment is the average or expected value

µ1 =< x >=

∫

range

dx xP (x). (76)

The stochastic variablex is calledcenteredif < x >= 0.

The second momentµ2 is related with the varianceσ

σ2 =< (x− < x >)2 >= µ2 − µ2
1 =

∫

range

dx (x − µ1)
2P (x), (77)

The variance will often exist and be finite. E.g. ifx represents the velocity of a particle
or the magnitude of a fluctuating magnetic field, then the variance is proportional to the
square root of an energy or energy density, which has to remain finite.

The skewness and flatness of a centered random variable are defined respectively as

S =
< x3 >

< x2 >3/2
, F =

< x4 >

< x2 >2
. (78)

The Fourier transform of a probability distributionP (x) is called its characteristic
function,

P̂ (z) =< exp izx >=

∫

dx P (x)exp izx (79)

It is seen that
P̂ (0) = 1, |P̂ (z)| ≤ 1, P̂ ∗(−z) = P̂ (z). (80)
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The characteristic function generates all the moments ofP (x),

P̂ (z) =
∞

∑

m=0

(iz)m

m!
µm, < zm >=

1

im
dm

dzm
P̂ (z). (81)

The mean square displacement i.e. the average of the squareddistancer2 = x2 = Σd
1x

2
i

in d-dimensions is

< r2 >= − ∂

∂z
· ∂

∂z
P̂ (z)|z=0. (82)

A d-dimensional, centered random variable is Gaussian if

P (x) =
1

(2πσ2)d/2
exp− x2

2σ2
. (83)

Its characteristic function is

P̂ (z) =< exp ix · z >= exp−1

2
σ2z2, (84)

whereσ is the variance (77) ind-dimensions,

σ2 =< x2 >=

∫

range

ddx x2P (x). (85)

All odd moments of a Gaussian distribution vanish, so that ithas only even moments
µ2, µ4, ...... All higher moments of a Gaussian can be expressed in terms ofthe second
momentµ2.

All quantitiesYX that are defined by some mappingf(X) are also stochastic variables.
In particular when such a function also depends on a additional variablet, quite often the
time,

YX(t) = f(x, t), (86)

YX(t) is called a stochastic process; the sample functionf(x, t) is a realization of that
process. A stochastic process can be considered as an ensemble of these sample functions.

Consider a stochastic processXt. The probability density that the stochastic (random)
variable takes the valuex1, x2, ..., xn at the successive ’times’t1 < t2 < .... < tn, is
Pn(xn, tn; xn−1, tn−1; ....; x1, t1). Clearly one must require that

∫

dx1Pn(xn, tn; xn−1, tn−1; ....; x1, t1) = Pn−1(xn, tn; xn−1, tn−1; ....; x2, t2). (87)

The probabilityPn may be written as

Pn(xn, tn; xn−1, tn−1; ....; x1, t1) = Pn−k|k(xn, tn; ...., xk+1, tk+1|xk, tk; ....; x1, t1)x
(88)
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Pk(xk, tk; ....; x1, t1).

wherePn−k|k(...) is the conditional probability that the variable takes the valuexn at time
tn etc. and the valuexk+1 at timetk+1, given that it has the valuexk at timetk etc. and
the valuex1 at timet1.

In case of a completely random process, all values{xk} are independent, so that one
has

Pn(xn, tn; xn−1, tn−1; ....; x1, t1) = ΠkP1(xk, t) (89)

This means that the knowledge of a single distribution function,P1(x, t) = P (x, t), would
be sufficient to determine the process.

The next simplest case is called a Markov process.

B. Markov processes

B..1 The Chapman-Komolgorov equation

For a Markov process, the conditional probability that the stochastic variable takes the
valuexn at timetn only depends on its valuexn−1 at the previous timetn−1 and does not
depend on its values at earlier times, i.e. for anyn,

P1|n−1(xn, tn|xn−1, tn−1; ....; x1, t1) = P1|1(xn, tn|xn−1, tn−1). (90)

This means that the transition from(xn−1, tn−1) to (xn, tn) does not dependent on earlier
transitions. This lack of memory is characteristic for Markov processes. Such a process is
completely determined by two probability densities,P1(x, t) and the transition probability
P1|1(x2, t2|x1, t1). It follows that

P3(x3, t3; x2, t2; x1, t1) = P1|2(x3, t3|x2, t2; x1, t1)P2(x2, t2; x1, t1) (91)

= P1|1(x3, t3|x2, t2)P1|1(x2, t2|x1, t1)P1(x1, t1), t3 > t2 > t1.

Integrating overx2 and dividing byP1(x1, t1) yields the famousChapman-Kolmogorov
equation,

P1|1(x3, t3|x1, t1) =

∫

dx2P1|1(x3, t3|x2, t2)P1|1(x2, t2|x1, t1). (92)

This equation says that the conditional probability to find the valuex3 at t3 given that it is
x1 at t1, is equal to the product of the conditional probabilities integrated over all values
that the variable could attain at some intermediate timet2.
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Upon multiplying (92) withP1(x1, t1) and integrating overx1, it is seen that the dis-
tribution functionP1(x, t) must satisfy

P1(x, t) =

∫

dx′P1|1(x, t|x′, t′)P1(x
′, t′), t′ < t. (93)

The best known example of a Markov process is Brownian motion.The mathematical
model that describes Brownian motion is the continuous time random walk or theWiener
process. It can easily be checked that the transition probability

P1|1(x2, t2|x1, t1) =
1

√

2πD(t2 − t1)
exp− (x2 − x1)

2

2D(t2 − t1)
, t2 > t1, (94)

satisfies the Chapman-Kolmogorov equation. Together with the initial conditionP (x, 0) =
δ(x), this transition probability specifies a non-stationary Markov process.

According to (94) the probability density is

P (x, t) =

∫

dx′P1|1(x, t|x′, 0)P (x′, 0) =
1√

2πDt
exp− x2

2Dt
. (95)

Markov processes that are invariant under a shift in time areof special interest. For
thesestationary processesthe conditional probability is a function of thetime difference

P1|1(x2, t2;x1, t1) = P (x2|x1; t2 − t1), (96)

while the probabilityP1 is independent of time,P1(x, t) = P (x). P (x) is the familiar
equilibrium distribution as described by statistical equilibrium mechanics.

If the process is homogeneous, then the transition probability will depend only on the
differencex2 − x1.

B..2 The master equation

The Chapman-Kolmogorov equation can be rewritten in integro-differential form. Write
in (92) x3 = x, t3 = t + ∆t, x2 = x′, t2 = t, x1 = x0, t1 = t0. Then, the Chapman-
Kolmogorov equation reads

P1|1(x, t + ∆t|x0, t0) =

∫

ddx′P1|1(x, t + ∆t|x′, t)P1|1(x
′, t|x0, t0). (97)

In the limit ∆t → 0 this equation can be written as

∂P1|1(x, t|x0, t0)

∂t
= lim

∆t→0

∫

ddx′P1|1(x, t + ∆t|x′, t) − δ(x − x′)

∆t
P (x′, t|x0, t0).
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A natural initial condition isP1|1(x, t|x′; t) = δ(x − x′). Adopt the limit

lim
∆t→0

P1|1(x, t + ∆t|x′, t) − δ(x − x′)

∆t
= W (x|x′) − a0δ(x − x′), (98)

whereW (x|x′) is thetransition probability per unit timeand

a0 =

∫

ddx W (x|x′) (99)

is determined by the normalization condition
∫

ddx P (x, t + ∆t|x′, t) = 1.

In the limit ∆t → 0, the integral equation (97) becomes the integro-differential equa-
tion

∂P (x, t|x0, t0)

∂t
=

∫

ddx′ [W (x|x′)P (x′, t|x0, t0) − W (x′|x)P (x, t|x0, t0)]. (100)

The indices have been omitted. This equation is known as themaster equation. It is
the differential form of the Chapman-Kolmogorov equation. Upon multiplying this equa-
tion with P (x0, t0) and by integrating overx0, one obtains the same equation with the
conditional probabilityP (x, t|x0, t0) replaced by the probability densityP (x, t)

∂P (x, t)

∂t
=

∫

ddx′ [W (x|x′)P (x′, t) − W (x′|x)P (x, t)]. (101)

If the range ofX is a set of discrete states labelled byn, the master equation reads

dPn(t)

dt
= Σn′ [Wnn′Pn′(t) − Wn′nPn(t)]. (102)

Equations (101) and (102) describeGain-Lossprocesses. The time rate of change of the
probability function in (101) is determined by two processes:
1. the system is in statex and undergoes a transition to a different statex′. This is a loss
for statex.
2. the system is in statex′ and undergoes a transition to statex. This is a gain for statex.
Replacingx by n andx′ by n′, these statements also hold for (102).

An important class of processes that can be described by the master equation are one-
step or birth-death processes. These are continuous time Markov processes in which only
transitions between neighboring states can occur. For sucha process the master equation
(102) reduces to

dPn(t)

dt
= Wnn+1Pn+1(t) + Wnn−1Pn−1(t) − Wn−1nPn(t) − Wn+1nPn(t). (103)

31



Figure 4: One-step processes

Examples

I. An interesting example is thePoisson processin which only transitions in one ’direc-
tion’ take place with constant transition probabilities,Wnn+1 = Wn−1n = 0, Wn+1n =
Wnn−1 = p. The steps to the right with probabilityp occur at random times.
The master equation is

dPn(t)

dt
= pPn−1(t) − pPn(t), Pn(0) = δn0. (104)

The solution is the probability that the particle is at position n at timet

Pn(t) =
(pt)n

n!
exp−pt. (105)

II. Another well-known continuous time process isWnn−1 = Wn+1n = p andWn−1n =
Wnn+1 = q. This represents a continuous time random walk with transition probabilityp
to make a step to the right andq to make a step to the left. The master equation reads,

dPn(t)

dt
= qPn+1(t) + pPn−1(t) − (q + p)Pn(t), Pn(0) = δn0. (106)

REMARK
The result (49) can also be obtained as follows. The positionof the walker at timet after
n steps is

r(t) =
n

∑

1

yi, (107)

yi being theith step. The pdf for the walker being atr at timet is

P (r, t) =

∫

...

∫

dy1dy2......dynP (yn, tn;yn−1, tn−1; ......;y1, t1)δ(r − r(t)), (108)

this means
P (r, t) = <δ[r − r(t)]>
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=

∫

dk

(2π)d
exp−ik ·(r−r(t))

∫

...

∫

dy1dy2......dynP (yn, tn;yn−1, tn−1; ......;y1, t1).

(109)
All steps are IID, so that

P (r, t) =

∫

dk

(2π)d
exp(−ik · r)[

∫

dy p(y) exp ik · y]n.

=
1

(2π)d

∫

dk p̂n(k) exp(−ik · r). (110)
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