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INTRODUCTION

Diffusion can be defined as the motion of some quantity froraggon of high concen-
tration to a region of low concentration. It is clear that enthis definition diffusion
phenomena are ubiquitous in nature and will play a role inyn@pects of every day life.
Every day life examples are the spreading of odors in aie ke spreading of smoke
or the perfume of a lady in a room, the spreading of seasonirtigel marinade in your
kitchen, or the global spreading of a virus in these time& wmtensive air traffic. Diffu-
sion denotes the mixing of two or more substances and is tiresidt on the macro-scale
from interactions on the micro-scale with some individugémts, like collisions with
molecules. One can say that diffusion is the ensemble a@eragr microscopic interac-
tions. Such processes are studied in numerous sciencedagnd wle in such diverse
areas as chemistry, economy, biology, physics, physioleigy. A well known example
from sociology is the spreading of information under a papah and from biology the
spreading of diseases in life stock and bird populations.

In physics, diffusion processes belong to the larger fielttarisport phenomena. A
transport phenomenon is any mechanism by which particlgeantities are moved from
one place to another. There exist three main categorieansiiort theory
. mass transfer
. heat transfer
. momentum transfer
A standard example of the first process is the spreading afyhearticles in a fluid of
lighter particles. This is related with Brownian motion. Téandard example of the
second process is the conduction of heat through a solid.pisalcase of momentum
diffusion is the loss of momentum of heavy particle or a soliject moving through a
fluid due to collisions with the background particles. Altiee phenomena play a role in
transport in fluids and plasmas.

Usually transport phenomena are divided into three maiasamiffusion, convection,
and radiation. Quite often, these phenomena occur sinadtasly in a process. However,
in this course we will only consider the first subject, diffusprocesses.

A cornerstone in the history of diffusion theory is the woskfick, published some
150 years ago. His work was theoretical and can best be d¢kerst as phenomeno-
logical. Fifty years later Einstein offered an explanationBrownian motion in terms of
a random walk and gave a molecular basis to Fick's diffusive |IGaussian probability
distribution functions are at the heart of this by now clealstheory of diffusion, which
imply that the mean square displacement is proportionairte t

< (Ax)*(t) >= 2Dt,

D being the diffusion coefficient. The brackets denote sonpeggpiate statistical aver-
aging.



However, collisions on the micro-scale are not the only eanfsdiffusion. In mag-
netized plasmas, like those observed in tokamaks andrstelta, e.g., there is a large
discrepancy between the diffusion processes as given byictd or neoclassical theories
and the experimentally observed transport phenomena. &ghtions from classical
theory are observed in many other fields. This has turnedttesten toanomalous dif-
fusion i.e., to transport caused by fluctuating fields. This sulgédiffusion in turbulent
media is an extremely broad area of research.

Turbulence is a regime that is characterized by chaotichsistic changes in the prop-
erties of the system under consideration. Examples are
- the streaming of water around the supports of a bridge,
- mixing layers in the atmosphere and in ocean currents,
- smoke rising from a cigarette,
- turbulent flow behind a car and the wings of an airplane.
In a turbulent medium, unsteady regular structures, likia@s and magnetic islands, are
generated on many different scale-lengths. In regulard|uabst of the energy input is
in the larger scales. This energy cascades to smaller sghte it is dissipated.

In spite of considerable efforts, turbulence is still pgarhderstood. It has a wide
variety of causes and appearances, and contains fluctsiaiomany scales. This leads
to non-standard diffusion processes.

The large variety of forms in which turbulence manifestslitsequires a wide variety
of approaches and a wide variety of methods in the analysigfokion processes. Not
only standard tools like the random walk (Brownian motion)t dlso the concepts like
fractality, scaling laws and the theory of percolation aogvadays applied in diffusion
theory.

In addition, often several different types of transport imigxist simultaneously in
turbulent diffusion. Regions with chaotic magnetic fieldsyreaist next to regions with
magnetic islands and regular magnetic surfaces. Justddiems with regular streaming,
with sheared velocity fields, and with vortex motions migbéxist in fluids and plasmas.
Different diffusion processes are often associated witfer@int spatial directions in the
system. Therefore it is important to take into account thearopy of a configuration.
This anisotropy is particularly important in magnetizedgrhas.

In the field of controlled thermonuclear fusion, e.g., a majostacle on the way to
the realization of fusion in closed magnetic configuratiemides is commonly attributed
to the existence of anomalous losses of particles, momerandenergy across the con-
fining magnetic field.

The diffusion of particles and energy in tokamak devicesexrs by a factor0 — 102



the (neo)classical values for electrons and by a factor fli@(@neo)classical values for
ions. The large variety of instabilities in a magnetizedspia will lead to different types
of turbulence. The anomalous transport is related to tisitant character of the plasma
behavior. In spite of considerable efforts, this problerstik far from understood.

The classical diffusion models are based upon processearth#ocal in space and
do not have any memory on the history of the system. Theseeprep of spatial locality
and absence of memory are often violated in turbulent médiag temporal and/or spa-
tial correlations might exist due, e.g., to trapping of et in coherent structures like
vortices or islands or to advection by zonal flows.

In the dynamics of continuous fluids, a tracer is a particé thavels with the local
fluid velocity, but that has otherwise no influence on the progs of this fluid. It is a
particle that is passively advected by the fluid. The motibpassive tracers in fully de-
veloped, isotropic and homogeneous turbulence is wellrttest by Brownian motion.
Macroscopically it satisfies a Fick’s type, local transpegtiation, and microscopically a
random walk with Gaussian statistics. However, in a tunbiLdgstem which contains co-
herent structures like vortices and magnetic islands tlagttnap particles for long times,
and zonal flows that advect tracers over long distanceghéasy breaks down. Trapping
in coherent structures and the presence of zonal flows veitl te 'memory’ effects, to
non-Markovian behavior, and imply that the tracer will urgieLévy flights that will lead
to non-Gaussian statistics.

Such processes result into anomalous diffusion laws wiherenean square displace-
ment behaves as
< (A7)*(t) >oc 17,

Diffusion processes with # 1 are often called 'strange’. They are coined super-difeisiv
for v > 1 and sub-diffusive fory < 1. This 'strange’ diffusion leads to Fokker-Planck
type equations containing fractional derivatives. Tramspf passive particles in a sys-
tem with coherent structures will lead strange diffusiorand to diffusion equations that
containfractional operators In general, sub-diffusion occurs in systems with georoetri
constraints like fractals, doped crystals and magnetiddjelhile super-diffusion is en-
countered in turbulent fluids.

Since we deal with diffusion problems, we are interestetiénaehavior of systems on
long time- and length-scales, actually we want to find outtWiagpens on macroscopic
scales. We do not need to know what happens on small scates.tkis point of view, the
kinetic equations and e.g the master equation for contistione random walk (CTRW)
contain often far too much information for the descriptidrtransport on macroscopic
scales. We do not require a full kinetic description of thdentying random walk, but we
are interested in the continuum (fluid) limit of these equadi The information we are
looking for is contained in the large scales i.e. in the taflhe probability distribution
functions.



Roughly speaking, one could discern three main directionifinsion theory.
A. The most fundamental method starts with the kinetic @qador the distribution func-
tion F'(x,v,t) of a single particle. The dynamics is induced by externatioam £’ and
B fields and by collisions. To determine macroscopic trarsipars, the system has to
be averaged over phase-space and over all realizations @titttuating fields. This pro-
gramme seems to be an impossible task.
B. A second direction starts from the Langevin equation ferriotion of test particles
and use a Fokker-Planck type equations or the hybrid kieepiation to find the macro-
scopic solution.
C. Finally, methods exist that have abandoned any deterngimignamical law in the
description of the motion of a test particle. Examples aeedpplication of percolation
models and the theory of the continuous time random walkoth bases, the dynamical
laws are replaced by statistical models.



PART ONE: CLASSICAL DIFFUSION AND RANDOM WALKS

|. Classical diffusion

The modern theory of diffusion processes started in thete@meh century. One of the
important building blocks is Fick’s law (1855). Another as¢he understanding of Brow-
nian motion.

A. Fick’'s law

In the physics of continuous fluids, Fick’s first law (Adolfcki1829-1901) is a phenomo-
logically obtained constitutive equation that relates flln& of some quantity with the
concentration of that quantity,

I'p =nvp =—-DVn, (1)

where

T, is the diffusive flux inm=2s71,

vp is the diffusion velocity inms=1,

n the concentration or density in =3,

D is the diffusion coefficient imn2s1.

This relationship says that differences in concentratibthe substance under consider-
ation generate fluxes that transport the substance froreplaith high concentration to
regions of low concentration.

The dynamical equation of particle conservation reads,

g—?—%—V'I‘:O, ' =nv. (2)
Here, we are not interested in the streaming of the fluid duanto other cause than
diffusion. Thus, assuming that the flux is only due to difesprocessed; = I'p, one
obtains from (2)
— = DV?n. 3
o =PV ®)
This is Fick’s second law and has become known asthedard diffusion equatiorit is
a macroscopic law that does not refer to any microscopiogsscT his diffusion equation
has been applied to model transport processes in numertdssdighe sciences : foods,
fluids and plasmas, semiconductor physics, populationrdicg etc..

In an unbounded space, the diffusion equation can be solvdollaws. Assume a
d-dimensional space and apply to (3) the Fourier transform

n(k,t) = / d?x a(x,t) expik - x.
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The result is
on(k,t)

ot
The solution to this equation is

— —k2Dn(k, ).

n(k,t) = n(k,0) exp —k*Dt.

Its inverse Fourier transform is

n(x,t) = / dk a(k,0) exp (—ik - x — k*Dt)

(2m)4
1

(2)

This leads to the solution of (3)

/ddk: exp(—k*Dt) /ddx' n(x’,0)expik - (x" — x).

n(x,t) = /ddx’ P(x —x;t)n(x,0), 4)

whereP(x — x’; t) is the Gaussian or normal distribution

Y22 P Ty

P(x —x'it) = ——
(x = x31) (2r Dt

(5)

This solution suggests the following interpretation. ibperly normalized [ nd?z = 1),
we may interpret(x, t)d’x as being the probability of finding a particle in a small vol-
umedz around the positios and P(x — x’, t) as the transition probability that a particle
that is atx’ att = 0 makes a jumgx — x’) in a time intervak.

For a particle that starts at = 0, one has(x’,0) = §(x’). Then,

——— - eXpP — .
2rDty2 P 4Dy

n(x, t) = (6)

The lengthv/4 Dt is called the diffusion lengthlt is clear that (6) is not an equilibrium
distribution. The distribution broadens and its maximunueadecreases in time.

The mean square displacement (MSD) of a particle is acoptdif6)
<zi(t) >= /ddx rin(x,t) = 2Dt. (7)

The mean square displacement is proportional to the ddfusioefficient and increases
linearly with time.



This interpretation is based upon the description of diffaprocesses with the Chapman-
Kolmogorov functional equation for the probability degsif a stationary and homoge-
neous Markov procegsee Appendix)

n(x,t+71) = / G(A, 7)n(x — A, t)dA. 8)
Here,n(x,t) is the probability density that the stochastic variabletatke value: at time
t andG(A, 7) is the transition probability that the stochastic variailgkes a jump\ in
time intervalr. This equation isionlocal in space-time

The basic assumption is that the jumps are small as compatiedhe characteristic
scale ofn(x,t), which means that depends only weakly or\. It also implies that
G(A,7) is a strongly peaked function @ak. Then, in the limitt/7 — oo, (8) can be
transformed into a local diffusion equation

on on *n

— +Voz- =D

ot ox o2’ ©)

where . A . A2
Vo = lim/ dA—G(A,T), D= lim/ dA 2—G(A,7). (120)
o T o T

This is the local version of (8). Equation (9) is a Fokkerfielatype equation and is equiv-
alent to Fick’s law. Its solution is given by (4) and (5) withreplaced byt = x — Vjt.
As will be shown in the next section, (6) is also the pdf for au&aan random walk (
Brownian motion).

The approach described in this section leads to a diffusjoaton that only describes
local effects.In many systems, however, transport phenomena can not beldgson
the basis of such processes that are local in space and/@ with a constant diffusion
coefficient. These more complex diffusion processes dedcahomalous. Nevertheless,
this local proces still acts as a bench mark for systems whibibé& anomalous transport.

REMARKS
I. Note that the standard diffusion equation (3) is invariamder the scaling transforma-
tion

t=at, @ — az. (11)

Requiring mass conservatiarz, t)dr = n(,t)dz one finds that in addition the relation
n(vaz,at) = a=V?n(z,t) (12)

must hold. This scaling of the density is determined by thassen distribution (5). It
means that the distribution fa X («t) is the same as that fo¥ (¢). Hence, the fluctua-
tions are generated on each scale in a statistically icdmtianner. If the fluctuations are

9



known on the intervalat, t], they are also known on the extended intefyalt /| and
on the contracted intervéh?t, «t].

A distribution that is invariant under a transformationttbeales time and space by dif-
ferent factors is calledffine A distribution is calledself-similarif it is invariant under a
transformation that scales space and time by the same.factor

II'. If the diffusion coefficient is not a constant, then Ficldsvireads in 1D

on_ 9,0,
ot 0r 0x
If D = D(z) depends om, then there does not exist a simple relation betwfeand
the MSD.This can be seen as follows. Consider an infinite doraiso, co) and assume

that the density vanishes sufficiently fast&t— oo. Then,

d<x> d o 0 oD
i —a/d:ﬁxn—/dww%D%n—/dxn%

and

d<a?> o 0 oD
— = [dxa*~D—n=2 D —).
dt / v ox 8xn /d$n( +x8x)

If D = constant, one obtains

d<x> d 9 o
7 =0, E(<x > —<x>%)=2D.

This latter relationship is lost whehD /0x # 0.
[l . In case the fluid also has an average flow velo®ity then the total flux is given

T =nV,— DVn,

so that we find instead of (3)

g—?z +Vy-Vn=DVn.

Its solution is given by (4) and (5) witk replaced by = x — V.
IV . In this section we have assumed the diffusion process tedimpic. In the general
case, the diffusive flux is given by

FD =-D- Vn,
with D being a tensor. In many cases this tensor will be diagonal
D= D18181 + DQGQQQ + D3€3€3,

wheree; is the unit vector in the i-direction. In case of a stronglygmetized plasma,
the magnetic field introduces a privileged direction andalasma will have a gyrotropic
symmetry,

D= DL(elel + 6262) + D||e3e3,

10



the magnetic field being in the 3-direction.

V. Other constitutive relations that are analogous to Fieikisare e.g Ohm’s law, Darcy’s
law, and Fourier’s law.

Ohm’s law (1827) describes the relation between the cudemnsity and the electric field.
In the electrostatic case whelfle= —V ¢, it reads

J=0E=—-0Vo¢.
Fourier’s law gives a relation between the heat flow and thgerature
q=—rVT

Actually, Fick formulated his first law in analogy to this aébnship.
Darcy’s law (1856) is an equation that describes the flomighoa porous medium

K
q= —;(VP — pge).

Here, P is the pressure ange. the gravity force; the constantsand . represent the
permeability and the coefficient of viscosity, respecivel

B. Brownian motion

Brownian motion is the irregular movement of a heavy partstlspended in a liquid or
a gas. It is named after the botanist Robert Brown who studiéidrpparticles floating
in water under a microscope. These observations were matig2in and published in
1828. Brown was, however, not the first to observe such motidre dutch physicist
Jan Ingenhousz described the movement of coal dust on tfeeswof alcohol in 1785.
Nevertheless, the phenomenon is traditionally regarddeiag discovered by Brown.

The size of a pollen is aboub?nm, while the size of a water molecule 19~ 'nm.
Thus a Brownian particle is really a heavy patrticle in a ligbidl Due to the many colli-
sions with the fluid particles, the velocity of the particledergoes irregular jumps. At a
certain velocity the particle will experience more cobhiss in front causing an inbalance
in force.

Einstein was the first to understand that the quantity ofr@steis not the average
velocity but the mean square displacement of the partictoklng at the irregular tra-
jectory of a Brownian patrticle in the figure below, it is clehat the vector parallel to
the trajectory is not an useful quantity. Also, experiméwnti is not the velocity but the
position of the particle that is observed. The interval l@Ewtwo successive observations
is long compared to the correlation time of the velocity. Egnwhat is observed is the
net displacement of a particle after many variations of hecity. This displacement is
a random variable. Each displacement, is to a good appréximandependent of the

11



Figure 1: Brownian motion, taken from [1]. The top figure regaets the statistical dis-
tribution of displacements and the lower figure the trajgctd he circles correspond to
fractions and multiples of the mean square displaceménatz?(t) > — < z; >2).
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previous one. This means tHatownian motion is a Markov procegsee Appendix).

The trajectory of a Brownian particle is represented in Feglir This trajectory is a
fractal curve. This was already noticed by Jean Perrin [IwBp got the Nobel prize in
1926 for his experimental research on the atomic and maechhracter of matter. In his
words: "If we would plot the particle positions at time intats hundred times smaller,
every linear segment of the trajectory would take a polytjshape as complicated as the

whole trajectory....”.

Let us represent the Brownian motion as a random walk. At eiaoh $tepA the
walker hops to one of the sites on a d-dimensional latticéerAf steps, the net displace-
mentisr(n) = X" ,e;, S0 that

7"2(71) = 2?116? -+ 22i>jei - €. (13)

Assume that the steps are independent, and the pdf of eauis stech that all steps have
zero average< e; >= 0 and the same varianee ¢ >= [*. Then,< e; - e¢; >= 0 for
i # 7, and we have

<7r?(n) >=nl*. (14)

Hence, taking the limit of continuous time\ — ¢, A being the size of the time step, one
obtains the mean square displacement

2
<7r(t) >= 2dt2iz_A = 2tdD. (15)

This expression is equivalent to (7). The diffusion coedintiis

l2

This is Einstein’s relation which connects the macroscaiffitision coefficientD with
the microscopic jumps. It is a bridge between the microscapid macroscopic world.
Relation (15) is also frequently called the Einstein-Smbtwski relation.

In equilibrium situations, the diffusion coefficient (16rcbe expressed in terms of
macroscopic quantities characterizing the system,

T

=3 (17)

This is Einstein’s second relation. Hefiejs the equilibrium temperaturé/ the mass of
the particle and is the damping exponent of the fluid. In order to derive thiatren, we
follow the approach introduced by Langevin.

13



C. The Langevin approach

The equation of motion of a particle under the action of a eamdbrcef(¢) and a restor-
ing forcevu(t) is
f;t’ = v+ f(D). (18)

This equation is normalized on the mass of the particle. Teetérm on the right repre-
sents viscous damping. The random foy¢e) represents the rapid kicks exerted by the
fluid particles. This force has zero average and is taken todwerelated in time,

< f>=0, < [f(t)[(t2) >= Ad(t1 — ta). (19)

The right-hand-side of (18) with the properties specified(b9) is called a Langevin
force and (18) the Langevin equation. The random kicks tergptead the velocity over
a wider and wider range, while the damping tries to reduceé¢hecity to zero.

Equation (18) can easily be solved,

t
v(t) = v(0) exp —vt + / dr f(r)expv(T —t). (20)
0
This gives< v(t) >= v(0) exp —vt. The correlation function is

v(t)v(ta) >= v*(0) exp —v(ty +t2)
/ dT/ ds < f(7)f(s) > exp|—v(t1 + t2) + v(T + s)]

A
= (v*(0) — 5) exp —v(ty + o) + 5 exp —v|t; — tof. (21)

For long timesyt >> 1, i.e. for times long as compared with the damping time,

the influence of the initial velocity will disappear. Furththe system is assumed to be
in equilibrium, so that (22) has to be averaged over a MaxareNelocity distribution
(indicated below by the subscript). Then, the mean square velocity for large times

must be
A KT

ow M

The interpretation of this process is that the kicks due ¢éordmdom forcef (¢) tend to
spread the velocity over a larger range, while the dampimggbrthe velocity back to its
equilibrium value.

< V(L) >y= (22)

The mean square displacement is
t t
< (2(t) — 2(0)) >= / / dtidty < v(t)o(ts) >
0 JO

14



“Li-La 1)
= —1t——(1 —exp—ri)|.
vM v P
For short times, inertial effects, that are absent in Browmtion, will dominate. For

large times we find

< (z(t) — 2(0))? >~ %t. (23)

Upon comparing (23) and (15) far= 1 one obtains (17).

Applying (18) to an electron population with particle depsiy, we may interpret
noe? /my as the conductivity of the medium, so that (17) can be wriign

noe?

D (24)

II. The classical random walk

The random walk as a model for a stochastic process occuostydh numerous branches
of physics, but also in many other sciences. In this Sectiertensider some aspects of
the discrete-time random walk.

A. The relationship with the Gaussian and the binomial distribution

It will be shown that in the limit of a large number of steps fitd of a random walker
to be at the position at timet is a Gaussian. It is shown that this normal distribution
follows in the limit from the binomial distribution.

Suppose that the walker takessteps to the right, each with probabiljgyandn — m
steps to the left, each with probabiligy= 1 — p. For simplicity we take all steps to be of
equal lengtH. The time step ig\.

At stepn, i.e. attimet = nA, the walker is at
x = [mp—(n—m)q]l = (m —nq)l, (25)

The probabilityP(m, n) to makem steps to the right and — m steps to the left is the
binomial distribution

Plm.n) = ™ (1= )" (26)

It follows that

Z P(m,n) =1, Z mP(m,n) = np, Z m?P(m,n) = np+n(n—1)p*, (27)
m=0 m=0

m=0

15



so that the average position and the mean square displatansen
<z >=n(p—q)l, < (z— < x>)? >=npql*. (28)

Interpretingn as the time, it is seen that the first term represents a diesplewst with con-
stant velocity. The second term is the variance, which, afavwe seen in the previous
section, is related with the diffusion coefficient.

It will be shown thathe normal distribution is obtained from the binomial dilstrtion
in the limit of largen at fixed probabilityp.

Introduce the variable

m—<m> z—<x> [?
A= = , o D=pa,
\/1pq V2Dt 2A

and use Stirling’s formultnn! ~ (n +1/2)Inn —n + Inv27 + O(n™1).
Then, from (26) one obtains

(29)

1 1 Aq
P ~ - A In(1 -1
(m,n) Wexp{(2+np+ Vnpq) In( +\/n—pq)

+(1+nq—)\\/n_pq)ln(l— )\p )_1}'

2 Vg

For simplicity we take equal probability for a step to thet lefid for one to the right
p = q = 1/2, so that the average displacement vanishes. Using the Erppam(1 + =) ~
r —2?/2 andp(\, n)AX = XA, P(m,n), one obtains in the limit — oo the Gaussian
distribution

1 A2

exp ——. 30
5 P (30)
Finally, with p(\,n)d\ = P(x,t)dz, the distribution function is found as a function of
space-time

P(A\,n) =

1 x?
P(z,t) = TiDi eXp — - (31)

This is the pdf to find the random walker at the positioat timet.
Problem

1. Proof the relations (27). Use

ZP(m,n) ={p+q" =1

16



B. The standard diffusion equation

The relationship between the standard diffusion equatimhthe random walk process
can be seen as follows.

Since the steps are independent, the probability of theew&i&ing at m at step + 1
is equal to the sum of the probability that the walker ima- 1 at timen and makes a
step to the right at the next time step, and the probabiléy the walker is atn + 1 and
makes a step to the left,

P,i1(m) =pP,(m —1)+qP,(m +1) (32)
Rewrite this equation as follows
Poyi(m) — Po(m) = p[Po(m — 1) = Py(m)] + q[Fu(m + 1) — Po(m))].
and take the continuous time limitA — ¢. This yields,

oP(m) _p q
T Z[P(m —1)— P(m)] + K[P(m +1) — P(m)]. (33)
This the master equation for tle®ntinuous time random walkTakingm! — x and

expanding around yields

OP(z,t) _ _AaP(x,t) +D62P(x,t)

ot ox 0x? (34)

with
A=(p-gt, p-L (35)
A’ 2A°
This is the Fokker-Planck equation. Fdr= 0 it is identical in form to the standard
diffusion equation (3). The Fokker-Planck equation is llguzbtained from themaster
equation(see Appendix).

C. The central limit theorem

The reason that the Gaussian or normal distribution is dantiim so many fields of statis-
tics is thecentral limit theorem

The central limit theorem is a statement about the sum ofge laumber of random
variables. It says that if the random variables are
1. independent and identically distributed (l1ID) and
2. the distribution function of each random variable has igefwvariance,
then the sum of the random variables approachgaussian distribution

17



All other things being equal, a sequence of coin flips and aesecg of dice rolls are
[ID. The displacements of a heavy particle in Brownian motioay be considered as
[ID. The sum of the random variables may, e.g., represenpdiséion of a particle as a
consequence of the cumulative effect of a large number d¢imois. The position of a
random walker after a large number of steps is a standardmgarhisuch a variable.

Although we take the random walk as a standard example tstridite the theory
of stochastic variables, one should keep in mind that thebsytX may represent any
stochastic variable. It may e.g. represent the variatich@tlectric or magnetic field, of
the local velocity of a fluid or of the temperature of some sahse.

In many cases of physical interest,X? > represents an energy density. This implies
that the variance must be finite so that condition 2. ofcietral limit theorenis satisfied
on physical grounds.

Let X1, Xo,......... , X,,.... be a set of independent variables, each having the same

distribution function with average X; >= p and variance, < X? > — < X; >?= g2,
This means that for the sum afof such 11D random variables one has

< ZXi >= ny, < Z(X’ — p)? >=no. (36)
1 1

Thus, the average value of the sum grows withnd its variance with/n.

Introduce the variableg and the sums,,,

Xi—p
P = 9 n — 73 37
b= 5 ;y (37)

and writelim,,_, s,, = s.
The central limit theorem states that in the limit of largehe distribution function o§,,
approaches the Gaussian distribution

lim P(s,) = P(s) ! 2 (38)

11m Sn) = S) = exXp —s .

n—00 V2 P
This is an asymptotic distribution. A finite number of obsgions may already lead to
a reasonable approximation of the distribution close tpé&sak. To determine the tails
requires a large number of observations. In d-dimensiorsatso obtains (38), but with
V27 replaced by(2m)%/2,

On the basis of the central limit theorem it is clear that thewnian motion intro-
duced in section B is described by a Gaussian distributioction.
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The proof of the theorem is remarkably simple. The charestierfunction of the
distribution functiorp(y; ) is

+o0
Dby, (k) = / dy; p(yi) exp iky;. (39)

o

Since< y; >= 0 and< y? >= 1/n, this may be approximated fé#/n — 0 by
ﬁyz(k) =l--—+ O(_)7 n — oo, (40)

whereo(k?/n) indicates a function that goes to zero faster tham. Since ally; are
independent, the probabilit)(s,,) can be written as

P(sn) = <0(sn — > _yi)>

/ y1/dy2 /dyn P(y1, 2, o Yn)8(50 = > 1)

dk
/dy1 Ay, P(y1, s Yn) 2—exp —ik(s Zyz

= / 2_pyz(k) exp(—iksy,). (41)

This means that the characteristic function of the sum islkiguthe product of the indi-
vidual characteristic functionsy, (k) = Dy, (k).

Since all random variableg are identically distributed, the characteristic functedrs,,
for small values of? /n may be approximated by

A 1 k2 k?
e—k2/2’

P, (k)=[1—-—4+o(—)]" — n — oo. (42)

The inverse FT (41) of this expression gives the Gaussian (38

D. Number of returns

A random walker may return many times to any previous pasiti@his will strongly
depend on the dimensions of the space. We will analyze thig/idem trajectory with
self-intersection with a specific 1D model.

Consider a 1D random walk in a layered medium. A particle d#iin the:-direction

through the layers. The width of a layer is large as comparitl tive step size. The
particle will diffuse through the layer of thicknegsn a timerp,

=V 2D7'D. (43)
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Figure 2:

In atimet = N7p, the particle diffuses though N layers. On the other hareldifiusion
length isl = V2DN71p = a\/t/Tp = av/N. This means that the average number of
differentlayers visited in a time is v/N.

The probability to be in the first layer at tinieés obtained from (31)

1
a.
VAar Dt

This will be equal to the relative number of times that thel®akreturns to the first layer
in a timet. Hence, the number of times the particle returns to the sl is

a N
N, = N =~ ~VN. 45
\/47TDt \/t/TD ( )

P(0,t)a = (44)

lll. L évy flights

In this section we reconsider the random walk. The walkesgimed to take steps at
fixed points in time. Again we assume that all steps are inadget and identically dis-
tributed (1ID). Howeverwe do not assume a constant step size. We do not even assume a
priori that the mean value or the variance of the pdf of a stepteThus, the conditions

for the validity of the central limit theorem and the occurce of Gaussian distributions

are not necessarily satisfied.

The probability function?, (r) for the walker to be at the positianat thenth step can
be obtained from

Pu(r) = / d' Py ()p(r — 1), Po(r) = 6(r), (46)
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Figure 3: Classical random walk (left) anéwy flights (right).

wherep(r) is the probability density to make a stepUse the characteristic function
P, (k) = / dr P,(r)expik - r. (47)

Then, one obtains from (46}, (k) = P,_;(k)p(k), so that
P, (k) = p"(k), (48)

and .
P,(r) = 2y / dk p" (k) exp(—ik - r). (49)

This is the solution to the random walk problem. It dependg onlthe pdip(r) which is
also called the structure function.

A. A structure function with a long tail

Assume that for large values of the (microscopic) stepsjzke pdfp(y) is isotropic and
decays according to some powernof |y|,

A
p(y) = (1 —a)i(y) + JH(y — %) (50)
The first term represents the bulk of the distribution, whgchot of interest in the present
discussion. The second term represents the tail, the m#&tibeing the Heavyside func-
tion. This tail is aLévy distribution. It corresponds to large but infrequems, so-called
rare events
From the normalizatiorf d%y p(y) = [ dydQ2 y*'p(y) = 1 follows that
A=pyl, f=l—d>0,
Sda
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with S; being the solid angle$; = 1, S, = 2w, S3 = 4x. ( This can be generalized to
S, = 2r%2/T'(d/2))). Hence, we have

Py = (1~ oty + & L1y iy 1)

The powerf is called thanicroscopic step index

A. Itis seen that forf > 2 the mean square step exists,

o
f-2

As a consequence, the average mean square position afegran st

<y’ >= / d*y y*p(y) = ayg

<r?>=n<y>s=t<y’> (52)
also exists and the central limit theorem tells us that ts&ibutionlim P, (r) in (49) is
Gaussian.

B. Forl < f < 2 the mean square displacement does not exist, but the mgxis stél
finite
<y>= /ddy yp(y) = ayo

sothat< r >=n<y>=t<y>.

f
f=r

C.Intheintervald < f < 1 even the mean step size does not exist.

Next, we consider the probabiliti, given by (49) for large values of. The Fourier
transform of the characteristic functipfly) is

pk) = /dy p(y)expik-y =1+ —/ /dQ JZ?iof lexp(ik -y) — 1] (53)

~1— D(ky)’, D= constant, k= |k|,
which gives withn — ¢

(k) = [1 — D(kyo)" = exp(—Dn(kyy)’) = exp(—Dt(kyy)?). (54)
Substitution into (49) gives
: d'k ‘
P(r,t) = lim P,(r) = / —— exp(—ik - r — tDEk"yp), (55)
n—oo (27r)d

with - f > 2, < r? > exists ang: = 2 on the basis of the central limit theorem,

- f <2, < r? > does not exist and = f.
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B. Stable probability distributions functions

Consider the pdf.(x) of a d-dimensional random process. Its characteristictfonds
n(k) = /dd:v n(x)exrpik - x. (56)

Any probability distribution function whose charactertsfunction satisfies the form-
invariance property
n(a;k)n(ask) = n(ak) (57)

is called astable law. For simplicity we will consider only symmetric pdf’s thagpend
onr = 4/X-X.
Writing n(ak) = exp A(ak), (57) gives
A(ak) = A(ark) + A(agk).

It follows that the general solution is the power laMik) = —Ck*. The constants, a;, as
must satisfy
—C(af + dfy) = —Ca.

Givena; andas,, this relationship determines Hence, the characteristic function of a
stable law reads
n(k) = exp(—C|k["). (58)

The inverse transform is
n(x) = (2r)™¢ / dk exp(ik - x — C|k["). (59)
Any pdf of this form is called aymmetric Evy distribution function

For convergence the constanimust be positive. Regularity af(k) atk = 0 requires
i > 0. The inverse Fourier transform (59) requiyes< 2, since it is not everywhere pos-
itive on the domain fop: > 2.

The mean square displacement is

(k)
Ok - 0k

This limit does not exist fop, < 2. Foru = 2 one finds< r%(t) >= 2dC, which yields
the classical result witl' = o?¢t. Forp > 2 it follows that < r?(¢) >= 0, which is
only possible if the pdh(x,t) is not everywhere positive on the domain. Note hat the
distributions (59) are properly normalized

<7’ (t) >= k=0 = Cul(1+ d — 2)[E|" ]| jy=o-

/n(x)dd:c = /ddk §(k) exp —C|k|" = 1. (60)
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The Gaussian distribution with = 2 corresponds to the solution of the standard
diffusion equation,

2 1 2
5 — oIkl — -
n(k) =e """ n(x) = 5 1C (61)
For . = 1 one obtains the Cauchy distribution,
1
5 (k) — oIl _
n(k) =e ", n(x) AT (62)
For . = 3/2 one finds the Holtsmark distribution [],
A~ _|k|3/2 x

Note that all these probability densities, except the Ganssith i = 2, have power
"tails” for large values of:. In Part V it will be discussed that for < 2, the distributions
(62) are associated with diffusion equations wrdctional derivatives

NOTE

Let n(x) be the pdf of a d-dimensional random varialsle Then, the pdf.,(x) of a
random variablgs = a~'x is of the formn(x) = C,n,(a'x). Both pdf's are normalized
to unity, so that®, = a~¢. Hence we find

nae(x) = a n(a"'x).
In Fourier space this relation reads

1o (k) = i(ak).

C. The inverse transform

First, we derive an approximate expression for the inte&®) in 2 dimensiongd = 2).
We start from the expression

d*k 2 [T
n(x,t) = / @2 exp(—ik-x — C|k|!) = 2n)? /o /0 kdkdf exp(ikrcostd — Ck").
(64)
Use the integral representation for the Bessel function
1 /7 i cos 0
Jo(z) =— [ dfe**7,
™ Jo

and subsequently the representation

2 [ sinz
1 —



Then, (71) becomes

n(r,t) = —Re@/ \/7/ dk ke~ hry=Ck"
Y2 —

Extend this integral into the compléxplane and close the contour in the fourth quadrant
along the negative imaginary axi8 (= —iq). Further, we extend the integral up kg,
wherek, >> 1is such thakq,r >> k{. Then, the integral along the real axis is converted
into the asymptotic integral,

n(r,t —Rez/ \/yi—/ Je~amY(1 —Cq“e‘”“/Q).

The first term on the right does not give any contribution e t

1
n(r,t) ~ FC’sin dq ¢" ey

v =T
2 ) y?—1Jo
1 mu C dy

r 2 —_——
2 2 rpt2 (e + )/1 Y2y — 1

The integral can be expressed in terms of the Beta fun¢tiea v='/2),

/ML:/IC@L
1T (/2 + )I(1/2)
sBW2+ 1L 1/2) = 5= s )

Thus, we finally obtain the approximate expression
_C pmr e +2)T(p/2+1I(1A/2)
n(r,t) ~ 5250 T(1/213/2) r : (65)

The coefficient can be further simplified by using relatiapstetween the Gamma func-
tions.

Next we derive an asymptotic expression for large values affthe integral (62) in
the one dimensional casé = 1),

n(x,t) = /(;i—i) exp(—ikx — Clk|*) = %Re/o dk exp(ikz — Ck"). (66)

Extend the integral in the complex plane and close the iategrthe fourth quadrant
along the negative imaginary axis (= —iq). Further, we extend the integral up kg,
wherek, >> 1 is such thakyz >> k¥,

—. (67)

—1 o 1 1
n(x,t) = 7Rei/0 dg (1-Cq" expimp/2) exp —qr = ;sin%l“(l—i—,u)gc1+
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D. Leévy distributions

Non-local effects can be also described in terms of a randatk model. Such a model
leads to a description in terms of an integral equation.

In the case of homogeneous turbulence, the Chapman-Kolmodanctional equa-
tion can be written as

ang;’ ) = /_00 G(x —xn(x, t)d%. (68)

(o)

This equation is Markovian and cannot describe memory &sffdtis non-local in space
but local in time. Introducing the Fourier transform witlspect to space, this equation
becomes,
on(k,t)
ot
In case of isotropic turbulence the kernel will be a functioa: |k|. If the kernel has the
form

= G(k)i(k, ). (69)

G(k) = —Dk?, (70)

(70) yields the classical diffusion equation after apglmaof the inverse Fourier trans-
form.

This has led to different phenomenological methods to iwgthe diffusion equation,
The discussion in the previous section suggests that the for

G(k) = —Alk|", (71)

whereA has the dimensionsn#s~!, is relevant for the description of turbulent diffusion.
Then, we have
on(k,t)
ot
In Part V it will be shown that the Fourier transform of thehtignand side corresponds to
a symmetric Riesz fractional derivative.

= —Alk["i(k, 1). (72)

The solution of (68) is
n(k,t) = n(k,0) exp(—A|k['t). (73)

With n(z,0) = §(z), the inverse transform yields the integral (62) with= At.
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V. APPENDIX

A. Stochastic variables

A stochastic or random variabl¥ is defined by a set of valuesthat it can attain and
by a probability distributionP(x) over this set. This set is also called the 'sample space’
or range’. This space may be either continuous or discreterixture of the two. The
total probability has to be equal to unity

/ de P(z) =1, X,P,=1. (74)
range

The discrete case can be recovered from the continuous @sB(w) = %, P,0(x—

Thenth moment ofP(x) is defined as
o =< 2" >= /dx =™ P(x). (75)
The first moment is the average or expected value
=< x >= / dx xP(x). (76)
range
The stochastic variableis calledcenteredf < z >= 0.

The second moment, is related with the variance

o =< (1= < x>} >=py—1f = / dz (x — p1)?P(x), (77)
range
The variance will often exist and be finite. E.g.zifrepresents the velocity of a particle
or the magnitude of a fluctuating magnetic field, then theavexe is proportional to the
square root of an energy or energy density, which has to refimgie.

The skewness and flatness of a centered random variablefareddeespectively as

<3 > <zt>
S:<x2 >3/27 F:<x2 >2° (78)

The Fourier transform of a probability distributidi(x) is called its characteristic
function,

A

P(z) =< expizz >= /dm P(z)expizx (79)

Itis seen that

A ~ ~

P(0)=1, [|P(z)|<1, P (=2)=P(z). (80)



The characteristic function generates all the momentf3(af,

A > (zz)m 1 dm .
P(z) = " >= ———P(2).
() mZ: s <2 = P(2) (81)

The mean square displacement i.e. the average of the sclistadcer?> = x? = %922
in d-dimensions is 5 8
2 _ _ .= »
<rt>= Oz aZP(Z)|Z:0. (82)

A d-dimensional, centered random variable is Gaussian if

1 x?

Its characteristic function is

A 1

P(z) =< expix -z >=exp —50222, (84)
whereo is the variance (77) id-dimensions,

o? =< x? >= / d’r x*P(x). (85)
range

All odd moments of a Gaussian distribution vanish, so thdwag only even moments
[y fhdy eennn All higher moments of a Gaussian can be expressed in terrieafecond
moments.

All quantitiesYy that are defined by some mappifigX ) are also stochastic variables.
In particular when such a function also depends on a additiariablet, quite often the
time,
Yx(t) = f(x,), (86)

Yx(t) is called a stochastic process; the sample funcfion ¢) is a realization of that
process. A stochastic process can be considered as an dagdéthlese sample functions.

Consider a stochastic process The probability density that the stochastic (random)

variable takes the value,, x-, ..., z,, at the successive 'time$; < t, < .... < t,, IS
Po(xp, tp; xy_1,th_1;....;21,11). Clearly one must require that

/ dxlpn(xna tnv Tp—1, tn—l; ceey L1, tl) == Pn—1($n7 tna Tp—1, tn—l; ceey Lo, tQ) (87)
The probability?, may be written as

Pn<:[}n7 tn> Tn-1, Zfnfl; vy L1, tl) = Pn7k|k<xna tn> coeny Ty 1, tk+1‘xk7 tka sy L1, tl)x
(88)
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Pz, tr; o w1, ty).

whereP,_;(...) is the conditional probability that the variable takes thkiex,, at time
t, etc. and the value,,, at timet,,, given that it has the value, at timet, etc. and
the valuer; at timet;.

In case of a completely random process, all valigs are independent, so that one
has
Pn(.ilfm tn; Tn—1, tn—l; ey L1, tl) = Hkpl(xk, t) (89)

This means that the knowledge of a single distribution fon¢#, (z, t) = P(z,t), would
be sufficient to determine the process.

The next simplest case is called a Markov process.

B. Markov processes
B..1 The Chapman-Komolgorov equation

For a Markov process, the conditional probability that tteeckastic variable takes the
valuez,, at timet, only depends on its value,_; at the previous time,_; and does not
depend on its values at earlier times, i.e. for any

P1|n—1(xna tn|xn—17 tn—l; vy tl) - P1|1($n7 tn"xn—l; 7fn—1>‘ (90)

This means that the transition fropa,,_+,t,_1) to (z,, t,) does not dependent on earlier
transitions. This lack of memory is characteristic for Marlprocesses. Such a process is
completely determined by two probability densiti&s(z, t) and the transition probability
Pyji (2, ta|21,t1). It follows that

Ps(x3,t3; 00, ta; 01, t1) = Pipp(ws, tg|we, ta; o1, t1) Pa(22, to; 21, 1) (91)

= Pyji(xs, t3|we, to) Pip (w2, ta|xy, t1) Py (21, 1), l3 > 12 > ;.

Integrating overr, and dividing by P (z4, t;) yields the famou£hapman-Kolmogorov
equation,

Py (s, tgler, 1) = /d$2P1|1($3>t3|$2,t2)P11($2,t2’9€1>t1)- (92)

This equation says that the conditional probability to finel taluer; att; given that it is
x1 atty, is equal to the product of the conditional probabilitieegrated over all values
that the variable could attain at some intermediate tisne
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Upon multiplying (92) withP; (x4, t;) and integrating over, it is seen that the dis-
tribution functionP, (x, t) must satisfy

Pi(z,t) = /d:U’Pl1(x,t\x’,t’)P1(x’,t/)’ t' < t. (93)

The best known example of a Markov process is Brownian mofitve. mathematical
model that describes Brownian motion is the continuous temelom walk or th&Viener
process. It can easily be checked that the transition pilityab

1 (1‘2 — ZL’1)2

P, t t) = 2
1|1(X27 2’X17 1) 27TD<t2 —f,l) exXp 2D(t2 —tl)’

to > 1 , (94)

satisfies the Chapman-Kolmogorov equation. Together wétlmitial conditionP(x,0) =
d(z), this transition probability specifies a non-stationaryrké& process.

According to (94) the probability density is
2

T

1
P(z,t) = /dx’P1|1(x,t|x’,O)P(x’,O) = Jooni

Markov processes that are invariant under a shift in timeo&ispecial interest. For
thesestationary processese conditional probability is a function of thene difference

Py (%2, t2; %1, t1) = P(Xa|x13ty — t1), (96)

while the probabilityP; is independent of timeP, (x,t) = P(x). P(x) is the familiar
equilibrium distribution as described by statistical diuium mechanics.

If the process is homogeneous, then the transition prabawill depend only on the

differencex, — x;.

B..2 The master equation

The Chapman-Kolmogorov equation can be rewritten in intefifferential form. Write
in (92) x5 = x,t3 =t + At, 9 = 2/, 1ty = t, 217 = x0,t; = tg. Then, the Chapman-
Kolmogorov equation reads

P1|1(X,t + At|X07t0) = /ddI/P”l(X,t + At|X/,t)P1|1(X,7t’X0, tg) (97)

In the limit At — 0 this equation can be written as

8P1|1(x, thO, tg) ~ lim ddx/ P1|1(X7 t+ At|x” t) — (5(X — X/)

P(x', t|xq, to).
ot Ato0 At (Xa |X07 0)
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A natural initial condition isP |, (x, t|x; t) = d(x — x’). Adopt the limit

. Plll(X,t+At’X/,t) —5(X—X,)
lim
At—0 At

= W) = apd(x — x'), (98)
wherelV (x|x’) is thetransition probability per unit timeand
ap = /ddm W (x|x) (99)
is determined by the normalization conditignl’z P(x, ¢ + At|x,t) = 1.
In the limit At — 0, the integral equation (97) becomes the integro-diffeaépgua-

tion

8P(X, t|X0, to)

g = /ddx' (W (x|x')P(x', t|xq, to) — W(x'|x) P(x, t|xq,t0)].  (100)

The indices have been omitted. This equation is known asné&ster equation It is
the differential form of the Chapman-Kolmogorov equatiopod multiplying this equa-
tion with P(xo,ty) and by integrating ovex,, one obtains the same equation with the
conditional probabilityP(x, t|x, o) replaced by the probability densify(x, t)

OP(x,t)
ot

= / da’ W (x|x)P(x',t) — W(X'|x)P(x,1)]. (101)

If the range ofX is a set of discrete states labelled/hythe master equation reads

dP,(t)
dt

= S (W P () — Wipn P (1)) (102)

Equations (101) and (102) descri@ain-Lossprocesses. The time rate of change of the
probability function in (101) is determined by two processe

1. the system is in stateand undergoes a transition to a different steteThis is a loss
for statex.

2. the system is in staté and undergoes a transition to stateThis is a gain for state.
Replacingr by n andz’ by n’, these statements also hold for (102).

An important class of processes that can be described bydstenequation are one-
step or birth-death processes. These are continuous tim@WMprocesses in which only
transitions between neighboring states can occur. Foraycbcess the master equation
(102) reduces to

dP, (1)
dt

- Wnn—l—an—l—l(t) + Wnn—lpn—l(t) - Wn—lnPn(t) - Wn—l—lnpn(t) (103)
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Figure 4: One-step processes

Examples

I. An interesting example is thBoisson process which only transitions in one 'direc-
tion’ take place with constant transition probabilitiég,,,,., = W, 1, = 0, W11, =
W.n—1 = p. The steps to the right with probabilipyoccur at random times.

The master equation is

dP,(t)

7 pP,_1(t) — pP,(t), P.(0) = dno. (104)
The solution is the probability that the particle is at posit: at timet
P,(t) = (t) exp —pt. (105)

[I. Another well-known continuous time processiig,, ; = W, 11, = pandW,,_,,, =
Wo.na1 = q. This represents a continuous time random walk with traorsgirobabilityp
to make a step to the right apdo make a step to the left. The master equation reads,

dP,(t
s e (t) 4 pPaa(t) ~ (4 DR, PA0)= b (106)
REMARK
The result (49) can also be obtained as follows. The postifdhe walker at time after
n steps is
= v (107)
1
y; being theith step. The pdf for the walker beingaat timet is
Pr / /dyldyg ...... Ay P (Yo bt Yot w1 oo Y1, 11)8(0 — £(8)), (108)
this means



dk
:/ exp —ik-(r—r(t))/.../dyldyQ ...... AV P(Yn, tn; Y1, tn1; ceeene Y1, ).

(2m)
(109)
All steps are 11D, so that
P(r,t) = / (262{)(1 exp(—ik - r) [/ dy p(y) expik - y|".
_ (er)d / dk 5 (k) exp(—ik - ). (110)
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