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Glossary

Axisymmetric (concentric) KdV equation This is a par-
tial differential equation for the free surface n(R, t) in
the form (2ng + % n+ 3nng) + % nege = 0.

Benjamin-Feir instability of water waves This de-
scribes the instability of nonlinear water waves.

Bernoulli’s equation This is a partial differential equa-
tion which determines the pressure in terms of the ve-

locity potential in the form ¢, + % (Vo)? + % +gz=0,
where ¢ is the velocity potential, P is the pressure, p is
the density and g is the acceleration due to gravity.

Boussinesq equation This is a nonlinear partial differen-
tial equation in shallow water of depth h given by

1 1
Upr — Ctixy + 5(“2)“ -3 Wt s

where ¢ = /gh.

Cnoidal waves Waves are represented by the Jacobian el-
liptic function cn(z, m).

Continuity equation This is an equation describing the
conservation of mass of a fluid. More precisely, this

equation for an incompressible fluid is divau = 7°

+g—; + %—‘;“ =0, where u= (u,v,w) is the velocity
field, and x = (x, y, 2).

Continuum hypothesis It requires that the velocity u =
(u, v, w), pressure p and density p are continuous func-
tions of position x = (x, y, z) and time .

Crapper’s nonlinear capillary waves  Pure progressive
capillary waves of arbitrary amplitude.

Dispersion relation A mathematical relation between
the wavenumber, frequency and/or the amplitude of
a wave.

Euler equations This is a nonlinear partial differential
equation for an inviscid incompressible fluid flow gov-
erned by the velocity field u = (u, v, w) and pressure
P(x,t) under the external force F. More precisely,
g—‘t‘ +(u-V)u= —% VP + F, where p is the constant
density of the fluid.

Group velocity The velocity defined by the derivative
of the frequency with respect to the wavenumber
(cg = dw/dk).

Johnson’s equation This is a nearly concentric KdV
equation for n(R, £, 0) in cylindrical polar coordinates
in the form

1 1 1
2 — 3 - — =0.
(77R+R77+ 77775+377555+R27799)
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Kadomtsev-Petviashvili (KP) equation This is a two-di-
mensional KdV equation in the form

1
(277t +3nng + 3 Uggg)g + 1y, =0.

KdV-Burgers equation This is a nonlinear partial differ-
ential equation in the form

Ne+coNx +dnny + Uixxx —Vixx =0,
1
where u© = 5 coh(z).

Korteweg-de Vries (KdV) equation This is a nonlinear
partial differential equation for a solitary wave (or soli-
ton). This equation in a shallow water of depth h is
governed by the free surface elevation n(x, t) in the
form % +c(1+ % mnx + (%) Nxxx = 0, where ¢
= /gh is the shallow water speed.

Laplace equation This is partial differential equation of
the form V2¢ = ¢.x + ¢yy + ¢.. where the ¢ =
@(x, y, z) is the potential.

Linear dispersion relation A mathematical relation be-
tween the wavenumber k and the frequency w of waves
(0 = w(k)).

Linear dispersive waves Waves with the given dispersion
relation between the wavenumber and the frequency.

Linear Schrodinger equation This can be written in the
form ia; + %w”(k)% = 0, where a = a(x, t) is the
amplitude and v = w(k).

Linear wave equation in Cartesian coordinates
In three dimensions this can be written in the
form uy = ¢ VZu, where ¢ is a constant and V2 =
33—; + 33—); + 3—22 is the three-dimensional Laplacian.

Linear wave equation in cylindrical polar coordinates
This can be written in the form wu;; = u,, + % U,
+ ,Lz Uugg.

Navier-Stokes equations This is a nonlinear partial dif-
ferential equation for an incompressible and viscous
fluid flow governed by the velocity field u = (u, v, w)
and pressure P(x,t) under the action of exter-
nal force F. More precisely, 3% + (u- V)u = —% \z
+v2u + F, where p is the density and v = (u/p) is the
kinematic viscosity.

Nonlinear dispersion relation A mathematical relation
between the wavenumber k, frequency w and the am-
plitude a that is D(w, k, a) = 0.

Nonlinear dispersive waves Waves with the given dis-
persion relation between the wavenumber, frequency
and the amplitude.

Non-linear Schrédinger (NLS) equation This is a non-
linear partial differential equation for the nonlinear

modulation of a monochromatic wave. The ampli-
tude, a(x, t) of the modulation satisfies the equation
i(28 + wp22) + Loy £ 4 ylal’a =0, where wg
= wy(k), and y is a constant.

Ocean waves Waves observed on the surface or inside the
ocean.

Phase velocity The velocity defined by the ratio of the fre-
quency @ and the wavenumber , (¢, = %).

Resonant or critical phenomenon Waves with un-
bounded amplitude.

Sinusoidal (or exponential) wave A wave is of the form
u(x,t) = a Reexpli(kx — wt)] = acos(kx — ot),
where a is amplitude, k is the wavenumber (k = 27”),
A is the wavelength and w is the frequency.

Solitary waves (or soliton) Waves describing a single
hump of given height travel in a medium without
change of shape.

Stokes expansion This is an expansion of the frequency
in terms of the wavenumber k and the amplitude a,
that is, w(k) = wo(k) + wa(k)a® + .. ..

Stokes wave Water waves with dispersion relation involv-
ing the wavenumber, frequency and amplitude.

Surface-capillary gravity waves Waves under the joint
action of the gravitational field and surface tension.

Surface gravity waves Water waves under the action of
the gravitational field.

Variational principle For three-dimensional water
waves, it is of the form 61 = 6 [}, L dxdt = 0, where
L is called the Lagrangian.

Velocity potential A single valued function ¢ = ¢(x, t)
defined by u = V¢.

Water waves Waves observed on the surface or inside of
a body of water.

Waves on a running stream Waves observed on the sur-
face or inside of a body of fluid which is moving with
a given velocity.

Whitham averaged variational principle This can be
formulated in the form § [[ £ dxdt =0, where £
is called the Whitham average Lagrangian over the
phase of the integral of the Lagrangian L defined by
L(w,k a,x,t)= % 02” L d6, where L is the La-
grangian.

Whitham’s conservation equations These are first order
nonlinear partial differential equations in the form
Bt 3o =0, 2 {f(0A%} + £ {f(kC(kA} = o,
where k = k(x, t) is the density of waves, v = w(x, t)
is the flux of waves, A = A(x, t) is the amplitude and
f(k) is an arbitrary function.

Whitham’s equation This first order nonlinear partial
differential equation represents the conservation of
waves. Mathematically, (dk/dt) 4+ (dw/dx) = 0 where



Water Waves and the Korteweg-de Vries Equation

9969

k = k(x, t) is the density of waves and w = w(x, t) is
the flux of waves.

Whitham’s equation for slowly varying wavetrain This
is written in the form % Ly — 3ix, Ly, =0, where L is
the Whitham averaged Lagrangian.

Whitham’s nonlinear nonlocal equations Itis in the
form u; + duu, +ffgo K(x—s) us(s, t)ds = 0, where
K(x) = F ' {c(k) = w/k} and F~! is the inverse
Fourier transformation.

Definition of the Subject

A wave is usually defined as the propagation of a distur-
bance in a medium.

The simplest example is the exponential or sinusoidal
wave which has the form

u(x,t) = aReexp [i(kx - a)t)]
= acos(kx — wt) , (1)

where a is called the amplitude, Re stands for the real part,
k(= 27”) is called the wavenumber and A is called the
wavelength of the wave, and o is called the frequency and
it is a definite function of the wavenumber k and hence,
® = w(k) is determined by the particular equation of the
problem. The quantity = kx — wt is called the phase of
the wave so that a wave of a constant phase propagate with
kx — wt = constant.
The mathematical relation

w = w(k) or
D(w,k) =0, )

is called the dispersion relation.
The phase (or wave) velocity is defined by

o)

c(k) = p

3)
This shows that the phase velocity, in general, depends on
the wavenumber k (or wavelength 1) so that waves with
different wavelength propagate with different phase veloc-
ity. The waves are called dispersive if the phase velocity is
not a constant, but depends on the wavenumber k. On the
other hand, waves are called nondispersive if c(k) is con-
stant, that is, independent of k.

In general, the dispersion relation (2) can be written in
the complex form

w = w(k)
o(k) +iv(k), (4)

where v (k) < 0,v (k) =0,0rv (k) > 0.

In this case, the sinusoidal wave takes the form
u(x,t) = a exp [v(k)t] exp [i(kx - ot)] . (5)

If v(k) < 0, the amplitude of the wave decays to zero as
t — oo and the waves are called dissipative. When v(k)
= 0, waves are dispersive. On the other hand, if v(k) > 0
for some or all k, the solution grows exponentially as t
— 00. This case corresponds to instability.

The group velocity of the wave (1) is defined by

dow

Clh) = - (6)
So, in general, c(k) # C(k). It is convenient to modify the
definition slightly. Waves are called dispersive if w’(k) is
not a constant, that is, w” (k) # 0.

In higher dimensions, all the above ideas can be gener-
alized without any difficulty. The sinusoidal waves in three
space dimensions are defined by

u(x,t) = a Re exp [i(k -x— wi)] , (7)

where a is the amplitude, x = (x, y, 2) is the displacement
vector, &k = (k, I, m) is the wavenumber vector and w is
the frequency which is related to « by the dispersion rela-
tion

w=w(k) or Dw,k)=0. (8)

This function D is also determined by the particular equa-
tion of the problem. In this case, 8 =k -x— wt is the
phase function.

Similarly, the phase velocity of the waves are defined as
follows:

c(k) = Pl )

where ¥ = (27 m ) is the unit vector in the « direction
and the group velocity is defined by

~dow ~dw dw
= V = _ _— m-—

C(k) o) =k P +1 o] + m o (10)

If the dispersion relation (2) depends on the ampli-

tude a so that the dispersion relation becomes

D(w,k,a) =0. (11)

w =w(k,a) or

In general, the linear plane waves are recognized by the
existence of periodic wavetrains in the form

u(x,t) = f(0) = flkx —wt), (12)

where f is a periodic function of the phase 6.
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For linear problems, solutions more general than (1)
can be obtained by the principle of superposition to form
Fourier integrals as

(13)

u(x, t) = /oo U(k) exp [i {kx — o(k)t}] dk

where the arbitrary function U(k) may be chosen to fit ar-
bitrary initial or boundary conditions, provided the data
are reasonable enough to admit Fourier transform U(k)
= F{u(x,0)},and w = w(k) is the dispersion relation (2)
appropriate to the problem.

On the other hand, the nonlinear dispersive waves
are also recognized by the existence of periodic wave-
trains (12) and the solution must include the amplitude
parameter a and it also requires a nonlinear dispersion re-
lation of the form (11).

In shallow water of constant depth h, the free surface
elevation n(x, t) satisfies the Korteweg and de Vries (KdV)
equation

tef142 (e =0
Nt ¢ 2]’177 Nx 6 Nxxx = U,

where ¢ = \/g_h is the shallow water velocity, g is the
acceleration due to gravity, and the total depth H = h
+1n(x, t). The first two terms (1; + ¢ 1) describe the wave
evolution at speed ¢, the third term with the coefficient
(3¢/2h) represents the nonlinear wave steepening and the
last term with the coefficient (ch?/6) describes linear dis-
persion.

The KdV equation admits an exact solution in the
form

%
n(x,t) = a sech® {(%) X:| ,

where X = x — Ut, and U is the wave velocity given by

(14)

(15)

U=c(1+i). (16)

2h

The solution (15) is called the solitary wave (or soliton) de-
scribing a single hump of height a above the undisturbed
depth h and tending rapidly to zero away from X = 0. The
solitary wave propagates to the right with velocity U(> c)
which is directly proportional to the amplitude a and has
width b~ = (3a/4h3)_%, that is, b~! is inversely propor-
tional to the square root of the amplitude a. Another sig-
nificant feature of the solitary wave is that it travels in the
medium without change of shape.

In general, the solution for 1(x, t) can be expressed in
terms of the Jacobian elliptic function c¢n(X, m)

n(X) = acn? {(%)2 X, m:| ,

(17)

where m = (a/ b)% is the modulus of the cn function. Con-
sequently, the solution (17) is called the cnoidal wave.

The nonlinear Schrodinger (NLS) equation can be writ-
ten in the standard form

iVe+ Y + Y[V Y =0,

—oco<x<oo, t>0, (18)

and y is a constant.
With X = x — Ut, we seek the solution in the form

Y = exp [i(mX — nt)] f(X),

where f(X) can be expressed in terms of the Jacobian el-
liptic function in the form

(19)

fX) = (al/az)%sn(aX, K), (20)

where a1, oz, 0 = (a2B2/B102) and k = (a1 82)/(Br1a2)
are constants.

The limiting case of the solitary wave is possible and
has the form

f(X) = (27&)E sech [Va(x — Ut)] |

21
where o and y are positive constants. This solution rep-
resents a solitary wave solution which propagates without
change of shape with constant velocity. However, unlike
the KdV solitary waves, the amplitude and the velocity are
independent parameters. It is important to note that the
solution (21) is possible only in the unstable case y > 0.
This suggests that the end result of an unstable wavetrain
subject to small modulation is a series of solitary waves.

Introduction

Water waves are the most common observable phenom-
ena in Nature. The subject of water waves is most fascinat-
ing and highly mathematical, and varied of all areas in the
study of wave motions in the physical world. The mathe-
matical as well as physical problems deal with water waves
and their breaking on beaches, with flood waves in rivers,
with ocean waves from storms, with ship waves on water,
with free oscillations of enclosed waters such as lakes and
harbors. The study of water waves and their various ram-
ifications remain central to fluid dynamics in general, and
to the dynamics of oceans in particular. The mathemat-
ical theory of water waves is quite interesting in its own
merit and intrinsically beautiful. It has provided the solid
background and impetus for the development of the the-
ory of nonlinear dispersive waves. Indeed, most of the fun-
damental ideas and results for nonlinear dispersive waves
and solitons originated in the investigation of water waves.
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Historically, the problems of water waves in oceans
originated from the classic work of Leonhard Euler (1707-
1783), A.G. Cauchy (1789-1857), S.D. Poisson (1781-
1840), Joseph Boussinesq (1842-1929), George Airy
(1801-1892), Lord Kelvin (1824-1907), Lord Rayleigh
(1842-1919), George Stokes (1819-1903), Scott Russell
(1808-1882) and many others. Indeed, Euler formulated
the boundary value problem to understand water wave
phenomena and provided successful mathematical and
physical description of inviscid and incompressible fluid
motion in general. Based on Newton’s second law of mo-
tion, Euler first formulated his celebration equation of mo-
tion of an inviscid fluid about 250 years ago. Euler’s equa-
tion is still considered the basis of all inviscid fluid flows.
In 1821, Claude Navier (1785-1836) included the effect
of viscosity to the Euler equation, and first developed the
equations of motion of viscous fluid. In 1845, Sir George
Stokes provided a sound mathematical foundation of vis-
cous fluid flows and rederived the equations of motion for
an incompressible viscous fluid that is universally known
as the Navier-Stokes equations in the form

Du Odu 1

— = — 4+ @-V)Yu=—=-VP+F+vViu, (22

YRR (u-V) p (22)
where (D /D t) is the total (or convective) derivative given
by

D ad

— = V), 23
57= 5 " (u-V) (23)
u(x, t) = (u, v, w) is the fluid velocity, P(x, t) is the pres-
sure field at a point x = (x, y,2), t is time, p is a con-
stant density, F(x, t) is a general body force per unit mass,
v = (u/p) is known as kinematic viscosity, p is called the
dynamic viscosity, V2 = V - V is the Laplace operator and
V= (%, a_ay’ 3—32) is the familiar gradient operator.

In particular, when v = 0 (1 = 0), the Navier-Stokes
Eq. (22) reduces to the celebrated Euler equation of motion
for an inviscid fluid

Du Ou

1
—— =2 L (u-Vju=-—-VP+F.
p

24
Dt at 24

Both the Euler Eq. (24) and the Navier-Stokes Eq. (22)
form a closed set when the equation of mass conservation
(or the continuity equation)

diva=V-u=0 (25)
is added to (22) or (24) so that there are four equations for

four unknown quantities u, v, w, and P. The study of these
equations is based on the continuum hypothesis which

requires that u, p and p are continuous function of x
= (x,y,z)and t.

Remarkably, this 150-year old system of the Navier—
Stokes Eqgs. (22) and (25) provided the fundamental ba-
sis of modern fluid mechanics. However, there are certain
major difficulties associated with the Navier-Stokes equa-
tions. First, there are no general results for the Navier—
Stokes equations on existence of solutions, uniqueness,
regularity, and continuous dependence on the initial con-
ditions. Second, another difficulty arises from the strong
nonlinear convective term, (u- V)u in Eq. (22).

The Euler Equation of Motion in Rectangular
Cartesian and Cylindrical Polar Coordinates

With F = (0,0, —g), where g is the acceleration due to
gravity and constant density p, the three components of
the Euler’s equation of motion in Cartesian coordinates
and the continuity equation are

Du _ 10P Dy _ 109P
Dt pdx Dt  pay’
Dw 1 0P (26)
Dt  p oz £

where the total derivative is given by
D—a-l—ua+va+wa (27)
Dt ot dx  dy 9z’

and
KL (28)
x Ay 0z

The basic assumption in continuum mechanics is that the
motion of the fluid can be described mathematically as
a topological deformation that depends continuously on
the time ¢. Consequently, we assume the fluid under con-
sideration to have a boundary surface S, fixed or moving,
which separated it from other media. We consider the case
of a body of water with air above it so that S is the in-
terface between them. We represent that surface S by an
equation S(x, y, z, t) = 0. The kinematic condition is de-
rived from the fact that the normal fluid velocity of the
surface (—S;/|VS]) is equal to the normal velocity (u-n
= u- VS/|VS)), that is,

DS
_=St+(u'V)S=0.

Dt (29)

This means that any fluid particle originally on the bound-
ary surface, S will remain on it.
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It is often convenient to represent the free surface by
the equation z = h(x, y, t) so that the equation for the
boundary surface S is

S=z—h(x,y,t) =0, (30)

where z is independent of other variables.
Thus, the kinematic free surface condition follows
from (29) in the form

w—(hi +uhy +vhy) =0

on z=h(x,y,t), t>0. (31)

Since the gravitational force is only body force which
acts in the negative z-direction, the continuity Eq. (28) and
the Euler equation in the form

Ju

o (32)

+ (u-V)u = —lVP—gfﬁ,
o
where m is the unit vector in the positive z-direction, rep-
resent the fundamental equations for water wave motion.
In general, the water wave motion is unsteady, and ir-
rotational which physically means that the individual fluid
particle do not rotate. Mathematically, this implies that
vorticity ® = curl u = 0. So, there exists a single-valued
velocity potential ¢ so that u = V¢, where ¢ = ¢(x, 1).
Consequently, the continuity equation reduces to the
Laplace equation

2 2 2
_0e Ve Ve,

Vi = =
¢ ax2 9y 022

(33)
So, ¢ is a harmonic function. This is, indeed, a great ad-
vantage because the velocity field u can be obtained from
a single potential function ¢ which satisfies a linear par-
tial differential equation. This equation with prescribed
boundary conditions can readily be solved in many sim-
ple cases without difficulty.

In view of a vector identity

1

(u-V)u= EVuz—uxw (34)
combined with ® = curlu = 0 and u = V¢, the Euler
Eq. (32) may be written as

1_ ., P

% ¢t+§(v¢) +;+gz =0. (35)
This can be integrated with respect to the space variables
to give the equation for pressure P at every point of the
fluid

b+ SO T g =0, 120, (9

where C(t) is an arbitrary function of time only (VC = 0).

Since the pressure gradient affects the flow, a function of ¢

alone added to the pressure field P has no effect on the

motion. So, without loss of generality, we can set C(t) = 0

in Eq. (36). Thus, the pressure Eq. (36) becomes
1, P

¢t+§(v¢) +;—|—gz=0. (37)
This is the so-called the Bernoulli’s equation which deter-
mines the pressure in terms of the velocity potential ¢.
Thus, Egs. (33) and (37) are used to determine the poten-
tial ¢ (hence, three velocity components u, v, and w) and
the pressure field P.

We consider a body of inviscid, incompressible
fluid occupying the region b(x, y) <z < h(x, y,t) = hg
+an(x, y, t), where z = b(x, y) is the bottom boundary
surface and z = hy is the undisturbed (initial) typical con-
stant depth, a is the typical amplitude and n(x, y, t) is
nondimensional the free surface elevation that tends to
zero as t — 0. We suppose that the bottom boundary z
= b(x, y) is a rigid solid surface.

Since the upper boundary is the surface exposed to
a constant atmospheric pressure P,, we have P = P, on
this surface, S. Thus, Eq. (35) assumes the form

1501 3
¢+ (Vo) + ;Pa + gz = C(1)

onS, t>0. (38

Absorbing %Pa and C(t) into ¢, this equation may be
rewritten as
1
¢t+§(V¢)2+gz=0, onS, t>0. (39
Since S is a upper boundary surface of the fluid, it contains
the same fluid particles for all time ¢, that is, S is a material

surface. Hence, it follows from (39) that

e [«m 5 (V4 +gz] —o,
onS, t>0. (40)
Or, equivalently,
|55+ 89| |5+ 5007 + g2
= u + 2V V(@) + 5V (V) + g9
-0, onS., t>0. (41)

We next include the effects of surface tension force per unit
length which does support a pressure difference across
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a curved surface so that P — P, = —(T/R), where R™!
= (Rl_1 + Rz_l) is called the Gaussian curvature expressed
as the sum of two principal radii of curvatures R;! and
R; ! given by

R;!

d

= [t 12+ 1273 ]

o 1 (42ab)
Ry = % [hy(l + 1+ hi)‘i] .

Explicitly, R™! can be written in terms of h(x, y, t) and its
partial derivatives as

R—l — (Rl_l + Rz—l)

hex (14 1) =2y by By + hyy (14 B3)

- .43
(1+ h2 + h2)3 ()

For small deviation of the free surface z = h(x, y, t), its
first partial derivatives h, and h, are small so that (43)
takes the linearized form

RV a (hyy + hyy) . (44)
Consequently, the linearized dynamic condition at the free
surface z = h becomes

T
¢t+gz_;(hxx +hyy) =0. (45)

For an inviscid fluid, like the free surface condition (29),
there is a bottom boundary condition which follows from
the fact that

D [z—b(x,y.0)] =0, (46)

Dt
where z = b(x, y, t) is the equation of the fixed solid bot-
tom boundary surface. Thus, Eq. (46) assumes the form

w=b+ - V)b=b;+ub,+vb,

on z = b(x,y. t), (47)
where z = b(x, y, t) is given. However, there is a class of
problems including sediment movement, where b is not
known. For stationary bottom, b is independent of time so
that (47) becomes
w=uby+vb, onz=bxy). (48)
For one-dimensional problem, h = b(x) with u = (1, 0)
so that (48) reduces to the simple bottom condition
(49)

w=ub(x) on z=nbx).

It is convenient to introduce a typical amplitude parame-
ter a by writing the free surface z = h(x, y, t) in the form

h=hy+an(x,y, 1), (50)
where hy is the undisturbed depth of water. The pressure
field can be rewritten as

P = Py + gp(ho — 2) + (gpho)p . (51)
where P, is the constant atmospheric pressure, p is the
pressure variable which measures the deviation from the
hydrostatic pressure, gp(hy — z), and gphy is the typical
pressure scale based on the pressure at depth h = hy.

We next introduce two fundamental parameters &
and § as

a h(z,
8:h—0 and 82?’

(52)
where A is the typical wavelength of the surface gravity
wave, € and § are called the amplitude and long wavelength
parameters respectively.

In terms of typical depth scale hy, A is the typical wave-
length, ¢y = M is the typical horizontal velocity scale,
(A/co) is the typical time scale, it is also convenient to in-
troduce non-dimensional flow variables denoted by aster-
isks

(¢, y*) = ~(x. ),

1
* kY
7 (z5,0%) = ho(z,b),

* _ (0
()
(u*v*) = i(u,v), w* = (@) w and
Co ho
pr=-1L (54)

 gpho

In terms of these nondimensional flow variables and pa-
rameters, the Euler Egs. (26) and the continuity Eq. (28)
can be rewritten, dropping the asterisks, in the form

== )p Spr =g 69
where

b =£+ui+vi+wi,

Dt 0t 0x dy 0z
and

du dv  Ow —0. (56)

oy Tz
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The most general dynamic conditionis P = P, — % on the
free surface z = h = hy 4+ an. Without surface tension
(T = 0), it becomes P = P, on z = hy + an. Using the
pressure field (51), this free surface dynamic condition re-
duces to the nondimensional form p = enponz =1+ ¢n.
Thus, the nondimensional kinematic condition (31) and

the dynamic condition at the free surface are given by

w—e(n +unc+vn,) =0,
p=¢en onz=1+¢n. (57ab)

The nondimensional form of the bottom boundary
condition (48) remains the unchanged form.

Consistent with the governing equations and free sur-
face boundary conditions, we introduce a set of scaled flow
variables

(u,v,w,p) = e(u,v,w,p) (58)

so that the Euler Egs. (55) and the continuity Eq. (56) re-
duce to the form

D b9 Dw  9p
pien==(5;5,)p SBr =" ©
8u+3v+3w_0 (60)
x dy 09z

where
D—3+eua+v3+wa> (61)
Dt 0t dx dy ay /)

The free surface boundary conditions (57ab) remain the
same. The horizontal bottom (b = 0) boundary condition
is

w=20,

onz=0, (62)

In cylindrical polar coordinates (r,6,z), the Euler
equations and the continuity equation are given by

Du v2_ P Dv+uv_ 11P
Dt r " Dt r  pr 9
Dw_ IP 63)
Dt o z— &>

where
D 3+ 8+v 9 + 9 (64)
— =—4u—+-—+w—,
Dt Ot ar r 06 0z

and
10 1dv  ow
- —(ru) + + =0. (65)

r or ra0 " 9z

In terms of the above nondimensional flow variables
except for x and y that are replaced by r* = %r, the
above Egs. (63)-(65) assume the following nondimen-
sional form, dropping the asterisks,

Du v ap Dv+uv_ 1 dp

Dt r 9 Dt r - rag’

Dw ap

§— = X2 66

Dt 0z’ (66)
where

R—3+ i+Ki+ 9 (67)

Dt ot “or " rae " Vaz
and

10 1 ov ow

Basic Equations of Water Waves
with Effects of Surface Tension

We consider an irrotational unsteady motion of an in-
viscid and incompressible water occupying the region
b(x,y) <z < hy+ an(x, y,t)in a constant gravitational
field g which is in the negative z-direction. The equation of
uneven bottom boundary is z = b(x, y). Including the ef-
fects of surface tension T, the basic equations, two free sur-
face boundary conditions and the bottom boundary con-
dition for the velocity potential ¢ = ¢(x, y, z, t) and the
free surface elevation n = n(x, y, t) are

V2¢=¢xx +¢yy+¢zz=0,

bx,y)<z<hy+an, t>0, (69)
Nt + (s + yny) — ¢ =0,
onz=hy+an, t>0, (70)
1 2 T —1
¢t+§(v¢) +gn_;(R1 +R2 ):0,
onz=hy+an, t>0, (71)
¢z — (Pxbx + b)) =0, onz=0b(x,y), (72)

where Ry and R; ! are given by (42ab), hy is the typical
depth of water and a is the typical amplitude of the surface
gravity wave.

In water of infinite depth with the origin at the free
surface, the bottom boundary condition (72) is replaced
by (V¢) - 0as z - —oo.

Because of the presence of nonlinear terms in the free
surface boundary conditions (70)-(71), the determination
of ¢ and 1 in the general case is a difficult task.
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Similarly, we can write the basic equations for the wa-
ter wave problems in cylindrical polar coordinates.

In terms of the nondimensional flow variables and the
parameters ¢ and § stated above, the basic water wave
Egs. (69)-(72) without surface tension can be written in
the nondimensional form

8(¢xx + ¢yy) + ¢zz =0,

on b<z<l+4en, t>0, (73)
) [Ut + e(pxnx + ¢y77y)] —¢.=0,
onz=1+4+c¢n, (74)
N+ @D+ =2 =0
$etnt S@r+ )+ 2 d =0,
onz=1+4+c¢n, (75
¢ — 8(¢pxbx +¢yby)) =0, on z=0bx,y). (76)

where (¢/8) = (ax\z/hg) is another fundamental parameter
in water-wave theory.

Luke [47] first explicitly formulated a variational prin-
ciple for two-dimensional water waves and proved that the
basic Laplace equation, free surface and bottom boundary
conditions can be derived from the Hamilton principle.
We formulate the variational principle for three-dimen-
sional water waves in the form

8128//dedt:0,
D

where the Lagrangian L is assumed to be equal to the pres-
sure so that

(77)

n(x,t) 1
L= —pf [gbt + 5(V¢)2 + gz] dz, (78)
)

—h(x,y

where D is an arbitrary region in the (x,t) space, and
¢(x,z, t) is the velocity potential of an unbounded fluid
lying between the rigid bottom z = —h(x, y) and the free
boundary surface z = n(x, y, t). Using the standard pro-
cedure in the calculus of variations (see Debnath [19]), the
following nonlinear system of equations for the classical
water waves can be derived:

V=0, —h<z<n, —oo<(x,y)<oo, (79)
N+ (Pxnx +dyny) —¢.=0. onz=mn.,  (80)
b+ 5(VF +gz=0, onz=1. (81)
¢ + pihe + ¢yh, =0, onz=—h. (82)

These results are in perfect agreement with those of Luke
for the two-dimensional waves on water of arbitrary but
uniform depth 4. In his pioneering work, Whitham [58,59]
first developed a general approach to linear and nonlinear
dispersive waves using a Lagrangian. It is now well known
that most of the general ideas about dispersive waves have
originated from the classical problems of water waves.

Making reference to Debnath [19], we first state the so-
lution of the linearized two-dimensional problem of the
classical water waves on water of uniform depth h gov-
erned by the following equation, free surface and bound-
ary conditions

Gxx + ¢ =0, —-h=<z=<0, t>0, (83)
n=¢;, ¢+gn=0, onz=0,t>0, (84ab)
¢, =0, onz=—-h, t>0. (85)

The solutions for ¢ (x, z, t) and n(x, t) representing a sinu-
soidal wave propagating in the x-direction are given by

P(x,z,t) =

i;g cosh k(z + h) . B
Re a (w) “ooshkh exp [z(wt kx)] . (86)

n(x,t) = Re a exp [i(a)t - kx)] , (87)

where a = (Cw/ig) cosh kh = max |n| is the amplitude
and C is an arbitrary constant.

Using (84ab), we obtain the celebrated dispersion re-
lation between the frequency w and the wavenumber k in
the form:

w? = gktanh kh . (88)

Physically, this relation describes the interaction between
inertial and gravitational forces. This can also be rewritten
in terms of the wave (or phase) velocity, c(k) as

c(k) = % = (k™! tanh kh)?

() (5]

This formula shows that the phase velocity c(k) depends
on the gravity ¢ and depth h as well as the wavenumber k
or wavelength A = (2w/k). Thus, water waves of differ-
ent wavelengths travel with different wave (or phase) ve-
locities. Such waves are called dispersive, as time passes,
these waves disperse (or spread out) into various group
of waves such that each group of waves such that each
group would consist of waves having approximately the

(89)
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Water Waves and the Korteweg-de Vries Equation, Figure 1

The phase velocity ¢ (1) against the wavelength A (from [46],
Figure 52, page 217)

same wavelength. Figure 1 showing a plot of the phase
velocity ¢ given by (89) against the wavelength A reveals
a transition between the deep water limit ¢ ~ (g/\/Zn)%
(parabolic form) when A < (3.5)h and the shallow water
limit ¢ ~ \/Efor A > (14)h.

The quantity (dw/dk) represents the velocity of such
a group in the direction of propagation and is called the
group velocity, denoted by C(k) so that

Clk) = j—‘]‘: = () (tanh kh + khsech’kh) . (90)
which is, using (89)

= 1 ¢(k)[1 4 2kh cosech(2kh)] . (o1

2

Evidently, the group velocity is, in general, different from
the phase velocity.

Two limiting cases are of special interest: (i) Shallow
water waves and (ii) Deep water waves.

For shallow water, the wavelength; A = (277/k) is large
compared with the depth h so that kh < 1, and hence,
tanh kh ~ kh and sin2kh ~ 2kh. In such a case, (88)-
(91) reduce to

c(k) = /gh = C(k) . (92)

Both phase and group velocities are independent of the
wavenumber k. Thus, shallow water waves are nondisper-
sive, and their phase velocity is equal to group velocity.
Both vary as the square root of the depth h.

In the other limiting case dealing with deep wa-
ter waves, the wavelength is very small compared with
the depth so that kh > 1. In the limit as kh — oo,
tanh kh — 1, [cosh k(z + h)/ cosh kh| — exp(kz), and
the corresponding solutions for ¢ and  become

¢ = Re (&g) ekz exp [i(a)t — kx)]

w

w? = gkh?,

= (a_g> ek sin(kx — wt) (93)
1))

0.5g/w -

h

T T
glw? 2g/w?

Water Waves and the Korteweg-de Vries Equation, Figure 2
The phase velocity ¢ for waves of frequency @ on water of
depth h (from [46], Figure 53, page 218)

n = Re aexp [i(a)t— kx)] = a cos(kx —wt). (94)

Evidently, for deep water waves, the dispersion rela-
tion (88), the phase velocity (89) and the group veloc-
ity (90) become

(278 et = (&1
w—%—(k),db—wM—(m),

C(k) = % c(k). (95abc)
Thus, deep water waves are dispersive and their phase ve-
locity is proportional to the square root of their wave-
lengths. Also, the group velocity is equal to one-half of the
phase velocity.

Another equivalent form of the phase velocity c(k) fol-
lows from the dispersion relation (88) in the form

_o_(2\_¢& wh
c(k)—z—(a)—wtanh(c).

The phase velocity c(k) for water waves of frequency w
against depth h is shown in Fig. 2. This figure shows
a transition between the deep water limit ¢ ~ (g/w) when
(whic) > 2 or h > 2g/w? and the shallow water limit
¢ ~ /gh when (whic) € 1or h K glw?.

Similarly, an alternative form of the group velocity fol-
lows from the dispersion relation (88) as

dw d dc dc

C(k) = %= @(Ck) = c—i—k@ = C_Ad_)t'
Finally, we close the section by adding surface capillary-
gravity waves on water of constant depth h with the free
surface at z = 0. For such waves, the linearized free surface
conditions (70)—-(71) with the effect of surface tension are
modified as follows:

(96)

97)

(98)

T
N = ¢, ¢t+g77—;77xx=0 onz=20.
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These conditions can be combined to obtain

(Per + g¢2) — %‘pxxz =0 onz=0. (99)
In this case, the solutions for the velocity potential
¢(x, z, t) and the free surface elevation n(x, t) are exactly
the same as (86) and (87) on water of constant depth h
or as (93)-(94) for deep water. Evidently, the dispersion
relation for capillary-gravity waves on water of constant
depth h is given by

Tk?
w? = gk (1 + —) tanh kh . (100)
rg

The phase velocity is

2 2
c(k) = [5 (1 n l) tanh kh] .
k rg

The corresponding dispersion relation for deep water
(kh> 1) is

(101)

w? = gk(1 4 T*), (102)

where T* = (Tk?*/gp) = (47> T/gpA?) is a parameter giv-
ing the relative importance of surface tension and gravity.
The phase velocity is

ct =[S0+ 1] = [(%m + T*)]Z L 103)

The phase velocity c(k) has a minimum value at k =
kw =+/gp/T (or T*=1). The corresponding minimum
value for ¢ = ¢, attainedatk = k,, = /go/T (or T* =1)

is
49T\ 1
Czcmz(i)
P

at wavelength A = A, = 2n(T/gp)%.

The inequality k < k,, holds for waves to be ef-
fectively pure gravity waves, since the surface tension
is negligible by comparison. This inequality is equiv-
alent to the wavelength A to be large compared with
Am = QRulk,) = ZJT(T/gp)%. The phase velocity c(A) for
capillary-gravity waves against A in deep water is shown in
Fig. 3. This figure shows the transition between the pure
capillary-wave value (27 T/)Lp)% and the pure gravity-
wave value ( g/\/2n)%. Also shown in this figure are (i) the
minimum phase velocity c,, attained at A = A,,, (ii) the
gravity-wave curve (T* = 0) for A > A,,, and (iii) the cap-
illary-wave curve with no gravitational effect g — 0 or
T* — oo. Figure 3 also shows that for A > 41,, the capil-

(104)

=
1

N —
s - (gh/2m)2

Water Waves and the Korteweg-de Vries Equation, Figure 3
The phase velocity ¢ (1) given by (103) against A (from [46], Fig-
ure 56, page 224)

lary-gravity wave curve is rapidly running closer with the
gravity-wave curve. On the other hand, when A < 1,,, the
rapid tendency is for wave speeds to increase again so that
the capillary-gravity wave curve approaches the capillary
wave curve as T* — oo, which corresponds to very short
waves called capillary waves (or ripples). In fact, when
A< ilm, results (102) and (103) for T* — oo give

0 =p 'TK* and (k)= (p"'Tk)2.  (105ab)
For such capillary waves, surface tension is the only signif-
icant restoring force.

The Stokes Waves
and Nonlinear Dispersion Relation

In his 1847 classic paper, Stokes [54] first established the
nonlinear solutions for periodic plane waves on deep wa-
ter. We consider here some of the nonlinear effects ne-
glected in the linearized theory. A more simple approach is
to recall the exact free surface dynamic condition (41) with
constant atmospheric pressure and the negligible surface
tension so that (41) becomes

G + 862+ 299 Vi + 5 V- V() =0,

onz=mn, fort>0. (106)
This condition is applied on the unknown free surface

z = 7 given by (39), that is,

1 1
n=—- [¢t + —(V¢)2] : (107)
g 2
In the absence of nonlinear terms, results (106) and (107)
reduce to (84ab) and (84b), respectively.
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We use Taylor series expansions of ¢ and its deriva-
tives from z = 7 to z = 0 in the form
¢(x.y.n.1) = ¢(x..0.1)

¢ 1, (%
+n(az)zzo+2n (322)z:0+"' .(108)

Using this expansion procedure for each of the derivatives
in (106) and (107), we can generate a series of boundary
conditions on the surface plane z = 0. Thus, we obtain
first three conditions:

Lp = ¢pu + g, = 0+ O(¢?) , (109)
3
L+ 2V - Vb — - gy (L)
g 0z
=04 0(¢%), (110)
Lo +2V¢ -V,
+5 V9 V()
! o i(L<z> +2Veg - Vo)
g oz
3
. [—3 Pt + l(vw] 2 14)
gl g 2 0z
1, 0
+ 2_g2 ?; 7(L¢)
=0+ 0(¢Y), (111)

where the symbol O() is used to indicate the magnitude of
the neglected terms.

If we substitute the first-order velocity potential (93)
for deep water in the second-order boundary condition
(110), the second-order terms in (110) vanish. Thus, the
first-order potential is a solution of the second-order
boundary value problem, and we can write

¢ = (%) " sin(kx — wt) + 0(a’) . (112)
Similarly, using (108), we can incorporate the second-or-
der effects in n(x, z, t) so that

n(x,z,t)

IR P P
=2 [+ 3000 Ln
o 5007

L z=0

0 1 1 2
+T]&|:—§%¢t+z(V¢) }]Z:0+...

=——|¢:+ %(qu)2 - l¢r¢zt] +.... (113)
L g

z=0

Direct substitution of (112) in (113) gives the following
second-order result:

n = acos(kx — wt)

1
+ Ek:/l2 {2c052(kx—a)t)— 1} + ...

:ac039+%ka2c0329+... , (114)
where the phase 8 = kx — wt. Clearly, the second term
in (114) represents the nonlinear effects on the free-sur-
face profile, and it is positive both at the crests § = 0, 2,
47, ... and at the troughs 6 = 0, 37, 57, .. .. The notable
feature of this solution (114) is that the wave profile is no
longer sinusoidal as shown in Fig. 2.7 of Debnath [19].

The actual shape of this wave profile is a curve known
as a trochoid: The crests are steeper and the troughs are
flatter. This feature becomes accentuated as the wave am-
plitude is increased.

For the third-order free-surface condition (111), direct
substitution of the plane wave potential (112) in the non-
linear terms in (111) eliminates all but one term. There-
fore, the free-surface boundary condition for the third-
order plane wave solution is

Lo + % V¢ -V(Vp)* =0+ 0@p?). (115)
The first-order solution (112) satisfies this third-order
boundary condition so that the dispersion relation (95a)
includes a second-order effect of the form

w? = gkl + a’k?) + 0(a’k>) . (116)

This remarkable dependence of frequency on wave ampli-
tude is usually known as amplitude (or nonlinear) disper-
sion. The modified phase velocity expression is

=2 = (5) 0+ e

1

~ (%)2 (1+ %azkz). (117)
The significant change from the linearized theory is (116)
or (117), which confirms that the phase velocity now de-
pends on amplitude a as well as on wavelength; steep
waves travel faster than less steep waves of the same wave-
length. Surface gravity waves thus acquire amplitude dis-
persion as a second-order correction. The dependence of ¢
on amplitude is known as the amplitude dispersion in con-
trast to the frequency dispersion as given by (95a). It may be
noted that Stokes’ results (114), (116), and (117) can easily
be approximated further to obtain solutions for long waves
(or shallow water) and for short waves (or deep water).
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Water Waves and the Korteweg-de Vries Equation, Figure 4
The steepest wave profile

We next discuss the phenomenon of breaking of wa-
ter waves which is one of the most common observable
phenomena on an ocean beach. A wave coming from
deep ocean changes shape as it moves across a shallow
beach. Its amplitude and wavelength also are modified.
The wavetrain is very smooth some distance offshore, but
as it moves inshore, the front of the wave steepens notice-
ably until, finally, it breaks. After breaking, waves continue
to move inshore as a series of bores or hydraulic jumps,
whose energy is gradually dissipated by means of the wa-
ter turbulence. Of the phenomena common to waves on
beaches, breaking is the physically most significant and
mathematically least known. In fact, it is one of the most
intriguing longstanding problems of water waves.

For waves of small amplitude in deep water, the max-
imum particle velocity is v = aw = ack. But the ba-
sic assumption of small amplitude theory implies that 7
= ak < 1. Therefore, wave breaking can never be pre-
dicted by the small amplitude wave theory. That possibil-
ity arises only in the theory of finite amplitude waves. It is
to be noted that the Stokes expansions are limited to rel-
atively small amplitude and cannot predict the wavetrain
of maximum height at which the crests are found to be
very sharp. For a wave profile of constant shape moving at
a uniform velocity, it can be shown that the maximum to-
tal crest angle as the wave begins to break is 120° as shown
in Fig. 4.

The upshot of the Stokes analysis reveals that the in-
clusion of higher-order terms in the representation of the
surface wave profile distorts its shape away from the linear
sinusoidal curve. The effects of nonlinearity are likely to
make crests narrower (sharper) and the troughs flatter as
depicted in Figure 2.7 of Debnath [19]. The resulting wave
profile more accurately portrays the water waves that are
observed in nature. Finally, the sharp crest angle of 120°
was first found by Stokes.

On the other hand, in 1865, Rankine conjectured that
there exists a wave of extreme height. In a moving ref-
erence frame, the Euler equations are Galilean invariant,
and the Bernoulli Eq. (36) on the free surface of water with
p = 1 becomes

1IVel* +gz=E. (118)

Thus, this equation represents the conservation of local
energy, where the first term is the kinetic energy of the
fluid and the second term is the potential energy due to
gravity. For the wave of maximum height, E = gzmax,
where zp,x is the maximum height of the fluid. Thus, the
velocity is zero at the maximum height so that there will be
a stagnation point in the fluid flow. Rankine conjectured
that a cusp is developed at the peak of the free surface with
a vertical slope so that the angle subtended at the peak is
120° as also conjectured by Stokes [54]. Toland [56] and
Amick et al. [4] have proved rigorously the existence of
a wave of greatest height and the Stokes conjecture for the
wave of extreme form. However, Toland [56] also proved
that if the singularity at the peak is not a cusp, that is, if
there is no vertical slope at the peak of the free surface,
then the Stokes remarkable conjecture of the crest angle of
120° is true. Subsequently, Amick et al. [4] confirmed that
the singularity at the peak is not a cusp. Therefore, the full
Euler equations exhibit singularities, and there is a limiting
amplitude to the periodic waves.

The nonlinear solutions for plane waves based on sys-
tematic power series in the wave amplitude are known as
Stokes expansions. Stokes [54] showed that the free surface
elevation 7 of a plane wavetrain on deep water can be ex-
panded in powers of the amplitude a as

1 3
n=acosf + Eka2c0520 + §k2a3cos30

+..., (119

where 6 = kx — wt and the square of the frequency is

o® = gk (1 + k> + Z a*k* + ) . (120)
A question was raised about the convergence of the
Stokes expansion in order to prove the existence of so-
lution representing periodic water waves of permanent
form. Considerable attention had been given to this prob-
lem by several authors. The problem was eventually re-
solved by Levi-Civita [43], who proved formally that
the Stokes expansion for deep water converges provided
the wave steepness (ak) is very small. Struik [55] ex-
tended the proof of Levi-Civita to small-amplitude waves
on water of arbitrary, but constant depth. Subsequently,
Kraskovskii [40,41] finally established the existence of per-
manent periodic waves for all amplitudes less than the ex-
treme value at which the waves assume a sharp-crested
form. Although the success of the perturbation expansion
as a means of representing waves of finite amplitude de-
pends on the convergence of Stokes’ expansion, conver-
gence does not at all imply stability. In spite of the pre-
ceding attempts to establish the possibility of finite-am-
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plitude water waves of permanent form, the question of
their stability was altogether ignored until the 1960s. The
independent work of Lighthill [44,45], Benjamin [5] and
Whitham [60,61] finally established that Stokes waves on
deep water are definitely unstable! This is one of the most
remarkable discoveries in the history of the subject of the
theory of water waves.

As a complement to the Stokes theory of pure grav-
ity waves, Crapper [16] first discovered the exact nonlin-
ear solution for pure progressive capillary waves of arbi-
trary amplitude by using a complex variable method. He
obtained a remarkably new result for the phase velocity

1 —1/4
kT2 a*H?
=|— 1
< (P) ( * 41 ) ,

where H = 24 is the wave height representing the verti-
cal distance between crest and trough. This result clearly
shows that the phase velocity decreases as the wave am-
plitude increases for a fixed wavelength. Result (121) is
now known as Crapper’s nonlinear capillary wave solu-
tion. It has also been shown by Crapper that the capillary
wave of greatest height occurs when H = 0.73A, which
has a striking contrast with the corresponding result due
to Michell [48] for pure gravity waves, H = 0.142A = %)L.
Figure 5 exhibits Crapper’s nonlinear capillary wave pro-
files.

One of the important features of Crapper’s solution is
that there is a maximum possible steepness for pure capil-

(121)

_\/‘

- —

Water Waves and the Korteweg-de Vries Equation, Figure 5
Surface profile for nonlinear capillary waves up to maximum
possible wave, (H/A) = 0.73 (from [16])

lary waves, H/A = 0.73, at which the waves hit each other.
In the case of pure gravity waves, Stokes suggested that the
wave steepness would possibly be greatest when the crest
actually becomes a point with the maximum included crest
angle of 120°. Miche [49] obtained the maximum wave
height in water of finite depth h as

H
(7) = (0.14) tanh kh , (122)
which, in very shallow water (kh < 1), gives
H
- =0.88. 123
( h )max ( )

This result is in excellent agreement with experimental ob-
servations. As the ratio of wave amplitude to local water
depth increases, waves are gradually deformed and seem
to behave more and more like a series of solitary waves or
a train of cnoidal waves. As revealed by reliable observa-
tions, soon they become unstable and then break, forming
a whitecap. However, little is known about the detailed na-
ture of wave breaking except for the fact that it is a typical
complicated nonlinear phenomenon. It has also been pre-
dicted that swell in shallow water tends to break when the
crest-to-trough height is about 0.88 times the local water
depth.

Surface Gravity Waves
on a Running Stream in Water

Debnath and Rosenblat [18] solved the initial value prob-
lem for the generation and propagation of two-dimen-
sional surface waves at the free surface of a running stream
on water of finite depth. With the aid of generalized func-
tions, it is proved that the asymptotic solution of the initial
value problem leads to the ultimate steady-state solution
and the transient solution without the need to resort to the
use of a radiation condition at infinity or equivalent device.

The fundamental two-dimensional water wave equa-
tions on a running stream with velocity U in the x-direc-
tion in water of depth h (see Debnath [19], page 115) are
given by

Gux + =0, —h<z=<0,

—o<x<oo, t>0, (124)
n+Un—¢, =0, onz=0, t>0, (125)
¢r+U¢x+gn=—§p(x)ei“’f,

z=0, t>0, (126)
¢, =0, onz=—h, (127)
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where the term on the right hand side of (126) represents
the arbitrary applied pressure with frequency w, P isa con-
stant and p(x) is arbitrary function of x.

Making reference to Debnath [19] for a detailed
method of solution and asymptotic analysis of the solu-
tion of the initial value problem, we discuss only the inher-
ent resonant (critical) phenomenon involved in this prob-
lem. For certain limiting values of the three quantities U,
w, and h, there exists a critical speed U, such that

(a) U=Uc=l(§)

4 \w
for h —> oo, wandU are finite. (128)
and
(b) U=U, = +/gh
for w =0, handU are finite. (129)

A special property of (a) and (b) is that in both situations
there exists a critical value of the speed U, above and be-
low which the steady-state wave system has respectively
quite a different character; and that when U assumes its
critical value, U, the solution is singular due presumably
to a breakdown of the linearized theory. More precisely,
when U > U,, these are two surface waves downstream of
the origin traveling with speeds (w/s;) and (w/s,), respec-
tively, in the position x-direction; there are none upstream,
where —s; and —s, are two roots (see Debnath and Rosen-
blat [18]) of the equations

( + kU) F (gktanh kh)Z = 0. (130ab)
On the other hand, when U < U,, these are two more sur-
face waves which move with speeds (w/0;) and (w/03),
both in the negative x-direction, where o and o, are aris-
ing from (130a) at positive values of k = o and k = oy.
The former of these exists only on the upstream side of
the origin, and the latter only on the downstream side.
This latter wave thus appears to originate at infinity, but
this is only when it is viewed from the moving coordinate
system. It is easily verified from equation (130a) that the
speed (w/07) is always less than U, the speed of the frame,
so that relative to axes at rest this wave travels in a pos-
itive direction. Depending on U, w and h, there is a de-
limiting case when roots o) and 0, coalesce into a double
root. This is the critical case which demand a certain rela-
tionship between physical quantities involved, which can
be combined into velocities U, \/gh and (g/w). Indeed,
when h — o0, we have the case (a), and when w = 0, the
case (b) occurs.

When o = 0, the wave system is degenerate. In this
case, s; = s, = 07 = 0 and the only wave that occurs is
the one associated with the root 0,. As before, it exists
on the downstream side, when U > U, only, but is now
a steady motion relative to the moving frame. This is the
case discussed by Stoker ( [53], p. 214) who found a similar
behavior.

Combining the results (128) and (129) together, we see
that there are three quantities involved having the dimen-
sions of velocity, namely U, (£) and \/g_h . In general, all
these three quantities are finite, and hence the critical situ-
ation can be expressed as a functional relationship between
them of the form

F(U, glw, \/E) =0.

This function F is found and is seen to yield U as a single-
valued function of (g/w) and \/E , with formulas (128)
and (129) emerging as limiting cases.

Debnath and Rosenblat [18] also showed that the free
surface elevation 7n(x, t) becomes singular when roots o}
and o, coalesce into a double root, o. Their asymptotic
evaluation of 7(x, t) for large |x| and ¢ reveals that it rep-
resents two waves where the amplitude of one wave in-
creases like x, while the amplitude of other wave is of t2
as t — oo. This singular behavior is not unexpected and is
in accord with the findings of Stoker [53] and Kaplan [37].
Mathematically, this critical situation corresponds to the
coalescence of two roots (07 = 0, = 0), which is in turn
is equivalent to the reinforcement by superposition of two
like waves leading to a resonance-type effect. Physically,
this situation would reveal itself through wave motions of
large amplitude, which cannot come within the scope of
linearized theory. Consequently, it would be necessary to
include nonlinear terms in the original formulation of the
problem in order to achieve a mathematically valid and
physically reasonable solution.

Akylas [2] developed a nonlinear theory near the crit-
ical speed U, = \/g_h under the action of surface pres-
sure p(x) traveling at a constant speed U. With slow time

(131)

scale T = et and the slow space variable X = &3 x, where
e = %, his asymptotic analysis reveals that the nonlinear
response is of bounded amplitude A(X, t) and is governed
by a forced Korteweg and de Vries (KdV) equation in the
form

Ar 4 yAx —2AAx — ¢ Axxx = 7 p(0)§'(X) . (132)

where (U/\/gh) =1+ y &3,y = O(1), (k) is the Fou-
rier transform of p(X) and §(X) is the Dirac delta function.

The main conclusion of this asymptotic analysis is that
the far field disturbance is of relatively large amplitude,
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but it remains bounded. The main question whether the
nonlinear response evolves to solitons, or disperses out or
even gives a cnoidal wave, still remains open. However,
it was shown by numerical study that Eq. (132) admits
a series of solitons that are generated in front of the pres-
sure field. For y < 0, the linearized solution consists of
a periodic sinusoidal wave in X < 0. The nonlinear evo-
lution of the wave disturbance at the resonance condi-
tion (y = 0) remains bounded. The major conclusion of
this study is that a series of solitary waves (or solitons)
is successively generated when X < 0 and propagates in
front of the pressure field. This prediction is in theoretical
agreement with the nonlinear study of Wu and Wu [64],
and also in good agreement with experimental findings of
Huang et al. [32] who observed solitons in their experi-
ments involving a ship moving in shallow water.

Akylas [3] also developed a nonlinear theory to extend
Debnath and Rosenblat’s linearized study for the evolu-
tion of surface waves generated by a moving oscillatory
pressure near the critical (or resonant) speed. Based on
the slow time scale T = ¢t and the slow spatial variable
X = /e x, his nonlinear asymptotic analysis reveals that
the evolution for the wave envelope A(X, T) is governed
by the forced nonlinear Schrodinger equation. For details,
the reader is referred to Akylas [3] or Debnath [19].

History of Russell’s Solitary Waves
and Their Interactions

Historically, John Scott Russell first experimentally ob-
served the solitary wave, a long water wave without change
in shape, on the Edinburgh-Glasgow Canal in 1834. He
called it the “great wave of translation” and then reported
his observations at the British Association in his 1844 pa-
per “Report on Waves.” Thus, the solitary wave represents,
not a periodic wave, but the propagation of a single iso-
lated symmetrical hump of unchanged form. His discov-
ery of this remarkable phenomenon inspired him further
to conduct a series of extensive laboratory experiments on
the generation and propagation of such waves. Based on
his experimental findings, Russell discovered, empirically,
one of the most important relations between the speed U
of a solitary wave and its maximum amplitude a above the
free surface of liquid of finite depth / in the form

U* =g(h+a). (133)
where g is the acceleration due to gravity. His experiments
stimulated great interest in the subject of water waves and
his findings received a strong criticism from G.B. Airy [1]
and G.G. Stokes [54]. In spite of his remarkable work on

the existence of periodic wavetrains representing a typi-
cal feature of nonlinear dispersive wave systems, Stokes’
conclusion on the existence of the solitary wave was erro-
neous.

However, Stokes [54] proposed that the free surface
elevation of the plane wavetrains on deep water can be
expanded in powers of the wave amplitude. His original
result for the dispersion relation in deep water is given
by (120). Despite these serious attempts to prove the exis-
tence of finite-amplitude water waves of permanent form,
the independent question of their stability remained unan-
swered until the 1960s except for an isolated study by
Korteweg and de Vries in 1895 on long surface waves in
water of finite depth. But one of the most remarkable dis-
coveries made in the 1960s was that the periodic Stokes
waves on sufficiently deep water are definitely unstable.
This result seems revolutionary in view of the sustained at-
tempts to prove the existence of Stokes waves of finite am-
plitude and permanent form. Scott Russell’s discovery of
solitary waves contradicted the theories of water waves due
to Airy and Stokes; they raised questions on the existence
of Russell’s solitary waves and conjectured that such waves
cannot propagate in a liquid medium without change of
form. It was not until the 1870s that Russell’s prediction
was finally and independently confirmed by both J. Boussi-
nesq [9,10,11,12] and Lord Rayleigh [51]. From the equa-
tions of motion for an inviscid incompressible liquid, they
derived formula (133). In fact, they also showed that the
Russell’s solitary wave profile (see Fig. 6) z = n(x, t) is
given by

n(x,t) =a sech? [ﬁ(x - Ut)] , (134)

where 2 = 3a + {4h*(h + a)} forany a > 0.

Although these authors found the sech® solution,
which is valid only if a <« A, they did not write any equa-
tion for 1 that admits (134) as a solution. However, Boussi-
nesq made much more progress and discovered several
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Water Waves and the Korteweg-de Vries Equation, Figure 6
A solitary wave
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new ideas, including a nonlinear evolution equation for
such long water waves in the form

3 (n? 1
Nit = ‘:2 |:77xx + 5 (7) + ghznxxx] s
xx

where ¢ = /gh is the speed of the shallow water waves.
This is known as the Boussinesq (bidirectional) equation,
which admits the solution

(135)

n(x,t) = asech® [(3a/h’)"*(x + UB)] . (136)
This represents solitary waves traveling in both, the posi-
tive and negative x-directions.

More than 60 years later, in 1895, two Dutchmen, D.]J.
Korteweg (1848-1941) and G. de Vries [39], formulated
a mathematical model equation to provide an explana-
tion of the phenomenon observed by Scott Russell. They
derived the now-famous equation for the propagation of
waves in one direction on the surface water of density p in
the form

P 42
= — — -0 s
Nt h 2’7 Nx 2 NxXxx

where X is a coordinate chosen to be moving (almost) with
the wave, ¢ = /gh, ¢ is a small parameter, and

(137)

(138)

when the surface tension T (<K 1 gph?) is negligible.
Equation (137) is known as the Korteweg-de Vries (KdV)
equation. This is one of the simplest and most useful non-
linear model equations for solitary waves, and it represents
the longtime evolution of wave phenomena in which the
steepening effect of the nonlinear term is counterbalanced
by the smoothening effect of the linear dispersion.

It is convenient to introduce the change of variables
n = n(X*, t) and X* = X + (¢/h)ct which, dropping the
asterisks, allows us to rewrite Eq. (137) in the form

3 1

¢
ne = - —7777x+5077xxx . (139)

h\2

Modern developments in the theory and applications
of the KdV solitary waves began with the seminal work
published as a Los Alamos Scientific Laboratory Report in
1955 by Fermi, Pasta, and Ulam [23] on a numerical model
of a discrete nonlinear mass-spring system. In 1914, Debye
suggested that the finite thermal conductivity of an anhar-
monic lattice is due to the nonlinear forces in the springs.
This suggestion led Fermi, Pasta, and Ulam to believe that

a smooth initial state would eventually relax to an equipar-
tition of energy among all modes because of nonlinearity.
But their study led to the striking conclusion that there is
no equipartition of energy among the modes. Although all
the energy was initially in the lowest modes, after flowing
back and forth among various low-order modes, it even-
tually returns to the lowest mode, and the end state is
a series of recurring states. This remarkable fact has be-
come known as the Fermi-Pasta-Ulam (FPU) recurrence
phenomenon. Cercignani [13] and later on Palais [50] de-
scribed the FPU experiment and its relationship to the
KdV equation in some detail.

This curious result of the FPU experiment inspired
Martin Kruskal and Norman Zabusky [65] to formulate
a continuum model for the nonlinear mass-spring system
to understand why recurrence occurred. In fact, they con-
sidered the initial-value problem for the KdV equation,

U+ utly +Styxx =0, (140)

2
where § = (%) , £ is a typical horizontal length scale, with

the initial condition

u(x,0) =cosmtx, 0<x<2, (141)

and the periodic boundary conditions with period 2, so
that u(x, t) = u(x + 2, t) for all t. Their numerical study
with +/8 = 0.022 produced remarkably new interesting
results, which are shown in Fig. 7.

They observed that, initially, the wave steepened in re-
gions where it had a negative slope, a consequence of the
dominant effects of nonlinearity over the dispersive term,
Suxxx. As the wave steepens, the dispersive effect then be-
comes significant and balances the nonlinearity. At later
times, the solution develops a series of eight well-defined
waves, each like sech? functions with the taller (faster)
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Water Waves and the Korteweg-de Vries Equation, Figure 7
Development of solitary waves: a initial profile att = 0, b profile
att = 7', and c wave profile at t = (3.6)r " (from [65])
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waves ever catching up and overtaking the shorter (slower)
waves. These waves undergo nonlinear interaction accord-
ing to the KdV equation and then emerge from the interac-
tion without change of form and amplitude, but with only
a small change in their phases. So, the most remarkable
feature is that these waves retain their identities after the
nonlinear interaction. Another surprising fact is that the
initial profile reappears, very similarly to the FPU recur-
rence phenomenon. In view of their preservation of shape
and the resemblance to the particle-like character of these
waves, Kruskal and Zabusky called these solitary waves,
solitons, like photon, proton, electron, and other terms for
elementary particles in physics.

Historically, the famous 1965 paper of Zabusky and
Kruskal [65] marked the birth of the new concept of the
soliton, a name intended to signify particle-like quantities.
Subsequently, Zabusky [66] confirmed, numerically, the
actual physical interaction of two solitons, and Lax [42]
gave a rigorous analytical proof that the identities of two
distinct solitons are preserved through the nonlinear in-
teraction governed by the KdV equation. Physically, when
two solitons of different amplitudes (and hence, of differ-
ent speeds) are placed far apart on the real line, the taller
(faster) wave to the left of the shorter (slower) wave, the
taller one eventually catches up to the shorter one and then
overtakes it. When this happens, they undergo a nonlin-
ear interaction according to the KdV equation and emerge
from the interaction completely preserved in form and
speed with only a phase shift. Thus, these two remarkable
features, (i) steady progressive pulse-like solutions and
(ii) the preservation of their shapes and speeds, confirmed
the particle-like property of the waves and, hence, the def-
inition of the soliton. Subsequently, Gardner et al. [24,25]
and Hirota [29,30,31] constructed analytical solutions of
the KAV equation that provide the description of the in-
teraction among N solitons for any positive integral N.
After the discovery of the complete integrability of the
KdV equation in 1967, the theory of the KdV equation
and its relationship to the Euler equations of motion as
an approximate model derived from the theory of asymp-
totic expansions became of major interest. From a phys-
ical point of view, the KdV equation is not only a stan-
dard nonlinear model for long water waves in a dispersive
medium, it also arises as an approximate model in nu-
merous other fields, including ion-acoustic plasma waves,
magnetohydrodynamic waves, and anharmonic lattice vi-
brations. Experimental confirmation of solitons and their
interactions has been provided successfully by Zabusky
and Galvin [67], Hammack and Segur [26], and Weidman
and Maxworthy [57]. Thus, these discoveries have led, in
turn, to extensive theoretical, experimental, and computa-

tional studies over the last 40 years. Many nonlinear model
equations have now been found that possess similar prop-
erties, and diverse branches of pure and applied mathe-
matics have been required to explain many of the novel
features that have appeared.

The Korteweg-de Vries and Boussinesq Equations

We consider an inviscid liquid of constant mean depth h
and constant density p without surface tension. We as-
sume that the (x, y)-plane is the undisturbed free sur-
face with the z-axis positive upward. The free surface el-
evation above the undisturbed mean depth h is given by
z = n(x, y, t), so that the free surfaceisatz = H=h + 7
and z = 0 is the horizontal rigid bottom (see Fig. 8).

It has already been recognized that the parameters
& = (a/h) and k¥ = ak, where a is the surface wave am-
plitude and k is the wavenumber, must both be small for
the linearized theory of surface waves to be valid. To de-
velop the nonlinear shallow water theory, it is convenient
to introduce the following nondimensional flow variables
based on a different length scale / (which could be the fluid
depth):

where ¢ = \/gh is the typical horizontal velocity (or shal-
low water wave speed).

We next introduce two fundamental parameters to
characterize the nonlinear shallow water waves:

h2

and 8=l—2,

a
=2 143
£= (143)

where ¢ is called the amplitude parameter and +/§ is called
the long wavelength or shallowness parameter.
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Water Waves and the Korteweg-de Vries Equation, Figure 8
A shallow water wave model
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In terms of the preceding nondimensional flow vari-
ables and the parameters, the basic equations for water
waves (73)-(76) can be written in the nondimensional
form, dropping the asterisks:

8(¢xx+¢yy)+¢zz=oa 0<z=<1l+en, (144)
Y e+ g an=0
a 27" 28 TE

on z=1+4¢n, (145)

g [nt + e(Pxn. + ¢yny)] —¢,=0

on z=1+4¢n, (146)

¢,=0 onz=0. (147)

It is noted that the parameter k = ak does not en-
ter explicitly in Eqs. (144)-(147), but an equivalent pa-
rameter y = (a/l) is associated with ¢ and § through
y = (alh) - (hil) = &~/8.

If & is small, the terms involving ¢ in (145) and (146)
can be neglected to recover the linearized free surface con-
ditions. However, the assumption that § is small might be
interpreted as the characteristic feature of the shallow wa-
ter theory. So, we expand ¢ in terms of § without any as-
sumption about ¢, and write

¢ =o+8p1+8P+.... (148)

and then substitute in (144)-(146). The lowest-order term
in (144) is

¢Ozz =0, (149)

which, with (147), yields ¢, = 0, for all z, or ¢9 =
¢o(x, y, t), which indicates that the horizontal velocity
components are independent of the vertical coordinate z
in lowest order. Consequently, we use the notation

dox = ulx,y.t) and ¢oy = v(x,y,1). (150ab)

The first- and second-order terms in (144) are given by

Goxx + ¢0yy + ¢12: =0, (151)

Drex + ¢1yy + ¢ =0. (152)

Integrating (151) with respect to z and using (150ab)
gives
¢IZ = _Z(ux + Vy) + C(X,)/, t) ’ (153)

where the arbitrary function C(x, y, t) becomes zero be-
cause of the bottom boundary condition (147). Integrating

the resulting Eq. (153), again with respect to z and omit-
ting the arbitrary constant, we obtain

2
b1 =2 +,). (154)
so that ¢; = 0at z = 0 and u and v are then the horizontal
velocity components at the bottom boundary.

We next substitute (154) in (151) and (152), and then
integrate with condition (147) to determine the arbitrary
function. Consequently,

oz = 22 [(Vude + (V)]

b2 =~ [(V2w), + (Vo) ]

1
Y (155ab)

where V2 is the two-dimensional Laplacian.

We next consider the free surface boundary conditions
retaining all terms up to order §, ¢ in (145), and §2, &2,
and 8¢ in (146). It turns out that conditions (145) and
(146) become

8
Gor = 5 (s +viy) + 1 + e’ +v) =0, (156)

§[{ne + e(ung +vny)} + (14 en)(ux + v,)]
2

- %[(Vzu)x +(V?v),] . (157)

Differentiating (156) first with respect to x and then
with respect to y gives two equations:

ur +e(uuy +vve) + 1y — % S(Upxx +vixy) =0, (158)
ve +e(uuy, +vvy) + 1y — % S(Uixy +viyy) = 0. (159)
Simplifying (157) yields
ne+ [u@ +en)], + v + an)]y
= g[(vzu)x +(V2),] . (160)

Evidently, Egs. (158)-(160) represent the nondimen-
sional shallow water equations.

Using the fact that ¢ is irrotational, that is, u, = v,
and neglecting terms O(§) in (158)-(160), we obtain the
fundamental shallow water equations

ur + e(uuy +vue) + 1 =0, (161)
ve +e(uvy +vvy) + 1, =0, (162)
ne+ [u(l +en)], + [v(1 +en)], =0. (163)
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This system of three, coupled, nonlinear equations is
closed and admits some interesting and useful solutions
for u, v, and 7. It is equivalent to the boundary-layer equa-
tions in fluid mechanics. Finally, it can be linearized when
e = (a/h) < 1 to obtain the following dimensional equa-
tions:

ur+gn: =0, vi+gn, =0,

ne+ h(ux +v,) =0. (164abc)
Eliminating u and v from these equations gives

Nee = ¢ (Mxx + Nyy) - (165)

This is a well-known two-dimensional wave equation. It
corresponds to the nondispersive shallow water waves that
propagate with constant velocity ¢ = \/g_h This velocity
is simply the linearized version of \/g(h + n). The wave
equation has the simple d’Alembert solution representing
plane progressive waves

n(x, y, t) = f(kix + Ly — kyct)

+ glkax + Ly — kact),  (166)

where f and g are arbitrary functions and k2 = (k2 + 12),
r=1,2.

We consider the one-dimensional case retaining both
¢ and § order terms in (158)-(160) so that these equations
reduce to the Boussinesq [9,10,11,12] equations

Uy + Uiy + Ny — %8 Uiy = 0, (167)

Nt + [u(l + 877)]): - é 8 Uxxx = 0. (168)

On the other hand, Eqs. (161)-(163), expressed in di-
mensional form, read

up + uty +vu, + gH, =0, (169)
vit+uve +vv, +¢gH, =0, (170)
H; + (uH)x + (vH), =0, (171)

where H = (h + n) is the total depth and H, = 7y, since
the depth 4 is constant.

In particular, the one-dimensional version of the shal-
low water equations follows from (169)-(171) and is given
by

u +uuy + gH, =0, (172)

Hy+ (uH), =0. (173)

This system of approximate shallow water equations is
analogous to the exact governing equations of gas dynam-
ics for the case of a compressible flow involving only one
space variable (see Riabouchinsky [52]).

It is convenient to rewrite these equations in terms
of the wave speed ¢ = \/g_H by using dc = (g/2c) dH, so
that they become

us + uuy, + 2cc, =0, (174)

2¢; + cuy +2ucy, = 0. (175)

The standard method of characteristics can easily be
used to solve (174) and (175). Adding and subtracting
these equations allows us to rewrite them in the charac-
teristic form

d d

[E +(c+u)£i| (u+2c)=0, (176)
0 0

|:§+(c—u)$i|(u—26)=0. (177)

Equations (176) and (177) show that u 4 2¢ propagates
in the positive x-direction with velocity ¢ + u, and u — 2¢
travels in the negative x-direction with velocity ¢ — u, that
is, both u + 2¢ and u — 2¢ propagate in their respective
directions with velocity c¢ relative to the water. In other
words,

o dx
u + 2¢ = constant on curves C4+ on which T =u-4c

o dx
u — 2¢ = constant on curves C_— on which I =u—c

(178ab)

where C and C_ are characteristic curves of the system
of partial differential Eqs. (172) and (173). A disturbance
propagates along these characteristic curves at speed ¢ rel-
ative to the flow speed. The quantities (u42c) are called
the Riemann invariants of the system, and a simple wave
is propagating to the right into water of depth h, that is,
u—2c=c = \/E Then, the solution is given by

u=f(§), x=E+(co+§u)t, (179)

where u(x, t) = f(x) at t = 0. However, we note that

" = (1 _ gut) 718,

giving

2f'€)
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Thus, if f/(§) is anywhere less than zero, u, tends to infin-
ity as t — —2/(3f"). In terms of the free surface elevation,
solution (179) implies that the wave profile progressively
distorts itself, and, in fact, any forward-facing portion of
such a wave continually steepens, or the higher parts of the
wave tend to catch up with lower parts in front of them.
Thus, all of these waves, carrying an increase of elevation,
invariably break. The breaking of water waves on beaches
is perhaps the most common and the most striking phe-
nomenon in nature.

An alternative system equivalent to the nonlinear evo-
lution Egs. (167) and (168) can be derived from the non-
linear shallow water theory, retaining both ¢ and § order
terms with § < 1. This system is also known as the Boussi-
nesq equations, which, in dimensional variables, are given

by

ne+ [(h+nu], =0, (181)

1
e+ utty + g0z = 3 B Ut (182)

They describe the evolution of long water waves that move
in both positive and negative x-directions. Eliminating 1
and neglecting terms smaller than O(g, §) gives a single
Boussinesq equation for u(x, t) in the form
1 1
e = St + (W) = 3
The linearized Boussinesq equation for u and 7 follows
from (181) and (182) as

Beed el
ot? ox2 3 0x20t2 n

WUy . (183)

——Z ) =0. (184)
This is in perfect agreement with the infinitesimal wave
theory result expanded for small kh. Thus, the third
derivative term in (182) may be identified with the fre-
quency dispersion.

Another equivalent version of the Boussinesq equation

is given by
3 (7 1
T —h? .
2 ( h )xx + 3 r’XXXX

There are several features of this equation. It is a nonlin-
ear partial differential equation that incorporates the basic
idea of nonlinearity and dispersion. Boussinesq obtained
three invariant physical quantities, Q, E, and M, defined
by

o0 o0
Q=/ ndx, E:/ n?dx
—00 —00

M:/_Z[ni—3(%)3]dx,

Net — Cllxx = (185)

(186)

provided that 7 — 0 as |x| — oo. Evidently, Q and E rep-
resent the volume and the energy of the solitary wave. The
third quantity M is called the moment of instability, and
the variational problem, § M = 0 with E fixed, leads to the
unique solitary-wave solution. Boussinesq also derived the
results for the amplitude and volume of a solitary wave of
given energy in the form

3 E3/2
a:—(—) . Q=2hE".

p (187ab)

The former result shows that the amplitude of a solitary
wave in a channel varies inversely as the channel depth h.

The Boussinesq equation can then be written in the
normalized form

Ut — Uxx — %(uz)xx —Ugxxx = 0. (188)

This particular form is of special interest because it admits
inverse scattering formalism. Equation (188) has steady
progressive wave solutions in the form

u(x,t) = 4k°f(X), X = kx —ot, (189)

where the equation for f(X) can be integrated to obtain

fxx =6A+ (4 —6B)f —6f>, (190)
where A is a constant of integration and
o® =k + k*(4—6B). (191)

For the special case A = B = 0, a single solitary-wave
solution is given by

F(X) = sech®(X — X) . (192)

where X is a constant of integration. This result can be
used to construct a solution for a series of solitary waves,
spaced 20 apart, in the form

(o]

fX)= )" sech’(X —2n0).

n=—0oo

(193)

This is a 20 periodic function that satisfies (190) for certain
values of A and B.

We next assume that £ and § are comparable, so that
all terms O(e, 8) in (158)-(160) can be retained. For the

case of the two-dimensional wave motion (v = 0and
0/dy = 0), these equations become
up+ Ny + et — 38U =0, (194)
e+ [u( +en)], — 28 texr = 0. (195)
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We now seek steady progressive wave solutions travel-
ing to the positive x-direction only, so that u = u(x — Ut)
and 7 = n(x — Ut). With the terms of zero order in &
and § and U = 1, we assume a solution of the form

u=n+eP+6Q, (196)

where P and Q are unknown functions to be determined.
Consequently, Egs. (194) and (195) become

(N +€eP+8Q) + nx +6nnx — 38N = 0. (197)

e+ [(1+em(n + &P +8Q)],— 18 nexx = 0. (198)

These equations must be consistent so that we stipulate
for the zero order

M= —Nx, P:_Tlan’ Q= %nxx :_%nxt- (199)

We use these results to rewrite both (197) and (198)
with the assumption that ¢ and § are of equal order and
small enough for their products and squares to be ignored,
so that the ratio (¢/8) = (al?/h?) is of the order one. Con-
sequently, we obtain a single equation for n(x, t) in the
form

N+ (1 + %877) Nx + é(s Nxxx = 0. (200)

This is now universally known as the Korteweg and de
Vries equation as they discovered it in their 1895 semi-
nal work. We point out that (¢/8) = al?/h® is one of the
fundamental parameters in the theory of nonlinear shal-
low water waves. Recently, Infeld [33] considered three-
dimensional generalizations of the Boussinesq and Ko-
rteweg—de Vries equations.

Solutions of the KdV Equation:
Solitons and Cnoidal Waves

To find solutions of the KdV equation, it is convenient to
rewrite it in terms of dimensional variables as

3 ch?
Ne+c|ll+ — Nx + —Nxxx =0, (201)

2" 6

where ¢ = /gh, and the total depth H = h + 7. The first
two terms (¢ + ¢ 17,) describe wave evolution at the shal-
low water speed c, the third term with coeflicient (3¢/2h)
represents a nonlinear wave steepening, and the last term
with coefficient (ch?/6) describes linear dispersion. Thus,
the KdV equation is a balance between time evolution,
nonlinearity, and linear dispersion. The dimensional ve-
locity u is obtained from (196) with (199) in the form

u—f(—i%rﬁ ) (202)
= n 4h77 377xx .

We seek a traveling wave solution of (201) in the
frame X so that n = n(X) and X = x — Ut with n — 0,
as |x| — oo, where U is a constant speed. Substituting this
solution in (201) gives

3 h?
(c— U + =y + —n" =0,

2
2h 6 (209

where i’ = dn/dX. Integrating this equation with respect
to X yields

3¢ ch?
(c=Un+ =i+ —n"

:A,
4h 6

(204)
where A is an integrating constant.

We multiply this equation by 27’ and integrate again
to obtain

c ch? dn\*
=+ ()0 + (=) (55
(=0 +{5) " e )\«
=24n+ B, (205)

where B is also a constant of integration.

We now consider a special case when 7 and its deriva-
tives tend to zero at infinity and A = B = 0, so that (205)
gives

dn\?> 3
(é) = = a1, (206)
where
a=2h (H - 1) . (207)
C

The right-hand side of (206) vanishes at 7 = 0 and
n = a, and the exact solution of (206) represents Russull’s
solitary wave in the form

34\ 12
X) = a sech’(bX =(—) . 2
n(X) = asech®(bX), b (4h3) (208ab)
Thus, the explicit form of the solution is
T3\
) = h — — 2
n(x,t) = a sec |:(4h3) (x Ut)i| , (209)
where the velocity of the wave is
a
U=c(1+5). (210)

This is an exact solution of the KdV equation for all (a/h);
however, the equation is derived with the approximation
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(alh) < 1. The solution (209) is called a soliton (or soli-
tary wave) describing a single hump of height a above
the undisturbed depth h and tending rapidly to zero away
from X = 0. The solitary wave propagates to the right with
velocity U(> c), which is directly proportional to the am-
plitude a and has width b~! = (3a/4h*)™V2, that is, b~
is inversely proportional to the square root of the ampli-
tude a. Another significant feature of the soliton solution
is that it travels in the medium without change of shape,
which is hardly possible without retaining §-order terms
in the governing equation. A solitary wave profile has al-
ready been shown in Fig. 6.

In the general case, when both A and B are nonzero,
(205) can be rewritten as

B (dp\? s U
— =) == 2h [ = —1)7n?
3 (dX) T (c )"
2h
+T(2An+B)=F(n), (211)

where F(7) is a cubic with simple zeros.

We seek a real bounded solution for n(X), which has
a minimum value zero and a maximum value a and os-
cillates between the two values. For bounded solutions, all
three zeros 1y, 12, 3 must be real. Without loss of general-
ity, we set n; = 0 and 7, = a. Hence, the third zero must
be negative so that 73 = —(b — a) with b > a > 0. With
these choices, F(n) = n(a —n)(n —a + b) and Eq. (211)
assumes the form

B (dn\?
_(_’7> = na—m@—a+b). (212)

3 \dX

where

v=c(14+222

= ,
2h

which is obtained by comparing the coefficients of 7* in

(211) and (212).
Writing a — n = p?, it follows from Eq. (212) that

(213)

3 )1/2 dp
— dX = . (214)
(4h3 [(a_pz)(b_Pz)]l/Z

Substituting p = 4/a q in (214) gives the standard el-

liptic integral of the first kind (see Dutta and Debnath [22
and Helal and Molines [28])

) x= ,
(4h3> -/(; [(1—g®)(1— mzqz)]u2

m = (%)1/2 . (215)

and then, function g can be expressed in terms of the Jaco-
bian elliptic function, sn(z, m)

3b 1/2
q(X,m) = sn [(ﬁ) X, m:| , (216)
where m is the modulus of sn(z, m).
Finally,
1/2
nX)=a |:1 —sn? { (%) X§:|
317 1/2
— 2 7
=acn |:(4h3) X\, (217)

where cn(z, m) is also the Jacobian elliptic function with
a period 2K(m), where K(m) is the complete elliptic inte-
gral of the first kind defined by
/2
K(m) = / (1—m?*sin”6)""2d6 (218)
0

and cn®(z) + sn?(z) = 1.

It is important to note that cn z is periodic, and hence,
n(X) represents a train of periodic waves in shallow wa-

ter. Thus, these waves are called cnoidal waves with wave-
length

4 3\ 172
A=2 (%) K(m) .

The upshot of this analysis is that solution (217) rep-
resents a nonlinear wave whose shape and wavelength
(or period) all depend on the amplitude of the wave.
A typical cnoidal wave is shown in Fig. 9. Sometimes,
the cnoidal waves with slowly varying amplitude are ob-
served in rivers. More often, wavetrains behind a weak
bore (called an undular bore) can be regarded as cnoidal
waves. Two limiting cases are of special physical interest:
(1) m— 0 and (ii) m — 1.

In the first case, sn z—sin z, cn z—cos z as m—0
(a—0). This corresponds to small-amplitude waves where
the linearized KdV equation is appropriate. So, in this lim-
iting case, the solution (217) becomes

(219)

n(x,t) = %a [1 + cos(kx — a)t)] ,

3p)\ 12
k= (F) . (220)

JANEYANEIAN.
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Water Waves and the Korteweg-de Vries Equation, Figure 9
A cnoidal wave
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where the corresponding dispersion relation is

w = Uk = ck (1 - %kzhz) . (221)
This corresponds to the first two terms of the series expan-
sion of (gk tanh kh)"2. Thus, these results are in perfect
agreement with the linearized theory.

In the second limiting case, m —1(a—b), cn z —
sech z. Thus, the cnoidal wave solution tends to the clas-
sical KAV solitary-wave solution where the wavelength A,
given by (219), tends to infinity because K(a) = oo and
K(0) = 7/2. The solution identically reduces to (209) with
(210).

We next report the numerical computation of the KAV
Eq. (201) due to Berezin and Karpman [8]. In terms of new
variables defined by

3¢
x*=x—ct, t*=t, n*=(=)n, 222
n (2h) n (222)

omitting the asterisks, Eq. (201) becomes
Ne+ NNy + Piixxx =0, (223)

where 8 = (é) ch?.

We examine the numerical solution of (223) with the
initial condition

x

n(x,0) = 1o f(Z) : (224)
where 7 is constant and f(£) is a nondimensional func-
tion characterizing the initial wave profile. It is convenient
to introduce the dimensionless variables
_mt "

X
Z, T 7 s u—% (225)

so that Egs. (223) and (224) reduce to

ur + uug + o2 ugeg =0, (226)
u(t,0) = f(&). (227)
where the dimensionless parameter o is defined by 0 =
1
£(no/P)>.

Berezin and Karpman [8] obtained the numerical so-
lution of (226) with the Gaussian initial pulse of the
form u(¢,0) = f(§) = exp(—f;‘z) and values of the param-
eter 0 = 1.9 and 0 = 16.5. Their numerical solutions are
shown in Fig. 10.

As shown in Fig. 10 for case (a), the perturbation splits
into a soliton and a wavepacket. In case (b), there are six
solitons. It is readily seen that the peaks of the solitons lie

Water Waves and the Korteweg-de Vries Equation, Figure 10
The solutions of the KdV equation u(x, t) for large values of t with
the values of the similarity parametero:ao = 1.9,bo = 16.5
(from [8])

nearly on a straight line. This is due to the fact that the
velocity of the soliton is proportional to its amplitude, so
that the distances traversed by the solitons would also be
proportional to their amplitudes.

Zabusky’s [66] numerical investigation of the inter-
action of two solitons reveals that the taller soliton, ini-
tially behind, catches up to the shorter one, they undergo
a nonlinear interaction and, then, emerge from the inter-
action without any change in shape and amplitude. The
end result is that the taller soliton reappears in front and
the shorter one behind. This is essentially strong compu-
tational evidence of the stability of solitons.

Using the transformation

-1
3, nf = (aez) n
with af(= 3¢/2h) = 6 and B3(= ch?/6) = 1, we write the
KdV Eq. (201) in the normalized form, dropping the aster-
isks,

xF=eBf(x—ct), tF=¢

Ne+6nnx + Nxxx = 0. (228)

We next seek a steady progressive wave solution of (228)
in the form

n=2kf(X), X=kx—ot. (229)

Then, the equation for f(X) can be integrated once to ob-
tain
f(X) =6A+ (4—6B)f —6f*, (230)
where A is a constant of integration and the frequency
is given by
w=k(4—6B). (231)

A single-soliton solution corresponds to the special
case A = B = 0 and is given by
F(X) = sech*(X — X,) (232)

where X is a constant.
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Thus, for a series of solitons spaced 20 apart, we write

o

f(X) = Z sech®(X —2n0) .

n=—00

(233)

This is a 20 periodic function that satisfies (230) for
some A and B.

The general elliptic function solution of (228) can be
obtained from the integral of (230), which can be written
as

f2 = —4C + 12Af + (4— 6B) > — 4f° (234)

where C is a constant of integration. Various asymptotic
and numerical results lead to the relations (see Whit-
ham [63])
1dA(0) _ 1d°B(o)
2 do 4 do?

and the cubic in (234) can be factorized as

C= (235ab)

—C+3Af+(1—§B)f2—f3
=Uh=-HU - = 1),

where f.(0)(r = 1,2, 3) are determined from A(c), B(o),
and C(o). If we set fi > f, > f3 and, then, the periodic
solution oscillates between f1 at X = 0 and f, at X = o,
one particular form of the solution is given by

fX) =+ fi— LHen*(V(hi— f) X)),
where the modulus m of cn(z, m) is given by
2_ (S —fz)
" (fl -f)

Thus, it follows from (233) and (237) that the following
identity holds:

(236)

(237)

(238)

f+(i—Hen*(V(fi— f)X)
o0
= Y sech’(X—2n0). (239)
n=—00
which can be verified by comparing the periods and poles
of the two sides.
Finally, the higher-order modified KdV equation

vt + (P + l)VpVx + Vexxx = 0, p> 2, (240)
admits single-soliton solutions in the form
v(ix,t) = a sechZ/P(kx —wt). (241)

However, in view of the fractional powers of the sech func-
tion, it seems, perhaps, unlikely that there will be any sim-
ple superposition formula.

Derivation of the KdV Equation
from the Euler Equations

This problem was discussed in Sect. “The Korteweg-de
Vries and Boussinesq Equations” by using the Laplace
equation for the velocity potential under the assumption
that § = O(g) as ¢ —0. Here we follow Johnson [35] to
present another derivation of the KdV equation from the
Euler equation in (1 + 1) dimensions. This approach can
be generalized to derive higher dimensional KdV equa-
tions.

We consider the problem of surface gravity waves
which propagate in the positive x-direction over stationary
water of constant depth. The associated Euler Egs. (59) and
the continuity Eq. (60) in (1 + 1) dimensions are given by

up + e(uuy + wuy) = —py, (242)
§[we + eluwx + ww.)] = —p., (243)
Uy +w, =0. (244)

The free surface and bottom boundary conditions are ob-
tained from (57ab) and (62) in the form

w =1+ euiy, on z=1+¢n, (245)

p=n,

w=0 onz=0. (246)

It can easily be shown that, for any v/§ as £ — 0, there
exists a region in the (x, t)-space where there is a balance
between nonlinearity and dispersion which leads to the
KdV equation. The region of interest is defined by a scal-
ing of the independent flow variables as

\/E \/3
x—>/—x and t— /- t,
£ I3

for any ¢ and +/. In order to ensure consistency in the
continuity equation, it is necessary to introduce a scaling
of wby

w3
SW.

Consequently, the net effect of the scalings is to re-
place § by € in Eqgs. (242)-(246) so that they become

(247)

(248)

up + e(uuy + wuy) = —py (249)
e[we + eluwy + ww)| = —p. (250)
Uy +w, =0, (251)

w=mn;+eun., and p=1n on z=1+¢n, (252)
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w=0 onz=0. (253)

In the limit as ¢ — 0, the first-order approximation of
Eqgs. (249) and (252) gives

n=p, 0<z<1, and wu;+1n,=0. (254)

It then follows from (251) that w = —z u, which sat-
isfies (253). The boundary condition (252) leads to n; +
u, = 0 on z = 1, which can be combined with (254) to
obtain the linear wave equation

Mt — Nxx = 0. (255)

For waves propagating in the positive x-direction, we in-
troduce the far-field variables

E=x—t and v =¢t, (256)
so that £ = O(1) and v = O(1) give the far-field region
of the problem. This is the region where nonlinearity bal-

ances the dispersion to produce the KdV equation.

With the choice of the transformations (256),
Egs. (249)-(253) can be rewritten in the form

— ug + e(ur + uug + wu,) = —pg , (257)
e [—wg + e(we + uwg + wwz)] = —p., (258)
ug +w, =0, (259)
w=—ng+ene+ung), p=n,

onz=1+4¢n, (260)
w=0 onz=0. (261)

We seek an asymptotic series expansion of the solu-
tions of the system (257)-(261) in the form

nEt.e) =Y el 1),
=0 (262)

qE. r.z8) =) e 1.2),
n=0

where g (and the corresponding g,) denotes each of the
variables u, w, and p.
Consequently, the leading-order problem is given by

Upg = Pog» Poz =0, upg +wo, =0, (263)
po=mno, W+nge=0 onz=1, (264)
w=0 onz=0. (265)

These leading-order equations give

wo +znoe =0,

0<z<1,

Po="MNo, Uo="no,

(266)

with ug = 0 whenever 19 = 0. The boundary condition on
wo at z = 1 is automatically satisfied.

Using the Taylor series expansion of u, w, and p about
z = 1, the two surface boundary conditions on z = 1+¢7
are rewritten on z = 1 and, hence, take the form

po + £nopos + € p1 = N0 + Ny + O(e?)

onz=1. (267)

Wwo + €00 Woz +EW1 = —Tog — €M1
+ &(nor + uomog) + O(*) on z=1. (268)
These conditions are to be used together with (257),

(258), and (261).
The equations in the next order are given by

— Uyg + Uor + Uolog + Wolloz = —P1g »
Pz = wog ,  (269)
g +wi =0, (270)
P11+ Nopo =11,
w1+ o + Woz = —N1g + Nor + UoNog
onz=1, (271)
wp =0 onz=0. (272)
Noting that
o, =0, po, =0, and wo, = —1ne¢ . (273)
we obtain
p1 =30 —2")noee +m, (274)

and therefore,

Wiz = — Ujg = —p1g — Uor — UolUog

= —[me + 31— 2)nogge + Moc + Nomog| - (275)

Finally, we find

wy = —[mg =+ Moz + Mo + Nog + %Uoggg]2+ é z NoEEE »
(276)

which satisfies the bottom boundary condition on z = 0.
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The free surface boundary condition on z = 1 gives

(W1)z=1 = — (Mg + Noc + Notog + 3 Nogge) + = Noges
=g + Moz + 2 NoNog »

(277)
which yields the equation for 1y (&, t) in the form

Nor + % NoNog + é Nogeg = 0. (278)

This is the Korteweg-de Vries (KAV) equation, which de-
scribes nonlinear plane gravity waves propagating in the
x-direction. The exact solution of the general initial-value
problem for the KdV equation can be obtained provided
the initial data decay sufficiently rapidly as |§] — co. We
may raise the question of whether the asymptotic expan-
sion for 1 (and hence, for the other flow variables) is uni-
formly valid as |§| — oo and as t — oo. For the case of
T — 00, this question is difficult to answer because the
equations for 1, (n > 1) are not easy to solve. However, all
the available numerical evidence suggests that the asymp-
totic expansion of 7 is indeed uniformly valid as T — oo
(at least for solutions which satisfy n — 0 as || — 00).
From a physical point of view, if the waves are allowed to
propagate indefinitely, then other physical effects cannot
be neglected. In the case of real water waves, the most com-
mon physical effects include viscous damping. In practice,
the viscous damping seems to be sufficiently weak to allow
the dispersive and nonlinear effects to dominate before the
waves eventually decay completely.

Two-Dimensional and Axisymmetric KdV Equations

It is well known that the KdV equation describes non-
linear plane waves which propagate only in the x-direc-
tion. However, there are many physical situations in which
waves move on a two-dimensional surface. So it is natural
to include both x- and y-directions with the appropriate
balance of dispersion and nonlinearity. One of the sim-
plest examples is the classical two-dimensional linear wave
equation

Ut = Cz(uxx + uyy) s (279)

which describes the propagation of long waves.
This equation has a solution in the form

u(x, t) = aexp [i(a)t —K ‘x)] , (280)

where a is the wave amplitude, w is the frequency,
x = (x, y), and the wavenumber vector is k = (k, £).
The dispersion relation is given by

w? =K+ 0%). (281)

For waves that propagate predominantly in the x-di-
rection, the wavenumber component ¢ becomes small so
that the approximate phase velocity is given by

= (282)

102

cpzc(l—i-——) as £—0.
It follows from (282) that the phase velocity suffers from
a small correction provided by the wavenumber compo-
nent ¢ in the y-direction. In order to ensure that this small
correction is the same order as the dispersion and nonlin-
earity, it it necessary to require £ = O(4 /) or {2 = O(e).
This requirement can be incorporated in the governing
equations by a scaling of the flow variables as

and Y — (283)

y—> ey

eV,

and using the same far-field transformations as (256).

Consequently, Egs. (59)-(62) and the free surface con-
dition (57ab) with the parameters § replaced by & reduce
to the form

—ug + e(ur + uug + evuy + wu,) = —pg,  (284)
—vg +e(ve + uve + vy, +wv,) = —p,, (285)
—¢ [—wg + e(we + uwg + evwy, + wwz)]
=—p;. (286)
—ugtevy+w, =0, (287)
w = —ng + e(ne + uug + evyy)
and p=nonz=1+¢en, (288)
w=0 onz=0. (289)

We seek the same asymptotic series solution (262)
valid as ¢ — 0 without any change of the leading order
problem except that the flow variables involve y so that

Po="MNo, Uo = Mo, Wo= —2ZTNog ,

0<z<1, (290)

Vog = Noy - (291)

At the next order, the only difference from Sect. “Solu-
tions of the KAV Equation: Solitons and Cnoidal Waves”

is in the continuity equation which becomes
Wiz = —U1g — Voy . (292)

This change leads to the following equation:

w) = — (r]lf + Moz + 7’]0770%' + % 770555 —+ VO/‘V) z
+ L2 noege . (293)
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Using Eq. (291), the final result is the equation for the
leading-order representation of the surface wave in the
form

2nor + 3M0Mog + 3 Nogg + voy = 0. (294)

Consequently, differentiating (294) with respect to £
and replacing vog by 70, give the evolution equation for
no(&, 7, y) in the form

(2n0c + 3 om0 + 3 Uoggg)g + noyy =0. (295)

This is the two-dimensional or, more precisely, the
(1 + 2)-dimensional KdV equation. Obviously, when there
is no y-dependence, (295) reduces to the KdV Eq. (278).
The two-dimensional KdV equation is also known as the
Kadomtsev-Petviashvili (KP) equation (Kadomtsev and
Petviashvili, [36]). This is another very special completely
integrable equation, and it has an exact analytical solu-
tion that represents obliquely crossing nonlinear waves.
Physically, any number of waves cross obliquely and inter-
act nonlinearly. In particular, the nonlinear interaction of
three waves leads to a resonance phenomenon. Such an in-
teraction becomes more pronounced, leading to a strongly
nonlinear interaction as the wave configuration is more
nearly that of parallel waves. This situation can be in-
terpreted as one in which the waves interact nonlinearly
over a large distance so that a strong distortion is pro-
duced among these waves. The reader is referred to John-
son’s [35] book for more detailed information on oblique
interaction of waves.

We now consider the Euler Egs. (63) and the continu-
ity Eq. (65) in cylindrical polar coordinates (r, 0, z). It is
convenient to use the nondimensional flow variables, pa-
rameters, and scaled variables similar to those defined by
(53), (54), and (58) with r = £r* where r* is a nondimen-
sional variable so that the polar form of Euler Egs. (66),
continuity Eq. (65), the free surface boundary conditions
(57ab) in nondimensional cylindrical polar form become

Du_ e 3 Dv ew  13p

Dt r  9r Dt r rof’
Dw ap

s _ P 296
Dt 0z’ (296)
1 1

_3( )+ 8v+8_w=07 (297)

r or ru r a0 0z

v
w=ni+e(un + =)

and p=nonz=1+¢en, (298)

w=0 onz=0, (299)

where

D _0, (2, vd 0
pr ot \"ar T rae " "az)

and ¢ and § are defined by (52).
For the case of axisymmetric wave motions (% =0),
the governing equations become

(300)

uy + e(uu, + wu,) = —p,, (301)

8 [wt + e(uw, + wwz)] =—p;, (302)
u

u,+—+w, =0, (303)
r

w=mn;+eun, and p=nonz=1+¢n, (304)

w=0 onz=0. (305)

In the limit as & — 0, the linearized version of
Egs. (296)-(300) become

1
Uy = —pr, Vt=_;P0, SWt=—pz, (306)
10 1 dv  dw
T Wt o+ - =0, (307)
w=mn and p=nonz=1, (308)
w=0 onz=0, (309)

For long waves (§ — 0), Egs. (306)-(309) lead to the
classical wave equation

1

1
Ntt = Ner + ; nr + r_2 166 - (310)

For axisymmetric surface waves, the wave Eq. (310) be-
comes

1
Net = Ner + 7 Nr . (311)

This can be solved by using the Hankel transform (see
Debnath and Bhatta [21]).

It is convenient to introduce the characteristic variable
& = r — t for outgoing waves and R = ar so that o« — 0
which corresponds to large radius r. In other words,
R = O(1), @ — 0 gives r — oo. The Eq. (311) reduces to
the form

1 1
2775R+E’7$+“(URR+E77R)=0- (312)
In the limit as @ — 0, it follows that
VR = g(§), (313)

where g(§) is an arbitrary function of £.



Water Waves and the Korteweg-de Vries Equation

9995

For outgoing waves, the correct solution takes the form
for @ — 0(r — 00),

1 1
"= / §Od = —= f©).

where n = 0 when f = 0.

This shows that the amplitude of axisymmetric waves
decays as the radius r — 0o(R — 00). This behavior is to-
tally different from the derivation of the KdV equation
where the amplitude is uniformly O(¢). In the present ax-
isymmetric case, the amplitude decreases as the radius r
increases so that there is no far-field region where the bal-
ance between nonlinearity and dispersion occurs. In other
words, the amplitude is so small that nonlinear terms play
no role at the leading order. However, there exists a scal-
ing of the flow variables which leads to the axisymmetric
(concentric) KdV equation as shown by Johnson [35].

We recall the axisymmetric Euler equations of motion
and boundary conditions (301)-(305) and introduce scal-
ings in terms of large radial variable R (see Johnson [35]),

(314)

2 6
E=%(r—t) andR:E—Zr.

3 (315)

We next apply the transformations of the flow vari-
ables

& &
(n, p,u,w) = . (n*,p*,u*, Ew*) , (316)
where large distance/time is measured by the scale (§2/¢°)
so that

which represents the scale of the amplitude of the waves.
It is important to point out that the original wave ampli-
tude parameter € can now be interpreted based on the am-
plitude of the wave for r = O(1) and t = O(1). Conse-
quently, the governing equations and the boundary con-
ditions (301)-(305) become, dropping the asterisks in the
variables,

—ug +a(uug +wu, +auug) = —(pg +a pr), (317)

o [—w,; +a(uwe + ww, +« uwR)] =—p,, (318)

1
ug—l—wz—i-oe(uR—i-RTu):O, (319)

p=n

onz=1+4an,

w=—ng +aung +aung),
(320)

w=0 onz=0, (321)

where o = (§7!&*) is a new parameter. These equations
are similar in structure to those discussed above with pa-
rameter &, which is now replaced by « in (317)-(321) so
that the limit as @ — 0 is required. This requirement is
satisfied (for example ¢ — 0 with § fixed), and the scaling
introduced by (315) describes the region where the appro-
priate balance occurs so that the wave amplitude in this
region is O(«).

We now seek an asymptotic series solution in the form

qE.R2) =) a"quER2). a—0, (322)
n=0

where g represents each of n, u, w, and p.
In the leading order, we obtain the familiar equations

Po="o, Uo=To, Wo=—2ZTog,
0<z<1. (323
It follows from the continuity Eq. (319) that
1
Wiz = —Uj; — (MOR + ? uo) . (324)

Without any more algebraic calculation, it turns out
that 7o(£, R) satisfies the nonlinear evolution equation

1 1
2nor + R0 + 3 nonoe + 3 Moggs = 0. (325)

This is usually referred to as the axisymmetric (con-
centric) KAV equation which includes a new term R™!7.
We may use the large time variable T = (§72¢%)t so that
R = 17 + o ~ 7 (see Johnson [35] or [34]).

Johnson [34] derived a new concentric KdV equation
which incorporates weak dependence on the angular co-
ordinate 6. In the derivation of KP Eq. (295), /¢ was cho-
sen as the scaling parameter in the y-direction. Similarly,
the appropriate scaling on the angular variable 6 may be
chosen as +/a. In the derivation of the concentric KAV
Eq. (325), the parameter « plays the role of ¢ which is used
as the small parameter in the asymptotic solution of the
KdV equation.

Following the work of Johnson [34,35], we choose the
variables £ and R defined by (315) and the scaled 6 variable
as

0= Jab* =12 0%, (326)

which introduces a small angular deviation from purely
concentric effects. We also use the scaled velocity compo-

nent in the 6-direction as
v = (8 )w* (327)

so that the scalings on u = ¢, and v = % ¢g are found to
be consistent.
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Using (315)-(316), Egs. (296)-(300), and following
Johnson [35], the equation in cylindrical polar coordinates
can be obtained in the form:

(2 Nor + L + 3n0M0g + 3 UOSSE)E + =5 Moge = 0.
(328)

This is known as Johnson’s (or nearly concentric KdV')
equation, as it was first derived by Johnson [34]. In the ab-
sence of the f-dependence, Eq. (328) reduces to the con-
centric KdV Eq. (325).

The Nonlinear Schrodinger Equation
and Solitary Waves

We describe below that the nonlinear modulation of
a quasi-monochromatic wave described by the nonlinear
Schrodinger equation. To take into account the nonlinear-
ity and the modulation in the far-field approximation, the
wavenumber k and frequency w in the linear dispersion
relation are replaced by k — i% andw + i%, respectively.
It is convenient to use the nonlinear dispersion relation in

the form
|A|2) A=0.

We consider the case of a weak nonlinearity and a slow
variation of the amplitude, and hence, the amplitude A is
assumed to be a slowly varying function of space and time.
We next expand (329) with respect to |A|?, —i%, and i%
to obtain

b 0
D(k—i— j— 2
( zax, a)—l—zat, (329)

ot

! D & 2D i + D, & A
2 \ TRk g2 ko ot “""atz

D(k,w,0)—i (Dki — Dwﬁ) A
0x

+ (330)

3|A|2 |APA=0,
where the first term D(k, @, 0) corresponds to the linear
dispersion so that D(k, , 0) = 0 represents the linear dis-
persion relation.

Introducing the transformation x* = x — C Lttt =1t
assuming that A = O(¢), 5% = O(¢), and Bt* = 0(&?),
retaining all terms up to O(&?), and dropping the asterisks,
we find that

aA 9%A
+p82+q|A|A—O (331)
where
1 (dC) 1 ( D ) 332)
P=5\a ) 17 p, \9a)

and the following results

Do
Dk’
dC
dk = (Dkk +2C Dy + c? Dyw)/ Dy (333)

have been used with D given by (329).

Equation (331) is known as the cubic nonlinear
Schrodinger (NLS) equation. When the last cubic nonlinear
term is neglected, Eq. (331) reduces to the corresponding
linear Schrodinger (NLS) equation for A(x, t) in the form

0A 1 o 92A
JE— — 4
i 57 + (k) 2 0, (334)
when p = 1 5 C'(k) = 5 w"(k) is used.

More exphatly, if the nonlinear dispersion relation is
given by
o = ok, a®), (335)

and if we expand w in a Taylor series about k = ko and
|a|> = 0, we obtain

o~ wy+ (k— ko)a){)

ow
- k 2 //
(k 0) @ (8|a|2

) lal®. (336)
laj2=0

Replacing (w — wy) by i (at> k — ko by —i ( ) and
assuming that the resulting operators act on the amplitude
function a(x, t), it turns out that a(x, t) satisfies the equa-
tion

l(ﬂt+woax)+ wo Axx +V|a|2“=0’ (337)
where
ow
y=— 5 = constant . (338)
04l ) o

Equation (337) is known as the cubic nonlinear Schro-
dinger equation. If we choose a frame of reference mov-
ing with the linear group velocity wy, that is, § = x — wyt
and t = t, the term involving a, will drop out from (337),
and therefore, the amplitude a(x, t) satisfies the normal-
ized nonlinear Schrédinger equation

iar + Lo agg +ylalfa=0. (339)
The corresponding dispersion relation is given by
a):%w k* — ya? (340)
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According to the stability criterion established by
Whitham [62], the wave modulation is stable if ywy < 0
or unstable if ywy > 0.

To study the solitary wave solution, it is convenient to
use the NLS equation in the standard form

ive+ Y +yVIPY =0,

—co<x<oo, t>0. (341

We then seek waves of permanent form by assuming
the solution

Y = f(X)e!mX=n) X = x —Ut, (342)

for some functions f and constant wave speed U to be de-
termined, and where m, n are constants.
Substitution of (342) in (341) gives

" +iem—U)f + (n—m®)f +y|fI’f =0. (343)

We eliminate f’ by setting 2m — U = 0, and then
write n = m? — a, so that f can be assumed real. Thus,
Eq. (343) becomes

f-af +yf =0,

Multiplying this equation by 2f” and integrating, we
find that

f/2=A+af2_§f4=F(f)s

(344)

(345)

where F(f) = () —aaf?)(B1 — B2f?), so that a =
—(o1 B2 + a2B1), A =181, ¥ = —2(a22), and the o’s
and B’s are assumed to be real and distinct.

Evidently, it follows from (345) that

X = [f df .
0 V(1 —azf?)(B1— Baf?)

Setting (ctz/r1)? f = u in this integral (346), we de-
duce the following elliptic integral of the first kind (see
Dutta and Debnath [22] and Helal and Molines [28]):

[ o=
oX = s
0 V(1 —ud)( —«k2u?)

where 0 = (a281)"* and k = (1 82)/(B1%2).
Thus, the final solution can be expressed in terms of
the Jacobian elliptic function

(346)

(347)

u=sn(oX, k). (348a)
Thus, the solution for f(X) is given by
o\ V2
f(X) = (071) sn(o X, k). (348b)
2

In particular, when A = 0, @ > 0, and y > 0, we ob-
tain a solitary wave solution. In this case, (345) can be
rewritten

Gax= [ (=) o

Substitution of (y/2a)"2f = sech in this integral
gives the exact solution

(349)

12

fX)= (270{) sech [ﬁ(x - Ut)] . (350)
This represents a solitary wave solution that propagates
without change of shape with constant velocity U. Unlike
the solitary wave solution of the KdV equation, the ampli-
tude and the velocity of the wave are independent param-
eters. It is noted that the solitary wave exists only for the
unstable case (y > 0). This means that small modulations
of the unstable wavetrain lead to a series of solitary waves.

The well-known nonlinear dispersion relation (116)
for deep water waves is

1
w = +/gk (1 + Eazkz) . (351)
Therefore,
a)é =2 r— 20 and y = —%a)okz, (352)

=, W = )
2k Okl

and the NLS equation for deep water waves is obtained
from (337) in the form

, wo wo 1 22
ilar+ —ax | — —5 axx — zwokjla|"a = 0. (353
( t 2 ko x) 3 ké XX 2 0 ()| | ( )
The normalized form of this equation in a frame of refer-
ence moving with the linear group velocity oy is

ia;— (:-%) Ayx — %wok§|a|2a =0. (354)
Since ywy = (w¢/8) > 0, this equation confirms the insta-
bility of deep water waves. This is one of the most remark-
able recent results in the theory of water waves.

We next discuss the uniform solution and the solitary
wave solution of the NLS Eq. (354). We look for solutions
in the form

a(x,t) = A(X) exp(iyzt) , X=x-— a)ét, (355)

and substitute this in Eq. (354) to obtain the following

equation:

Ské 2 1 2 43
Axx = — |yA+ —a)okOA . (356)
wo 2
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We multiply this equation by 2Ax and, then, integrate
to find

8
Ay =— (Agm’2 + —ykiA* + 2k§A4)
o
= (A} — A%)(A* —m"A}), (357)

where Ajm'? is an integrating constant, 2k; = 1, m”> =
1 —m?,and A(Z) = 4y2/a)ok§(m2 — 2), which relates Ay, y,
and m.

Finally, we rewrite Eq. (357) in the form

AjdX = da 7 (358a)
(=5 (G =)
or, equivalently,
Ag(X — Xo) = /t & TR
[(1 = s2)(s2 = m™)]
s = (A/Ag) . (358b)

This can readily be expressed in terms of the Jacobi dn
function (see Dutta and Debnath [22] and Helal and Mo-
lines [28]):

A= Agdn[Ay(X — Xo), m] , (359)

where m is the modulus of the dn function.
In the limit, m — 0, dnz — 1,and y? — —Jwok3 A3
Hence, the solution becomes

a(x,t) = A(t) = Apexp (—%ia)okéA% t) . (360)

On the other hand, when m — 1, dnz — sech z, and
y? — —1wok}A}. Therefore, the solitary wave solution is

a(x,t) = Agexp (—iwokéA% t)

-sech [Ag(x —wgt — Xo)] . (361)

An analysis of this section reveals several remarkable
features of the nonlinear Schrodinger equation. Like the
KdV equation, the nonlinear Schrodinger equation is the
lowest-order approximation for weakly and strongly non-
linear dispersive waves system. This equation can also be
used to investigate instability phenomena in many other
physical systems. Like the various forms of the KdV equa-
tion, the NLS equation arises in many physical problems,
including nonlinear water waves and ocean waves, waves
in plasma, propagation of heat pulses in a solid, self-trap-
ping phenomena in nonlinear optics, nonlinear waves in
a fluid-filled viscoelastic tube, and various nonlinear insta-
bility phenomena in fluids and plasmas.

Whitham’s Equations of Nonlinear Dispersive Waves

To describe a slowly varying nonlinear and nonuniform
oscillatory wavetrain in a dispersive medium, we assume
the existence of a one-dimensional solution in the form
(see Whitham [62] or Debnath [20]), so that

o(x, 1) = a(x, t)exp {if(x, )} + c.c., (362)
where c.c. stands for the complex conjugate and a(x, t)
is the complex amplitude (see Debnath [20]). The phase
function 6 (x, t) is given by

O(x,t) = xk(x, t) — tw(x, t), (363)
and k, w, and a are slowly varying functions of space vari-
able x and time ¢.

Because of the slow variations of k and w, it is reason-
able to assume that these quantities still satisfy the linear
Dispersion relation of the form

w = W(k). (364)
Differentiating (363) with respect to x and t, respectively,
we obtain

O = k+ {x— t W ()} ks , (365)

Op = —W(k) + {x —t W' (k)} k; . (366)

In the neighborhood of stationary points defined by
W’(k) = (x/t) > 0, these equations become

0, = k(x,t) and 0; = —w(x,t). (367ab)
These results can be used as a definition of local wavenum-
ber and local frequency of a slowly varying nonlinear wave-
train.

In view of (367), relation (364) gives a nonlinear partial
differential equation for the phase 6(x, t) in the form

30 (39)
—+Ww(=)=o.

ot ox (368)

The solution of this equation determines the geometry of
the wave pattern.
We eliminate 8 from (367ab) to obtain the equation

ok  Jw —o (369)
at  dx

This is known as the Whitham equation for the conserva-
tion of waves, where k represents the density of waves and

o is the flux of waves.
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Using the dispersion relation (364), Eq. (369) gives

Ok e~ o,
x

P (370)

where C(k) = W’(k) is the group velocity. This represents
the simplest nonlinear wave (hyperbolic) equation for the
propagation of wavenumber k with group velocity C(k).

Equations (370) and (364) reveal that w also satisfies
the first-order, nonlinear wave (hyperbolic) equation

— +W(k)— =0.
ar T WG

It follows from Egs. (370) and (371) that both k and w re-
main constant on the characteristic curves defined by

(371)

dx = W(k) = C(k)

< (372)

in the (x, t)-plane. Since k or w is constant on each char-
acteristic, the characteristics are straight lines with slope
C(k).

Finally, it follows from the preceding analysis that any
constant value of the phase 6 propagates according to
6(x, t) = constant, and hence,

dx
[% — )6, =0,
t—i-(dt)

which gives, by (367ab),

(373)

v O _o_ gy

T 0 X (374)

Thus, the phase of the waves propagates with the
phase speed c(k). On the other hand, Eq. (370) ensures
that the wavenumber k propagates with group velocity
C (k) = (dw/dk) = W’ (k).

We next follow Whitham [62] or Debnath [20] to
investigate how wave energy propagates in a dispersive
medium. We consider the following integral involving the
square of the wave amplitude (energy) between any two
points x = x; and x = x2(0 < x; < x7):

X2 X2
Q(t)=/ |A|2dx=/ AA*dx

1 X1

(375)

*2 F(k)F*(k)
= Zn/ ————dx, (376)
o HW(K)]
which, due to a change of variable x = tW’(k),
k2
=2r f F(k)F*(k)dk , (377)
ki

where x, = t W/(k,),r =1,2.

When k, is kept fixed as t varies, Q(#) remains constant
so that

aQ d [
0=5=2 ["|apa
dr dt/le *

x g
:/ o 1A dx + [ARW/ (k) — [ATW/ (k) - (378)
X1

In the limit, as x, — x; — 0, this result reduces to the
first-order, partial differential equation
3|A|2 + 9 [W(K)IA]=0. (379)

at dx
This represents the equation for the conservation of wave
energy where |A|? and |A|?W/(k) are the energy density
and energy flux, respectively. It also follows that the energy
propagates with group velocity W’(k). It has been shown
that the wavenumber k also propagates with the group ve-
locity. Thus, the group velocity plays a double role.

The preceding analysis reveals another important fact
that (364), (369), and (379) constitute a closed set of equa-
tions for the three functions k, w, and A. Indeed, these are
the fundamental equations for nonlinear dispersive waves
and are known as Whitham’s equations.

In his pioneering work on nonlinear dispersive waves,
Whitham [62] formulated a more general energy equation
based on the amount of energy Q(t) between two points x;
and x,

Q) = / " g(A dx

1

(380)

where g(k) is an arbitrary proportionality factor associated
with the square of the amplitude and energy.

In a new coordinate system moving with the group ve-
locity, that is, along the rays x = C(k)t, Eq. (380) reduces
to the form

X2

Q) = 2 [ gUOF(F* (k.
X1

where w = £2(k)and 2”(k) > 0and k; and k; are defined

by x; = C(k;)t and x, = C(k,)t, respectively.

Using the principle of conservation of energy, that is,
stating that the energy between the points x; and x, trav-
eling with the group velocities C(k;) and C(k;) remains
invariant, it turns out from (380) that

(381)

dQ 29 ) )
Frin 3 {g(k)A*} dx + g(ky)Clky)A* (x2, 1)
— g(k1)C(k1)A*(x1,£) =0, (382)
which is, in the limit as x, — x; — 0,
d d
— {g(k)A*} + — {g(k A*l =0.
5 18A%) + = (g C(R)A%) = 0 (383)
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This may be treated as the more general energy equation.
Quantities g(k)A? and g(k)C(k)A? represent the energy
density and the energy flux, so that they are proportional
to |A|? and C(k)|A|?, respectively. The flux of energy prop-
agates with the group velocity C(k). Hence, the group ve-
locity has a double role: it is the propagation velocity for
the wavenumber k and for the energy g(k)|A|%.

Thus, (369) and (383) are known as Whitham’s conser-
vation equations for nonlinear dispersive waves. The for-
mer represents the conservation of wave-number k and
the latter is the conservation of energy (or more generally,
the conservation of wave action). Whitham also derived
the conservation equations more rigorously from a gen-
eral and extremely powerful approach that is now known
as Whitham’s averaged variational principle.

For slowly varying dispersive wavetrains, the solution
maintains the elementary form u = (0, a), but w, k, and
a are no longer constants, so that 6 is not a linear function
of x; and t. The local wavenumber and local frequency are
defined by

ki = ;—z , W= —% . (384ab)
The Whitham averaged Lagrangian over the phase of the
integral of the Lagrangian L is defined by

1 2w
L(a),lc,a,x,t):—/ L do
27 0

(385)

and is calculated by assuming the uniform periodic solu-
tion u = @ (60, a) in L. Whitham first formulated the aver-
aged variational principle in the form

8//[dxdt=0,

to derive the equations for w, k, and a.

It is noted that the dependence of £ on x and ¢ re-
flects possible nonuniformity of the medium supporting
the wave motion. In a uniform medium, £ is independent
of x and ¢, so that the Whitham function £ = L(w, &, a).
However, in a uniform medium, some additional variables
also appear only through their derivatives. They represent
potentials whose derivatives are important physical quan-
tities.

The Euler equations resulting from the independent
variations of §a and §6 in (386) with £ = L(w, k, a) are

(386)

Sda: Li(w,k,a) =0, (387)
d d
89 Lo = 5Lk = 0. (388)

The 6-eliminant of (384ab) gives the consistency equa-
tions

ki | do dk;  Okj 0
ETR ok N it
Thus, (387)-(389) represent the Whitham equations for
describing the slowly varying wavetrain in a nonuni-
form medium and constitute a closed set from which the
triad w, k, and a can be determined.

In linear problems, the Lagrangian L, in general, is
a quadratic in u and its derivatives. Hence, if @(0) =

a cos 6 is substituted in (385), £ must always take the form

L(w,k,a) = D(w, k)a?, (390)

(389ab)

so that the dispersion relation (£, = 0) must take the
form

D(w,k) =0. (391)

We note that the stationary value of £ is, in fact, zero
for linear problems. In the simple case, L equals the dif-
ference between kinetic and potential energy. This proves
the well-known principle of equipartition of energy, stat-
ing that average potential and kinetic energies are equal.

Whitham's Instability Analysis of Water Waves

Section “The Nonlinear Schrodinger Equation and Soli-
tary Waves” deals with Whitham’s new remarkable vari-
ational approach to the theory of slowly varying, nonlin-
ear, dispersive waves. Based upon Whitham’s ideas and,
especially, Whitham’s fundamental dispersion Eq. (388),
Lighthill [44,45] developed an elegant and remarkably
simple result determining whether very gradual - not nec-
essarily small - variations in the properties of a wavetrain
are governed by hyperbolic or elliptic partial differential
equations. A general account of Lighthill’s work with spe-
cial reference to the instability of wavetrains on deep water
was described by Debnath [19]. This section is devoted to
the Whitham instability theory with applications to water
waves.

According to Whitham’s nonlinear dispersive wave
theory L, = 0 gives a dispersion relation that depends on
wave amplitude a has the form

o =owk,a), (392)

where equations for k and a are no longer uncoupled and
constitute a system of partial differential equations. The
first important question is whether these equations are hy-
perbolic or elliptic. This can be answered by a standard
and simple method combined with Whitham’s conserva-
tion Eqgs. (389a) and (383). For moderately small ampli-
tudes, we use the Stokes expansion of @ in terms of k and
a? in the form

(k) = wo(k) + wy(k)a® + ... . (393)
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We substitute this result in (389a) and (383), replace
w’(k) by its linear value wy(k), and retain the terms of or-
der a? to obtain the equations for k and a? in the form

dk ) L o 0K da®
Fra [ (k) + w)(k)a?] 7 7= =0, (39%4)

da? ,, . 0a? ok
— k)— + wf(k)a>* — =0.
ar TR g TeaTy

Neglecting the term O(a?), these equations can be

rewritten as

(395)

LA PPN, (396)
ot Max T Pox T
da? da? ok
S wé(k)% toldd— =0. (397)

ot 0x

These describe the modulations of a linear dispersive
wavetrain and represent a coupled system due to the non-
linear dispersion relation (393) exhibiting the dependence
of w on both k and a. In matrix form, these equations read

wy g—i 1 0 k _
"2 / a2 + =0.
wya- g o 0 1 ;

(398)
Hence, the eigenvalues A are the roots of the determinant
equation

g’mlw
=

D

wy— A W,

=0
"2 ! s
wja®  wy—A

|a,‘j—lb,‘j| = ' (399)

where a;; and b;; are the coefficient matrices of (398). This
determinant equation gives the characteristic velocities

dx
A= (E) = C(k)
= Co(k)+a[w (k) (k)] + 0(a?)

(400ab)

where Cy(k) = w|(k) is the linear group velocity, and, in
general, ]/ (k) # 0 for dispersive waves. The equations are
hyperbolic or elliptic depending on whether w,(k) w(/ (k)
>0or<0.

In the hyperbolic case, the characteristics are real, and
the double characteristic velocity splits into two separate
velocities and provides a generalization of the group veloc-
ity of nonlinear dispersive waves. In fact, the characteristic
velocities (400ab) are used to define the nonlinear group
velocities. The splitting of the double characteristic velocity
into two different velocities is one of the most significant
results of the Whitham theory. This means that any initial
disturbance of finite extent will eventually split into two
separate disturbances. This prediction is radically different
from that of the linearized theory, where an initial distur-

bance may suffer from a distortion due to dependence of
the linear group velocity Cy(k) = wy(k) on the wavenum-
ber k, but would never split into two. Another significant
consequence of nonlinearity in the hyperbolic case is that
compressive modulations will suffer from gradual distor-
tion and steepening in the typical hyperbolic manner dis-
cussed earlier. This leads to the multiple-valued solutions
and hence, eventually, breaking of waves.

In the elliptic case (w2, @] < 0), the characteristics are
imaginary. This leads to ill-posed problems in the theory of
nonlinear wave propagation. Any small sinusoidal distur-
bances in a and k may be represented by solutions of the
form exp [ia {x — C(k)t}], where C(k) is given by (400ab)
for the unperturbed values of a and k. Thus, when C(k)
is complex, these disturbances will grow exponentially in
time, and hence, the periodic wavetrains become definitely
unstable.

An application of this analysis to the Stokes waves on
deep water reveals that the associated dispersion equation
is elliptic in this case. For waves on deep water, the disper-
sion relation is

1
o = +/gk (1 + Eazkz) +0(ah.

This result is compared with the Stokes expansion (393) to
give wy(k) = \/R and w, (k) = %kz \/R Hence, wjw,
< 0, the velocities (400ab) are complex, and the Stokes
waves on deep water are definitely unstable. The instability
of deep water waves came as a real surprise to researchers
in the field in view of the very long and controversial his-
tory of the subject. The question of instability went un-
recognized for a long period of time, even though special
efforts have been made to prove the existence of a perma-
nent shape for periodic water waves for all amplitudes less
than the critical value at which the waves assume a sharp-
crested form. However, Lighthill’s [45] theoretical inves-
tigation into the elliptic case and Benjamin and Feir’s [6]
theoretical and experimental findings have provided con-
clusive evidence of the instability of Stokes waves on deep
water.

For more details of nonlinear dispersive wave phe-
nomena, the reader is also referred to Debnath [19].

In his pioneering work on nonlinear water waves,
Whitham [62] observed that the neglect of dispersion in
the nonlinear shallow water equations leads to the devel-
opment of multivalued solutions with a vertical slope, and
hence, eventually breaking occurs. It seems clear that the
third derivative dispersive term in the KdV equation pro-
duces the periodic and solitary waves which are not found
in the shallow water theory. However, the KdV equation
cannot describe the observed symmetrical peaking of the

(401)
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crests with a finite angle. On the other hand, the Stokes
waves include full effects of dispersion, but they are lim-
ited to small amplitude, and describe neither the solitary
waves nor the peaking phenomenon.

Although both breaking and peaking are without
doubt involved in the governing equations of the exact
potential theory, Whitham [62] developed a mathematical
equation that can include all these phenomena. It has been
shown earlier that the breaking of shallow water waves is
governed by the nonlinear equation

N+ cone +dnne =0, d=3c(2ho)”" . (402)

On the other hand, the linear equation corresponding
to a general linear dispersion relation

k)

7 (403)

is given by the integrodifferential equation in the form

ne + /00 K(x — s)ns(s,t)ds =0, (404)

—00

where the kernel K is given by the inverse Fourier trans-
form of c(k):

o0

K(x) = 7 c(k)} = %f e'* c(k)dk .  (405)

—0o0
Whitham combined the above ideas to formulate
a new class of nonlinear nonlocal equations

(e ]

m+d7777x+/ Kx—s)n(s.)ds =0.  (406)
o0

This is well known as the Whitham equation, which can,
indeed, describe symmetric waves that propagate without
change of shape and peak at a critical height, as well as
asymmetric waves that invariably break.

Once a wave breaks, it usually continues to travel in
the form of a bore as observed in tidal waves. The weak
bores have a smooth but oscillatory structure, whereas the
strong bores have a structure similar to turbulence with no
coherent oscillations. Since the region where waves break
is a zone of high energy dissipation, it is natural to include
a second derivative dissipative term in the KdV equation
to obtain

nt+C0nx+d77nx+,unxxx_anx:Oa (407)
where p = éco hi. This is known as the KdV-Burgers
equation, which also arises in nonlinear acoustics for fluids
with gas bubbles (see [38]).

Whitham’s [62] equations for the slow modulation of
the wave amplitude a and the wavenumber k in the case of
two-dimensional deep water waves are given by

8 2 8 a2

L P 4
- (w) +5,(C=0. (408)
ko _y (409)
ot ax

where wy = \/R is the first-order approximation for the
wave frequency w(k) and C = (g/2wy) is the group veloc-
ity.

Chu and Mei [14,15] observed that certain terms of the
dispersive type, neglected in Whitham’s equations to the
same order of approximation, must be included to extend
the validity of these equations. Whitham’s theory is based
on the direct use of Stokes’” dispersion relation for a uni-
form wavetrain,

w = wy (1 + %ezazkz) , (410)
whereas Chu and Mei added terms of higher derivatives

and dispersive type to the expression for w, so that

cea i {(2), o))

(411)

They used the expression (411) to transform (408) and
(409) in a frame of reference moving with the group veloc-
ity C(k) and obtained the following nondimensional equa-
tions:

da> 9,

_8t + E(a ¢x) =0 s (412)
82¢ 0 2 a’ Axx

2T 4+ |- — = 41
8x8t+8x[¢x+4+16a] 0. (413)

where we have used Chu and Mei’s result W = —2¢, and
¢ is a small phase variation. Integrating (413) with respect
to x and setting the constant of integration to be zero gives

2 l 2 Gxx

1
¢f+§x a — =0

414
8 32a (414)

A transformation ¥ = aexp(4i¢) is used to sim-
plify (412) and (414), which reduces to the nonlinear
Schrodinger equation

iV 4 W + 3PP =0. (415)

This equation has also been derived and exploited by sev-
eral authors, including Benney and Roskes [7], Hasimoto
and Ono [27], and Davey and Stewartson [17] to examine
the nonlinear evolution of Stokes’ waves on water.
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An alternative way to study nonlinear evolution of
two- and three-dimensional wavepackets is to use the
method of multiple scales in which the small parameter &
is explicitly built into the expansion procedure. The small
parameter ¢ characterizes the wave steepness. This method
has been employed by several authors in various fields and
has also been used by Hasimoto and Ono [27] and Davey
and Stewartson [17].

The Benjamin-Feir Instability
of the Stokes Water Waves

One of the simplest solutions of the nonlinear Schrédinger
Eq. (354) is given by (360), that is,

A(t) = Agexp (—3iwokgAG t) (416)

where A is a constant. This essentially represents the fun-
damental component of the Stokes wave. We consider
a perturbation of (416) and express it in the form

a(x,t) = A(t) [1 + B(x,1)] . (417)

where B(x, t) is the perturbation function. Substituting
this result in (354) gives

i(1+ B)A, + iAB; — (“’—02) AB.,
8k

1
= EwokSAf) [(1+ B)+ BB*(1+ B)
+(B+ B*)B+ (B+ B*)|A. (418)

where B*(x, t) is the complex conjugate of the perturbed
function B(x, t). Neglecting squares of B, Eq. (418) reduces
to

1
iB, — ( @ ) Bux = S0okyAG(B + BY). (419)

8k
We look for a solution for perturbed quantity B(x, t)
in the form

B(x,t) = By exp(£2t + ilx)

+ Byexp(2*t —ilx), (420)

where B; and B, are complex constants, £ is a real
wavenumber, and £2 is a growth rate (possibly a complex
quantity) to be determined. Substituting the solution for B
in (419) yields a pair of coupled equations:

. wol? 1 242 *
i2 + 12 31 - —a)okoAO(Bl + BZ) =0, (421)
8K 2

-k woﬁz 1 2 A2 (p*
i2 + — Bz — EkaOAO(BI + Bz) =0. (422)

We take the complex conjugate of (422) to transform it
into the form

. wOez * 1 2 42 *\
i + o ) By — Sonky AT (By + BS) = 0. (423)

The pair of linear homogeneous Egs. (421) and (423) for
B, and B admits a nontrivial eigenvalue for §2 provided

. 2
i2 + _a)of - lCL)Ok(Z)A%) —%wok(z)A%

8ks 2 -0
. 2 - )

—Jo0RiAY 2+ e — SwokiAS
(424)

which is equivalent to
1 (wol\’ 02

=== (KA - — ) - 425
2(2k0)(°° 8k2 (425)

The growth rate §2 is purely imaginary or real (and pos-
itive) depending on whether £2 > 8k3A? or £* < 8k3A2.
The former case represents a wave solution for B, and the
latter corresponds to the Benjamin-Feir (or modulational)
instability with a criterion in terms of the nondimensional
wavenumber { = (£/kg) as

% < 8k2AZ. (426)
Thus, the range of instability is given by
0<l<l.=2V2kAo. (427)

Since 2 is a function of £, the maximum instability occurs
at £ = {yax = 2koAo, with a maximum growth rate given
by
1 2.0

(Re 2)max = Ekavo . (428)

To establish the connection with the Benjamin-Feir
instability [6], we have to find the velocity potential for the
fundamental wave mode multiplied by exp(kz). It turns
out that the term proportional to B is the upper sideband,
whereas that proportional to B, is the lower sideband. The
main conclusion of this analysis is that Stokes water waves
are definitely unstable.

Future Directions

Although this chapter has been devoted to water waves
and the Korteweg and de Vries equations, there are
some challenging problems dealing with solitary waves
envelopes in the wake of a ship in oceans, and the KdV
equation with variable coefficients in an ocean of variable
depth. Despite some recent progress, there is no complete
theory for ships in waves that takes into account of the ef-
fects of the finite ship volume, and possible interactions
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between Kelvin wake and soliton envelopes. In order to
respond to experimental results with a rough bottom, the-
ories based on an empirical formula for the bottom stress
have been developed, but they are not yet completely sat-
isfactory when compared to experiments.

Of the systems that conserve energy, some are com-
pletely integrable in the sense of solitary wave theory, but
many including those most important for applications are
not. In some cases, useful analytical techniques are cur-
rently available, and others are waiting to be discovered.
So there is a need for research in the area of nonlinear lat-
tices. When we deal with real world problems, the conser-
vation of energy does not hold because of dissipative ef-
fects and forcing terms. Consequently, the KdV equation
and other relevant evolution equations need modification
by including terms that describe such effects. So, there are
challenging problems dealing with these modified evolu-
tion equations, their methods of solutions and the qualita-
tive and quantitative understanding of the solutions. On
the other hand, prospects for research in the transverse
coupling between solitary waves and parallel systems are
indeed bright.
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Wavelets emerged in the late 1980s as a valuable new tool
in science and engineering, and as a topic for fruitful math-
ematical research. Wavelet transforms are now regularly
applied in areas such as image processing, statistical anal-
ysis, and seismic research. Wavelets are at the heart of
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the WSQ standard used by the United States” Federal Bu-
reau of Investigation to compress fingerprint images [1].
They have been implemented in the Red professional digi-
tal video camera [2] and they are now being used in an at-
tempt to analyze paintings by famous artists [3]. In the past
twenty years, related “-lets” tools have also emerged, such
as ridgelets and shearlets (see » Curvelets and Ridgelets).
The 1992 book by Daubechies [4] is a classic in the field.

Wavelet analysis shares with Fourier analysis the key
idea of having a basis of functions with which to an-
alyze signals and other functions. While Fourier analy-
sis uses sine and cosine functions (or complex exponen-
tials) — which are smooth and periodic — wavelet analy-
sis utilizes functions that tend to be rough and localized
(see » Wavelets and the Lifting Scheme for examples of
wavelet functions). To create the basis in Fourier analy-
sis, the frequencies of the standard functions are varied.
However, to create a system of wavelet functions, a scaling
function is modified by translations and dilations, leading
to various resolutions and hence the term multiresolution
that is frequently used in the field. There are both discrete
and continuous Fourier transforms, and we have the same
for wavelets (see » Comparison of Discrete and Continu-
ous Wavelet Transforms). There are also analogues of the
Fast Fourier Transform. Ironically, much of the derivation
of results in wavelets uses the Fourier transform as a theo-
retical tool.

To be more specific, the creation of a wavelet basis
starts with a scaling function ¢ and a mother wavelet V.
(The scaling function is sometimes called the “father
wavelet”.) These functions tend to either have compact
support (meaning they are equal to 0 outside of a bounded
interval), or decay exponentially outside of a relatively
small part of their domain. Translations and dilations of
the mother wavelet are created in the form ¥ (2"t — k),
where t and k are integers. The resolution varies with #,
with larger positive values of n corresponding to finer res-
olutions. By varying k, the support of the function can be
translated, allowing localized analysis of other functions or
signals.

Wavelet transformations are described and applied in
multiple ways. As functions, wavelets can be studied with
either the real line or the complex plane as a domain. High
pass and low pass wavelet filters can be applied to tease
out details in signals or images (see » Popular Wavelet
Families and Filters and Their Use). To think of wavelet
transformations as a combination of “prediction” and “up-
date” steps is the main idea behind the lifting scheme (see
» Wavelets and the Lifting Scheme). In addition, working
with Fourier transforms of wavelet functions lead to vari-
ous polyphase results (see » Multiwavelets, for example).

As suggested above, the use of wavelets in various ap-
plications has contributed to their popularity. In statistics,
wavelets are used to denoise signals and estimate prop-
erties of zero-mean stochastic processes (see P Statistical
Applications of Wavelets). Wavelet techniques have been
combined with methods from partial differential equa-
tions to clean up images, or fill in damaged parts of an im-
age (which is called inpainting) (see » Wavelets and PDE
Techniques in Image Processing, A Quick Tour of). Be-
cause images from astronomy tend to be isotropic (that
is, having similar shapes or values in all directions, such
as a sphere), wavelet methods have also been useful in that
discipline (see » Numerical Issues When Using Wavelets).

Wavelet analysis is preferred to Fourier analysis in
many applications. One reason is that the relative rough-
ness of the wavelet functions is a better match than
trigonometric functions are for real data. This leads to
a rather sparse representation of this data in the wavelet
domain, which is helpful for compression and noise re-
duction. The Fourier transform breaks down a function
into different frequencies; consequently this representa-
tion is based on averages of the function over its whole
domain. Wavelets give you information about a function
at different scales and different locations simultaneously.
The localized nature of wavelet basis functions leads to
better identification and elimination of local behavior in
data such as spikes, edges, and other discontinuities. In ad-
dition, the nature of wavelets allows analysis at multiple
resolutions, from coarse to fine.

A fertile area of research in wavelets is to consider ex-
tensions where the domain and/or range of the wavelet
functions are multi-dimensional. For instance, since im-
ages are two-dimensional objects, a natural area to investi-
gate are situations where the domain is R? (see > Bivariate
(Two-dimensional) Wavelets). Basic wavelet families are
orthogonal, but they don’t need to be (see » Numerical
Issues When Using Wavelets). In order to work with ra-
dial images such as retinal scans [5], or anisotropic images
(which arelong and narrow, or tall and thin), other wavelet
tools have been developed (see » Curvelets and Ridgelets).
Multiwavelets are functions on the real line whose range is
two or more copies of the complex plane (see » Multi-
wavelets). Finally, there is an intimate connection between
wavelets and splines (see » Multivariate Splines and Their
Applications).

For the reader unfamiliar with wavelets, sections I,
II, and III of the » Wavelets and the Lifting Scheme ar-
ticle, along with the glossary of the » Comparison of
Discrete and Continuous Wavelet Transforms article, are
good places to begin. A familiarity with the Fourier trans-
form is critical to read many of the articles in this section.
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Glossary

Lifting step An equation describing the transformation
of an odd (even) sample of a signal by means of a lin-
ear combination of even (odd) samples, respectively.
Changing an odd sample is sometimes called a predic-
tion step, while changing an even sample is called an
update step.

Discrete wavelet transform (DWT) Transformation of
a discrete (sampled) signal into another discrete signal
by means of a wavelet basis. The transform can be
accomplished in a number of ways, typically either by
a two channel filter bank or by lifting steps.

Filter bank A series of bandpass filters, which separates
the input signal into a number of components, each
with a distinct range of frequencies of the original sig-
nal.

z-Transform A mapping ofa vector x = {x[k]} to a func-
tion in the complex plane by

X(z) =) x[klz*.
k

For a vector with a finite number of non-zero entries
X(z) is a Laurent polynomial.

Filter A linear map, which maps a signal x with finite en-
ergy to another signal with finite energy. In the time
domain it is given by convolution with a vector h,
which in the frequency domain is equal to H(z)X(z).
The vector h is called the impulse response (IR) of
the filter (or sometimes the filter taps), and H(e/®)
the transfer function (or sometimes the frequency re-
sponse). If h is a finite sequence, then h is called a FIR
(finite impulse response) filter. An infinite h is then
called an IIR filter. We only consider FIR filters in this
article. We restrict ourselves to filters with real coeffi-
cients.

Filter taps The entries in the vector that by convolution
with a signal gives a filtering of the signal. The filter
taps are also called the impulse response of the filter.

Laurent polynomial A polynomial in the variables z
and z71. Some examples: 3z7% + 2z, 27> — 227, and
1 + z + z°. The z-transform of a FIR filter h is a Lau-
rent polynomial of the form

ke
H(z) = Y hlklz™*. Ky <ke.
k=ky

This is in contrast to ordinary polynomials, where we
only have non-negative powers of z. Assuming that
hlke] # 0and h[ky] # 0, the degree of a Laurent poly-
nomial is defined as |h| = ke — ky,.

Monomial A Laurent polynomial of degree 0, for example
327,278, or 12.

Definition of the Subject

The objective of this article is to give a concise introduc-
tion to the discrete wavelet transform (DWT) based on
a technique called lifting. The lifting technique allows one
to give an elementary, but rigorous, definition of the DWT,
with modest requirements on the reader. A basic knowl-
edge of linear algebra and signal processing will suffice.
The lifting based definition is equivalent to the usual fil-
ter bank based definition of the DWT. The article does not
discuss applications in any detail. The reader is referred to
other articles in this collection.

The DWT was introduced in the second half of the
eighties, through the work of Y. Meyer, I. Daubechies,
S. Mallat, and many other researchers. The lifting tech-
nique was introduced by W. Sweldens in 1996, and the
equivalence with the filter bank approach was established
by I. Daubechies and W. Sweldens in an article published
in 1998 [2], but available in preprint form from 1996.
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Wavelets and the Lifting Scheme

This article is based on the book Ripples in Mathemat-
ics — The Discrete Wavelet Transform [3] with kind per-
mission of Springer Science and Business Media. For more
information on the background and history of wavelets,
we again refer to other articles in this collection.

Introduction

We begin the exposition of the lifting technique with
a simple, yet very descriptive example. It will shortly be-
come apparent how this is related to lifting and to the dis-
crete wavelet transform. We take a digital signal consisting
of eight samples (this idea is due to Mulcahy [5], and we
use his example, with a minor modification)

56, 40, 8, 24, 48, 48, 40, 16.

We choose to believe that these numbers are not random,
but have some structure that we want to extract. Perhaps
there is some correlation between a number and its imme-
diate successor. To reveal such a correlation we will take
the numbers in pairs and compute the mean, and the dif-
ference between the first member of the pair and the com-
puted mean. The result of this computation is shown as the
second row in Table 1. This row contains the four means
followed by the four differences, the latter being typeset
in boldface. We then leave the four differences unchanged
and apply the mean and difference computations to the
first four entries of the second row. We repeat this pro-
cedure once more on the third row. The fourth row then
contains a first entry, which is the mean of the original
eight numbers, and the seven calculated differences. The
boldface entries in the table are called the details of the sig-
nal.

Itis important to observe that no information has been
lost in this transformation of the first row into the fourth
row. We can see this by reversing the calculation. Begin-
ning with the last row, we compute the first two entries
in the third row as 32 = 35 + (—3) and 38 = 35 — (—3).
In the same way the first four entries in the second
row are calculated as 48 = 32 + (16), 16 = 32 — (16),
48 = 38 + (10), and finally 28 = 38 — (10). Repeating this
procedure we get the first row in the table.

Wavelets and the Lifting Scheme, Table 1
Mean and difference computation. Differences are in boldface
type

56| 40| 8|24 (48| 48|40 (16
48| 16 (48 (28| 8(—8| 0|12
32| 38|16|10| 8|—8| 0|12
35(—3|16|10| 8|—8| 0|12

So, what is the purpose of these computations? The
four signals contain the same information, just in differ-
ent ways, so how do we gain anything from this change of
representation of the signal? If our assumption (pairwise
equality of samples) is correct, the four means in the sec-
ond row will equal the original numbers, and the four dif-
ferences will be zero. If further, the original numbers are
equal in groups of four, the two means in the third row
will equal the original quadruples, and the differences will
be zero. Finally, if all eight original samples are equal, the
mean in row four will be equal to all eight samples, and the
seven differences will be zero.

Apparently, our assumption is not correct, as the dif-
ferences are not zero. However, the numbers in the fourth
row are generally smaller than the original numbers. This
indicates that while the numbers are not equal, they are
‘similar’, leaving us with small differences. We can say
that we have achieved some kind of loss-free compression
by reducing the dynamic range of the signal. By loss-free
we mean that we can transform back to the original sig-
nal without any information being lost in the process. As
a simple measure of compression we can count the num-
ber of digits used to represent the signal. The first row con-
tains 15 digits. The last row contains 12 digits and two neg-
ative signs. So in this example the compression is not very
large. But it is easy to give other examples, where the com-
pression can be substantial.

We see in this example that the pair 48, 48 do fit our as-
sumption of equality, and therefore the difference is zero.
Suppose that after transformation we find that many ‘dif-
ference entries’ are zero. Then we can store the trans-
formed signal more efficiently by only storing the non-
zero entries (and their locations).

Processing the Transformed Signal

Let us now suppose that we are willing to accept a cer-
tain loss of quality in the signal, if we can get a higher rate
of compression. One technique for lossy compression is
called thresholding. We choose a threshold and decide to
set equal to zero all entries with an absolute value less than
this threshold value. Let us in our example choose 4 as the
threshold. This means that we in Table 1 replace the en-
try —3 by 0 and then perform the reconstruction. The re-
sult is in Table 2, left hand part.

The original and transformed signals are both shown
on the left in Fig. 1. We have chosen to join the sample
points by straight line segments to get a good visualiza-
tion of the signals. Clearly the two graphs differ very little.
Now let us perform a more drastic compression. This time
we choose the threshold equal to 9. The computations are
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Wavelets and the Lifting Scheme, Table 2

Reconstruction with threshold 4 (top) and threshold 9 (bottom)

59 (43|11 (27|45 45|37 [13
51(19]45|25| 8|—8| o012
35[35(16|10| 8|—8| 012
35( o{16[10| 8[—8| 012
51[51 (19 |19]45[45[37]13
51(19(45[25]| o| o] 012
35(35(16[10| o| 0| 012
35| o[16|10] o o] o012

given on the right in Table 2, and the graphs are plotted on
the right in Fig. 1. Notice that the peaks in the original sig-
nal have been flattened. We also note that the signal now
is represented by only four non-zero entries.

There are several variations of the transformation. We
could have stored differences instead of ‘half-differences’,
or we could have used the difference between the second
element of the pair and the computed average. The first
choice will lead to boldface entries in the tables that can
be obtained from the computed ones by multiplication by
a factor —2. The second variant is obtained by multiplica-
tion by —1.

The ‘mean-difference’ transformation can be per-
formed on any signal of even length, since all we need is
the possibility of taking pairs. If we want to be able to keep
transforming the signal until there is one signal mean left,
we need a signal of length 2V, and it will lead to a table with
N + 1rows, where the first row is the original signal. If the
given signal has a length different from a power of 2, then
we will have to do some additional operations on the sig-
nal to compensate for that. One possibility is to add sam-
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ples with value zero to one or both ends of the signal until
alength of 2V is achieved. This is called zero padding.

Lifting
The transformation performed by successively calculating
means and differences of a signal is an example of the dis-
crete wavelet transform. Specifically, the transform intro-
duced in the example is called the Haar transform, and oc-
casionally also the first of the Daubechies transforms. It
can be undone by simply reversing the steps performed,
and it provides a number of different representations of
the same signal. Actually, all discrete wavelet transforms
can be realized by a similar procedure, where the only
modification from the Haar transform is the way, in which
we compute the means part and differences part of the
transformed signal. The procedure is known as ‘lifting’ in
the literature, and was introduced by Wim Sweldens in
1996 in a series of papers [8,9].

To fully appreciate the concept of lifting we need to
elaborate on the example in the previous section. We have
a discrete signal of real (or complex) numbers

x[0], x[1], x[2], x[3], ..., x[N —1].

Our convention is to start indexing at zero. In implemen-
tations one may need to adapt this to the programming
language used. Here we assume the signal to have finite
length N, but this is not a restriction. The theory also ap-
plies to infinite signals, provided they have finite energy.
In the mathematical (and signal processing) literature fi-
nite energy means

(o]

Z |x[n]|2 <00,

n=—0oo

60 T T T T T T

50 X0 7y
40} \ / ~
30 \

20 —

Original signal (solid) and modified signal (dashed) with threshold 4 (left) and 9 (right)
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and the set of such signals is usually denoted by £*(Z).
Sometimes we use the mathematical term sequence in-
stead of signal, and we also use the term vector, in partic-
ular in connection with use of results from linear algebra.

Introducing Prediction and Update

Let us now return to the example in the Introduction. We
took a pair of numbers a, b and computed the mean, and
the difference between the first entry and the mean

a+b
2

. 1)

d=a—s.

2)

Alternatively, almost the same result can be achieved in the
following way

d=a—b, (€)

a+b d—l—b
s = = — s
2 2

(4)

except we now have the difference rather than half the dif-
ference. This mathematical formulation of the Haar trans-
form, albeit quite simple, brings us to the definition of
lifting. The two operations, mean and difference, can be
viewed as special cases of more general operations. Re-
member that we assumed that there is some correlation
between two successive samples, and we therefore com-
puted the difference. If two samples are almost equal, the
difference is, of course, small. Thus one can use the first
sample to predict the second sample, the prediction being
that they are equal. If is is a good prediction, the difference
between them is small. Thus we can call (3) a prediction
step. We can use other and more sophisticated prediction
steps than one based on just the previous sample. We will
give a few examples of this later.

We also calculated the mean of the two samples. This
step can be viewed in two ways. Either as an operation,
which preserves some properties of the original signal
(later we shall see how the mean value or the energy of
a signal is preserved during transformation), or as an ex-
traction of essential features of the signal. The latter view-
point is based on the fact that the pair-wise mean values
contain the overall structure of the signal, but with only
half the number of samples. We use the term update step
for the this operation, and (4) is the update step in the Haar
transform. Just as the prediction operation, the update op-
eration can be more sophisticated than just calculating the
mean.

The prediction and update operations are shown in
Fig. 2. The notation and the setup is a little different from

even, S
d >(—>
\ 4
S
— 5| split P U
A
N dj_l\
odd, iy g

Wavelets and the Lifting Scheme, Figure 2

The three steps in a lifting building block. Note that the minus
sign means ‘the signal from the left minus the signal from the
top’

the Introduction; we start with a finite sequence s; of
length 2/ and end with two sequences s;—; and d;_1, each
of length 2/71. Let us explain the steps in Fig. 2.

split The entries are sorted into the even and the odd en-
tries. It is important to note that we do this only to ex-
plain the algorithm. In (effective) implementations the
entries are not moved or separated.

prediction If the signal contains some structure, then we
can expect correlation between a sample and its nearest
neighbors. In our first example the prediction is that
the signal is constant. More elaborately, given the value
at the sample number 2n, we predict that the value
at sample 2n + 1 is the same. We then compute the
difference and in the figure let it replace the value at
2n + 1, since this value is not needed anymore. In our
notation this is

dj—1[n] = sj[2n + 1] —s;[2n] .

In general, the idea is to have a prediction procedure P
and then compute the difference signal as

®)

d]'_l = Oddj_l — P(evenj_l) .

Thus in the d signal each entry is one odd sample mi-
nus some prediction based on a number of even sam-
ples.

update Given an even entry we predicted that the next
odd entry has the same value, and stored the difference.
We then update our even entry to reflect our knowl-
edge of the signal. In the example above we replaced
the even entry by the average. In our notation

sj_l[n] = s,-[2n] + d,-_l[n]/z.
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Wavelets and the Lifting Scheme, Figure 3
Two step discrete wavelet transform

In general we decide on an updating procedure, and
then compute

sj—1 = even;—1 + U(dj—1) . (6)

The algorithm described here is called one step lifting. It
requires the choice of a prediction procedure P, and an up-
date procedure U.

Multiple Transforms

The discrete wavelet transform is obtained by combining
a number of lifting steps. As in the example in Table 1 we
keep the computed differences d;—; and use the average
sequence s;—; as input for one more lifting step. This two
step procedure is illustrated in Fig. 3. Obviously, we can
apply more lifting steps if we want to transform the signal
further. In general, we start with a signal s; of length 2/
and we can repeat the transformation j times until we
have a single number s, [0] and j difference sequences d;—;
to dy. If we let j = 3 and use the Haar transform s,[0] will
be be the mean value of the eight entries in the original se-
quence, and dy, d;, and d, will be the numbers in boldface
in Table 1. In lifting step notation this table becomes as
Table 3.

We have previously motivated the prediction opera-
tion with the reduction in dynamic range of the signal ob-
tained in using differences rather than the original values,
potentially leading to good compression of a signal. The
update procedure has not yet been clearly motivated. The
update performed in the first example was

si—1[n] = sj[Zn]+%dj_1[n] = %(sj[Zn]+sj[2n—|— 1]).

It turns out that this update operation preserves the mean
value. The consequence is that all the s sequences have the

Wavelets and the Lifting Scheme, Table 3
This is Table 1 in the lifting step notation

s3[0] | s3[1] | s3[2] | s3[3] | s3[4] | s3[5] | s3[6] | s3[7]
52[0] | 52[1] | 52[2] | 52[3] | d2[0] | d>[1] | da[2] | d2[3]
51[0] | 51[1] | d1[0] | d1[1] | d2[0] | d2[1] | d>[2] | d2[3]
s50[0] | dolO] | d1[0] | d1[1] | d2[0] | d>[1] | d>[2] | d2[3]

same mean value. It is easy to verify in the case of the ex-
ample in Table 1, since

56 +40 +8 +24 + 48 +48 + 40+ 16

8
_ 48+16+48+28  32+38

4 2

35

It is not difficult to see that this holds for any sequence s of
length 2/. In particular, so[0] equals the mean value of the
original samples s;[0], . .. ,sj[21 —1].

Inverse Transform

A lifting step is easy to undo. In fact, looking at Fig. 2 it is
clear that we can go backwards from s;—; and d;—; to s;
simply by first ‘undoing’ the update step and then ‘un-
doing’ the prediction step. This is accomplished by using
the same update step as in the direct lifting step, but sub-
tracting instead of adding, followed by the same prediction
step, but using addition instead of subtraction. Finally, we
need to merge the odd and even samples. The direct lifting
step and the corresponding inverse lifting step are shown
in Fig. 4. This merging step, where the sequences even;_;
and odd;—; are merged to form the sequence s;, is shown
to explain the algorithm. It is not performed in implemen-
tations, since the entries are not reordered in the first place.
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even,, S even,,
. >(+ y——(0) .
v ) 2 2
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—> Split P U U P Merge —>
A N A
>( - > >(+
odd ., N U odd,.,
Wavelets and the Lifting Scheme, Figure 4
Direct and inverse lifting step
Mathematically, the inverse lifting step is accom- s[2n +1] s[2n+2]
. . . . . @)
plished by using the formulas in opposite order, and isolat-
ing the odd and even samples. In our example the inverse d;[n]
lifting step becomes
b=s—d/2, 7
s O s 2]
a=d+b, (8)

where (7) is actually (4) with b isolated, and (8) is (3) with a
isolated. In the lifting step notation this is first (6) rewrit-
ten as

sj[2n] = sj—1[n] —dj—1[n]/2
to undo the update step, and then (5) rewritten as
si[2n + 1] = dj—1[n] + sj[2n]
to undo the prediction step. For the general lifting step
dj—; = odd;—; — P(even;_;)
sj—1 = even;—j + U(dj—1)
the inversion is accomplished by the steps
evenj—; = sj—; — U(dj—1)
oddj—; =dj—; + P(even;_1).

That is all there is to the inverse transform.

Prediction and Update

Assuming that a signal is constant was useful in the first
example to demonstrate the concept of lifting. However,
this assumption is hardly the best for most signals. Fortu-
nately, there are many other possible prediction and up-
date procedures to accommodate various signal assump-
tions. We will present two examples of other lifting steps.
The first example is the next logical step from the Haar
transform when we assume the signal to be stepwise lin-
ear rather than just constant. The second example is the
Daubechies 4 transform, which is not based on a specific

Wavelets and the Lifting Scheme, Figure 5
The linear prediction uses two even samples to predict one odd
sample

assumption about the signal, but is taken from the classical
wavelet theory and adapted to the lifting step method.

Linear Prediction

Instead of basing the prediction on the assumption that
the signal is constant, we will now base it on the assump-
tion that the signal is linear. We really do mean an affine
signal, but we stick to the commonly used term ‘linear.’
Thus a linear signal is in this context a signal of the form
sj[n] = an + B, that s, all the samples of the signal lie on
a straight line. For a given odd entry s;[2n + 1] we now
need the two nearest even neighbors to predict the value
(remember that for the constant signal we needed only one
neighbor). The predicted value is %(sj[Zn] +sj[2n + 2]),
the mean of the two even samples. This value is the circle
on the middle of the line in Fig. 5.

The correction is then the difference between what we
predict the middle sample to be and what it actually is

di1[n] = sj[2n + 1] — 3(s;[2n) + s;[2n + 2]) .

We decide to base the update procedure on the two most
recently computed differences. We take it of the form

si—1[n] = sj[2n] + A(dj—1[n— 1] + dj—1[n]),

where A is a constant to be determined. In the first exam-
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Multiple prediction and update steps

ple we had the property
D sialnl =1 siln]

that is, the mean was preserved. (Recall that s; has length 2/
and sj_; has length 2/~!. This explains the factor 1.) We
would like to have the same property here. Let us first
rewrite the expression for s;_; [n] above,

)

sj—1[n]
=s;j[2n] + Adj—i[n — 1] + Adj—[n]
= sj[2n] + A(sj[2n —1]— %sj[Zn —-2]— %sj[Zn])
+ A(sj[2n + 1] 1sil2n +2]) .

— %sj[Zn] -3

Using this expression, and gathering even and odd terms,
we get

> sicilnl = (1—24)) sil2n] +24) sjl2n+1].

To satisfy (9) we must choose A = ;11. Summarizing, we
have the following two steps

di—1[n] = sj[2n + 1] — 3(s;[2n] + s;[2n + 2]) , (10)

si1ln] = sj[2n] + 3(djoi[n— 1]+ dj—1[n]) . (11)
The transform in this example also has the property.

> nsian] =1 nsjln]. (12)
Note that there is a misprint in this formula in [3]. We

say that the transform preserves the first moment of the
sequence. The mean is also called the zeroth moment of
the sequence. Finally, we want to note that this transform
is known in the literature as CDF(2,2). The origin of this
name is explained later.

In the above presentation we have simplified the nota-
tion by not specifying where the finite sequences start and
end, thereby for the moment avoiding keeping track of the
ranges of the variables. In other words, we have consid-
ered our finite sequences as infinite, adding zeroes before
and after the given entries. In implementations one has to
keep track of these things, but doing so now would obscure
the simplicity of the lifting procedure. For more details on
transformation of finite signals, see Chap. 10 in [3].

Daubechies 4 Wavelet

We now turn to the second example, the Daubechies 4
wavelet. This transform is a bit different from what we
have seen so far. So to adapt this transform to the lifting
step method we need to first take a closer look at the con-
struction of the lifting step. Looking at Fig. 4 once more
we see that we can add another prediction step after the
update step without changing the lifting concept; we still
have even and odd samples, we still have s;—; and d;—; as
output, and we can still invert the lifting step by reversing
the order of the prediction and update steps. In fact, we
can add as many prediction and update steps as we want,
and still have the same lifting concept. As an illustration
of this Fig. 6 shows a direct transform consisting of three
pairs of prediction and update operations. If we have two
prediction and only one update, but insist on having them
in pairs (this is occasionally useful in the theory), we can
always add an operation of either type, which does noth-
ing.

It turns out that this generalization is crucial in ap-
plications. There are many important transforms, where
the steps do not occur in pairs. The Daubechies 4 trans-
form is an example, where there is a U operation followed
by a P operation and another U operation. Furthermore,
in the last two steps, in (16) and (17), we add a new type
of operation which is called normalization, or sometimes
rescaling. The resulting algorithm is applied to a signal s;
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as follows
sy [n] = sj[2n] + V/3sj[2n + 1] (13)

d [n] = sjl2n + 1] — 1350, [n
—L(V/3— 2)5‘” [n—1] (14)
s$Pn] = s, (] — ', [ + 1) (15)
sjrln] = ﬁﬁl @ 1 (16)
4] = V3+ 1d<1>1[ 5 (17)

V2

Since there is more than one U operation, we have
used superscripts on the s and d signals in order to tell
them apart. Note that in the normalization steps we have

V3-1 V341
NN

Normalization does not change the information on the
signal, but is merely a means to have certain transform
properties satisfied.

The Daubechies 4 equations are derived from the clas-
sical wavelet theory by a procedure called Euclidean fac-
torization, see Sect. “Lifting and Filter Banks”. While the
Daubechies 4 transform does have a well-described ori-
gin in mathematics (see for instance Ten Lectures on
Wavelets [1] by Daubechies), it becomes somewhat un-
clear in the lifting step version, what exactly this transform
can provide. In particular, starting with an update step
does not conform with our previous exposition of the lift-
ing approach. However, this transform has one important
property not possessed by the linear prediction transform
CDEF(2,2), or indeed any predicting lifting steps based on
polynomial interpolation; in a frequency interpretation of
the wavelet transforms the Daubechies 4 behaves some-
what nicer than CDF(2,2). This is because the former is
an orthogonal transform, while the latter is a biorthogonal
transform. We refer to other wavelet articles in this collec-
tion for more information on this subject.

While the Daubechies 4 is lacking a proper interpreta-
tion in terms of prediction and update, and thus may ap-
pear to be less appealing to include in the lifting concept,
it’s ability to be written as lifting step is in fact a conse-
quence of the pleasant fact that all wavelet transforms (not
matter their origin and design criteria) can be written as
lifting steps. The two examples then show that some lift-
ing steps comes from a sample-by-sample design method,

while others may come from completely different design
methods (the Daubechies transform was designed within
the field of filter theory to have certain nice frequency re-
lated properties). This article touches upon the filter sub-
ject, see Sect. “Lifting and Filter Banks”
depth coverage of the subject, we refer the reader to other
articles in this collection.

To find the inverse transform we have to use the pre-
scription given above. We do the steps in reverse order and
with the signs reversed. The normalization is undone by

. For a more in-

multiplication by the inverse constants. The result is

J3-1

i (n] = 5l (18)

® (] = ﬁ\/;f L5y [n] (19)

S ) =52 (n] + d [n + 1] (20)
silzn +1] = d [n] + - fs(l)

(f—z)s“’ [n—11 (21)

sil2n] = $i, [n] = V3sj[2n + 1. (22)

Incidentally, this transform illustrates one of the prob-
lems that has to be faced in computer implementations.
For example, to compute d(l) [0 ] we need to know s(l) ,[0]
and 551) [—1]. But to compute s] 1[ 1] one needs the Val—
ues sj[—2] and s;[—1], which are not defined. The easi-
est solution to this problem is to use zero padding to get
a sample at this index value (zero padding means that all
undefined samples are defined to be 0). There exists other
more sophisticated methods, but that topic is beyond the
scope of this article.

Finally, let us repeat our first example in the above no-
tation. We also add a normalization step. In this form the
transform is known as the Haar transform in the literature
(we used this term previously, but in fact the scaling needs
to be including for the transform to be the true Haar trans-
form). The direct transform is

dj.l_)l [n] = s;[2n + 1] — sj[2n] (23)
s ] = sjl2n] + zdj“l[ ] (24)
si—1[n] = «/—s(l) (25)
dica[n) = —=d, [ (26)

74
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DWT over four scales
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S 3 —
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Inverse DWT over four scales
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T sj-3
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—

Wavelets and the Lifting Scheme, Figure 7
DWT and inverse DWT over four scales

and the inverse transform is given by

dj.l_)l[n] = 2d;_[n] 27)
0,00 = sl 8)
sil2n) = s, [n] = 3d1Y, [n] (29)
sil2n +1] = sjl2n] + Y, [n] . (30)

We note that this transform can be applied to a signal
of length 2/ without using zero padding. It turns out to be
essentially the only transform with this property.

Discrete Wavelet Transform

We have now established a method for transforming one
signal into another signal that has a natural division into
two parts of equal length. This transform is the discrete
wavelet transform (DWT). In many cases one is not in-
terested in the actual implementation of the transform,
though, and the DWT is in those cases often shown as
a box with one input and two outputs. The direct trans-
form is sometimes called ‘analysis’, and we will represent
such a direct transform by the symbol T, (‘a’ for analysis).

— —
e T T

a S
— —

In our notation the input would be s; and the outputs
would be s;—; and d;—;. The inverse transform is then nat-

urally shown as another box with two inputs and one out-
put, and is sometimes called ‘synthesis’. Therefore, the in-
verse transform is represented by the symbol Ts.

The contents of the T, box could be the direct Haar
transform as given by (23)-(26), and the contents of the T
box could be the inverse Haar transform as given by (27)-
(30). Obviously, we must make sure to use the inverse
transform corresponding to the applied direct transform.
Otherwise, the results will be meaningless.

We can now combine these building blocks to get
a multi-scale discrete wavelet transforms. We perform the
transform over a certain number of scales k, meaning that
we combine k of the building blocks as shown in Fig. 3 in
the case of 2 scales, and with the upper-most diagram in
Fig. 7 in the case of 4 scales. In the latter figure we use the
building block representation of the individual steps.

It is possible to apply the DWT to the difference out-
put of the transform as well, instead of just the average
(or means) output. This is known as the wavelet packet
transform, and is commonly found in the literature, and is
often used in practical implementations. This concept in-
troduces new possibilities and methods. We refer to other
articles presenting this subject.

Interpretation

The main topic for this collection of articles is “‘Wavelets’.
This term refers to a function, often denoted by ¥ in the
wavelet literature, that takes many shapes and determines
the properties of the wavelet transform. So what is the
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relation between a series of lifting steps and this wavelet
function, and is it useful to know this relation, if one just
wants to use the wavelet transform? After all, the lifting
step method works quite well without any apparent need
for knowledge of the wavelet function.

It turns out that while the transform can be imple-
mented easily with just a few equations, the understand-
ing of what is actually happening with a signal, when it
is transformed, relies heavily on a proper interpretation
of the transform. Here we will present an interpretation
based on linear algebra, which will provide some useful in-
sights. However, this presentation is incomplete; we state
some results from the general theory, and illustrate them
with explicit computations, but we do not discuss the gen-
eral theory in detail, since this is beyond the scope of this
article.

In the following discussion we will continue to use the
Haar transform example from the Introduction, partly be-
cause it allows for simple and yet convincing computa-
tions, partly because we believe that the reader has become
familiar with this example by now. We will end with an in-
terpretation of the Daubechies 4 transform.

Using Linear Algebra

We saw above that the first of the eight numbers in the
transformed signal in the first example in the Introduction,
that is, the number 35, had a special meaning; it was the
mean of the entire signal. This property (though not the
number itself) was actually independent of the signal; for
any signal that first number s,[0] will always be the mean
of the signal. In fact, it was a property derived from the
transform, and it provided an interpretation of the num-
ber 35 in the transformed signal. Similar interpretations
can be made of the other numbers in the transformed sig-
nal.

First, we examine the original example in Table 1 once
more.

56| 40| 8|24 (48| 48|40 (16

48| 16 (48 (28| 8(—8| 0|12
32| 38|16|10| 8|—8( 0|12
35(—3|16|10| 8|—8| 0|12

This table was constructed from top to bottom by multi-
ple Haar transforms, and the ‘signal mean’ property was
derived using equations, see for instance (9). However, we
can reach the same conclusion by examining signal sam-
ples, and by starting at the bottom. To isolate the property
of interest here, we start with a bottom row consisting of
zeros at the entries we are not interested in interpreting,
and a 1 at the entry we would like to interpret, that is, the

first of the eight numbers. Then we do a three scale syn-
thesis of the signal and get

1
1
1
1

o|o(o|—
o|o(o|—
o|o|(o|—
o|o|(o|—

1
1
0
0

o|l=|=|-
o|o|—|=

Note that the normalization steps (25) and (26) has been
omitted to make the table easier to read (this does not in-
terfere with the interpretation, even though this fact may
not be clear at this point). It is obvious that if we had
started with any other number than 1, this number would
then be the one repeated eight times in the top row af-
ter the three scale synthesis. This computation indicates
that the entry at location 0 (recall that our indexing starts
with 0) in the fourth row has an equal contribution from
all eight original samples, and thus is the mean value.

Let us repeat this procedure with the remaining seven
entries in the fourth row. Here are the first two, having a 1
at entry number 1 and 2.

1
1
1]—1 0| of of of o| O
0

1 11—=1(—=1]0]|0[0]0
]|=1 0| ofofo|of0O
of of 1| ofofo(of0O
of of 1| ofofofof0O

Examining the first row in the left-most table reveals that
the value at entry number 1, i. e. the value 1 in the fourth
row, can be interpreted as the mean of the first four sample
minus the mean of the last four sample. In filter terms this
is roughly equal to a band pass filtering just above DC, i. e.
DC does not contribute to entry number 1, and neither
would any frequency higher than a single cycle.

The result of all eight computations are now repre-
sented using notation from linear algebra; they are in-
serted as columns in a matrix

1 1 1 0 1 0 0 0]

1 1 1 0 -1 0 0 0

1 1 -1 0 0 1 0 0

1 1 -1 0 0 -1 0 0

(3) —

Wi 1 -1 0 1 0 0 1 of”’

1 -1 0 1 0 0 -1 0

1 -1 0 -1 0 0 0 1

L1 -1 0 -1 0 0 0 —1]
(€2
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which is denoted by W with a subscript s for synthesis
for the following reason. A signal of length 8 is a vector
in the vector space R®. The process described above of
reconstructing the signal, whose transform is one of the
canonical basis vectors in RS, is the same as finding the
columns in the matrix (with respect to the canonical ba-
sis) of the three scale synthesis transform. This is just the
well known definition from linear algebra of the matrix of
a linear transform. This in turn means that applying this
matrix to any length 8 signal performs the inverse Haar
transform. For example, multiplying it with the fourth row
of Table 1 (regarded as a column vector) produces the first
row of that same table.

The matrix of the direct three scale transform is ob-
tained in a similar fashion; by computing the transforms
of the eight canonical basis vectors in R®. In other words,
we start with the signal [1,0,0,0,0,0,0,0] and carry out
the three scale transform as shown here.

1]oo]olo|o]ofo
ilofofo]|3|ofo|o
slo|2]|0|2|0fof0
5[3[3]o]3]e]o]o

Computing the other seven transforms and inserting
the resulting signals as column vectors gives

O L e
8 8 8 8 8 8 8 8
SO U U (D (N O B
8 8 8 8 8 8 8 8
1 1 1 1
i 1 "1 —3 0 0 0 0
1 1 1 1
w;3) — 0 0 0 0 1 i 1 T3
1 1
3 =3 0 0 0 0 0 0
o 0o 1+ -2 0 o o o
o 0 o o0 1 -1 o0 0
o o o o o o 1 -1]
(32)

Multiplying the matrices we find w® . WP =1 and
WS) -w§3> = I, where I denotes the 8 x 8 identity ma-
trix. This is the linear algebra formulation of perfect re-
construction, or of the invertibility of the three scale trans-
form.

Another interesting property to note here is that the
structures of the two matrices are quite similar. The trans-
pose of the one matrix bears a striking resembles the other
matrix. In fact, if the above computations of the direct and
inverse transforms of the canonical basis vectors had used
the normalization steps, we would get an orthogonal ma-
trix and its transpose, which by elementary linear algebra
equals its inverse. Any wavelet transform with this prop-
erty is called an orthogonal transform (i. e. all columns are

orthogonal to each other and all have norm 1). All trans-
forms in the Daubechies family have this property, and
so do other well-known families like Coiflets and Sym-
lets. The CDF families are not orthogonal (but rather bi-
orthogonal), and consequently the structure of the CDF
matrices is slightly more complicated.

It is clear that analogous constructions can be carried
out for signal of length 2/ and transforms to all scales
k=1,...,j. The linear algebra point of view is useful
in understanding the theory. However, if one is trying to
carry out numerical computations, then it is a bad idea
to use the matrix formulation. The direct k scale wavelet
transform using the lifting steps requires a number of op-
erations (additions, multiplications, etc.) on the computer,
which is proportional to the length L of the signal. If we
perform the transform using its matrix, then in general
a number of operations proportional to L? is needed. For
longer signals this makes a huge difference for the compu-
tation time.

From Transform to Wavelets

Let us now consider the column vectors in (31) as a sam-
pling of continuous, piecewise constant signals on the
interval [0;1]. These continuous signals are shown in
Fig. 8. In this figure the signals have been group ac-
cording to their origin. Recall that the first column came
from a three scale synthesis of [1,0,0,0,0,0,0,0]. This
is equivalent to letting sg =1 and dy =0, d; =0, and
d; = 0 and using a three scale inverse DWT as shown in
Fig. 7. The four right-most graphs in Fig. 8 can be ob-
tained by inverse transforms where d, equals [1, 0,0, 0],
[0,1,0,0], [0,0,1,0], and [0,0,0, 1], respectively, and
so = 0,dy = 0, and d; = 0 in all four cases.

The s group consists of only one signal, which is con-
stant. The d groups all consists of signals with the same
shape (positive signal value followed by negative signal
value). The three d differ by a factor 2 scaling in the x-axis
direction, and the signals the d; and d, groups differ by
translation along the x-axis.

This pattern can be contained in a single equation.
First, define the function

1, telo;],
-1, te[31],

0, otherwise.

Y(t) = (33)

This is in fact the dy signal. Now all the other d signal can
be obtained by

Yik(t) =yt —k),
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Wavelets and the Lifting Scheme, Figure 8

Graphs showing the 8 column vectors in (31) on the interval [0; 1]. The graphs are sorted according to the multiscale decomposition

shown in Fig. 7

where j is equal to 0, 1, or 2 for the groups dy, d;, and
d,, and k ranges from 0 to 2/ — 1. The ¥ function is the
wavelet. Sometimes it is called the mother wavelet to sig-
nify that a wavelet transform consists of numerous similar
functions originating from one function. If we include the
normalization step the equation reaches its final form

Yik(t) =27yt —k).

This framework does not include the sq. However, another
equation combines sy and dy. We noticed previously that
while the vector [1,1,1,1,1,1,1,1], the first column in
(31), represents the mean of the original signal, the vector
[1,1,1,1,—1,—1,—1,—1] is mean of the first half of the
original signal minus the mean of the other half of the sig-
nal. This link can be expressed with continuous functions.

First, define

1, telo1],

0, otherwise,

P(1) =

that is, the function corresponding to the continuous
so signal. This function is called the scaling function in
wavelet literature. Now we can link sy and dy with

V() =92 —¢2r—1).

This equation is called the two-scale equation, and is found
in virtually any literature presenting the wavelet theory. Its

(34)

general form is

V() =) gnpt—n), (35)

and it is valid for all orthogonal wavelet transforms. For
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the Haar transform we have gy =1 and g; = —1 and
gn = 0 for all indices other than 0 and 1. The g, for the
Daubechies 4 transform are

1
go——m, &1
3+43 1+4/3
a2 42

There is also a two-scale equation that produces the scaling
function.

3-43
42

&2 = 8 =

¢ = hap2t—n). (36)

For orthogonal transforms h is obtained from g by h, =
(—1)" g1—n, that s, reverse sequence order with alternating
change of sign and index shift by 1.

Wavelet and Scaling Function for Daubechies 4

The appearance of the Haar wavelet function through
transform synthesis in the previous section may appear to
be a special property of the simple Haar transform. How-
ever, the principle applies to all wavelets, and the method
for generating the wavelet function can be used to ob-
tain any wavelet, at least as a graph. Actually, in many
cases no closed form of the wavelet exist. This includes the
Daubechies family.

Thus, to see the shape of the Daubechies 4 wavelet we
start again with an ‘all but one entry is zero’-signal. We
saw that in fact when obtaining the wavelet graph it does
not matter which entry is non-zero, as long as it is not the
first entry. The only difference in the output is the dilation
and translation of the resulting function. As an example
we therefore choose [0, 0,0,0,0, 1,0, 0]. We perform a in-
verse three scale transform using the inverse Daubechies 4
Equations (18)-(22) and plot the result, see Fig. 8. Note
that the problem with finite signals needs to be addressed
in this inverse transform. For our purpose zero padding is
sufficient.

This figure contains very little information. But let us
now repeat the procedure for vectors of length 8, 32, 128,
and 512, applied to a vector with a single 1 as its sixth entry.
This requires inverse transforms over 3, 5, 7, and 9 scales,
respectively. We fit each transform to the same interval, as
if we have a finer and finer resolution. The result is shown
in Fig. 9.

This figure shows that the graphs rapidly approach
a limiting graph, as we increase the length of the vector.
This is a result that can be established rigorously, but it is
not easy to do so, and it is beyond the scope of this article.

0.8 1

_4 L L
0 0.2 0.4

0.6
Wavelets and the Lifting Scheme, Figure 9
Inverse Daubechies 4 of [0, 0, 0,0, 0, 1, 0, 0] over three scales

4 T T T T

-3 L L L L

0 0.2 0.4 0.6 0.8 1

Wavelets and the Lifting Scheme, Figure 10
Inverse Daubechies 4 of sixth basis vector, length 8, 32, 128
and 512

One can interpret the limiting function in Fig. 9 as
a function whose values, sampled at appropriate points,
represent the entries in the inverse transform of a vector
of length 2V, with a single 1 as its sixth entry. For N just
moderately large, say N = 12, this is a very good approx-
imation to the actual value. See Fig. 10 for the result for
N = 12, i.e. a vector of length 4096.

Wavelet and Scaling Function for CDF(2,2)

Finally, let us repeat the procedure for the CDF(2,2) trans-
form in (10) and (11), and at the same time illustrate how
the wavelet is translated depending on the placement of
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Wavelet

0 0.2 0.4 0.6 0.8 1

Wavelets and the Lifting Scheme, Figure 11

Scaling function

0 0.2 0.4 0.6 0.8 1

Inverse Daubechies 4 of sixth and first basis vectors, both length 4096. The result is the Daubechies 4 wavelet on the left and the

scaling function on the right

the 1 in the otherwise 0 vector. An example is given in
Fig. 11. The difference in the graphs in Fig. 11 and Fig. 10 is
striking. It reflects the result that the Daubechies 4 wavelet
has very little regularity (it is not differentiable), whereas
the CDF(2,2) wavelet is a piecewise linear function.

Recall that the Haar and Daubechies 4 transform are
orthogonal transforms, which means that in linear algebra
terms the transpose of the synthesis matrix equals the anal-
ysis matrix. A consequence of this is that the same wavelet
and scaling function are used for analysis and for synthe-
sis. This is not the case for CDF(2,2), which is a biorthogo-
nal transform. Therefore, it has one synthesis pair of scal-
ing function and wavelets, and an analysis pair. If we use
the forward transform instead of the inverse we can obtain
the analysis functions. They are shown in Fig. 12. These
functions are quite complicated, and it is interesting to
see that while the analysis wavelet and scaling function
are very simple functions (we have not shown the scal-
ing function of CDF(2,2) though) the inverse of that same
transform have some rather complex wavelet and scaling
functions.

As an end remark notice that all CDF(2,2) functions
are symmetrical. This is a special property that can only be
achieved by biorthogonal wavelets. Orthogonal wavelets
can come close to symmetry, but they can never become
completely symmetrical. An almost symmetrical family
has been constructed, called the Symlets, see for exam-

ple [4].

The General Case

The above computations lead us to the conclusion that
there are just two functions underlying the direct trans-
form, and another two functions underlying the inverse

0.8 1

0 0.2 0.4 0.6
Wavelets and the Lifting Scheme, Figure 12
Inverse CDF(2,2) of three basis vectors of length 64, entry 40,
or 50, or 60, equal to 1 and the remaining entries equal to zero.
The result is the same function (the wavelet) with different trans-
lations

transform, in the sense that if we take sufficiently long vec-
tors, say 2V, and perform a k scale transform, with k large,
then we get values that are sampled values of one of the
underlying functions. More precisely, inverse transforms
of unit vectors with a one in places from 1 to 2N7F yield
translated copies of the scaling function. Inverse trans-
forms of unit vectors with a one in places from 2Nk 4 1
to 2N"F*1 yield translated copies of the wavelet. Finally,
inverse transforms of unit vectors with a one at places from
2N=kKF1 1 1 to 2 yield scaled and translated copies of the
wavelet.

These results are strictly correct only in a limiting
sense, and they are not easy to establish. There is one fur-
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ther complication which we have omitted to state clearly.
If one performs the procedure above with a 1 close to the
start or end of the vector, then there will in general be
some strange effects, depending on how the transform has
been implemented. We refer to these as boundary effects.
They depend on how one makes up for missing samples
in computations near the start or end of a finite vector,
the so-called boundary corrections. We have already men-
tioned zero padding as one of the correction methods. This
is what we have used indirectly in plotting for example
Fig. 10, where we have taken a vector with a one at place 24,
and zeroes everywhere else.

Readers interested in a rigorous treatment of the in-
terpretation of the transforms given here, and with the re-
quired mathematical background, are referred to the liter-
ature, for example the books by I. Daubechies [1], S. Mal-
lat [4], and M. Vetterli-J. Kovacevi¢ [10,11]. Note that
these books base their treatment of the wavelet transforms
on the concepts of multiresolution analysis and filter the-
ory rather than lifting.

Lifting and Filter Banks

So far, the lifting technique has been carried out in the time
domain; the correlation of samples was based on odd and
even entries, interpretation was based on the signal in the
time domain, and every reference to the signal was made
by s and d, i. e.time representations of the signals. How-
ever, there is much to be learned about wavelets and about
lifting when turning to the frequency domain.

The lifting method is a special case of a standard fre-
quency-based signal processing method called filter banks.
A filter bank is a series of bandpass filters which separates
the input signal into a number of components, each with
a distinct range of frequencies from the original signal. Of-
ten, in a filter bank, the filters are designed such that no
information is lost, that is, it is possible to reconstruct the
original signal from the components. The outputs of a fil-
ter bank are called subband signals, and it has as many sub-
bands as there are filters in the filter bank.

The following introduction to lifting in the frequency
domain requires some knowledge of the z-transform as
well as basic Fourier theory. To ease the reading, we briefly
state some important relations for the z-transform. The
transform maps a signal x = {x[n]} to a function defined
in the complex plane

X(z) = Zx[n]z_" .

nez

This is equivalent to the Fourier transform, when z = ¢/,
and we use capital X to denote the z-transform of x. In the

following exposition we will needed up and down sam-
pling by two of a signal. In the time domain this is ac-
complished by inserted zeros between all samples and by
removing every other sample, respectively. Explicitly, if
x = {x[n]}, then the down sampled sequence x, is given
by x, [n] = x[2n]. The up sampled sequence x,4 is given
by x4 [n] = x[n/2], if n is even, and x4 [n] = 0, if n is
odd.

In the z-transform up sampling of X(z) is accom-
plished by X(z?), and down sampling is accomplished by

HXE") + X (=) . (37)

Finally, we note that in this section all signals have fi-
nite length, and thus the z-transform has a finite num-
ber of non-zero terms. The z-transform is therefore a Lau-
rent polynomial, which is a polynomial in the variables z
and z7L.

Lifting in the z-Transform Representation

The lifting method consists of a three basic operations; it is
composed of splitting the signal in odd and even samples,
predicting an odd sample, and updating an even sample.
This is shown in Fig. 3. The splitting is given in the z-trans-
form representation by

X(2) = Xo(z%) + 2 ' X1(2%) , (38)

where

Xo(z) = ) x[2n]z™" = 3(X(") + X(=2'") . (39)

n

Xi(z) = Zx[Zn +1]z7"

%ZI/Z(X(ZI/Z) _ X(_Zl/Z)) , (40)

are the z-transforms of the even and odd samples. Note
that the second equality in both formulas comes from (37).
We represent this decomposition by the left side of the di-
agram in Fig. 13. In the diagram the time shift is inserted
prior to the down sampling, rather than after as in (40),
since this gives multiplication with z instead of z!/2. The
decomposition in (38) is called a polyphase decomposition
(with two components).

The inverse operation is obtained by reading Eq. (38)
from right to left. The equation tells us that we can ob-
tain X(z) from Xy(z) and X;(z) by first up sampling the
two components by 2, then shifting X, (z%) one time unit
right (by multiplication by z™!), and finally adding the
two components. We represent this reconstruction by the
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Wavelet

Scaling function
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Wavelets and the Lifting Scheme, Figure 13
Wavelet and Scaling function for CDF(2,2)

0.35

right hand side of the diagram in Fig. 13. Notice that as
with the lifting method this inversion simply ‘undoes’ the
changes made to the signal. The transform pair repre-
sented in Fig. 13 is sometimes in the literature called the
‘lazy’ wavelet transform and its inverse.

Prediction and Update Steps Let us now see how we
can implement the prediction step from Sect. “Lifting” in
the z-transform representation. The prediction technique
was to form a linear combination of the even entries and
then subtract the result from the odd entry under con-
sideration. The linear combination was formed indepen-
dently of the index of the odd sample under considera-
tion, and based only on the relative location of the even
entries. For example, in the CDF(2,2) transform the first
step in (10) can be implemented as X;(z) — T(2)Xo(2),
where T(z) = %(1 + z). This is because T(z)X((z) is the
convolution t * xq in the time domain, which is exactly
a linear combination of the even entries with weights t,,.
Explicitly,
X1(2) = T(2)Xo(2)

= Xi(2) - 11 + Z)Zx[zn

+3 Zx[Zn

— Z E(x[Zn] + x[2n+2])z7"

= Xi(2) — 5
= Zx[Zn + 1]
—Z

which is the z-transform representation of the right hand
side of (10). The transition is described by matrix multi-

plication as in
0 Xo (Z)
1| [Xi(2) ]

x[2n]z™"

[2n 4+ 1] — 2(x[2n] + x[2n + 2])) 27",

SR
Xi(2) = T(9)Xo(2) | |—T(2)

Here we use 2 x 2 matrices whose entries are Laurent poly-
nomials. An entirely analogous computation shows that if
we define S(z) = ;11(1 + z71), then the update step in (11)
is implemented in the z-transform representation as mul-
tiplication by the matrix

1 S(z)
0 I
The normalization step, as for example given in (26) and

(25), can be implemented by multiplication by a matrix of
the form

K 0
0 K'|’
where K > 0 is a constant.

Entire Transform Since every prediction step is sub-
traction of a linear combination of odd samples, any pre-
diction step can be implemented by means of multiplica-
tion by a matrix of the form

1 0
—T(z) 1]°
The same result applies to any update step, which can be
implemented by multiplication by a matrix of the form

P(z) = |: (41)

(42)

V() = [(1) S(lz)] .

Here T(z) and S(z) are both Laurent polynomials.

The general one scale DWT is a combination of mul-
tiple prediction and updates steps and one normalization
step. This is shown in Fig. 6 (although the normalization
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is not included in the figure). In the z-transform represen-
tation this becomes

[k 071 Sy 10
H(z)_[o K_l][o 1 ][—TN(Z) 1]

1 Sl(Z) 1 0
[o ) ][-ya(z) 1] - (43

The order of the factors is determined by the order in
which the steps are applied. First a prediction step, then
an update step, repeated N times, and then finally the nor-
malization step.

An important property of the DWT implemented via
lifting steps was the invertibility of the transform, as illus-
trated for example in Fig. 4. It is easy to verify that we have

1 0

-1 _
P(z) _[n@ 1

] and U(z)"! = |:1 —S(z)i|.

0o 1
(44)

We note that the inverse matrix is again a matrix with
Laurent polynomials as entries. Thus, the inversion of the
transform is accomplished simply by inverting each 2 x 2
matrix and reversing their order.

—1 _ _ 1 0 1 —SI(Z)
H (z)—G(z)—[Tl(z) 1i||:0 ] ]

1 0][1 —Sy()][K™' o
o e 9SS o] @

Multiplying out the matrices in the product defining H(z)
in (43), we get a 2 X 2 matrix with entries, which are Lau-
rent polynomials. We use the notation

Hyo(2) H01(Z)]

Hio(2) (46)

Hiz) = [ Hyi(2)

for such a general matrix. Written in matrix notation the

DWT is given as
H01(Z)] [XO(Z)]
Hu(2) | [ Xi(2)] "’

Yo(2) | _ [Hoo(2)
|:Y1(Z)i| - |:H10(Z) (47)

Xo(2)
—@——®

X(2)
— >

e X(z)

C C Xi(2) @ e

Wavelets and the Lifting Scheme, Figure 14

Splitting in even and odd components by means of up sampling
followed by reconstruction of the signal from the odd and even
components

X,(z) Yy (2)
@
X(2)
—> H(z)
X, (z Y (z
e—e——

Wavelets and the Lifting Scheme, Figure 15

One scale DWT in the z-representation as given in (47). This is the
polyphase representation and it comes directly from the lifting
step method

and we can then represent the implementation of the com-
plete one scale DWT in the z-transform representation by
the diagram in Fig. 15.

This representation of a two channel filter bank, with-
out any reference to lifting, is in the signal analysis liter-
ature called the polyphase representation, see for exam-
ple [7,10,11].

Two Channel Filter Banks with Perfect Reconstruction

We have now seen how the time-based lifting method
has an equivalent representation in the frequency domain.
Lifting allows for perfect reconstruction of the signal after
transformation, and we will now use this property (which
is preserved in the frequency representation) to better un-
derstand the link between lifting and filter banks. We as-
sume the reader is familiar with the concept of filtering and
filter banks. Details on filtering can be found in any book
on signal analysis, for example in [6,7]. The filter bank ap-
proach to wavelets is the one used in most introductions
to the subject.

A two channel filter bank starts with two analysis fil-
ters, here denoted by the filter taps hy and h;, and two
synthesis filters, denoted by gy and g;. Usually the filters
with index 0 are chosen to be low pass filters, and the fil-
ters with index 1 to be high pass filters. The analysis and
synthesis parts of the filter bank are shown in Fig. 15.

The analysis part transforms the input X(z) to the out-
put pair Yp(z) and Y;(z). The synthesis part then trans-
forms this pair to the output X(z). The filtering scheme is
said to have the perfect reconstruction property, if X(z) =
?(z) for any X(z).

The main point that we will now establish is that the
two Figs. 15 and 16 do indeed show the same thing, and
that it is possible to get the one from the other.

Conditions for Perfect Reconstruction To do this we
first analyze which conditions are needed on the four fil-
ters in Fig. 15 in order to obtain the perfect reconstruction
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Yo(z)
) —@—> —@— Gy(2)
X(z2) X(z)
—>
Yi(2)
- o— oI

Wavelets and the Lifting Scheme, Figure 16
Two channel analysis and synthesis. This is the standard filter
bank representation

property. Filtering by hy transforms X(z) to Hy(z)X(z),
and we then use (38) to down sample by two. Thus we have

Yo(2) = (Ho(z )X (@) + Ho(=2")X (') . (48)
1@ = 3 (FEHXED) + Hi(=2")X(=2)) . (49)

Up sampling by two followed by filtering by the G-filters,
and addition of the results leads to a reconstructed signal

X(2) = Go(2)Yo(2)) + G1(2) Yi(2%) . (50)

Perfect reconstruction means that X(z) = X(z). We com-
bine the above expressions and then regroup terms to get

X(2) = 1[Go(2)Ho(2) + Gi(2)H1(2)]X(2)

+ 1[Go(2)Ho(—2) + Gi1(2)H1(—2)| X(—2) .
To fulfill the condition 35(2) = X(z) we need

Go(2)Ho(z) + G1(2)H1(2) = 2, (51)

Go(2)Ho(—2) + Gi(2)Hi(—2) = 0. (52)

These conditions mean that the four filters cannot be cho-
sen independently, if we want to have perfect reconstruc-
tion. To determine what conditions these equations im-
pose on H and G it is convenient to write them as a matrix

equation,
|: Hy(2) Hy(2) ] [GO(Z)] _ [2]
Ho(—z) Hi(—2)]|[Gi(2) 0"
We want to solve this equation, that is, determine Gy(z)
and G (z) as functions of Hy(z) and H;(z). Since the ma-

trix is invertible (it performs a DWT that can be inverted),
we can use Cramer’s rule to get

(53)

‘2 Hi(z)
Gor) = I o)
ol\Z) = d(Z) = z 1\—2) .

The determinant d(z) of an invertible 2 x 2 matrix with
Laurent polynomials as entries is a monomial (see [3]),

which in this case has the property that d(—z) = —d(z).
Therefore, the determinant can be assumed to be of the
form d(z) = 1C7'z7%~! for some integer k and some
real constant C. Thus,

0 Hi(-2)
%C—lz—Zk—l
H()(Z) 2
Ho(—Z) 0

Lo—1,-2k-1
2

'2 H(z)

Golz) = = C M H (—2), (54)

Gi(z) = = —CZ***t1Hy(—2) . (55)

These equations show that we can choose either the H-fil-
ter pair or the G-filter pair. We will assume that we have
filters Hy and H;, subject to the condition that

d(z) = Ho(2)H(—2) — Ho(—2)H,(2)
=1c7'z7% 1 (56)

for some integer k and nonzero constant C. Then Gy
and G; are determined by the Egs. (54) and (55), which
implies that they are unique up to a scaling factor and an
odd shift in time. Note that this argument is valid for any
two channel filter bank, subject to the condition (56).

Lifting and Two Channel Filter Banks
with Perfect Reconstruction Are Equivalent

Many presentations of the wavelet transform start with
a two channel filter bank with the perfect reconstruction
property. The analysis part is then used to define the di-
rect one scale DWT, and the synthesis part is used for re-
construction. It is an important result that the filtering ap-
proach, and the one based on lifting, actually are identical.
Thus any set of lifting steps leads to a two channel filter
bank with perfect reconstruction, and, quite remarkably,
vice versa. This means that they are just two different ways
of describing the same transformation from X(z) to Yy(z)
and Y)(z). This equivalence will be the subject of the re-
mainder of the article.

The first step is to show that the analysis step in Fig. 15
coming from the two channel filter bank is equivalent
to the analysis step summarized in Fig. 14 and in (47),
i. e. coming from the lifting method. Thus, we want to find
the equations relating the coefficients in the H matrix (46)
and the filters Hy, Hy, Gy, and G;. The analysis step by
both methods should yield the same result. To avoid the
square root terms we compare the results after up sam-
pling by two. We start with the equality

[Yo<z2)] — H(?) [ 5 (X(2) + X(—z))}

Yi(2%) 32(X(2) — X(—2))
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where the left hand side is from the filter bank approach
(48) and (49), and the right hand side from the lifting ap-
proach with polyphase matrix (46) and up sampled Xy ()
and X (z). The first equation can then be written as

1(Ho(2)X(2) + Ho(—2)X(—2)) =
Hoo(2*)5 (X(2)+X(—2))+Ho1(2%) 3 2(X(2)—X(—2)).

This leads to the relation
Ho(z) = Hoo(2%) + zHo1(Z%) .

The relation for H; is found analogously, and then the re-
lations for Gy and G can be found using the perfect recon-
struction conditions (54) and (55) in the two cases. The
results are summarized here.

Ho(z) = Hoo(2%) + zHp1(2%) (57)
Hy(z) = Hio(z%) + zHn(7%) (58)
Go(2) = Goo(2%) + 2 ' Go1 (), (59)
Gi(2) = Go(2?) + 271G (2%) . (60)

Note the difference in the decomposition of the H-filters
and the G-filters. Thus in the polyphase representation we
use

_ [Hoo(z) Hoi(2)
Hiz) = |:H10(Z) H11(Z)] '

_ -1 _ | Goo(2) Gio(2)
Gla) =Hz) = |:G01(Z) G11(Z)] ’

Note the placement of entries in G(z), which differs from
the usual notation for matrices. The requirement of per-
fect reconstruction in the polyphase formulation was the
requirement that G(z) should be the inverse of H(z).

From Filters to Lifting Steps It is easy to start with a fil-
ter bank and derive H(z) using (57) and (58). However,
going the other way is somewhat more tricky; given H(z)
it is necessary to factorize it into a number of 2 X 2 ma-
trices of a particular structure to obtain the lifting steps.
The remarkable result is that this is always possible. This
result was obtained by I. Daubechies and W. Sweldens in
1998 in the paper [2]. The factorization result for 2 x 2
matrices with Laurent entries was previously known in the
mathematical literature. The importance of the paper by
I. Daubechies and W. Sweldens lies in its impact on signal
processing.

Theorem 1(Daubechies and Sweldens 1998) Assume
that H(z) is a 2 x 2 matrix of Laurent polynomials,
normalized to detH(z) = 1. Then there exists a con-
stant K # 0 and Laurent polynomials $1(z), ..., Sn(2),
Ti(2),..., Tn(2), such that

7K o[ Ssv@I[ 1 o
H(z)_[o K—l}[o 1 ][TN(Z) 1]

1 Sl(Z) 1 0
[0 | ][Tl(z) 1] (61)

The normalization detH(z) = 1 in the theorem can al-
ways be satisfied. As seen above, in the general case
det H(z) = Cz?**1. One can always get the determinant
equal to one by scaling and an odd shift in time. There-
fore the result is stated with det H(z) = 1 without loss of
generality.

The proof of this theorem is constructive. It gives
an algorithm for finding the Laurent polynomials
S$1(2),...,Sn(2), Ti(2),..., Tn(2) in the factorization. It
is important to note that the factorization is not unique.
Once we have a factorization, we can translate it into lift-
ing steps.

The advantage of the lifting approach, compared to the
filter approach, is that it is very easy to find perfect recon-
struction filters Hy, H;, Gy, and Gj. It is just a matter of
multiplying the lifting steps as in (43), and then assemble
the filters according to the Egs. (57)-(60). There can also
be algorithmic advantages in implementing a transform
using lifting steps, since it may result in fewer arithmetic
operations than a filter implementation.

This approach should be contrasted with the tradi-
tional signal analysis approach, where one tries to find (ap-
proximate numerical) solutions to the Egs. (51) and (52),
using for example spectral factorization. The weakness in
constructing a transform based solely on the lifting tech-
nique is that it is based entirely on considerations in the
time domain. Sometimes it is desirable to design filters
with certain properties in the frequency domain, and once
filters have been constructed in the frequency domain, we
can use the constructive proof of the theorem to derive
a lifting implementation.

We should mention that the numerical stability of
transforms designed using lifting can be difficult to ana-
lyze.

Examples of Lifting Steps in the Frequency Domain

We will now see how the Daubechies 4 transform looks in
the frequency domain, that is, what frequency response we
would get when passing a signal through the Daubechies
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Wavelets and the Lifting Scheme, Figure 17
Frequency response of the Daubechies 4 lifting steps

4 transform. First, we need to find H(z) by multiplying
the lifting steps originating in the Daubechies 4 Eqs. (13)
through (17). Each equation has an equivalent lifting step
matrix (41) or (42). The first of the Daubechies 4 equations

(1) 1[n] = sj[2n] + x/_s] [2n + 1]

is an update step, and it simply multiplies the odd sam-
ple with +/3 and add the result to the even sample. In
the z-transform this is achieved by multiplying with

b V]

0 1

which makes this matrix the first transform step. The sec-
ond equation

di, [n] = sj2n+11=4 /352, [n] - (v/3-2)s), [n—1]
is a prediction step that uses the present value (index n)
and the first previous value (index n — 1) of the signal.
This is achieved in the z-transform by

1 0
L )

The third equation converts to z-transform similarly. The
two scaling Equation (16) and (17) are joined in one scal-
ing matrix

V3-1
/2

5 o

0

w/2 m

Now, the polyphase matrix H(z) can be written

& o n -
Ha = | [0 1]
2

e BT

3—/3 1+./3 1-4/3 3+4/3
_ 4ﬁz+ 4/2 4[ zZ+ 442
B IV R T S R PV S S
12 2 ? 42 42
_ [Hoo(z) H01(Z)]
Hyo(z) Hy(z)

Thus, from (57) and (58) it follows that the low and high
pass filter taps (in z-transform) are given by

Hy(z) = Hoo(2%) + zHo1 (2%)

1+v3 3+V3 3-V3, 1-43,
=4«/§ 4ﬁz+4ﬁz+4ﬁz,
Hi(z) = Hio(2%) + zH11(2%)

1-V3 , 3-V3 | 3+3 1443
WA Wz ez s

To determine the frequency response of these transfer
functions, we simply replace z with e/, which gives the
Fourier transform of the filter taps. We then plot | Hy(e/®)|
and |H;(e/?)| as function of @ to show the amplitude
characteristics of the transfer functions Hy(z) and H;(z)
on the unit circle in the complex plane. This plot is shown
in Fig. 16.



Wavelets and the Lifting Scheme

10027

Making Lifting Steps from Filters

There are basically three ways of representing the build-
ing block in a DWT: (1) The transform can be represented
by a pair of filters (usually low pass and high pass filters)
satisfying the perfect reconstruction conditions, or it can
be given as lifting steps, which are either given (2) in the
time domain as a set of equations, or (3) in the frequency
domain as a factored matrix of Laurent polynomials.

As an example the Daubechies 4 transform can be
given in these three forms, as shown below.

Equation form:

sWn] = S[2n] + V/3S[2n + 1], (62)
dV[n] = S[2n + 1] — lex/gs(l)[n]
—}L(\/——Q.)s(l)[n—l], (63)
sPn] = sV n] —dVn+1], (64)
) = % O], (65)
i Y341 )
d[n] = 7 d[n] (66)
Matrix form:
V31 0
1 -z
2
1 0[N /3
[_4_ 32 1] [0 ] ] - (67)

Filter form:

1
h_m[1+«/§, 3++/3, 3—+/3, 1-v/3], (68)

V3. =343, 3+43, —1-V3].

(69)

_Ll

The equation form was presented in (13) through (17).
Converting this to the matrix form has not been shown di-
rectly. However, using (41), (42), and (43) it is not difficult
to derive the matrices from the equations. It is not diffi-
cult either to obtain the filter taps h and g from the matrix
form. Simply multiply the matrix to get the polyphase ma-
trix (46), and the odd entries in h will be the coefficient
in Hyo(2), and the even entries the coefficients of Hy; (2).
Likewise, the odd and even entries of g is the coefficients
of Hyo(z) and Hy;(2).

Now, the hard part is to go in the other direction. Sup-
pose we have the filter taps and want to find the lifting
steps (in either time or frequency domain). That it is theo-
retical possible to obtain the lifting steps was made evident
with Theorem 1. Now we want to show how to actually ob-
tain the lifting steps.

The Euclidean Algorithm

The Euclidean algorithm is usually first presented as an al-
gorithm for finding the greatest common divisor of two
integers. But it can be applied to many other analogous
problems. One application is to finding the greatest com-
mon divisor of two Laurent polynomials. This turns out to
be the key step in factorizing a polyphase matrix.

Take two Laurent polynomials a(z) and b(z) # 0 with
|a(z)| > |b(z)|. Then there always exist a Laurent poly-
nomial g(z), the quotient, with |q(z)| = |a(z)| — |b(2)],
and a Laurent polynomial r(z), the remainder, with
|r(z)| < |b(z)], such that

a(z) = b(z)q(z) + r(z) . (70)

We use the notation q(z) = a(z)/b(z) as ‘division dis-
regarding the remainder’. Now, let ag(z) = a(z) and
bo(z) = b(z), and iterate the following steps starting from
n=20

an+1(2) = b,y (2) ,
bnt+1(2) = an(2) — gu+1(2)b,(2)

which in matrix form is

[an+1(2)] _ [0 1 ] [an(Z)]

by+1(2) 1 —qu+1(2)] | ba(2) ]’

where q,4+1(2) = a,(2)/b,(2z). Let N denote the smallest
integer with N < |b(z)| + 1, for which by(z) = 0. Then
an(z) is a greatest common divisor for a(z) and b(z). In

short, for two Laurent polynomials a(z) and b(z) with the
given constraints we have

- Al Ll
0 - L1111 —g.(2) ] [ b(2) "

n=N
We note that there is no unique greatest common divisor
for a(z) and b(z), since if d(z) divides both a(z) and b(z),
and is of maximal degree, then «z" d(z) is also a divisor of
the same degree.

Note the order of the terms in this product, as given by
the limits in the product. Inverting the matrices and mov-
ing them to the other side, we get (products in reverse or-
der, as shown by the limits)

a(z)| _ a qn(z) 1|]an(2)
ol =" o) [37]

(71)
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Now, take a(z) = Hyy(z) and b(z) = Hy;(z) from the
polyphase matrix (46). We then get

Hyo(2) _ ﬁ qn(z) 1][K
Hoi(2) e 1 offo]"
The greatest common divisor ay(z) of Hoo(z) and Ho;(z)

is a constant. This is because of the determinant assump-
tion

(72)

Hoo(2)H11(2) — Ho1(2)Hio(2) = 1,
since an(z) divides the left hand side, it also divides the
right hand side. Thus, ay(z) = Kz¢. By shifting the in-
dices in the z-transform of Hy(z) with £ steps, the greatest

common divisor becomes a constant.
Observing that

qz) 1] [
1 o] |

and replacing

K with (K0
0 [0 K'|”

and letting M = [N/2], we can rewrite (72) to

|:H00(Z) H/IO(Z)]
Hoi1(z) Hj(2)

M
_ 1 q2n-1(2) 1 0][K o
- 1:11 [0 1 ] [qzn(z) 1] [0 K—I] ’

where these equations define H/,(z) and H},(z). If N is
odd, let g2p1(z) = 0. Transposing both sides yields

[Hoo(z) H01(Z)]
Hyy(2) Hy (2)

1
_|K 0 1 q2a(2) 1 0
-5 K—l]g[o e 1) 0

which is clearly resembles the factorization in Theorem 1,
which we are trying to achieve. All we need to do now is to
find out how H/(z) and H}, (2) are connected with Hyo(2)
and Hy;(z). By using the fact that both polyphase matrices
(46) and (73) must have determinant 1, it is possible to
show that

[ 1 0i| [HOO(Z) H01(Z)] _ [HOO(Z) H01(Z)]
—t(z) 1| |Hj(2) Hy(2) Hyo(z) Hu(z)
for

t(z) = Hiy(2)H11(2) — Hy,(2)Hio(2) - (74)

Consequently, we have the relation
H()](Z) _ K 0 1 0
Hu(2)| [0 K'|[-K*(2) 1
1
1 q2n(z)i||: 1 0]
, (75
n1=_[M [0 1 Qan—1(2) 1 (75)

which by a suitable re-indexing of the g polynomials (and
at the same time making K?t(z) one of them), determines
the S,,(z) and T,,(z) in Theorem 1.

[Hoo(z)
Hio(2)

Practical Implementation of the Euclidean Algorithm

We now have a step-by-step method for obtaining the lift-
ing steps from any filter. It goes as follows.

1. Find the z-transform Hy(z) of the low pass filter
taps h.

2. Determine Hyy(z) and Hy; (z) by means of (57).

3. Assign ag(z) = Hoo(z) and by(z) = Hoi(z), and let
n=20.

4. Determine the quotient ¢,41(2) = a,(2)/b,(2).
There may be multiple solutions to this step. Choose
one.

5. Determine the remainder as b, +; = a,(z) — gu+1(2)

b, (2).

6. Assign a,41(z) = b,(2).
7. Incrementn. If b, # 0, go to step 3.
8. Let K = ay(z). Determine Hj,(z) and Hj,(2) using

(73).

9. Find the z-transform H;(z) of g such that it is index-
shifted an odd number compared to Hy(z).

10. Determine H)((z) and H;(z) by means of (58).

11. Determine t(z) from (74).

12. Let T, (2) = qapn—1(2) forn =1,..., M.

13. Let Su(2) = qan(2) forn =1,..., M.

14. Let Ty41(2) = —K?t(2).

15. If K has non-zero power of z, you may discard this.
Alternatively, choosing the right z-transform in step 2
will give a “zero power’ K.

This procedure will provide all the ingredients for build-
ing the lifting step matrices. Note that this will always
give a prediction step as the first matrix, and as such
this procedure seems unable to generate lifting steps for,
say, Daubechies 4 which starts with an update step. How-
ever, in the polyphase representation prediction and up-
date steps are merely linear combinations of even and odd
samples applied to odd and even samples, and as such pre-
dictions and updates can be interchanged simply by an
odd shift of the z-transform of the signal.
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Factoring Daubechies 4 into Lifting Steps

We now give an example of creating lifting steps using the
algorithm presented in the previous section. The example
is factorization of Daubechies 4. This means that we show
how to get the matrix form (67) from the filter tap form
(68) and (69). We will follow the step-bystep method laid
out in the previous section.

The Daubechies 4 filter taps are given by

h_[1+ﬁ 3443 3—=43 1—J§]
Tla2 42 42 a2 ]

In the z-transform in step 1 we are free to choose a shift.
For instance, we could choose

(76)

Hy(z) = h[0] + h[1]z + h[2]2*> + h[3]Z>. (77)

We know that eventually this choice will provide a mono-
mial K that may or may not have zero power. As we will see
later, this choice does in fact lead to a real number K. Hy(z)
must be separated into even and odd indices. This hap-
pens in step 2. Combining this with assignment to a(z)
and by(z) in step 3 we get

ao(z) = Hoo(z) = h[0] + h[2]z

C1+43  3-43

= + Wi z, (78)
bo(z) = Hoi(z) = h[1] + h[3]z

3443 1-43

42 + i 79)

Note that the concept of even and odd applies to the cho-
sen z-transform of the filters taps (77), not the filter tap
vector itself (76). Then step 4 is to find g;(z). Since ay(z)
and by(z) have the same degree, the quotient is a mono-
mial. Matching the z coefficients yields

z coefficient of ay(z) 3;}/; 3—-43
01(2) = z coefficient of by(z) T 1—4/3
42
_B-V3a+VY 23
1-V31++3) 2 '
The remainder is then
b1(2) = ao(z) — bo(2)q1(2)
_ (1 +3 n 3— ﬁz)
42 42
3+4V3 1-4/3
—( Wi + i z)-(—x/g)

1+V3+3V3+3 1443
4V2 V2o

thus completing step 5. In step 6 we assign

3+ﬁ+1—ﬁ
4«/5 4«/5 z.

In step 7 we increment n = 0 to n = 1, and since b; # 0
we repeat from step 4. This time the quotient has degree 1,
since b; (z) is one degree less than a;(z). More specifically,
q2(z) must be on the form ¢ + dz. Further, since the de-
gree of the remainder decreases, and |b;(z)| = 0, the re-
mainder must be zero this time. So

ai(z) = bo(z) =

1+ 43
b1(2)q2(2) = ﬁ[(c +dz) = ai(2)
_3+ﬁ+1—ﬁz
42 42
Thus,
R _34E
T 143 T4
1ﬁ3 4(1 4+ /3)
O TV R
T DV
H 4(1 + +/3)
Therefore,
3 3-2
qz(Z)=§+[4 z, by(z) =0,
1 3
a2(2) = bi(2) = Zf.

Now, this time in step 7 we have b,(z) = 0. Thus, we con-
tinue to step 8, assign

1++3
5
and use (73) to find H}, and H};.

K =

[Hoo(z) H01(Z)]
Hyy(2) Hy(2)

(K 0 1 q(2) 1 0
[0 KMo 1 [lai(z 1

el [ z—mé][ LY
3-1 -3 1
0 =L | Lo 1 V3
1443 | 3=/3_ 3443, 1-3
_ | 4v2 + 4ﬁz 442 + 4ﬁz
- 3—/3 J3-1
L V2 V2

(80)
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Now that we have H}, and H},, we need Hyo and Hy; in
order to determine #(z). First, we need the z-transform of
the high pass filter taps. The high pass filter g is the time re-
versed of g with alternating signs. From (76) we therefore
get

. — 1243 3=3 3443 1443
g_Hl_[ 42 42 42 42]'(81)
The z-transform of g must have the index shifted by 1 (or
some other odd number) compared to Hy(z). For instance,

Hi(z) = gl0]z 2 + g[1]z" + g[2] + g[3]z,  (82)

where g[3] = h[0] now is coefficient for an odd power,
whereas h[0] is coefficient for an even power in Hy(z).
Splitting this in even and odd coefficients (where even and
odd again relates to the z-transform), we get from (58) that

_ 1 _1-V3 ., 3443
Hyo(z) = g[0]z™" + g[2] = ™G z ™G

_ 1 3-V3 1443
Hii(z) = g[1]z7" + g[3] = WG z ™

thus completing step 11. We now insert these Hyo and Hy;
together with H}, and H}; from (80) into (74).

t(z) = H}y(2)H11(2) — H},(2)Hio(2)

:f—3(3—d§2_1 1+ﬁ>
NZI W) 4v2
_ﬁ—1(_1—ﬁz_1_3+ﬁ)
V2 4v2 4v2

= %((\/_— 3)B =3z + (V3-3)1+ V3)
+ (V3= D1 - VI + (V3 1D)G + V)

-1
%((—94—6«/——3)4—(—14—2«/_—3))
(V3-2z7",

which completes step 11. We can now determine the extra
matrix we need, as shown in (75),

—K*t(z) = —(1 + ﬁ)z(«/g— Dz t=z1.
V2

It is now possible to determine all the matrix lifting steps

that makes up the polyphase matrix, which is step 12, 13,

and 14. We have M = 1, so we get one S matrix and two T'

matrices.

Ti(2) = qi(z) = —/3

S1(2) = q2(2) = ? +

Ty(z) = —K?t(z) =z~ .

J3=2

4

z

Since K is a real number, we do not need to shift the pow-
ers of z (as mentioned in step 15), and we can now write
the complete factorization of the polyphase matrix H(z) as
shown in (61) from Theorem 1.

V3+1 0
1 0
H(z) = f V31 |:z_1 1i|

72
R [
0 -3 1]

But, this is fact not (67). The reason is that the presented
algorithm for finding the lifting steps always will start with
a prediction step, whereas the factorization in (67) starts
with an update step. So while H(z) in (67) indeed is equal
to H(z) above, the factorizations are not the same. This is
a consequence of the fact that the distinction of the lifting
matrices into update and prediction is useful for interpre-
tation of the transform results, but not necessary for the
implementation of the transform.

Actually, this is not the only ‘non-uniqueness feature’
of the wavelet transform. If instead of (77) and (82) we had
chosen

N

Hy(z) = h[0]z72 + h[1]z7% + h[2]z~' + K[3],
Hi(z) = gl0]lz" + g[1]2* + gl2]2° + g[3]Z*,

the even coeflicients from before are now odd, and vice
versa. That means that the relation between h and g
changes signs, so for instance, g[3] = —h[0] now, rather
than g[3] = h[0]. The resulting factorization becomes

_ a1 0
1 0
H(z) = Oﬁ VRS [22 1]
V2

1 _42—1_«/5522—2 1 0
0 1 V3z 1]’

There are more examples of factorizations in Jensen and
la Cour-Harbo [3] and in the original paper by Sweldens
and Daubechies [2].
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Glossary

Wavelets Wavelets are selected functions that generate

orthonormal bases of the square integrable function
space L2 (or more generally, frames of L? spaces) by us-
ing dilations and translations. The basis functions have
certain locality, such as compact support or fast decay
property. And they are usually organized according to
different scales or resolutions, which are called Multi-
Resolution Analysis (MRA). Fast wavelet transforms
are filtering procedures that compute the projection of
any given function onto a wavelet basis.

Digital images Digital images usually refer to n dimen-
sional data arrays recorded by optical or other imag-
ing devices, such as digital cameras, Radar, Computed
Tomography (CT), and Magnetic Resonance Imaging
(MRI). They can also be generated by computer graph-
ics software. Most digital images in the literature are
2- or 3-dimensional.

Image restoration Image restoration rebuilds high-qual-
ity images from given images that are corrupted or
polluted during acquisition or transmission processes.
The most commonly seen restoration tasks are denois-
ing and deblurring. Denoising is to remove random
perturbations to individual pixel values. Deblurring is
to remove the unwanted correlation between nearby
pixels and to recover the original clear images.

Image compression Compression  converts  images
from n dimensional data arrays into “0” and “1” bit
streams so that they can be stored or transmitted more
efficiently. There are two types of compression, lossy
and lossless, depending on whether information is per-
manently lost or recoverable, respectively. Many of the
commonly used compression algorithms, such as the
ones used by international image compression stan-
dards JPEG and JPEG2000, are transform-based com-
pression, which consists of three basic steps: transform
pixel values into frequency coeflicients, quantization
of the frequency coeflicients, and coding to convert
them into bit streams.

Image segmentation Segmentation partitions images
into subregions (segments), on which images share
similar features. Each region often corresponds to the
image of an individual object in the 3-dimensional
world.

Image inpainting Inpainting is an artistic word referring
to filling in missing image information on damaged
regions, e.g., scratches and damages in precious old
photos, old Hollywood films, and ancient paintings.
The objective of digital image inpainting is to fill in
the missing information automatically and meaning-
fully.

Definition of the Subject

Explosive information has dominated nearly all aspects
of modern society, science and technology. Visualization
is one of the most direct and preferable ways to observe
information carried by data, which are often massive in
size and uncertain in data quality. To better reveal the in-
formation, especially when it is hidden, implicit, or cor-
rupted, data must first be properly processed. In achiev-
ing this, image processing, which includes many differ-
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ent tasks such as compression, restoration, inpainting,
segmentation, pattern recognition and registration, has
played a critical role. Historically, it has been viewed as
a branch of signal processing, and many classical meth-
ods are adopted from traditional Fourier-based signal pro-
cessing algorithms. In the past couple of decades, numer-
ous new competing methods have emerged. Among them,
wavelets, variational and PDE techniques, and stochas-
tic methods have demonstrated outstanding performance
due to their special properties. For instance, wavelets have
become the dominant tool in image processing because of
their multiresolution structure, energy concentration abil-
ity and fast transform algorithms. The popularity of vari-
ational PDE techniques is driven by their extraordinary
properties in understanding and manipulating geometri-
cal features. These new techniques have contributed to
new observations, understandings, and discoveries in sci-
ence and technology. Furthermore, many of these meth-
ods have been successfully applied to applications in the
fields of medical, physical sciences, engineering, and even
everyday life.

Introduction

Digital image processing analyzes or extracts certain infor-
mation from digital images, which are often viewed as 2-
or multi-dimensional data sets in mathematics. Each ele-
ment in the data sets is called a pixel. Typical image pro-
cessing tasks include segmentation, restoration, pattern
recognition, analysis, compression, registration and mo-
tion detection [41,46]. Image processing has a wide range
of applications including communication, computer vi-
sion, acoustics, satellite imaging, medical and industrial
diagnosis and many more.

Image processing tasks often require large-scale com-
putations, mainly due to the large amount of data to be
processed. A typical gray scale still image with moderate
resolution, such as 1024 x 1024, has over a million pix-
els. The size of a color image is three times as large given
the same resolution. A video sequence usually consists of
over 24 color frames per second with each frame being
a still image. A multi-spectral image contains a collection
of several (usually more than 3) monochrome images of
the same scene, each of which is taken with a different
wavelength by a different sensor. In addition, many appli-
cations, such as airport screening and unmanned vehicle
navigation, require real time response. All of these demand
efficient and reliable algorithms.

Traditional image processing methods are mainly
based on Fourier/wavelets or statistical approaches. The
best example is the current international image compres-

sion standards, JPEG and JPEG2000, which are based on
discrete cosine transform (DCT) and wavelet transforms.
For this reason, more images are stored using their wavelet
coefficients. The tremendous success of wavelets in im-
age processing is due to their positive properties, including
multiresolution data structures, fast transform algorithms
and superb energy concentration ability, which allows one
to approximate functions (images) using only a relative
small number of coefficients.

Thousands of researchers have devoted their efforts
to the development of wavelet theory, analysis, and algo-
rithms in different applications. Groundbreaking contri-
butions include Meyer’s wavelet theory [53], Daubechies’
compact support orthogonal wavelets [33], Mallat’s mul-
tiresolution analysis [49,50], Shapiro’s progressive zero
tree image coding algorithm [63], and many other works
cited in books such as [28,34,44,51], and [64].

Roughly speaking, wavelet transforms can express any
square integrable functions by superpositions of wavelet
basis functions, which are generated by dilations and
translations from a few (if not a single) wavelet func-
tions. The summation coefficients are called wavelet co-
efficients, which are standard L? inner products between
wavelets and the given functions. Wavelet transforms are
realized by filtering procedures. Usually, wavelet coeffi-
cients are classified into two types: low or high frequencies.
Low frequency coeflicients correspond to certain kinds
of weighted local averages of the data values. High fre-
quency coefficients are related to certain order deriva-
tives. Therefore, high frequency coeflicients are small for
smooth functions and large for functions containing dis-
continuities.

In applications, it is inevitable that some of the wavelet
coeflicients, especially the high frequencies, are unavail-
able due to intentional or involuntary reasons. For in-
stance, in wavelet-based image compression, insignificant
(smaller in magnitude) high frequency coefhicients are dis-
carded on purpose to save more storage space. In lossy
channel communication, coeflicients are lost or damaged
during the transmission due to unwanted disturbances.
Obviously, with incomplete wavelet coefficients, one can-
not synthesize the exact original functions. Many prob-
lematic issues could arise as a result. One that has drawn
the most attention is the assertion that oscillations are gen-
erated near discontinuities. This is the famous Gibbs’ phe-
nomenon in mathematics and edge artifacts in image pro-
cessing.

Several directions have been taken to improve the per-
formance of wavelet based image processing methods by
reducing the Gibbs’ oscillations, and by better preserving
geometrical information in images. One strategy involves
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the use of nonlinear thresholding procedures to allocate
more storage resource to significant coefficients. Well-
known examples include translation invariant denoising
methods [31], wavelet hard thresholding, and wavelet
shrinkage (also called soft thresholding) [37].

Another strategy is to build new geometry friendly
wavelet-like multiresolution representations, such as
ridgelets [8], curvelets [9], beamlets [36], bandelets [57]
and many more recent developments. With geometry di-
rectly incorporated into the construction of multiresolu-
tion representations, it is expected that the decomposi-
tions have better performance near discontinuities.

The third direction is to modify the existing wavelet
transforms so that fewer large high frequency coefficients
are generated near discontinuities. Thus, less information
is truncated in the thresholding process. Many methods
have been proposed, such as Harten’s remarkable gen-
eral multiresolution framework [42] and its recent de-
velopments [2], the adaptive lifting scheme [30], and the
adaptive Essential Non-Oscillatory (ENO) wavelet trans-
forms [25,26]. Many recent contributions are collected
in [65].

In a different direction, PDE techniques for image
processing, pioneered by Mumford-Shah’s segmentation
functional [55], Rudin-Osher-Fatemi’s Total Variation
(TV) restoration [59], and Perona-Malik’s anisotropic dif-
fusion [58], have emerged more recently. Due to their out-
standing properties in handling geometrical information,
different variational PDE models and methods have been
proposed and studied for a variety of image processing
goals, such as affine scale space [62], fundamental equa-
tions for image processing [ 1], total variation image analy-
sis [16], active contour for segmentation [12,23], blind de-
convolution [24], image interpolation and inpainting [4,
5,18,20,52], restoration [17,19], and compression [27,38].
The field is significantly enriched, and many books have
been published in recent years (see [3,13,21,54,56,61,60]
and references therein).

Given the developments in both wavelets and PDE
techniques in image processing, it is natural to think of
combining their advantages to gain more benefits in the
applications, especially when geometrical features are im-
portant. Well designed wavelet PDE methods can retain
the good properties of wavelets, such as multiresolution
and fast algorithms. Meanwhile, they are able to use PDE
concepts, such as gradients, curvatures to capture, control
and manipulate the geometrical information to achieve
image processing goals in more systematic manners. There
are quite a few examples that have demonstrated the com-
bined advantages in different applications [10,15,27,29,
39,48].

In this paper, it is not our intention to give a com-
plete survey on either wavelets or PDE techniques in image
processing. Instead, we will focus on a recent trend that
combines them together. To be self-contained, we start
with a brief introduction to wavelets, and followed by PDE
techniques in image processing. We hope to use selected
topics based on our experience to help readers, especially
beginners, to know some basic models and a few com-
monly used methodologies on the subject. The rest of the
paper is arranged as follows. Section “Wavelets in Image
Processing” is a brief introduction to wavelets and their
applications in image processing. Section “PDE Tech-
niques” presents some well known PDE models in im-
age processing. In Sect. “Wavelet Based Variational PDE
Methods” we give some new developments of combining
wavelets and PDE techniques. A concise list of future di-
rections is stated in the end.

Wavelets in Image Processing

Historically, Fourier decompositions, which express any
given square integrable function by superpositions of si-
nusoidal functions, have been the major tool for image
processing due to their efficient representations and fast
Fourier transforms (FFT). This is particularly true for 1-D
signals, such as audio sequences. However, all Fourier
basis functions have global supports, which implies that
any local change in the given function has to result in
a global change in the representations. For this reason,
Fourier bases are not efficient to represent local informa-
tion, such as discontinuities. The well-known Gibbs’ phe-
nomena is an exhibition of this limitation. Unfortunately,
most salient features, such as edges and corners in images,
are local and discontinuous. Thus, all Fourier-based meth-
ods for image processing suffer from the ringing artifacts.

Facing this shortcoming, it is highly desirable to have
efficient representations which can better handle local in-
formation, especially discontinuities. Or more precisely,
the basis functions should have local support or fast de-
cay properties so that any local perturbation will only
cause changes in a small neighborhood but not to far away
places. To a certain extent, wavelets are designed to fill up
this expectation and have gained unsurpassed success in
many applications of image processing.

After several decades of intensive studies, wavelets
have been developed into a very rich mathematical the-
ory. There are many different types of wavelets such
as Meyer’s wavelets, spline wavelets, and bi-orthogonal
wavelets. Here, we present a very brief introduction based
on Daubechies’ compact supported wavelets and their
connections to compression and denoising.



10034

Wavelets and PDE Techniques in Image Processing, A Quick Tour of

1.4 2

1.2
15

1
0.8 1
0.6 0.5
0.4 0

0.2
-0.5

0
-0.2 -1
-04 -1.5

-2 -1 0 1 2 3 4 5 6 7 8
a

-2 -1 0 1 2 3 4 5 6 7 8
b

Wavelets and PDE Techniques in Image Processing, A Quick Tour of, Figure 1
a The scaling function for Daubechies-6 wavelet. b The corresponding wavelet

Wavelets

Wavelets can be viewed as orthonormal bases of the square
integrable function space L?(R). It starts with carefully se-
lected scaling function ¢(x) and corresponding wavelet
¥ (x) defined on finite support [0, I], where [ is a pos-
itive integer. We refer to [34] for the detailed selection
procedure for ¢(x) and v (x). Many commonly used soft-
ware such as MATLAB have built-in routines for the scal-
ing and wavelet functions already.

The functions ¢ (x) and v (x) satisfy the dilation equa-
tions (also called two-scale relations or refinement equa-
tions in some literature):

)
Px)=V2) cpx—s), )
s=0
and
1
Yx) =v2) hpx—s), 2)

s=0
where the ¢,’s and h;’s are constants, called low- and high-
pass filters, respectively. To give examples, the famous
Haar wavelet selects

1 xelo1)
Plx) = { 0 otherwise,
and
1 xe€]o, %)
px) =17 -1 x€[3.1)

0 otherwise,

which are step functions. We also plot the scaling and
wavelet functions of Daubechies-6 in Fig. 1.

Using dilation and translation, one can form families
of functions from ¢(x) and ¥ (x), as follows,

$ik(x) =22 p(Ix — k) | 3)

and

Vix(x) =23y (2Ix — k). @)

where (j, k) are integers. Then the collection of v/; (x)

form an orthonormal basis of L?(R). This means that for

any given function f(x) € L?(R), one has
fe) =Y < f). ¥jx(x) > ¥jilx) . (5)

Jok

where < -,- > denotes the standard L?(R) inner product
defined by

< F(x).g(x) >= /R F)g(x)dx .

There are many desirable properties for the scaling
functions and wavelets. Among them, locality and oscil-
lations are the most cited common features in all wavelets.
Literally speaking, they make wavelets behave like local-
ized small waves, which also explains the origination of the
name.

The locality, which often refers to compact support or
fast decay properties, enables wavelets to decompose or
approximate functions locally. This satisfies the desire of
many applications, particularly in image processing.

A good mathematical way to describe the oscillatory
nature of wavelets is to use their vanishing moment prop-
erty, which means

/W(x)xjdxzo, j=01,....p—1, (6)
where p is a positive integer. In this case, the wavelet 1/ (x)
is said to have p vanishing moments. The more vanishing
moments, the more oscillations in wavelets in general.
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Locality and oscillation together have been the main
driving engines for the success of wavelets in many appli-
cations.

Multi-Resolution Analysis

The success of wavelets also relies on their connection to
Multi-Resolution Analysis, introduced by Mallat [49,50].

Consider the subspace of L*(R) defined by the scaling
function ¢; . (x),

V; = span{j x(x). k € Z}

for every fixed j. The dilation Eq. (1) implies that the sub-
spaces form an ordered chain,

e C Vi CVCVi1 S Viga... JEZ,

which also satisfies

lim V; = L*(R), lim V; =0.

j—00 j—>—o00
Here, larger indexes j correspond to finer resolutions or
scales.

Similarly, one can define the subspaces generated by
wavelets 1/ x (x),

Wi = span{y; k(x), k € Z} .

The dilation Eq. (2) implies the following connection be-
tween W; and V;,

Vi=Vii® Wi, jeL. )

Therefore L*(R) can be decomposed into,

PR=V;@Yy W= > W,

> j==00

where ] is an arbitrary reference resolution level. Conse-
quently, f(x) € L*(R) can be decomposed into a multi-
resolution representation as,

fE) = apidri) + > Biavikx) . (8)
k

j>T.k

where o =< f(x), ¢jk(x) > is called a low frequency
(or scaling) coefficient, and B =< f(x), ¥ k(x) > is
a high frequency (or wavelet) coefficient. Without causing
confusion, we call them wavelet coefficients for simplicity
in this paper.

The decomposition (7) and the dilation Egs. (1), (2)
lead to the following filtering and down-sampling pro-
cedures to compute the coarser scale wavelet coefficients

from the finer scale coefficients,
1

Wik = Y Celljyakts - ©)
s=0
and
I
Bjx = Z hsotjyr,ok+s - (10)
s=0

These are the famous fast wavelet transforms.

Apparently, fast wavelet transforms involve only the
coeflicients and can be started if one knows the low fre-
quency coefficients {&j x} on a certain fine resolution I.
Then, it is natural to ask how to obtain {oj }. Theoret-
ically, {oy i} must be computed by < f(x), ¢y x(x) > ac-
cording to the definition. However, they are often replaced
by the point-wise values f(x;) in practice, even though
such an action is called a wavelet crime in [64]. The re-
placement makes sense when the function f(x) is smooth
and the resolution I is fine enough, because the low fre-
quency coefficients oy x, which are the weighted local av-
erages of f(x), are very close approximations to the point-
wise values.

The above described wavelet transforms are for 1-D
functions. Wavelet transforms for 2-D images are realized
by simple tensor product in practice. More precisely, 2-D
transforms are obtained by performing column-wise 1-D
transforms followed by row-wise 1-D transforms.

Wavelet Thresholding and Image Processing

The wavelet representations (8) provide a mechanism to
approximate functions in a multi-resolution fashion. For
instance, the jth scale (resolution) approximation is simply
defined as:

fix) =) ajrdjilx)
k

=Y bk + Y Bivix(x). (1)
k

J<i<j,k

This multi-resolution approximation satisfies a standard
error bound,

If(x) = )] < C272| fP 0,

where C is a constant independent of j. It is obvious that
the error is controlled by the vanishing moment p, the
norm of the pth derivative of f (x), and the resolution j. Bet-
ter approximations with more detailed information can be
easily obtained by adding more terms for the finer resolu-
tions. Many have argued that this convenient zoom-in and
zoom-out multi-resolution approximation is by far one of
the best mathematical models that mimic human percep-
tions.

(12)
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In addition to the multi-resolution structure, the suc-
cess of wavelet decomposition in image processing also de-
pends on the sparsity of the wavelet coefficients. Simple
integration by parts can show that high frequency wavelet
coefficients satisfy |B; x| = | fP)(x)|O(277P), which sug-
gests that the wavelet coeflicients are small if the func-
tion f(x) is smooth enough. For images containing many
smooth regions, such as most of the natural scenery im-
ages, it is easy to observe that a large number of the high
frequency coefficients are insignificant, and therefore can
be ignored in applications. Thresholdings are mathemati-
cal procedures that realize this observation.

Loosely speaking, thresholding is setting selected
wavelet coefficients to be zero. There are many different
types of thresholdings. In fact, the jth scale approximation
is one of them. It is constructed by ignoring all the scales
higher than the given resolution j. This is often called lin-
ear thresholding, because the procedure is linear. Other
nonlinear data dependent thresholdings, including com-
monly used hard and soft thresholdings, can achieve much
better performance in image processing.

The hard thresholding simply sets any wavelet coefhi-
cients whose magnitudes are smaller than a given toler-
ance € to be zero, i.e.

Bj.k

0 1B

1Bjkl > €

ok =
<e€.

A similar formula holds for the low frequency coefficients
too.

The soft wavelet thresholding is slightly different from
the hard thresholding. It is a shrinkage procedure. In ad-
dition to setting the coefficients whose magnitudes are
smaller than the tolerance to zero, it reduces the magni-

Observed

e

a b

Wavelet Hard Thresholding

tudes of other coeflicients by € as well,

;. _ )signBio(Bkl =€) |Bjx
,Bj,k 0 |,Bj,k

where the sign(-) is the signum function.

The selection of the threshold € has also been investi-
gated by many groups. Among many proposed strategies,
Donoho-Johnstone’s SQTWOLOG [37] and Stein’s unbi-
ased risk estimate have been widely used.

Thresholding procedures have accomplished remark-
able success in image processing, especially in compres-
sion. It is easy to understand that wavelet thresholdings
are useful in this application because one does not have to
store the coefficients that are zero. However, it is more sub-
tle in practical compression schemes. The problem is that
not only does one need to remember the non-zero wavelet
coefficients, but also their locations. The location informa-
tion may occupy more storage space than the coeflicients
if they are recorded in a naive way. Shapiro’s zero tree
scheme [63] introduces a tree structure for wavelet coef-
ficients based on their multiresolution property. A branch
of the tree can be represented by a single bit ‘0’ if all coef-
ficients in the branch are zero. This is used in conjunction
with thresholdings to achieve very efficient compression.
Many well known state-of-the-art compression methods,
such as Set Partitioning in Hierarchical Trees (SPIHT) [60]
and Group Test Wavelet (GTW) [45] compression algo-
rithms, are based on the zero tree idea.

Simple thresholdings also provide fast and effective
methods for noise removal. They have found many suc-
cessful applications in communications, military and med-
ical images. In Fig. 2, we display the denoising effects of
wavelet hard (b) and soft (c) thresholdings of a test image
with additive white noise (a).

> €

=€,

Wavelet Soft Thresholding

Wavelets and PDE Techniques in Image Processing, A Quick Tour of, Figure 2
a Test image corrupted by white noise. b Denoised image by hard thresholding. c Denoised image by soft thresholding
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From a mathematical point of view, the success of
thresholdings can be explained by their connections to op-
timizations. It has been shown that many thresholding re-
sults are optimal in a certain sense. In layman’s terms,
those thresholding results are best under certain criteria.
For example, let us assume that the hard thresholding re-
construction

fe) =" apidrix) + Y Biavjx(x)
k jik
has M nonzero wavelet coefficients. Then f (x) is the min-
imizer of the following optimization problem,

min || f — gll2, subjectto
g .
g has at most M nonzero wavelet coefficients .

This leads to the conclusion that the hard thresholding
gives the best M-term approximation in L?(R) among all
possible combinations.

In a more general setting as discussed in [15] and [67],
it is proved that the soft thresholding gives the minimizer
of the following optimization problem

mgin{||f — gl + 26||g||3}(L1)} ,

where B{(Ll) is a Besov space. And the linear threshold-
ing gives an approximate minimizer of the following opti-
mization problem,

min{[lf = gll> + 2€llglwn @} -

where W™ (L?) is a Sobolev space. We refer readers to [15]
for a detailed discussion.

PDE Techniques

Compared to wavelets, modern PDE techniques in im-
age processing have appeared more recently, even though
some traditional image processing methods can be in-
terpreted from PDE perspective. For instance, the clas-
sical Gaussian filter for image denoising is accomplished
by convolving the noisy image uy with the Gaussian ker-
nel (also called heat kernel in literature) G(x,t) = #
exp(—%;)s

u=G*uy= fuo(y)G(x —y. tdy. (13)
This denoised image u is actually the solution u(x, t) of the
following diffusion PDE,

ui(x,t) = DAu(x,t), u(x,0) = ug(x), (14)

where A is the Laplace operator, and D = 1/2 is diffusive
coeflicient.

Modern PDE techniques have drawn great attention
and reached remarkable success in the past two decades.

This is due to their extraordinary ability to handle geo-
metrical features, which are lacking in traditional statis-
tical or Fourier/wavelet based approaches. Two different
strategies are commonly used to design PDE techniques
for different image processing goals.

1. Construct PDE-based evolution processes and incorpo-
rate geometry in the equations.

2. Pose image processing tasks in variational framework
and derive corresponding Euler-Lagrange equations to
compute the minimizers.

In both strategies, image processing goals are achieved by
solving PDE’s. Next, we use a few well-known examples to
demonstrate these two strategies.

Anisotropic Diffusion for Denoising

Image denoising removes unwanted disturbances in im-
ages. Very often, those disturbances, such as white noise
and pepper-and-salt noise, are highly localized and oscil-
latory. This makes it harder to separate noise from edges,
which are also local and discontinuous. As an anti-os-
cillation procedure, diffusion is a natural selection for
denoising. As mentioned earlier, the classical Gaussian
filter for denoising is equivalent to the linear isotropic
diffusion (14). However, it has been observed in both ex-
perimental and theoretical studies that isotropic diffusion
unavoidably smears sharp edges, corners and other geo-
metrical features embedded in uy while filtering out noise.
This is because it treats all orientations identically and
never recognizes the presence of spatially coherent discon-
tinuities — edges. In addition, the larger the diffusive coef-
ficient D, the quicker the smoothing out.

To remedy this drawback, Perona-Malik [58] pro-
posed using anisotropic diffusion instead,

up = V- (D(x,u, Vu)Vu) . (15)
The diftusivity coefficient D is data dependent and must
sense the existence of edges, so that the PDE stops diffu-
sion across the discontinuities. For this purpose, it is de-
sirable to have D satisfying the following requirements,

D= large, when |Vu| is small on intra-regions, (16)
small, when |Vu] is large near edges .

Therefore, the evolution only smooths out the oscillations
away from edges but not across them . In [58], D is selected
as

D = g(|Vul*),
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where g is a smooth positive concave function satisfying
g(+00) = 0. For example, g can be taken as

[Vu|?

gVu)y =e 0%, or g(|Vu]?) =

1+ b|Vul?’
where 0 and b > 0 are constants.

In practice, the anisotropic diffusion (15) must face
a challenge on how to compute the coefficient D robustly.
This may be troublesome especially in the beginning of
the diffusion process when 1, contains highly oscillatory
noise, because |Vu| is large almost everywhere, so D is
small everywhere. Thus, the diffusion is not effective in
removing noise. To overcome this difficulty, the use of
a mollified image in g has been proposed in [14], which
takes the form as

ur = V- (g(|V(Gy * w)[)Vu),  u(x,0) = up(x),

where G, is again the Gaussian kernel.

Along the lines of anisotropic diffusion, much more
research has been done including the well known gen-
eral axiomatic scale-space theory in [1]. We refer readers
to [21,66] for more discussion.

Total Variation Image Denoising

A different viewpoint for denoising is to reduce the uncor-
related local oscillations in images. Mathematically speak-
ing, total variation (TV) is a quantity that measures os-
cillations in functions. It is intuitive that oscillatory noise
greatly increases the TV norm. Naturally, one can think
of denoising as reducing the total variations of images. In
fact, this observation leads to the famous TV model pro-
posed by Rudin-Osher-Fatemi [59],

min/ |Vu|dx subjectto ||u—uglz <o, (17)
u

where o is related to the noise level. The objective func-
tional is to reduce oscillations in the reconstruction, and
the constraint term is a fitting requirement. This optimiza-
tion problem can be read as to find the least oscillatory
image within a small ball of radius o centered at the noisy
image uo.

The model is often re-formulated as a non-constraint
minimization problem as

) A

min [ [Vulds + 51 = ol 1s)
where A > 0 is a Lagrange multiplier, which is the factor
that balances the competition between oscillations and fi-
delity. The smaller the A, the fewer details in the denoised
images. In extreme situations, the solution for (18) is a flat
constant when A is zero, or is the noisy image uy when A is
infinite.

The most outstanding advantage of TV denoising
model (18) is that it allows sharp edges to be preserved
in the reconstruction. This implies that TV model has the
ability to reduce small oscillations (noise) without penal-
izing the edges. This feature has been well understood in
the context of computational fluid dynamics (CFD), espe-
cially in shock capturing, where TV semi norm is inten-
sively used. In fact, the authors of [59] are also experts in
CFD, and it is no doubt that (17) is inspired by numerical
shock capturing.

Another attraction of TV denoising is its geometrical
properties. For functions with finite TV semi norms, this
can be seen clearly through an equivalent coarea formula,

+oo
/|Vu|dx 2/ f dsdy .
—o0 u=y}

Here the term f{u:y} is the length of the level set {u = y}.
The TV semi norm is obtained by integrating along all
level contours of {u = y} for all values of y. This suggests
that TV semi norm controls both the size of the jumps and
the geometry of the level sets.

The geometric connection of TV minimization is more
visible if we analyze the optimization (18) by calculus of
variation. The standard theory shows that the minimizer
must satisfy the following Euler-Lagrange equation,

—V-(&)—I—A(u—uo):O.

vl (19)

The first term, the functional derivative of TV semi norm,
is precisely the curvature of the image, which makes the
method more geometric friendly. For noisy pixels, the
jumps are isolated and their curvature is large. They will
be wiped out much quicker than the edges that are coher-
ent jumps with relatively smaller curvature.

The best known, but not necessarily the most efficient,
algorithm to solve (18) is the gradient descent method,
which introduces an artificial time to form an evolution
PDE,

ut=V-(Vu)—/\(u—u0).

Vul 20

Compared to (15), the gradient descent of TV minimiza-
tion (20) is also an anisotropic diffusion with a degener-
ate diffusive coefficient D = 1/|Vu|. And it satisfies the
anisotropic diffusion requirement (16). In particular, if an
edge is sharp, D will be zero and no diffusion is performed
across the edge. In practice, to prevent numerical blow-
up caused by |Vu| = 0 in the denominator, it is often re-
placed by v/|Vu|? + €, where € is a small positive number.
Actually, this replacement can be derived from variational
framework too.
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An interesting and natural question is why would one
want to use TV semi-norm in (18) instead off |Vu|?dx,
which is the famous Sobolev H; semi-norm in PDE’s.
In fact, a very similar calculation can show that the H;
minimization leads to exactly the isotropic diffusion (14),
which loses the geometrical properties.

Variational Models for Image Segmentation

The purpose of image segmentation is to divide an im-
age into regions within which the image has similar fea-
tures, such as intensity values, texture pattern, or belong-
ing to same objects. Segmentation is a crucial building
block for many high level image processing and vision
tasks such as object detection, recognition, and tracking.
Obviously, one image may produce different partitions be-
cause of different segmentation criteria. This non-unique-
ness nature, which is also true for many other image pro-
cessing tasks, makes the segmentation problem very chal-
lenging. There is extensive literature on the subject and
many methods have been proposed using different strate-
gies. For example, the celebrated intensity-edge mixture
model is statistic-based [40], while the widely-used active
contour (also called snake) model [47] uses variational
framework. We take the well-known Mumford-Shah seg-
mentation model [55] and Chan-Vese region-based ac-
tive contour model [23] as examples to demonstrate how
mathematical formulations and computational strategies
can contribute to segmentation.

The original Mumford-Shah segmentation model is
stated in a variational format,

|Vu|*dx
o\T

+ E[ (u—up)’dx, (21)
2 Jr

A
min)Ll/ ds + 22
r 2

where A1, A, and A3 are three constants, u is the partitions
with different segments. §2 is the region where the image
is defined and I" is the interior boundary separating dif-
ferent segments. The first term is the length of the inte-
rior boundary curves. The second term is isotropic dif-
fusion within each homogeneous region. Similar to the
TV minimization model (18), the third term is the fitting
term. From formulation (21), the segmentation is achieved
by balancing the competitive three terms. Different ratios
among A;, A,, and A3 give different partitions.

The Mumford-Shah model has many desirable prop-
erties and is very general. Many other known models can
be viewed as special cases of it. However, it also faces
serious computational challenges because the partition
boundary I" is unknown. And thus the first term involving

line integral along I" has no easy way to compute. To ease
the challenges, many other models are proposed for better
computation properties. Among them, Chan-Vese’s ac-
tive contour without edge model [23] has gained remark-
able success due to its simplicity and robustness.

Assume that C is a closed curve partitioning the seg-
ments. The model is designed to move C so that the fol-
lowing energy is minimized,

min A; - Length(I") + A, - Area(inside(I”))

+ A3 / (Llo — cl)zdx + 14/ (uo — Cz)zdx s
inside(I") outside(I")

(22)

where A1, A5, A3 and A4 are positive fixed parameters. This
model uses piecewise constant approximations inside and
outside the partition curves. If one picks A, = 0, (22) be-
comes the minimal partition model which is a special case
for (21).

The Chan-Vese model (22) can also be formulated in
alevel set framework, and it leads to a fast and robust com-
putation method, which sparkles a large amount of follow-
up researches in using level set-based active contour meth-
ods for segmentations in different applications.

PDE Method for Image Inpainting

Image inpainting, or its mathematical synonym image in-
terpolation, fills in missing or damaged image regions
based on known surrounding information. It is a very fun-
damental problem having numerous prior work in exis-
tence. It also shares common ground with many other
image processing tasks, such as image replacement, error
concealment, edge completion and image editing. Here we
only use 1) a third order nonlinear inpainting PDE by
Bertalmio et al. [6], 2) a variational inpainting model by
Chan-Shen [20], as two examples to illustrate how mod-
ern mathematics is used for this traditional labor-intensive
task, because image inpainting used to be done by hand.
Similar to segmentation, image inpainting is an in-
verse problem having possible multiple solutions. It is ob-
vious that when information is missing, different people
may have different ways to patch information to the re-
gions, and all of them may look reasonable. However, it
is commonly agreed that the inpainted regions must have
consistent geometrical features and texture patterns with
their surroundings. For this reason, many of the inpaint-
ing methods are based on geometrical interpolations or
extrapolations. One example is the remarkable third or-
der inpainting PDE introduced by Bertalmio et al. [6]. In
fact, the term image inpainting was first used by them, and
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the work has stimulated a wave of interest in inpainting
related problems.
The PDE is given as

ur = V(Au) - Vtu, (23)

where V- is the orthogonal gradient direction (isophote
direction as called in the original paper). The idea be-
hind (23) is a brilliant intuition of information transport
along broken level lines (isophotes). The PDE is solved
only inside the inpainting regions with proper boundary
conditions based on the gray values and isophote direc-
tions. It is discovered later that (23) actually connects to
the famous Navier-Stokes equations in CFD [5].

The Chan-Shen’s inpainting model tackles the prob-
lem from a different angle. It starts with a variational prin-
ciple inspired by TV restoration model [59],

A
min/ [Vu|dx + —/ (u — ug)*dx
u 0 2 _Q\D

where D is the inpainting region. Similar to (17),
a straightforward interpretation of this model is that the

(24)

minimizer u is the least oscillatory image that is close
enough to the given image uy outside the inpainting re-
gion. For the regions inside of D, the restored u has no
restriction except matching its surroundings in a least os-
cillatory fashion. This model can lead to a nonlinear data
dependent PDE similar to (19) and can be solved nu-
merically. The results are impressive and much follow-up
work has been performed to analyze the model and ex-
tend it to include more sophisticated measurements such
as Euler’s Elastica into consideration for better curve treat-
ments [18].

Wavelet Based Variational PDE Methods

As discussed in the previous sections, both wavelets and
PDE techniques have been used extensively in image pro-
cessing and achieved tremendous success in numerous ap-
plications. Their success is based on different properties
of both approaches. Wavelets have multi-resolution data
structure, energy concentration (sparsity) and fast algo-
rithms. PDE techniques are geometrically friendly and of-
ten tied to variational principles. A closer look at both
approaches can easily reveal that those properties do not
overlap, and one cannot be used to replace the other. In
a certain sense, they are complementary to each other, and
it seems natural to combine the advantages of both to gain
benefits. In fact, many research efforts have been put for-
ward in this direction.

There are two different strategies that have been ex-
plored to merge PDE techniques with wavelets,

(a) Use computational PDE skills to modify the standard
wavelet transforms to form new transforms having
better geometric properties.

(b) Design new wavelet-based variational models for dif-
ferent image processing tasks.

In this section, we will select a few examples to demon-
strate both strategies.

ENO-Wavelet Transforms

As mentioned earlier in Sect. “Wavelets in Image Process-
ing”, it is a well-known fact that Fourier-based algorithms
suffer Gibbs’ oscillations. Wavelets can remarkably reduce
the severity of oscillations due to their locality. But they
still exist unless one retains all discontinuity related co-
efficients, which is not practical in many applications. To
improve the image quality, one needs to reduce the oscil-
lations by lowering the threshold € in thresholding pro-
cedures. As a consequence, more coefficients, especially
edge-related ones, must be retained, which is why a ma-
jority of the storage is allocated to edge-related coefficients
in JPEG2000.

To further improve the performance and reduce the
ringing artifacts, it is desirable to design wavelet-like trans-
forms so that fewer significant high-frequency coeflicients
are generated. One way to achieve this goal is to incor-
porate geometrical features in the design of wavelet-like
basis (or redundant frame) functions so that discontinu-
ous functions can be more effectively represented. Many
efforts have been proposed, such as curvelets [9], beam-
lets [36], and bandelets [57] to name a few. A different ap-
proach is to reduce the wavelet filter length. This is based
on the fact that the larger the supports of wavelets, the
longer the filters, and the worse the Gibbs’ oscillations.
Then, one can adaptively use shorter wavelet filters near
the vicinities of edges. The adaptive lifting scheme pro-
posed in [30] employs this idea.

ENO-wavelet transforms approach the problem from
a different angle. It is inspired by the original Harten’s
multi-resolution framework [42], which has a profound
impact on many new methods in the field. ENO-wavelet
transforms borrow a key idea, the one-sided interpolation
strategy, from ENO schemes for shock capturing [43]. Dif-
ferent from the fore-mentioned methods, which adapt the
filters or basis functions to better fit the data, ENO-wavelet
transforms change the data near edge areas and feed them
into the same standard wavelet filters. The data is changed
in a special way so that the filters do not see the disconti-
nuities.

Let us imagine that we filter around a jump discon-
tinuity. A high-frequency coefficient is large if the high
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Wavelets and PDE Techniques in Image Processing, A Quick Tour of, Figure 3
a The comparison between 4-level ENO-Daubechies-6 (solid line) and standard Daubechies-6 (dash-dotted line) approximations.
b A zoom-in of the picture on the left near a discontinuity. Standard Daubechies-6 generates oscillations near discontinuities, but

the ENO-Daubechies-6 does not

pass filter is convolved with data across the jump. How-
ever, one can extend the data from both left and right
sides in smooth ways and feed the extended data to the
filters. Then the high-frequency coefficients are small as
the high pass filter only sees the smooth data on both
sides. Of course, one may immediately question the fact
that near the jump region, we have actually two differ-
ent pieces of data overlapping in the area. In fact, this is
a serious issue, in that it causes a double storage problem,
which means we have doubled the number of wavelet co-
efficients in the jump region. And this is directly against
the goals of many image processing tasks, especially im-
age compression. Fortunately, the problem can be avoided
by a strategy called coarse-level extrapolation, which ex-
tends the data in such ways that some of the jump-related
wavelet coefficients are predictable and do not need to be
memorized. And the storage can be reduced to the same
as that of standard wavelet transforms. We refer to [25]
for detailed ENO-wavelet transform algorithms. Here we
just point out the main ideas and some important results.

ENO-wavelet transforms can be used as functional re-
placements of standard wavelet transforms. Indeed, ENO-
wavelet transforms perform standard wavelet transforms
if no discontinuity is detected. ENO-wavelet transforms
retain the essential properties and advantages of standard
wavelet transforms, such as energy concentration, mul-
tiresolution framework and fast transform algorithms, all
without any edge artifacts. They also achieve uniform ap-
proximation accuracy up to the discontinuities. If fj(x) is
the jth resolution approximation to f(x) by using ENO-
wavelet transforms, then

Ifi(x) = fll < C27P || fP ()| o\ (25)

where I" is the set of discontinuous points. It is worth
noting that the error (12) for standard wavelet transforms
depends on the pth derivative of f(x) on the entire re-
gion £2, which is unbounded if the discontinuous set I” is
not empty. In contrast, the error for ENO-wavelet trans-
forms (25) depends on f P)(x) only on the domain £2 ex-
cluding I". This ensures that ENO-wavelet transforms per-
form uniformly accurate, regardless of the presence of dis-
continuities, which is probably the best result one may
expect. In Fig. 3, we show a comparison between ENO-
wavelets and standard wavelets.

Wavelet Based Minimal Energy Methods for Denoising

As discussed in Sect. “PDE Techniques”, anisotropic diffu-
sion and total variation minimization for image denoising
have a tremendous ability to extract image features, espe-
cially edges, for better image quality preservation. How-
ever, it is also commonly recognized that such PDE tech-
niques often post higher computational demands, because
numerical solutions for nonlinear PDE’s need to be com-
puted iteratively. To achieve reasonable solutions, many
iterations must be performed. This has been a major crit-
icism of PDE techniques, especially when one compares
them with wavelets, which have ultra fast filtering algo-
rithms.

To retain the capability in feature extraction while
eliminating the need of iterations for anisotropic diffusion,
there have been efforts to formulate geometric friendly en-
ergy minimizations in wavelet spaces so that the minimiz-
ers can be obtained directly from wavelet coefficients with-
out iterations. In fact, as discussed in Subsect. “Wavelet
Thresholding and Image Processing”, classical wavelet
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thresholdings, including linear, hard and soft threshold-
ings, have corresponding energy optimizations in certain
functional spaces. But those minimization problems are
not built to handle geometrical features. In [29], Chui-
Wang suggested a new geometrical energy minimization
in wavelet space given as

min E3(p. ) = 1Ei(p. ) + 516 — e (26)

where E;(p, ) is a selected internal energy which can be
expressed by the wavelet coefficients . The second term is
the standard L? fitting requirement. In their original paper,
a blended internal energy is chosen as

Ei(p. B) = Y _(p(mix(p)) + p(B})) .
ji.k

where m;(p) = (IB] [P + |} (|))"'?, and p(s) = [s|.
In (27), the notations 5%, " and B” are 2-D tensor prod-
uct wavelet coefficients along diagonal, horizontal and ver-
tical directions respectively. It is clear that the energy func-
tional is resolution, orientation and spatial dependent. In
this way, the energy functional can “see” the corners and
edges in wavelet spaces because those geometrical struc-
tures create correlated wavelet coefficients along diago-
nal, horizontal and vertical directions respectively. When
p = 2, the minimizers of (26) and (27) can be attained ex-
plicitly from the wavelet coefficients as

(27)

A
BT =B (1—7) : (28)
0y N
and
(B3 = sign(B))t (187~ M), - (29)

where (-)+ denotes the nonnegative value function.

Along this line, there has been a recent trend in
the computational harmonic analysis community to de-
sign data dependent nonlinear filters based on PDE tech-
niques, for example, the adaptive digital TV filter pre-
sented in [19]. More recently, Chui and collaborators have
proposed a new anisotropic filtering strategy based on
ideas of finding approximate solutions of anisotropic dif-
fusion equations discussed in Subsect. “Anisotropic Diffu-
sion for Denoising”. Their method realizes image denois-
ing by one sweep of nonlinear filtering.

Diffusion Wavelets

Diffusion wavelets has been proposed by Coifman and col-
laborators in [32]. It is a different way to generalize classi-
cal wavelets using PDE and geometry concepts. The goal
is to construct a multiresolution analysis framework on

general geometric structures, such as manifolds, graphs or
even discrete point sets, so that image processing tasks can
be performed for functions defined on these structures.

As discussed in Subsect. “Wavelets”, standard wavelet
multi-resolutions are based on dilation and translations.
However, this is often impossible for general data struc-
tures, especially when little geometric information is
known. To overcome this difficulty, diffusion wavelets use
dyadic powers of a diffusion operator T (with ||T| < 1),
such as the heat operator defined on the general data struc-
ture to create scales. The following two properties are cru-
cial for constructing diffusion wavelets. One is that the
spectral of high powers of T decay faster as the power gets
higher. Consequently, one can use a few leading eigen-
functions of T/ (j large) to approximate the range spaces
of T/ accurately.

The other property is that applying higher powers of T
to local functions, such as Dirac delta functions defined on
a point in a discrete data set produces smoother functions
with wider supports, because T is a diffusion process. After
a non-trivial process involving orthonormalization, which
we refer to [32] for details, one can construct a multi-reso-
lution analysis based on T?' (j € Z™T). Especially, once the
multi-resolution analysis is formed, T?' can be expressed
in a highly compressed format.

There are many potential applications, such as in data
mining and learning theory. Here, we pick the following
simple example to illustrate their usage. Let us consider
computing the inverse of Laplacian (I — T)™! applied to
an arbitrary vector f defined on a general data structure.
The operator (I — T)™! is a deblurring process commonly
seen in image restorations. It is well known that

+o00
(-1 f=> T'f.
k=1
Define

2K
Sk =y Tk,
k=1
then an approximation to (I — T)™! can be achieved by

K
K k
Sk+1f = Sk + T* Sx)f = 1_[(1+ T)f.
k=0
Since the powers T2 have been compressed in the multi-
resolution analysis and can be efficiently applied to f,
(I — T)™! f is computed efficiently.

TV Wavelet Inpainting

Wavelet inpainting, or more generally wavelet interpola-
tion, refers to the problem of filling in missing or dam-



Wavelets and PDE Techniques in Image Processing, A Quick Tour of

10043

aged wavelet coefficients due to lossy image transmis-
sion or communication. Obviously, the task is closely re-
lated to classical inpainting problems, as discussed in Sub-
sect. “PDE Method for Image Inpainting”, but also dif-
fers remarkably in that the inpainting regions are in the
wavelet domain.

Working in the wavelet domain, instead of the pixel
domain, changes the nature of the inpainting problem,
since damages to wavelet coeflicients can create correlated
damage patterns in the pixel domain. For instance, there
usually exists no corresponding regular geometric inpaint-
ing regions, which are however necessary for many PDE-
based inpainting models in pixel domains. Such lack of
spatial geometric regularity of inpainting regions also pro-
hibits many other existent inpainting techniques applied
to pixel domains. On the other hand, direct interpolation
in the wavelet domain is also problematic, because wavelet
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coefficients are constructed to be uncorrelated in the L?
sense and neighboring coefficients provide minimum in-
formation to the missing ones. In addition, degradation
in wavelet inpainting problems is often spatially inhomo-
geneous, which demands different treatments in different
regions.

A closer examination may find that all these new
challenges are actually caused by a simple fact: Damage
happens in the wavelet domain while human perception
prefers to see images with certain regularity in pixel do-
main. Therefore, it seems natural to create wavelet inpaint-
ing methods by filling in the coefficients in wavelet domain
while controlling the regularity in the pixel domain. TV
wavelet inpainting models presented in [22] exactly follow
this strategy.

Two different models have been proposed based on the
noise level in images. The first one is for noiseless images,
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Wavelets and PDE Techniques in Image Processing, A Quick Tour of, Figure 4
a Original synthetic image. b 50 % of the wavelet coefficients are randomly lost, including some low-frequency coefficients, which

results in large, damaged regions in the pixel domain. Notice that there are no well-defined inpainting regions in the pixel domain.
c Restored image by Model |, d Restored image by Model Il. They not only fill in missing regions properly, but also restore the sharp

edges and geometrical shapes
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in which the retained coefficients are considered to be cor-
rect and will not be alerted.

Model I:

min
Bjk:(j k)€l

F(u’z)zf |Veu(B, x)|dx
RZ

= TV(u(B,x)), (30)

where I is the inpainting index region in wavelet domain,
and u(f, x) has the wavelet transform:

u(B.x) =Y Bixvjx(x).
Jk
For noisy images, since every coefficient is also corrupted
by noise. Then one has to modify (denoise) them too.

Model II:

min F(u, z) :f [Viu(B, x)|dx
Bj.x R
+ > k(Bik —ajx) . (1)

(-k)

and the parameter A(j x) is zero if (j, k) € I; otherwise, it
equals a positive constant A.

Clearly, these two models are inspired by TV denois-
ing model for their exceptional ability of handling geome-
tries. Both models recover the wavelet coeflicients so that
the restored images are least oscillatory while matching the
known information. The key difference is that the argu-
ments are restricted to the inpainting regions I only for
Model I, so the dimension of unknowns is the number
of coefficients in I. While in Model II, the parameter A is
taken to be zero in the inpainting regions I in the wavelet
domain, in contrast to the standard denoising and com-
pression models, where A is usually taken to be a constant
everywhere. This difference essentially puts no constraint
on the missing wavelet coefficients so that they can change
freely. In Fig. 4, we show an example of wavelet inpainting
by the two models.

Compressive Sampling

Compressive sampling [7], also goes by the name com-
pressed sensing [35], is an emerging theory addressing
the sampling problem in image and signal processing. In
information theory, the classical Shannon-Nyquist sam-
pling theorem states that “Exact reconstruction of a con-
tinuous-time baseband signal from its samples is possible
if the signal is bandlimited and the sampling frequency is
greater than twice the signal bandwidth”. More precisely,
bandlimited signals refer to functions whose Fourier fre-

quencies are in a bounded interval. And the sampling the-
orem says that a bandlimited signal can be fully recon-
structed from its evenly spaced samples, provided that the
sampling rate must exceed twice the maximum frequency
in the bandlimited signal. This rate is often called Nyquist
rate.

Compressive sampling considers a different scenario.
In the simplest case, let us assume that a signal f(f) is
sparse in the frequency space or any other convenient
spaces. For instance, the signal consists of only a few
Fourier terms, i. e.

fy=>" et
j=1

where 7 is an integer much smaller than the signal reso-
lution N, {k;}’s are frequencies, and i the imaginary unit.
But the actual values of frequency k; are not known. Ob-
viously, f(#) is a bandlimited signal. Without loss of gen-
erality, we assume k,, is the highest frequency. Then Shan-
non-Nyquist sampling theory requires at least 2k, evenly
spaced observations to exactly reconstruct f(t). However,
since the value k,, is not known, the actual number of sam-
ples (resolution N) needed may be much higher than 2k,,.

Compressive sampling asks a different question: Can
one exactly recover a sparse signal f(f) using a small num-
ber of samples {f(¢;)}]" observed at randomly selected
time ¢ (j=1,...,m)? Here m may be much smaller
than N. Given the knowledge of sparsity, ideally one
can convert this problem into the following minimization
problem,

subjectto  (F*B)(t;) = f(t)),

where f is a vector containing the Fourier coeflicients of
the reconstructed signal, F is the Fourier matrix, and || - ||,
is the Iy norm of a discrete sequence, which is defined as
the number of nonzero elements. Then F* gives the in-
verse Fourier transform, and (F*f) is the reconstructed
signal. Jp minimization (32) finds the sparsest reconstruc-
tion (F* 8) among all possible functions that agree with the
observations f(t;).

However, [y minimization (32) is essentially a large

min [| Bz, . (32)

non-convex integer optimization problem, which is com-
putationally prohibitive. Then compressive sampling sug-
gests that it is still possible to exactly recover f(t) from the
samples { f(¢;)}{". The exact reconstruction is realized by
the following /; optimization,

subjectto  (F*B)(t;) = f(t)).

In other words, the compressive sampling achieves exact
recovery by finding the signal having the smallest ; norm

min [|B ], . (33)
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in frequency space among all signals matching the sample
values f(t;) at t;.

There are many reasons to select /; norm in the opti-
mization, including the remarkable mathematical insights
given in [11]. We do not intend to present their results
here. Instead, we list the following two reasons that are
more intuitive and may explain the essence of /; optimiza-
tion in sparse recovery.

1. I; norm exhibits interesting sparsity in many appli-
cations. In other words, I; minimization in frequency
space intends to drive more frequencies to zero.

2. I} norm has the least index p among all [, norms that
are convex.

The convex property ensures that (33) may be solved effi-
ciently by the standard convex optimization algorithms.

It is believed that compressive sampling may have
many implications. One of the most attractive potentials is
that it suggests the possibility of new data acquisition pro-
tocols that translate analog information into digital form
with fewer sensors than what was considered necessary.
There are many interesting studies on how to advance the
theory and applications, and even design new hardware to
realize the implications. We refer to [7] for more informa-
tion on the subject.

It is worth noting that even though TV wavelet in-
painting and compressive sampling are developed inde-
pendently, there is an interesting connection between
them. For instance, the derivative of a piecewise constant
image, Vu, can be viewed as sparse in the pixel space.
If one makes measurements in the wavelet space, then
Model I (30) is the /; minimization of the derivative in
the pixel space with constraints in the wavelet space, which
fits well in the framework of compressive sampling. In this
sense, they are complementary to each other, and can be
viewed as dual formulations.

Future Directions

Driven by rapidly developing imaging sciences and tech-
nologies, the last couple of decades have witnessed the
tremendous success of wavelets and PDE techniques in
mathematical image processing. Many researchers have
been working in the field, and exciting new developments
are constantly reported. However, compared to the even
faster growing demands, there still is a long way to go
to meet the ever-increasing expectations. The following is
just a very short list of directions that are being or shall be
pursued in the near future.

(1) Developing more sophisticated models, methods to
better preserve features for images, or general data sets

in higher dimensions, such as video or hyper-spectral
images. Merging traditional wavelets and PDE tech-
niques seems to be a promising is direction. For ex-
ample, developing wavelets and PDE models for seg-
mentation is interesting. To our knowledge, it has not
been attempted yet.

(2) New applications in high-level vision, such as pat-
tern recognition, auto navigation and tracking, which
demands better understanding of the problems and
more accurate extraction of the connections among
data sets.

(3) Robust and efficient implementation strategies to
compute the solutions of mathematical image pro-
cessing models, especially those involving solutions of
nonlinear PDE’s.

The list is based on the authors’ experience and reflects our
own perspective. Certainly it does not cover all aspects of
this large field. Interested readers are encouraged to read
up-to-date literature to follow the latest advancements on
the subject.
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Glossary

Subduction zone earthquake cycle Megathrust fault, the

interface between the two converging lithospheric

plates at a subduction zone, moves in a stick-slip fash-
ion. In the “stick” phase, the fault is locked or slips very
slowly, allowing elastic strain energy to be accumu-
lated in both plates around the fault. Every few decades
or centuries, the fault breaks as high-rate “slip” to re-
lease the strain energy, causing a large or great earth-
quake, usually accompanied with a tsunami. An inter-
seismic period and the ensuing earthquake together is
called a subduction zone earthquake cycle. The word
cycle by no means implies periodicity. Neighboring
segments of the same subduction zone may exhibit dif-
ferent temporal patterns of earthquake cycles.

Accretionary wedge (prism) At some subduction zones,

as one plate subducts beneath the other, some sedi-
ment is scraped off the incoming plate and accreted
to the leading edge of the upper plate. Because of its
wedge shape, the accreted sedimentary body is called
the accretionary wedge (or accretionary prism). If all
the sediment on the incoming plate is subducted, there
is still a sedimentary wedge in the frontal part of the
upper plate, but it is usually very small and consists of
sediments derived from the upper plate by surface ero-
sion.

Coulomb plasticity Coulomb plasticity is a macroscopic,

continuum description of the most common type of
permanent deformation of Earth materials such as
sand, soil, and rock at relatively low temperature and
pressure and is widely used in civil engineering and
Earth science. In detail, the deformation mechanism is
actually brittle shear failure, with or without emitting
elastic wave energy. The macroscopic yield criterion is
the Coulomb’s law, in which shear strength increases
linearly with confining pressure. If the strength does
not change with permanent deformation, the material
is said to be perfectly plastic. Note that in Earth science
the word plasticity is also used to indicate thermally ac-
tivated creep, but it is very different from the meaning
used herein.

Velocity-weakening and strengthening These are mac-

roscopic descriptions of dynamic frictional behavior of
contact surfaces. Velocity-weakening, featuring a net
decrease in frictional strength with increasing slip rate,
is the necessary condition for a fault to produce earth-
quakes. It differs from slip-weakening in that a veloc-
ity-weakened fault will regain its strength when the slip
slows down or stops. Velocity-strengthening is the op-
posite of velocity-weakening and is the necessary con-
dition for a fault to resist earthquake rupture. Detailed
physical processes on the contact surfaces or within the
fault zones controlling their frictional behavior are still
being investigated.
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Definition of the Subject

Mechanics of wedge-shaped geological bodies such as ac-
cretionary prisms at subduction zones and fold-and-thrust
belts at collision zones is of great scientific interest, mainly
because it enables us to use the observed morphology
and deformation of the wedge-shaped bodies to constrain
properties of the thrust faults underlying them. Davis et
al. [12] drew analogy between these wedge-shaped bod-
ies and the sand wedge in front of a moving bulldozer
and established a mathematical model. Their work trig-
gered wide applications of wedge mechanics to geology.
The fundamental process described in wedge mechanics is
how gravitational force, in the presence of a sloping sur-
face, is balanced by basal stress and internal stress. The in-
ternal state of stress depends on the rheology of the wedge.
The most commonly assumed wedge rheology for geolog-
ical problems is perfect Coulomb plasticity [12], and the
model based on this rheology is referred to as the Coulomb
wedge model.

The Coulomb wedge model was designed to explain
geological processes of timescale of hundreds of thousands
of years. The state of stress is understood to be an aver-
age over time, and the wedge is assumed to be in a critical
state, that is, uniformly at the Coulomb yield stress. In the
application of the model to the sedimentary wedges at sub-
duction zones, attention is now being paid to the temporal
changes in stress and pore fluid pressure associated with
great subduction earthquakes which have recurrence in-
tervals of decades to centuries. To account for the short-
term stress changes, Wang and Hu [50] expanded the
Coulomb wedge model by introducing the elastic - per-
fectly Coulomb plastic rheology. The expanded Coulomb
wedge model links long-term geology with coseismic pro-
cesses and provides a new perspective for the study of
subduction zone earthquakes, tsunami generation, frontal
wedge structure, and forearc hydrogeology.

Introduction

Sloping surfaces are commonly dealt with in engineering
problems such as dam design and landslide hazard mitiga-
tion. In the presence of a sloping surface, materials under
gravitational force tend to “flow” downhill and thus gen-
erate tensile stress, but whether collapse actually occurs
depends on the strength of the material. Materials used
in construction can easily sustain stresses caused by the
presence of a vertical surface, but a material of no shear
strength such as stationary water cannot support any sur-
face slope. A geological wedge, such as the accretionary
prism at a subduction zone (see Fig. 1a), overlies a dip-
ping fault, and hence its internal stress is controlled by the

Hor Ay

Wedge Mechanics: Relation with Subduction Zone Earthquakes
and Tsunamis, Figure 1

a Schematic illustration of a subduction zone accretionary
wedge. b Coordinate system used in this article (x, y). The sur-
face of the wedge and the subduction fault are simplified to be
planar, with slope angle & and dip B, respectively, and the x axis
is aligned with the upper surface. ¥, is the angle between the
maximum compressive stress ¢ 1 and the upper surface. D is wa-
ter depth. p and p,, are densities of the wedge material and
overlying water, respectively. u, A, up and A, are as defined in
Egs. (2) and (3)

strength of the fault as well. If the basal fault is a thrust fault
and is strong relative to the strength of the wedge material,
the wedge can undergo compressive failure. Wedge me-
chanics thus consists of two aspects: the frictional behavior
of the basal fault and the deformation of the wedge itself.
Given a wedge with density p, surface slope angle ¢, and
basal dip B (see Fig. 1b), Elliot [16], Chapple [8], and later
workers all considered the following equations of force
balance (exact form varies between publications depend-
ing on the assumed coordinate systems)

do, 07y

a(jc aryy —pgsina =0, (1a)
0Ty N do, N —0 (1b)
™ 3y pgcosa =0,

where g is gravitational acceleration, o, and o, are normal
stresses, and 7y, is shear stress.

It was Davis et al. [12] who introduced Coulomb plas-
ticity into wedge mechanics. Coulomb plasticity was ini-
tially proposed by French engineer Coulomb in 1773 to
describe the mechanical strength of soil and sand. The
Coulomb failure criterion in its simplest form is

T=8—pulon +P)=S— ué,, (2)

where 7 is shear strength, 0, is normal stress, S is cohesion,
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and p = tan ¢ is the coefficient of internal friction with ¢
called the internal friction angle. P is the pressure of fluids
present in the pore space between solid grains and in var-
ious small fractures and is loosely referred to as the pore
fluid pressure. Note that the effective stress 6, = oy, + P
is normal stress with P subtracted. The plus sign is due
to the custom in mechanics (except rock mechanics) that
compressive stress is defined to be negative, but pressure,
although also compressive, is defined to be positive. Here
the plane on which the stress is evaluated is oriented in any
arbitrary direction, but failure will start on the set of planes
that meets the above criterion. This is a generalization of
the Coulomb friction criterion for a fixed fault plane

T = Sp — Ub(0n b + By) = Sp — (p0n b - (3)

where Sy, is the cohesion of the fault, iy, = tan @y, is its fric-
tion coefficient, and Py, is fluid pressure along the fault. S,
is usually negligibly small and almost always taken to be
zero, and [, is normally significantly lower than u. A well
developed fault such as a plate boundary fault is a zone of
finite thickness filled with gouge material, so that the “fric-
tion” described by (3) or other friction laws is actually the
shear deformation of the gouge in the fault zone, and Py,
is actually pore fluid pressure of the gouge. Fault gouge
is often made very weak by the presence of hydrous min-
erals [5,42], such that the collective strength of the fault
zone material is much less than the strength of the rocks
on both sides. Another process that may weaken the fault
is that the local hydrogeological regime may dynamically
maintain Py, in the fault zone to stay higher than P on both
sides [14]. For both Coulomb plasticity and Coulomb fric-
tion, strength increases with depth because of the increas-
ing pressure thus normal stress.

It has long been recognized that Coulomb plasticity,
featuring strong depth dependence, applies to the shal-
low part of Earth’s lithosphere. The most common ex-
ample is the use of Byerlee’s law of rock friction [6] to
describe brittle strength in “Christmas-tree”-like vertical
strength-depth profiles of the lithosphere. The Byerlee’s
law is an empirical Coulomb friction law. By assuming that
faults, i.e., potential failure planes, are oriented in all di-
rections, we regard the brittle part of the lithosphere as
being Coulomb plastic. This example also illustrates how
a system of numerous discrete structures can be regarded
as a continuum at a much larger scale. Similarly, although
a geological wedge actually consists of numerous blocks
divided by fractures, Coulomb plasticity can be used to de-
scribe its overall rheology. However, specific values of fric-
tion parameters for submarine wedges may be quite differ-
ent from those in the Byerlee’s law.

The Coulomb wedge model explains how the ge-

ometry (taper) of the wedge is controlled by the inter-
play between the gravitational force, the strength of the
wedge material, and the strength of the basal fault. The
wedge strength and fault strength are both strongly influ-
enced by pore fluid pressure, and the most popular ap-
plication of the model is to estimate pore fluid pressure
from observed wedge geometry. Since the work of Davis
et al. [12], more rigorous analytical solutions have been
derived [9,10,18,50,55], and some extensions have been
proposed, e.g., [2,3,17,54]. Lithospheric scale numerical
models are often used to study the evolution of geological
wedges including such effects as erosion and sedimenta-
tion in collision or subduction zone settings, e. g., [20,53].
Utilizing the bulldozer - sand wedge analogy, important
physical insights have been obtained from sandbox exper-
iments [7,11,29,30,31,35,41,52]. For a list of applications
of the Coulomb wedge model to subduction-zone accre-
tionary prisms, see [50].

Stable and Critical Coulomb Wedges

Depending on the state of stress, a Coulomb wedge can be
at a critical state, that is, everywhere at Coulomb failure,
or a stable (also referred to as supercritical) state, that is,
everywhere not at failure (see Fig. 2). The taper of a crit-
ical wedge will not change if the stress does not change;
note that a critical wedge of stable geometry should not be
confused with a stable wedge. Stress solutions have been
derived for both critical and stable states. Here we only
summarize the simplest, exact solution for a cohesionless
wedge (S = 0) derived in the coordinate system shown in
Fig. 1b, because of the convenience of its application as
compared to other solutions. The wedge is assumed to be
elastic — perfectly Coulomb plastic. If it is at the critical

1, = 0.066
; N
Compressively =

a stable state

u, = 0.076 7
: et
:/7{&_\

- .4{’}7\

Compressively
b critical state

Wedge Mechanics: Relation with Subduction Zone Earthquakes
and Tsunamis, Figure 2

An example to show how stresses in an elastic - perfectly
Coulomb-plastic wedge, with & =5°,8 = 4°, u = 0.6, and
A = 0.86, are affected by basal friction u.; = ip(1 — Ap). Con-
verging arrows represent principal stresses, with the larger one
being o 1. a Compressively stable state. b Compressively criti-
cal state. Dot-dashed lines are plastic slip lines (potential failure
planes)
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state, it obeys (2); if it is at the stable state, it obeys the
Hooke’s law of elasticity. The basal thrust fault obeys (3).
The wedge is assumed to be under water of density p,, and
depth D (a function of x; see Fig. 1b). By defining a Hub-
bert-Rubey fluid pressure ratio within the wedge [9]

pP— D
A= Pw& )
—0y — pwgD
and a similar parameter along the basal fault [51]
— D+ AH
Ap = B —pugD+ AH . (5a)
—O'y - ngD + H
where
0y —Op
H=22", 5b
— (5b)
and assuming S, = 0, we can rewrite (3) into
Tp = —pGn_b = —Hy 0n » (62)
where
1—Ap o
" b
= . 6b
My = T3 M =15 (6b)

The strength of the basal fault is represented by
My, = pp(1 — Ap) which always appears as a single param-
eter and is commonly referred to as the effective friction
coefficient. The hydrological process in the fault zone may

differ from that in the wedge and thus cause a sharp gradi-
ent in fluid pressure across the wedge base. By allowing Ay,
to be different from A, we use a pressure discontinuity to
approximate the sharp gradient. Because stress is continu-
ous across the basal fault, the discontinuity in pore fluid
pressure leads to a discontinuity in effective stress. The
second equality of Eq. (6a) shows the relation between the
effective stress along the fault (6, 1,) and the effective stress
just above the fault (6,). The establishment of (6) allows
the following exact stress solution to be derived. In this
expression, all stress components are normalized by pgy

(e.g., 6L = Gx/pgy).

';C =-m(l—A)cosa , (7a)
)/, =—(1—A)cosu , (7b)
r,/c), =(1—-p)sina, (7¢)

where p’ = py/p, and the effective stress ratio m = 6,/5,
depends on whether the wedge is stable or critical. If the
wedge is in a stable state (elastic) [50],

2(tana’ + !’ 2tana’
m=1+ — ( i) _2tana (8)
sin20(1— pf tanf)  tand
where § = a + B, and,
tano’ = 7 tana . 9)

Stress ratio m

u=06

0.00 0.05 0.10

a Basal traction

0.00 005
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Wedge Mechanics: Relation with Subduction Zone Earthquakes and Tsunamis, Figure 3

Effective stress ratio m (Eq. (7)) as a function of basal friction u{) = up(1 — Ap,) for wedges of the same basal dip (8 = 4°) but dif-
ferent surface slope angles (et) as labelled on the curves (solid lines). a and b are for two different pore fluid pressure ratio values
within the wedge. Each curve is terminated at the extensionally critical state at a lower u{) and the compressively critical state at
a higher [LL. The end points (connected by a dashed line) outline the stable region (white). No solution exists outside this region. The
solid circle marks the state in which the surface slope is at the angle of repose. It divides the line of critical states (dashed line) into
the compressive part (above) and extensional part (below). Open circles in b labelled A and B mark the states shown in Fig. 2a and b,
respectively. State A’ in (a) is for the same wedge with the same basal friction as state A in (b) except for a lower pore fluid pressure
ratio, and state B’ in (a) corresponds to state B in (b) in the same fashion. Comparison of B with B’ shows how an increase in pore

fluid pressure weakens the wedge
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The angle 1y between the most compressive stress o} and

the upper surface is uniform (see Fig. 1b). A more general

solution for a purely elastic wedge can be found in [23]. If

the wedge is in a critical state (perfectly plastic) [9]
2tana’

m=mc=l+ﬂ, (10)

tan 2v§

where V5 is the value of v in the critical state and is given

by the following relation

. 2y
sin ¢ sin 21/ (11)

—— 2 —tanco’ .

1 — sin @ cos 25
In the above expressions, superscript ¢ indicates critical
state. If the wedge has a cohesion that is proportional to
depth, (10) and (11) will be modified only slightly [50,55].

A wedge of fixed geometry has two m° values. The
lower one defines the extensionally critical state, in which
the wedge is on the verge of gravitational collapse. This
occurs if friction along the basal fault is very low relative
to the strength of the wedge material. The higher one de-
fines the compressively critical state, in which the wedge
is everywhere on the verge of thrust failure. If m lies be-
tween these two critical values, the wedge is in a stable
state and only experiences elastic deformation. A change
of basal friction j; will cause a change in m and thus may
potentially cause the wedge to switch between the stable
and critical states (see Fig. 3). An example of a wedge be-
ing in a stable or compressively critical state as controlled
by basal friction is shown in Fig. 2. The plastic slip lines
(potential failure planes) in the critical wedge (see Fig. 2b)
are reminiscent of the out-of-sequence faults in a real ac-
cretionary prism (see Fig. 1a).

If we fix the values of all material properties, the criti-
cal-wedge solution (m = m°) defines a relation between o
and B representing all possible geometries of a critically
tapered wedge (dashed line in Fig. 4). This is a very com-
monly used diagram, in which the lower branch of the
a — B curve represents compressively critical states, and
the upper branch represents extensionally critical states.
Combinations of « and B outside of the stability region
comprise unstable geometries and cannot exist in steady
state. If sedimentary wedges of subduction zones are com-
pressively critical, their observed o — 8 pairs should line
up with the lower branch. However, it has been shown that
most of them fall in the stable or even extensionally unsta-
ble region of this type of diagram [30,44]. To fit observa-
tions, we need to move the lower branch upward by a sig-
nificant amount. In order to do this, we need to assume
either a weaker wedge or a stronger basal fault, or both.
This is more simply illustrated by Fig. 3. Given wedge ge-
ometry and internal friction, if the state of the wedge is to
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Wedge Mechanics: Relation with Subduction Zone Earthquakes
and Tsunamis, Figure 4

Possible wedge geometry (& and ) given material strength and
basal friction. The dashed line indicates critical wedge geometry,
with the upper and lower branches representing extensionally
and compressively critical states, respectively. Contours of ¥¢
(in degrees) are shown in the stable region (white)

be changed from stable to compressively critical, we need
to have a higher friction (u{’) along the basal fault (i.e.,
greater stress coupling) and/or higher pore fluid pressure
within the wedge (i. e., greater A weakening the wedge ma-
terial by reducing effective pressure). Wang and Hu [50]
proposed that higher j{ and A can occur at the time of
a great earthquake and introduced the concept of dynamic
Coulomb wedge.

Dynamic Coulomb Wedge

The concept of dynamic Coulomb wedge is based on
the widely recognized frictional behavior of subduction
faults. Ignoring the presence of along-strike variations
of frictional properties, we can summarize the frictional
behavior in a simplified cross-section view (see Fig. 5).
The seismogenic zone exhibits velocity-weakening behav-
ior: It weakens in response to high-rate slip, resulting in
slip instability, that is, earthquakes. The segments updip
and downdip of the seismogenic zone exhibits velocity-
strengthening: They strengthen at the time of the earth-
quake to develop higher stress to resist rupture, but they
may slip aseismically after the earthquake to relieve the
high stress attained during the earthquake. We assume
that the actively deforming sedimentary wedge overlies the
updip segment (also see Fig. 1a).

Microscopic mechanisms for the velocity-weaken-
ing behavior of the seismogenic zone and the velocity-
strengthening behavior of the aseismic zones are subjects
of intense research. The aseismic behavior of the deeper
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Wedge Mechanics: Relation with Subduction Zone Earthquakes
and Tsunamis, Figure 5

Schematic illustration of the subduction zone model considered
in this work. Large arrows represent interseismic strain accumu-
lation. An earthquake is represented by a sudden decrease in the
effective friction coefficient u| of the seismogenic zone by Auj.
Coseismic strengthening of the updip and downdip zones is rep-
resented by a sudden increase in their uf) values

part of any fault is intuitively easy to comprehend; higher
temperature at greater depths increasingly enhances vis-
cous deformation and inhibits brittle faulting. There are
different physical explanations for the velocity-weakening
behavior of the seismogenic zone as summarized in [37].
The mechanism responsible for the velocity-strengthening
behavior of the updip segment is yet to be identified, al-
though it is widely accepted that the presence of clay min-
erals has something to do with it [24,33,34,45,46]. Labora-
tory experiments indicate that dilatancy of granular fault
zone material during fast slip can lead to velocity-strength-
ening [32]. We think part of the reason for the velocity-
strengthening behavior of the updip segment may be its
inability to localize into a very thin slip zone. Seismic rup-
ture occurs along very thin slip zones of a few millimeters
thickness that are parts of a thicker fault zone [40]. Fast
slip of the updip segment, if triggered by the rupture of
the deeper seismogenic zone, may tend to drag along fault
zone materials over a more distributed band and thus meet
greater resistance. This view is different from the veloc-
ity-strengthening process described by laboratory-derived
rate- and state-dependent friction laws [15,39] in which
dynamic changes in the thickness of the slip zone plays no
role.

Regardless of the microscopic mechanisms, the
downdip variation of the frictional behavior is expected
to bring direct consequences to wedge deformation. In an
earthquake, thrust motion of the seismogenic zone causes

the frontal wedge to be pushed from behind, and veloc-
ity-strengthening of the updip megathrust segment gives
rise to higher stress at its base. If the wedge is originally in
a stable state, the coseismic strengthening of the basal fault
may increase the m value in (7a) from subcritical to criti-
cal. After the earthquake, when the seismogenic zone has
returned to a locked state, the stress along the updip seg-
ment will relax. The decrease in 1] leads to a smaller m,
and therefore the frontal wedge returns to a stable state.

If we ignore the change in fluid pressure, the above
described process can be seen as the stress ratio m mov-
ing up-and-down along one of the solid lines in Fig. 3
in response to changes in j in earthquake cycles. Dur-
ing a big earthquake, it will hit the upper end of the line
(m°). The state of stress for a stable wedge before the
earthquake (m < m®) and that for a compressively critical
wedge during the earthquake (m = m°) are illustrated by
examples in Fig. 2a and b, respectively. Fluid pressure vari-
ation should not be ignored, however. For example, the
same basal friction as shown in Fig. 2b (also see point B in
Fig. 3b) will not drive the wedge to failure if the pore fluid
pressure is lower, as shown by point B’ in Fig. 3a.

During an earthquake, the sudden compression of the
frontal wedge will cause its internal pore fluid pressure to
increase, coseismically weakening the wedge material. By
comparing Fig. 3a and b, we can see that if the pore fluid
pressure ratio in the wedge is higher, the increase in basal
friction required to push the wedge into a critical state
can be smaller. We may envisage the following scenario.
The pore fluid pressure in a frontal wedge may decrease
to some degree over the interseismic period due to fluid
drainage through fractures and stress relaxation, and the
mechanical state of the wedge before an earthquake can
be represented by point A’ in Fig. 3a as opposed to point
A in Fig. 3b. An earthquake not only causes the basal fric-
tion to increase but also the pore fluid pressure within the
wedge to rise, such that the wedge enters a critical state
represented by point B in Fig. 3b. Therefore, the coseismic
strengthening of the basal fault and coseismic weakening
of the wedge both work toward bringing the wedge to fail-
ure.

All previous applications of the Coulomb wedge
model to subduction zones assume m = m°. The dynamic
Coulomb wedge model of [50] explains the meaning of
this long-term m*: At least as an end-member scenario,
it is the value of m briefly achieved in numerous large
earthquakes. The “average” basal stress that determines
the wedge geometry in long-term Coulomb wedge mod-
els is actually the peak stress achieved at the time of large
earthquakes. Thus, the common illustration of the peace-
ful scene of a bulldozer pushing a sand wedge in classical
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Wedge Mechanics: Relation with Subduction Zone Earthquakes
and Tsunamis, Figure 6

Cartoon illustrating the difference between the classical Cou-
lomb wedge model and the dynamic Cou lomb wedge model
for subduction zone accretionary prisms. In the classical wedge
model, m = m®. In the dynamic wedge model, m < m®in the in-
terseismic period but m = m¢ at the time of a large earthquake.
See Eqs. (7) and (10) for definition of m and m*¢

Coulomb wedge papers (see Fig. 6a) should be modified to
reflect the unpleasant reality of the world (see Fig. 6b).

Stress Drop and Increase
in a Subduction Earthquake

It is important to know the possible amount of stress in-
crease in the frontal wedge for a given earthquake. The in-
crease cannot be arbitrarily large; it is limited by the level
of the “push” on the wedge from behind during an earth-
quake. For this purpose, a numerical model of a larger
scale embracing the essential components of the subduc-
tion fault as shown in Fig. 5 must be considered, because
the stress interaction between the frontal wedge and the
material overlying the seismogenic zone cannot be han-
dled by the analytical Coulomb wedge solutions. For an
illustration, we consider the following model geometry,
representative of most subduction zones. The subduction
fault has a constant dip 8 = 4°. The frontal 50 km of the
upper plate has a surface slope @ = 5°, representing the
sedimentary wedge, and the rest of the upper plate has
a flat surface. We wish to focus on the process of stress
transfer from the seismogenic zone to the updip segment
during an earthquake, and a static, uniform, and purely
elastic model suffices. For simplicity, the effect of pore fluid
pressure change on deformation is neglected.

We use a 2D plane-strain finite element model
and simulate Coulomb friction along the fault using
the method of Lagrange-multiplier Domain Decomposi-
tion [48]. The model boundaries are set sufficiently far
away so that the model resembles a half-space. For numer-
ical stability, we invoke gravity (assuming a rock density of
2800 kg/m? only when determining yield stress along the
fault but exclude it from the deformation calculation. The
effect of gravity on coseismic elastic deformation is very
small and is neglected in most earthquake cycle deforma-
tion models, but gravity is important in the calculation of
frictional slip of the fault.

We first generate a pre-stress field by moving the re-
mote seaward and landward model boundaries toward
each other against a locked fault. At this stage of “inter-
seismic” strain accumulation, we use a u; of 0.04 for the
seismogenic and updip segments and 0.004 for the deeper
segment. The low strength of the subduction fault is based
on the weak fault argument as summarized in Wang and
Hu (2006). The nearly zero strength of the deeper part
represents a relaxed state after a long time of locking of
the seismogenic zone. However, the absolute strength of
the fault has no effect on our results. It is the incremental
change in fault strength (A ) at the time of the earth-
quake that is relevant. A negative A [ represents the net
effect of weakening, and a positive A represents the net
effect of strengthening. The velocity-dependent evolution
of Ay through time is not explicitly simulated.

Three examples are shown in Fig. 7. In all cases,
Apy, = —0.01 is assigned to the 150-km wide seismogenic
zone. This value is chosen to produce an average stress
drop of a few MPa (see Fig. 7a), typical of values observed
for great subduction earthquakes. The stress drop releases
elastic strain energy initially stored in the system, leading
to fault slip that represents an earthquake rupture. The
deepest segment is assigned a sufficiently large positive
A, so that it cannot slip. The examples differ in the A
values assumed for their 50 km wide updip segment, which
is the coseismic increase in basal friction in the dynamic
Coulomb wedge model.

Example 1 No trench-breaking rupture (solid line in
Fig. 7b). In this case, the strengthening of the updip seg-
ment is Aju; = 0.036. This particular value of Ay cre-
ates a situation in which the entire updip segment is at
failure but is just short of breaking the trench. This is the
minimum value of the A i of the updip segment required
to prevent trench-breaking rupture and is denoted Ay .
The value of Ay , depends on the product of the stress
drop and the area of the seismogenic zone, a quantity we
refer to as “force drop”. That is, if the upper edge of the
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Wedge Mechanics: Relation with Subduction Zone Earthquakes
and Tsunamis, Figure 7

Three examples of the stress transfer model. The examples differ
in the coseismic strength increase of the updip fault segment,
indicated in (b) as A/,L{). a Shear stress drop (or increase) along
the fault. b Slip distribution along the fault. ¢ Central portion of
the finite element mesh (thin lines). The “thick line” along the
plate interface is actually a group of very densely spaced ele-
ments. Thick gray lines indicate deformed fault and surface after
the earthquake (exaggerated by a factor of 2000)

seismogenic zone is fixed, increasing its downdip width or
stress drop gives the same result. For the same model ge-
ometry as used for this example, Ay , as a function of
force drop per unit strike length is shown in Fig. 8, assum-
ing the upper edge of the seismogenic zone is fixed. Using
a different model geometry or position of the seismogenic
zone upper edge will change the slope of this function.

Example 2 Trench-breaking rupture (dashed line in
Fig. 7b). Given the same force drop in the seismogenic
zone, if Ajuy of the updip segment is less than Apy , the
rupture will break the trench. Knowing whether coseismic
trench-breaking rupture exists or is common awaits future
seafloor monitoring observations. This example shows
that a trench-breaking rupture does not necessarily indi-
cate the updip segment exhibits velocity-weakening. Con-
ceivably, the slip of the velocity-strengthening updip seg-
ment may be slower than that of the seismogenic zone and
may not generate much seismic waves.

Example 3 Fully buried rupture (dotted line in Fig. 7b).
If Ajuy, of the updip segment is greater than Ay, rup-
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Wedge Mechanics: Relation with Subduction Zone Earthquakes
and Tsunamis, Figure 8

Minimum increase in Auf) of the updip megathrust segment
(denoted Aug ¢) required to prevent trench-breaking rupture
as a function of force drop along the seismogenic zone for the
model shown in Fig. 7¢, with the upper edge of the seismogenic
zone fixed at 50 km from the trench

ture may only extend into its lower part. For a very high
Apg, most of the segment does not slip at all, because
a tiny portion immediately updip of the seismogenic zone
is sufficient to stop the rupture. This is just the buried-rup-
ture scenario of the crack model commonly used in earth-
quake simulation [21]. Because most of the updip segment
is “protected” and does not experience coseismic stress
increase, this scenario is not applicable to the dynamic
Coulomb wedge model. A very large stress increase just
updip of the seismogenic zone is considered unrealistic.

These examples show the consequences of changes in
the strength of the basal fault of the frontal wedge result-
ing from the rupture of the seismogenic zone. Whether
the given strength increase Ay, can drive the wedge from
a stable state into a critical state depends on two factors.
First, it depends on the value of y; before the earthquake.
The value of 0.04 used in the above examples is only one of
the numerous possible values. If y is already near a crit-
ical value, that is, m in Fig. 3 for a given « is already
near m¢, a small increase will do. Conceivably, s before
an earthquake may be relatively high if the strengthened
state of the fault caused by the previous earthquake has not
fully relaxed. Second, given i, it depends on the strength
of the wedge material. A weaker wedge becomes critical
at a lower Ayuy. The average internal friction value 1 of
an actively deforming frontal prism is lower than the rest
of the lithosphere because of its low degree of consolida-
tion and high degree of fracturing. The pore fluid pressure
within it, represented by A in the Coulomb wedge model,
may increase due to coseismic compression of the prism,
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further weakening the wedge, as discussed in Sect. “Dy-
namic Coulomb Wedge”.

Tsunamigenic Coseismic Seafloor Deformation

To understand the process of tsunami generation by
a great subduction zone earthquake, we must know how
the seafloor deforms at the time of the earthquake. Despite
the dramatic worldwide improvement of geodetic, seismo-
logical, and oceanographic monitoring networks over the
past few decades, our knowledge of coseismic seafloor de-
formation (CSD) is surprisingly poor and is based almost
entirely on theoretical models. The problem is the rarity of
near-field observations. Except for seafloor pressure sen-
sor records at the time of the M8.2 Tokachi-oki earthquake
of 2003 [1] and continuous GPS measurements from is-
lands very near the Sumatra trench at the time of the M8.7
Nias-Simeulue earthquake of 2005 [4,22], most observa-
tions are made at sites too remotely located to resolve re-
liably CSD within about 100 km of the trench. The lack of
near-field CSD information causes severe nonuniqueness
in the inversion of tsunami, seismic, and geodetic data to
determine coseismic slip patterns of the shallow part of
the subduction fault, for which the only cure is to intro-
duce a priori constraints on the basis of theoretical mod-
els. Until the situation is improved by the establishment of
seafloor monitoring systems, we must continue to resort
to what we are able to deduce from these models.

The largest uncertainty in our knowledge of the pro-
cesses that control CSD is how coseismic slip along the
subduction fault varies in the downdip direction [21,49].
It may overshadow uncertainties in our knowledge of the
timescale of the deformation and the spatial variation of
mechanical properties of the rock medium. In compari-
son, along-strike variations of the coseismic slip, usually
described in terms of “asperities”, are much easier to deter-
mine using high-density terrestrial monitoring networks.
Theoretical models discussed above can help us under-
stand the downdip slip distribution. Using the same type
of model as shown in Fig. 5 and Fig. 7 but with a realis-
tic, curved fault, we illustrate how the frictional behavior
of the updip segment affects the CSD (see Fig. 9). The sim-
ulated earthquakes in the two shown examples have the
same “size”, quantified by the seismic moment - the prod-
uct of rigidity, slip area, and average slip, but they cause
very different CSD patterns.

Example 4 No trench-breaking rupture (solid line in
Fig. 9a). This model is similar to the first example in the
preceding section in that the updip segment is assumed to
strengthen by Ay ,, and the rupture is on the verge of
breaking the trench.
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Wedge Mechanics: Relation with Subduction Zone Earthquakes
and Tsunamis, Figure 9

Two examples showing how the frictional behavior of the up-
dip segment (see Fig. 5) affects CSD. In one example (solid line),
the segment strengthens by A[LL  and in the other example
(dashed line), the segment weakens and thus becomes part of
the seismogenic zone. The simulated earthquakes in both exam-
ples have the same seismic moment. a Surface uplift. b Stress
drop (or increase) along the fault. c Slip distribution along the
fault. d Central part of the finite element mesh (thin lines). The
two vertical “thick lines” at distances 50 km and 200 km brack-
eting the seismogenic zone of the model of no trench-breaking
rupture are actually groups of very densely spaced elements

Example 5 Full trench-breaking rupture (dashed line in
Fig. 9a). In this model, there is no velocity-strengthen-
ing updip segment, and the seismogenic zone extends to
the trench. The stress drop of the resultant much wider
seismogenic zone features a monotonic increase from the
trench.

The model of full trench-breaking rupture yields much
smaller vertical CSD than does the model of no trench-
breaking rupture. The reason is two-fold. First, without
a velocity-strengthening updip segment to resist rupture,
the maximum slip occurs in the most shallowly dipping
near-trench part of the fault where seafloor displacement
is predominantly horizontal. This effect would not be



10056

Wedge Mechanics: Relation with Subduction Zone Earthquakes and Tsunamis

obvious had a straight fault geometry been used in the
model. Second, without the resistance of an updip seg-
ment, the upper plate does not experience horizontal com-
pression and the resultant vertical expansion. If we rescale
the two models so that they have the same maximum
slip, the model of full trench-breaking rupture will have
a greater seismic moment but still a much lower verti-
cal CSD [49]. This result demonstrates the importance of
the frictional behavior of the shallowest fault segment in
affecting seafloor uplift. However, it addresses only one
aspect of tsunamigenic CSD. Many other factors con-
tribute to tsunami generation. For example, although the
full trench-breaking model yields very low vertical CSD,
its horizontal CSD may contribute to tsunami generation.
If the seafloor slopes at angle «, its horizontal motion D
in the slope direction should raise the seafloor by D tan «
relative to a fixed water column above, an effect addressed
by Tanioka and Satake [43]. The speed of the coseismic
slip is also an important factor in tsunami generation. In
some rare cases, the rupture is too low to generate much
seismic wave energy yet fast enough to generate rather
large tsunamis, giving rise to a class of earthquake called
tsunami earthquakes [27].

Elastic deformation of the ocean floor as discussed
above is the primary cause of tsunami generation during
subduction earthquakes, but inelastic deformation can be
locally important. For example, although the lower con-
tinental slope of active margins is on average the expres-
sion of a critically tapered Coulomb wedge, seafloor to-
pography at these margins is rugged at smaller scales due
to sedimentation, erosion, and deformation processes, and
where the local surface slope is sufficiently high earth-
quake shaking may trigger gravitational failure. Such sub-
marine “landslides” may have a locally significant effect
on tsunami generation. Another potentially important in-
elastic process is the coseismic activation of out-of-se-
quence thrust faults (splay faults) in the accretionary prism
(Fig. la). Splay faults are much more steeply dipping,
and their thrust motion will serve to “redirect” the low-
angle slip of the megathrust to a higher angle and thus
may greatly enhance local seafloor uplift and contribute
to tsunami generation [19,36]. As mentioned in the Intro-
duction, from the continuum perspective, such faulting is
a manifestation of Coulomb plasticity. At the local scale, it
is actually frictional sliding of a contact surface with elas-
tically deforming rocks on both sides. By comparison of
the splay faults schematically illustrated in Fig. 1a and the
potential failure planes of the critical wedge in Fig. 2b, we
can see that some of the splay faults are oriented optimally
for thrust failure if the frontal wedge is compressed during
a megathrust earthquake.

Future Directions

The connection between wedge mechanics and great
earthquakes and tsunamis at subduction zones is an
emerging new fleld of study. It leads to challenges in
both theoretical development and experimental design
and thus excellent research opportunities. We need better
constraints on how stresses along different downdip seg-
ments of the subduction fault evolve with time throughout
an earthquake cycle and how the evolution impacts wedge
and seafloor deformation. A number of outstanding ques-
tions are to be addressed: Can we constrain the updip limit
of the seismogenic zone using wedge morphology? What is
the timescale of stress relaxation along the updip segment
of the megathrust after an earthquake? Does the seismo-
genic zone stay locked in the interseismic period? How
does pore fluid pressure evolve in an earthquake cycle?
How is the transfer of material from the incoming plate
to the upper plate (accretion), from the subducted plate
to the upper plate (underplating), or from the upper plate
to the subducted plate (tectonic erosion) accomplished?
What determines the dominant mode of material trans-
fer? What does the spatial change in wedge morphology
tells us about changes in the mechanical state of the wedge
and the megathrust fault? These questions should be put in
the proper context of larger-scale processes such as the vis-
coelastic relaxation of the mantle following a megathrust
earthquake and the deformation of the subducting plate in
earthquake cycles [47].

Sandbox experiments designed to study wedge me-
chanics and dynamic friction experiments designed to
study fault mechanics are traditionally separate re-
search activities addressing processes of vastly different
timescales. The linkage between subduction earthquakes
and submarine wedge evolution suggests the need to com-
bine these experiments. Rapid motion used to simulate
earthquakes has begun to be introduced into sandbox ex-
periments [38].

The most promising type of field observation is con-
tinuous monitoring of deformation, such as strain and tilt,
and fluid pressure using submarine borehole and seafloor
observatories. Seafloor elevation change in response to
the 2003 Tokachi-oki, northeast Japan, earthquake (M8.2),
continuously recorded by two seafloor pressure sensors,
clearly indicated coseismic strengthening behavior of the
shallowest segment of the subduction fault [1]. Formation
fluid pressure changes detected at subsea borehole obser-
vatories at the Nankai Trough subduction zone, southwest
Japan, have been interpreted to indicate transient aseismic
motion of a part of the locked seismogenic zone and/or dy-
namics of the incoming plate [13]. A number of very-low-
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frequency earthquakes have been remotely detected within
the Nankai Trough accretionary prism using land-based
seismic networks [25], revealing the need for near-field ob-
servation using seafloor systems. Submarine monitoring
in conjunction with land-based monitoring at subduction
zones that are currently in different phases of earthquake
cycles will allow us to understand the evolution of fault and
wedge stresses during the interseismic period. In this re-
gard, cabled seafloor monitoring networks including bore-
hole observatories, being designed or implemented at dif-
ferent subduction zones [26,28] will surely yield valuable
data in the near future.
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Glossary

Graph A setof nodes (vertices) connected by links (edges,

arcs). In the Web graph, the nodes are webpages, and
the edges are the hyperlinks between them.

Indegree The number incoming edges to a node; in the

case of the Web, it is the number of webpages pointing
to a page.
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Outdegree The number of outgoing edges; in the case
of the Web, it is the number of webpages a webpage
points to.

Strongly connected component A set of webpages such
that any page can be reached from any other page by
following hyperlinks.

Weakly connected component A set of webpages such
that any page can be reached from any other page by
treating the hyperlinks as undirected.

URL A unique resource locator that corresponds to an
online information source.

Hypertext transfer protocol (HTTP) The communica-
tions protocol that allows web clients to communicate
with web servers.

Web server A program that responds to requests to for
web pages.

Webpage An information resource, identified by a URL,
that is usually but not necessarily in the HTML (Hy-
pertext Markup Language) format. A webpage may be
static, meaning that it is stored on the server as a docu-
ment, or dynamic, meaning that it is generated dynam-
ically at the point that it is requested by the browser,
using scripts and/or back-end databases.

Domain A name that identifies one or more IP addresses,
e.g. umich.edu.

Top level domain The suffix of the domain name, some-
times corresponding to the purpose of the website or

» o« »

the country of origin for the website, e. g. “edu”, “com”,
“gov”, “uk”, “cn”, etc.

Website A collection of webpages that is hosted on one or
more web servers and that share a common root URL,
e.g. “www.springer.com”.

Randomized network A network that preserves the de-
grees of each node relative to the original, but the edges

themselves are rewired.

Definition of the Subject

In the period of a few short years, the World Wide
Web has become the primary information source. Billions
of webpages, tied together by hyperlinks, constitute the
world’s largest publicly accessible store of data, and are ac-
cessed by hundreds of millions of people worldwide. Un-
derstanding how the webpages are connected to form the
Web graph is important for building comprehensive and
accurate information retrieval systems, as well as char-
acterizing real-world phenomena that are reflected in its
content and link structure.

Introduction

The Web is becoming the single most indispensable source

of information. A massive graph of billions of pages, the
Web is continuously growing and evolving. People use the
Web to do everything from reading the news, socializ-
ing, making purchases, paying their bills, watching videos,
playing games, and finding romance. Given how pervasive
the Web is in our daily lives, it is hard to believe that it is
a relatively recent invention.

The World Wide Web was invented by Tim Berners
Lee in 1990 at CERN in Geneva, Switzerland. Berners’ idea
was to combine hypertext - the linking of documents via
terms — with the internet, allowing users to navigate be-
tween documents that are distributed and accessible across
the globe. Starting with the first site created at CERN in
1991, the Web grew to 130 sites by 1993 [1]. By 1997 there
were around a million sites [1], and by 2006, they num-
bered 100 million, about half of them active [2].

Such massive growth is only possible through the dis-
tributed contribution by many individuals. Thus online
information is not contributed by a few vetted experts,
nor is access limited to a few individuals. Rather, almost
anyone can contribute to online content, especially with
the proliferation of easy-to-use web authoring tools. One
might expect then that there is a great deal of randomness
in how pages are linked to one another, and how users nav-
igate those links. Contrary to this, there are a number of
strong regularities both in the structure of the Web and the
pattern of access by its users. These regularities can be dis-
covered when one studies the graph structure of the Web.

Graph Structure

The Web is a graph. The webpages are the nodes or ver-
tices, and the hyperlinks are the directed links or edges be-
tween them. Characterizing the Web graph has lead to im-
proved crawling, sampling, and ranking algorithms. It has
also lead to novel insights about the underlying human dy-
namics that are reflected in the link patterns of the Web.

Empirical Measurements

Given the enormity of the Web graph, only a handful of
projects, WebBase [3] and WebGraph [4,5] among them,
have sought to gather comprehensive crawls gathering
hundreds of millions of the web’s hundreds of billions of
pages and have made them available to the research com-
munity. Early characterizations of the Web graph were
made from Web crawls made by commercial search en-
gines [6,7], and major search engine companies continue
to host a variety of research on the Web graph [8,9,10,11].

Degree Distributions One of the most striking features
of the Web graph that was discovered early on is the power
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law distribution of incoming hyperlinks. While billions of
webpages, comprising a substantial portion of the web, re-
ceive few or no hyperlinks, a few very popular pages have
attracted millions. More precisely, the distribution of in-
coming links is a power-law (also known as a Zipf’s law or
Pareto distribution) [12,13,14]

plk) ~ k™ 1)

The indegree distribution has shown remarkable con-
sistency across many different studies, having an ex-
ponent « of 2.1 [7,15]. The outdegree distribution has
a steeper power law exponent measured at o = 2.5 [15]
and o = 2.7 [7]. The steeper power law exponent corre-
sponds to a smaller variance in the number of hyperlinks
stemming from a web page as opposed to pointing to it;
while a very useful or informative webpage such as a ma-
jor search engine or news site can attract millions of hyper-
links, it is rather impractical, due to limitations in content
length, for a single webpage to contain a very large number
of hyperlinks.

Power law degree distributions have been shown to not
be preserved for some subsamples of the Web graph, how-
ever. Pennock et al. [16] found that for sets of company,
university, newspaper, and scientist homepages, distribu-
tions of inlinks deviated for power-laws, especially in the
number of pages of low degree. Intuitively, one might ex-
pect a university homepage, or a newspaper homepage to
attract atleast a few links, producing a peak in the distribu-
tion away from the minimum. This is in contrast to power
law distributions, which are scale-free, appearing the same
on all scales, e.g. 10 to 100 links or 100 to 1000 links, and
having no “typical” degree.

Much research has gone into deriving generative mod-
els that can produce the observed degree distributions. We
will return to this topic in Subsect. “Generative Models”.

Degree Correlations Degree correlation, also termed
assortativity, characterizes to what extent high degree
nodes link to other high degree nodes. In the case of the
Web graph, a question may be whether pages that re-
ceive many links, link to other pages with high indegree.
In an undirected version of the nd.edu webpage network,
the webpages were found to be mildly disassortative with
a correlation of —0.065 in the combined undirected de-
gree of vertices [17]. This webpage network, crawled in
1999, consists of 325,729 documents and 1,469,680 hy-
perlinks. We can resolve this correlation further by con-
sidering pairwise the in and outdegrees of both the page
that is giving the link, and the one that is being linked to.
Using the nd.edu domain data set, we find that there is
a slight negative correlation between both the indegree and

World Wide Web, Graph Structure, Table 1
Assortativity of webpages in the nd.edu domain

to
indegree | outdegree
indegree | —0.023 0.256
from
outdegree | —0.062 | —0.014

outdegree of the webpage containing the hyperlink and
the indegree of the page it is pointing to. This indicates
that there is a slight tendency of link-rich pages to link to
less link-rich pages and less popular pages, and link-poor
pages to link to link-rich and popular pages. Interestingly,
in this domain, there was a strong positive correlation be-
tween the indegree of the linking page and the outdegree
of the linked page. This may be an indication that the most
cited pages themselves link to link-rich pages and so serve
a funneling function. The above is summarized in Table 1.
The correlation between the pages’ own indegree and out-
degree was positive (p = 0.244), indicating that link rich
pages themselves tended to receive more links.

Connected Components and Bow-Tie Structure The
bow-tie structure describes the connectivity of the Web
graph as a whole [7]. The middle knot of the bow-tie is the
largest strongly connected component (LSCC). The com-
ponent is called strongly connected because within it, any
page can be reached from any other by following directed
links. The OUT component consists of those pages that
can be reached from the LSCC, but do not have paths lead-
ing into the LSCC. The IN component consist of those
pages that have paths leading into the LSCC, but are not
reachable from the LSCC. The remainder of the graph is
composed of tubes, tendrils, and islands. Tubes connect
the IN component to the OUT component, bypassing the
LSCC. Tendrils are those pages that can either be reached
from the IN component, or lead to the OUT component,
but are not in tubes or the LSCC itself. Islands are con-
nected components of vertices that are not connected via
any links to the other components.

Each of these four regions (LSCC, IN, OUT, and the
rest) of the Web’s bow-tie accounts for roughly a fourth of
the entire graph. This implies that if two pages A and B
are selected at random, there is only roughly a 1 in 4
chance that there is a directed chain of hyperlinks lead-
ing from A to B. The reasoning is the following: most of-
ten, if there is a path from A to B, A is either in the IN or
LSCC components, while B is in the LSCC or OUT com-
ponents. This is true in approximately 1/2 x 1/2 = 1/4 of
the cases. By comparison, about 90% of the webpages are
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in the largest connected component if the links are treated
as undirected.

The bow-tie structure was also observed to exist for
subsets of webpages corresponding to a given topic, so
that the web appears self-similar on several scales [18].
This structure has important implications for a crawler
attempting to traverse the web in its entirety. By starting
at a single webpage, the crawler will likely not be able to
reach significant portions of the Web graph by following
directed hyperlinks. Instead, it may adopt a strategy of dis-
covering web pages to start from by scanning IP addresses
to see if they are hosting a web server.

Shortest Paths and Diameter In modeling user behav-
ior and web crawler performance, it is useful to know not
just whether B is reachable via a directed path of hyper-
links from A, but how many hyperlinks must be traversed.
Albert et al. [19] found for the above mentioned nd.edu
domain crawl, that the average shortest path over all pairs
of vertices was 11.2. This closely matched the value of 11.6
predicted by their preferential attachment model, which
will be described in Subsect. “Preferential Attachment and
the BA Model”. The model produces an average shortest
path (d) of

(d) = 0.35 4 2.06 log(N) )

The model likewise provides a close prediction of 17.5 for
a graph of the size of the sample of 203 million nodes de-
scribed by Broder et al. [7]. The measured shortest path be-
tween the 24% of the pairs for this sample that were reach-
able was 16. As discussed in Subsect. “Connected Com-
ponents and Bow-Tie Structure”, the other three quarters
of the pairs of web pages have no directed path connect-
ing them, and hence their distance is infinite. On the other
hand, treating the graph as undirected produces an aver-
age shortest path of just 6 hops for the 90% of the webpages
that are connected.

Another quantity used to describe the width of the
Web is the diameter, the maximal shortest path between
any two connected vertices. Broder et al. [7] measured a di-
ameter of at least 28 in the central core and over 500 for
the graph as a whole, indicating that while most reachable
pairs can be connected in just a small number of hops, oth-
ers are far removed.

Reciprocity, Clustering and Motifs Reciprocity is sim-
ply a measure of how often when one webpage links to an-
other, that page links back. The measure should take into
account the expected number of reciprocated links based
simply on the link density @ = m/N/(N — 1), where N is

IN ouT

N

O

O
Q disconnected components

/

tubes

tendrils

World Wide Web, Graph Structure, Figure 1
A schematic of the bow-tie structure of the web

the number of nodes and m is the number of edges. An
unbiased form of the reciprocity measure is given by
p= mbd/ m - a (3)
1—a
where myq is the number of bidirectional links [20]. For
the crawl of pages in the nd.edu domain, p = 0.52 [19].
Clustering or transitivity quantifies how often web-
pages that are linked to a common page are linked to each
other as well. The measure, usually applied to an undi-
rected version of the network, is given by the following
equation.

_ 6 x number of triangles in the network

(4)

"~ number of connected triples of vertices

A 1998 Alexa crawl of 260,000 websites yielded a clustering
coefficient of 0.014 at the site level (0.11 using the Watts
Strogatz clustering coefficient [35]), significantly higher
than a randomized version of the network [6].

The clustering coefficient captures the degree of transi-
tivity in the graph, but does not reveal the configuration of
those triads. Triad motifs [21] shed further insight into the
local structure of the Web graph. There are 13 triad mo-
tifs, and together their abundance compared to random-
ized versions of the web graph constitute a triad signifi-
cance profile [22]. The significance profile SP is a normal-
ized vector

S — 5)
(X 2)

of z scores measuring the statistical significance of the

number n?"eb of observed motifs relative to the random-

ized counterparts of the network

nweb _ (Nyand)
=t 7
Zi= = ©)

01



10062

World Wide Web, Graph Structure

where (N fa“d) and Oi“‘“d are the mean and standard devia-
tion of the frequency of occurrence of motif i in random-
ized versions of the network.

The motif profile of Web graphs is like that of social
networks, with closed triads and reciprocated links more
frequent than motifs without closure and with unrecip-
rocated links. The most underexpressed profile is that of
a webpage that has reciprocated links with two other web-
pages, but those two webpages do not link to one another.
The most highly expressed motif is that of the fully recip-
rocated closed triad. The probability of such a triad oc-
curring in a random graph is very small, but it occurs
rather frequently in the Web graph where clusters of re-
lated pages link to one another reciprocally.

Time Evolution

The web is growing exponentially, with pages being con-
tinuously added, modified, and deleted. Addition and
deletion clearly affect which nodes are present in the
graph, while modifications in content [23,24] possibly
result in link addition and deletion. Cho and Garcia-
Molina [25] found that 30% of a sample of 720,000 pages
disappeared in an interval of a month. Douglis et al. [26]
studied 950,000 web page requests from a server, and
found that for pages that were accessed more than once,
60% had changed one or more of their hyperlinks. Making
the task of discovering new pages easier is the fact that 85—
95% of new pages appear on existing sites [27].

Web Surfing

An important aspect of the Web graph is how it is nav-
igated. Huberman et al. [28] discovered the Law of Web
Surfing, that describes the distribution in the number of
links a user will access on a particular website. This distri-
bution was found to hold for web surfing patterns of AOL
users across a million web sites, users accessing the Xerox
website, and students, faculty, and staft at Georgia Tech’s
College of Computing. The underlying process was argued
to be the following. The value V of the Lth page in a click
stream where L links were followed is assumed to be re-
lated to the previous page, but also to deviate from it in
a random way.

Vi=Vi1+ € (7)

where €1 is a normally distributed random variable. The
individual will continue to surf until the expected dis-
counted value of information to be found on future pages
is less than the cost (in time) of continuing. This maps to
an option pricing model in finance, and the distribution
of the number of links a user follows before the expected

utility of continuing falls below a threshold is given by

A —A(L — p)?
P(L) = T3 exp|: 2L ] (8)

with a mean number of clicks E(L) = u and variance
Var(L) = u®A, A being a scale parameter. This heavy
tailed distribution accurately describes users’ surfing be-
havior on the Web graph: many follow just a link or two,
while a few explore dozens or even hundreds of links in
a single session.

Crawling

The web is only partly navigated through following hy-
perlinks. Users jump from one part of the Web graph to
another by querying search engines and selecting one or
more pages that match their query. In order to deliver
web pages matching particular user queries, search engines
must first crawl the Web graph. Web crawlers have two
tasks: revisiting previously crawled pages in order to re-
fresh them and discovering new pages by following new
links. The crawler needs to prioritize both the order in
which it will crawl the new content and how often it will
recrawl pages it has previously crawled, in part to discover
links to new content [27].

Search Engine Coverage It is not possible for search en-
gines to crawl the entire Web. There are infinite websites
that will return valid and unique content for an infinite
number of URLs. Still, it is possible to explore the over-
lap in search engine coverage of the content that should be
covered by the search engines. In 1998 Lawrence and Giles
set out to estimate the size of the “indexable” web by issu-
ing queries to multiple search engines [29]. By measuring
the overlap in the search results and assuming that each
search engine samples the web independently, they esti-
mated the total size of the Web at that point to be at least
320 million pages, with no single search engine achieving
more than a third of the coverage.

Generative Models

Generative models help describe the underlying processes
that are shaping the Web, and therefore can be used to
make predictions about the future evolution of its prop-
erties.

Preferential Attachment and the BA Model The World
Wide Web inspired the Barabasi-Albert preferential at-
tachment model of network growth [15,30], that has since
been applied to networks in many other domains, includ-
ing biological, social, and technological. As discussed in
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A basic schematic of a crawler traversing webpages. As new pages are discovered, they are parsed, and their links added to the queue

of pages to be visited if they had not been seen before

Subsect. “Degree Distributions” Albert et al. observed that
the distribution of incoming hyperlinks for webpages was
highly skewed. They devised a very simple model of prefer-
ential attachment, which had previously been explored in
other networked and non-networked contexts [31,32,33],
wherein a new page is added at each timestep ¢, and at-
taches to m existing webpages, each with probability I7 (k;)
proportional to that page’s current degree k;.
ki
(k) = =— 9

(ki) >k )
An intuitive argument for why this is so is that the more
popular a web resource is, the more likely an author of
a new webpage is to learn about it in the course of brows-
ing and searching the Web, and the more likely she is to
cite it.

The links are treated as undirected, and the model
yields a scale-free indegree distribution with a power law
exponent « = 3, independent of m. While reproducing
some characteristics of the Web graph, such as a scale
free distribution and short average path lengths, the model
does not capture others. The power law exponent of 3 is
much higher than the consistently observed o = 2.1 for
the Web. Its clustering coefficient depends on the size of
the graph as N™%7%, and is much smaller than that of the
Web graph. It also predicts that the degree of each node
depends on its time of introduction i as follows

£\* 1
k,(t)=m(t—l) . ﬁ=§

However, there is only very weak correlation between the
age of a webpage or website on the web and its inde-
gree [34].

Extensions of the Barabasi-Albert model were pro-
posed to overcome its limitations. Rewiring of existing
edges with the endpoint being chosen preferentially pro-

(10)

duces power law disributions with cut-offs as well as ex-
ponents in the range 2 < o < co. Other models have in-
troduced aging factors, where webpages lose attractiveness
over time [36], which produced cutoffs in the power law
distributions. In the fitness model, webpages have a dif-
ferent inherent attractiveness 1; [37], with preferential at-
tachment combining this attractiveness with the degree k;
so that IT; ~ n; * k;. Interestingly, it was found that non-
linear preferrential attachment [38] where

(ki) ~ k" (11)

does not always produce power law degree distributions
when v # 1 [39].

Copying Models The basic preferential attachment
models do not explicitly explain why a new webpage would
link to existing webpages in proportion to their indegree.
Such models also do not capture features such as clus-
tering, since the only factor influencing the likelihood of
being linked to is the indegree of the page. In copying
models, both clustering and preferential attachment are
produced [40,41,42,43] as a result of links being copied,
without content being explicitly taken into account. New
pages are added over time, and each page selects an ex-
isting page, termed a prototype or ambassador page, and
copies several of the links on that page. The process leads
to preferential attachment, since the probability that any
given page is linked to is proportional to the probability
that it is the neighbor of the ambassador node, which is
in turn proportional to its indegree. In the case where the
new page links to the ambassador page in addition to copy-
ing some of its links, the process also produces clustering;
each copied link results in a closed triad: the new page ¢
links to the ambassador page a. a links to b, and ¢ copies
that link and also links to b. In the case where the new page
does not link to the ambassador page, the process produces
bi-cliques, sets of pages that link to a second set of pages.
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Kumar et al. [42] constructed a stochastic copying
model where new pages are created linearly or exponen-
tially in time. Each page has a fixed outdegree. With prob-
ability p;, the ith link will point to a webpage at random,
otherwise it will copy the ith link of the ambassador node.
In the case of linear addition of pages in time, the proba-
bility p(k, t) that a node has degree k at time ¢ is given by
a power law:

plk, 1) ~ tk~(Gpo/0=po) (12)
where the power-law exponent « of the degree distribution
is bounded from below by 2 in the case of pure copying,
and grows steeper as the proportion p, of random links
is increased. The model also produces a large number of
bipartite cliques, commensurate with empirically observed
proportions.

Related to the copying model is the forest fire model,
where the copying continues recursively to all nodes that
are encountered by following links [43]. The process is
analogous to a forest fire which spreads from tree to
tree. Two probabilities are assigned. With forward burn-
ing probability p, the outgoing links from page are copied.
With probability g incoming links are copied. This last
step models something akin to awebpage author searching
for other pages that link to the current page and deciding
to link to them as well.

1. As in the copying model, a new node chooses an am-
bassador node uniformly at random from the set of all
nodes

2. Two geometrically distributed random numbers, x
and y are generated with means p/(1 — p) and g/(1 — ¢q)
respectively. x out-links and y in-links are copied from
the current node (if x or y are greater than the total
number, all the links are copied).

3. Step 2 is applied recursively to each of the nodes the
new node now has links to. Cycles are disallowed.

Although the forest fire model is so far analytically in-
tractable, it has several properties that match the web.
Heavy-tailed indegree distributions occur because in
copying links from other nodes, new nodes are attaching
preferentially to existing nodes in proportion to their in-
degree. Heavy-tailed outdegree distributions are produced
by the cascading process of recursive link copying. Many
cascades will terminate already with the first node, but
some will continue for many steps. Community struc-
ture and clustering are produced, as in the basic stochastic
copying model, because the link copying leads to triadic
closure, as a new webpage links to a page and some of its
neighbors, and those neighbors’ neighbors, etc.

Content-Based Models The above generative models
have not explicitly modeled the textual content of the web-
pages. The intuition behind content-based or similarity-
driven models is that webpages will not only link to popu-
lar pages, but also to topically related webpages (or both).
Menczer [44] used a cosine similarity measure

Dk Wkpy Wkps

\/(Zk Wim) (Zk Wﬁpz)

where wy, is some weight function, typically, a TFIDF
(term frequency, inverse document frequency) weight for
the term k in page p. In 110,000 webpages sampled from
the Open Directory, Menczer found that lexical similar-
ity closely correlates with webpages being clustered (ei-
ther linking directly or overlapping in their neighbors).
He proposed a content based generative network model
to take into account that once two pages exceed a thresh-
old overlap (s > s*) in their content, their probability of
being linked levels off. Below that threshold, the proba-
bility decreases as a power-law, so that while neighboring
pages tend to be lexically similar, there is a long tail of lex-
ically distant pages that are neighbors in the Web graph.
As in the Barabasi-Albert model, at each time step t a new
page is added and links to m existing pages. But rather
than linking to any page in proportion to their degree, it
will only do so below a threshold lexical similarity. Above
that threshold the probability that a new page appearing at
time ¢ will link to an existing page i with degree k(i) will be
proportional to the lexical similarity:

(13)

s(p1,p2) =

&it)
Pr(P’ t) = o ([S(Phpt)]_l _ 1)—0!

if s(pi, pr) > s*
otherwise .

(14)

The model produces a degree distribution that deviates
from a pure powerlaw, but closely matches the sample
webpages from the Open Directory.

Algorithms
Ranking

Most search engines utilize the structure of the Web graph
to rank their search results. Some structural node prop-
erties, such as indegree, are purely local and utilize only
the nearest neighbors of the webpage. Others, such as
PageRank, utilize the entire graph, and yet converge within
a short number of iterations.

Indegree The simplestlink based ranking of webpages is
based on their indegree,

s(k) ~ k (15)
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where each inlink serves as a popularity vote. This mea-
sure is susceptible to spamming. One can create webpages
and websites with relative ease whose primary purpose is
to boost the ranking of a particular target page.

PageRank

The PageRank algorithm was developed by Larry Page,
one of the co-founders of the Google search engine [45].
PageRank is less susceptible to spamming because it takes
into account not just how many pages link to a particular
target page, but also how many pages link to those pages
etc. It does so by simulating a random walk on the Web
graph. This PageRank score represents the proportion of
time a random web surfer would spend at each webpage,
traversing the graph by following random links from a suc-
cession of web pages. Roughly speaking, PageRank corre-
sponds to the probability distribution given by the prin-
cipal eigenvector of the normalized webgraph adjacency
matrix. To prevent the random walk from being trapped
in a region of the graph (remember that only a fraction of
the pages is in the LSCC), a damping factor d (also termed
a teleportation probability) is introduced. With probabil-
ity d the surfer follows a random link from the page she
finds herself on. With probability (1 — d) the surfer jumps
to arandom node in the Web graph. Let A be the adjacency
matrix for a Web graph with n pages. Then the matrix B
corresponding to the Markov chain is given by

aj 1—-d
bij =d—2— + .
2 ij n
Rather than solving for the eigenvector exactly, one
can obtain a close approximation by applying a power iter-

ation technique, iteratively multiplying an initial vector x
by B

(16)

x = Bx. (17)

The convergence of the iterations depends on the ini-
tial vector and the damping factor, but is tractable even for
very large web crawls. The damping factor is typically set
to d = 0.85. For most applications, PageRank values are
precomputed for all the webpages at once, and are com-
bined with a textual match score to a user’s query and
other factors in determining the final ranking of webpages
on any given search engine result page. Although PageR-
ank is designed to take into account more than direct links,
studies have found it to be highly correlated with indegree
when applied to the Web graph [46].

Personalization of PageRank can be achieved by bias-
ing the random jump toward pages a particular user has
visited already, rather than all webpages uniformly at ran-

dom [47]. Since pages that link to one another are likely to
be topically similar, the personalized PageRank algorithm
will boost the scores of pages in the areas of the web the
user has previously explored, and hence bias the search re-
sults toward pages of topical interest to the user.

Application to Unbiased Sampling During a crawl, the
probability of encountering a link to a page is roughly pro-
portional to the PageRank of that page, since the Page-
Rank represents the random walk probability of finding
the page. Therefore crawling will produce a biased sam-
ple where popular pages are more likely to be included.
In order to create an unbiased sample, one can simply se-
lect pages in inverse proportion to their estimated PageR-
ank [48].

HITS

The HITS (Hypertext Inducted Topic Selection) algorithm
was developed by Jon Kleinberg, and starts with a smaller
subset of query results, rather than with the entire web
graph [49]. Instead of than assigning a webpage a single
score, as PageRank does, HITS assigns two scores, a hub
score y and authority score x. A good authority is a page
with authoritative information, and a good hub points to
good authorities. Hub may constitute good starting points
for a user to explore an information space, while authori-
ties are likely to contain definitive information.

In the first step of the HITS algorithm, an initial root
set of webpages (e. g. 200 pages) is retrieved based on a tex-
tual match. Some of these pages, containing text relevant,
though not necessarily authoritative, on the subject of the
query, can be expected to link to prominent authorities on
the subject, and some will be linked to by hubs. This root
set is therefore expanded to a base set that includes (up
to a cutoft of e.g. 1000-3000) pages linked to by the root
set and linking to the root set. At this point, links between
pages located on the same website are removed, as they are
likely to serve a navigational purpose and don’t necessarily
confer authority.

Much like the PageRank scores, hub scores x and au-
thority scores y can be computed iteratively, after being
initialized to uniform constants. For a page j, the value x;
is updated to be the sum of y; over all the pages i that link

toj.
2.

i such that i—j

x]- = (18)

Similarly, the hub score y; of a page i is updated according
to the authority scores x; of the pages it points to.

2

j such that i—j

yi= (19)
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Frequency of clicks on different search result positions in 20 mil-
lion queries issued by 600,000 users of the AOL search engine,
from March to May 2006 [50]

The above can be also be computed using a power iter-
ation technique, with the authority score x corresponding
to the principal eigenvector of ATA, while y corresponds
to the principal eigenvector of A A”, A being the adjacency
matrix of the base set:

x < ATy <« ATAx

y <« Ax < AATy .

Unlike PageRank, where the scores for all pages are
precomputed and subsequently used for all queries, HITS
is computed at query-time.

Search Engine Bias

Since most search engines utilize a link-based ranking al-
gorithm to order their search results, there is the possibil-
ity that they further bias web traffic toward already popular
sites on a given topic. As shown in Fig. 3, 90% of the search
results users click on are on the first page, with 43% being
the very top search result. In part the higher rate of click-
throughs for highly ranked results is due to users’ tendency
to scan content in order, but in part it is also due to search
engines’ ability to rank relevant content successfully. This
may inhibit newer, but high quality pages, or pages pre-
senting a different perspective, from receiving attention
from search engine users.

While search engines drive traffic to the most heav-
ily linked sites, the search engine users spread themselves
out much more widely by searching for a wide variety of
queries. In a 2005 study, Fortunato et al. [51] found that
a majority of queries to Google return less than 30,000 hits
(representing less than one millionth of the entire set of the
web crawled by Google at that time). Hence, while some
web pages have tens of thousands and even millions of in-
links, they do not grab all of the search engine users’ atten-
tion.

Finding Communities in the Web Graph

Webpages on similar topics naturally form densely con-
nected regions of the Web graph, termed communities.
Various algorithms have been developed to discover web
communities based on the link structure alone, without
considering the textual content or starting from a given
seed set. Kleinberg et al. [52] trawled for emerging cyber-
communities by identifying bipartite cores: sets of i pages
that all cite j authoritative pages. Of thousands of such
cores identified, the vast majority corresponded to groups
of related pages. This approach has been extended to find-
ing larger, but incomplete bipartite cores [53]. Communi-
ties can also be identified by performing the HITS expan-
sion step from a root set that is comprised of a core [54].

Flake et al. [55] used maximum-flow minimum-cut
algorithms to discover communities, the definition of
a community being such that any page within the com-
munity has more links within the community than outside
of it. The Web graph is augmented by creating an artifi-
cial source s with infinite capacity edges routed to all seed
vertices S for which one would like to find a community.
All preexisting edges are made bidirectional and rescaled
to a heuristically chosen constant k. A virtual sink is con-
nected to all vertices except the seed vertices and virtual
source. A maximum flow procedure is used to produce
a residual-flow graph (the graph of edges that have excess
capacity). All vertices that are accessible from s through
the residual graph satisfy the definition of community.

Many other network based clustering algorithms ex-
ist, some of which have been applied to subsets of the
Web. Some, based on the concept of modularity, divide the
network into communities so as to maximize the within-
community edges compared to what one would expect for
a random assignment of pages to communities. The mod-
ularity can be expressed as:

1 kik;
Q= > (Aij - %) 8(ci, cj)

)

(20)

where A is the adjacency matrix, m is the total number
of edges in the network, k; is the degree of vertex i and
¢; is the community i is assigned to. The modularity can be
maximized through a greedy hierarchical algorithm that
scales up to millions of nodes [56], a simulated annealing
approach [57], or by directly computing the eigenvectors
of the modularity matrix B

By = A, — 5N 1)
1y 1y 2m .
Beyond identifying topically related sets of pages, com-

munity finding algorithms may be applied to identify spam
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hosts and pages, since pages within so called link farms
tend to link to one another much more often than to legit-
imate sites [9,58].

Subsets of the Web Graph

The Web contains various interesting subgraphs, reflect-
ing different topics, and social and collaborative activity.
Here we discuss the graph properties of just a few of those
subsets.

Query Connection Graphs

Subraphs corresponding to search engine results for given
queries can be informative both regarding the quality of
the search results and the likelihood that a user will re-
formulate the query, making it more specific or more
general [59]. The process of constructing query connec-
tion graphs is shown in Fig. 4. A projection graph is con-
structed, consisting of the search results and the hyper-
links between them. A connection graph is constructed by
adding the minimum number of other webpages neces-
sary to reconnect the projection graph. One can also con-
struct the two graphs on the domain level, where a domain
encompasses all of e.g. “springer.com” or “umich.edu”,
and two domains share an edge if a page in one domain
links to a page in the other. As one might expect, domain
query projection graphs are much more densely linked
than projection graphs on individual webpages. A com-
plete domain graph of the web from February 2006 con-
tained 39 million domain names and 720 million directed
edges, with an average shortest path of 4 and the largest

Query Results Projection on the web graph

a
Query projection graph Query connection graph
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— ‘,- O
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World Wide Web, Graph Structure, Figure 4
The process of constructing a query connection graph. A search
engine is used to retrieve web pages relevant to the query. The
pages are projected onto the Web graph. The projection sub-
graph contains only the search results and the hyperlinks be-
tween them. The connection subgraph also includes the nodes
(webpages) that are minimally needed to reconnect the pages

C

weakly connected component containing 99% of the
nodes. Whether at the page or domain level, when com-
pared with human ratings of the quality of a set of pages
for a given query, the sets that had more tightly connected
projection graphs (and correspondingly smaller connec-
tion graphs) were good predictors of quality of the pages.

The success of a user’s search is only in part due
to the accuracy of the search engine ranking algorithm.
Another component is the skill of the user in formulat-
ing a query. By looking at the query subgraphs of issued
queries, one can predict whether a user will reformulate
a query. Queries with result sets that are more tightly knit
and contain a few central high degree nodes are less likely
to be reformulated. On the other hand, if a query projec-
tion graph lacks central, high degree nodes, the search en-
gine user is more likely to reformulate the query. However,
if the largest connected component constitutes e. g. 10 of
the top 20 search results, the query may be too specialized,
and the user is more likely to reformulate the query to be
more general.

Weblogs

A rapidly growing part of the Web are weblogs (blogs),
webpages containing time-stamped posts. Blogs are inter-
connected through direct links from one post to another,
which may occur when bloggers discuss the same topic.
Blogs also frequently include a sidebar of links to other
blogs and websites. Millions are used simply as personal
journals, but many specialize in particular topics, such as
politics or technology. Some blogs today attract as much
attention as mainstream media sites [60]. Kumar et al. [61]
studied the profiles of 1.3 million blogs on livejournal.com,
one of the most popular blogging sites. Livejournal gives
its bloggers the opportunity to specify other bloggers who
are their friends, basic demographic information, and to
join groups based on their interests. The network is highly
clustered, with a clustering coefficient of C = 0.2 (mean-
ing that 20% of the time friends of the same blogger are
friends themselves). This high clustering is consistent with
the observation that 70% of the connections correspond to
one of three factors: shared interest, same 5 year age group,
and geographic location.

The geographic location information of livejournal
users allowed for a very large scale study of the small world
phenomenon [62]. It had been known for decades, ever
since the 1960s, when Stanley Milgram conducted his fa-
mous small world experiment [63], that people are able to
form short chains of acquaintances to reach a target indi-
vidual using only information about their immediate net-
work neighbors. Subsequently, Kleinberg [64] proved that
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for certain spatial network topologies, individuals would
be able to use a simple greedy algorithm, choosing an ac-
quaintance closest to the target as the next person in the
chain, to connect to targets in a short number of steps.
This holds true for LiveJournal, where the probability of
two LiveJournal users being connected is inversely propor-
tional to the number of people who lived between them,
and this spatial distribution of connections allows for suc-
cessful formation of small world chains [62].

Blogs are continuously being updated and this tempo-
ral evolution is one of their most interesting aspects. Cita-
tions patterns between blogs change rapidly, even on the
scale of a few months [76]. Kumar et al. [65] found that
as blogging activity grew in popularity from 2002 to 2003,
the addition of links became bursty - indicating that activ-
ity was centered around communities and events relevant
to them. The degree distribution appeared to be power-
law and asymptoting to a power-law exponent of 2.1. This
inequality in link distribution was noted for the subset of
political blogs [66,67] in the United States. The subgraph
of political blogs also showed a strong tendency of blogs
to link predominantly to blogs of similar political lean-
ings [68,69].

The time resolved nature of blog entries enable re-
searchers to track individual memes, topics that are con-
tagiously spreading as information cascades from blog
to blog. Several models [70,71] were developed to iden-
tify topics and their spread through the blog network. In
a general cascade model [71] of the directed and weighted
transmission graph of blogs, the weight of each edge cor-
responds to the probability that a blog both reads and
copies an item from another blog, and this weight is
learned through a machine learning algorithm from ob-
served mentions by the two blogs of previous topics. By
tacking 7,000 topics over a set of blogs, Kempe et al. [71]
found that the amount of information flowing through
blogs corresponded to the ranking of those blogs by blog
search engines. Similarly, ordering the edges by the trans-
mission probability on each edge closely corresponded to
blogs that were directly linked through their blogroll links
(links to other blogs that occur on the sidebar of the page).
Adar et al. [72] used the presence of direct links between
blogs, and overlap in text and links previously cited, to
predict the path of information flow among a set of blogs
mentioning the same URL. Leksovec et al. [73] developed
an algorithm for near optimal selection of a set of blogs
such that information cascades are detected quickly. Be-
cause of the skewed nature of participation and attention
in the blogosphere, only a small fraction of blogs need to
be monitored in order to capture a large portion of the ac-
tivity.

Although blog content is highly distributed, and to
a certain extent collaborative, with blogs filtering and gen-
erating news at rates often outpacing the mainstream me-
dia, the content is highly redundant, often inaccurate, and
poorly interlinked. In contrast, Wikipedia is an example
of collaboratively generated content that is accurate, non-
redundant, and carefully structured.

Wikipedia

Wikipedia is a web-based encyclopedia that is collabora-
tively written by volunteers all around the world. Since its
creation in 2001, Wikipedia has grown rapidly into one
of the most prominent reference sources, its pages fre-
quently appearing among the top search engine results.
As of August 2007, there were 75,000 active contributors,
with nearly 2 million articles in English alone. A study
of the 30 largest language Wikipedias in January 2005
yielded degree distribution exponents (i, = 2.15 +0.13
and Yout = 2.57 £ 0.27) reflective of the web overall.

Unlike the web, however, between 85 and 97 percent of
the pages in the various languages belong to the strongly
connected component [74] - indicating that Wikipedia
content is more consistently bound than the WWW at
large. It is also demonstrating densification, with the num-
ber of links growing superlinearly with the number of
Wikipedia pages as L ~ N%, with ¢ = 1.14 &£ 0.05. Sim-
ilar growth patterns, with more links than nodes being
added over time, have been observed in the physical in-
ternet, patent and scientific citation networks[75] as well
as blog citation networks [76].

The Wikipedia networks display a high degree of reci-
procity, where one article linking to another frequently
corresponds to another linking back. Using the unbiased
mutual reciprocity measure specified in Eq. (3), the de-
gree of reciprocity for the different language Wikipedias is
p = 0.32 % 0.05, lower than for the crawl of pages in the
nd.edu domain (p = 0.52) [19,20]. The Wikipedia also ex-
hibits a high degree of clustering, with related articles link-
ing together in triads. Specifically, the motif profile closely
follows that of the web overall and falls in the same triad
significance superfamily.

Beyond its structural characteristics, Wikipedia has
been an ideal medium to validate the preferential attach-
ment model. It was used to verify that the probability of ac-
quiring new links is in fact proportional to the number of
links already present on the page [77]. Such time resolved
data had previously been difficult to obtain, but Wikipedia
provides a complete history of edits for download. Two
interesting observations were made. For pages with mod-
erate numbers of inlinks and outlinks, the proportion is
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a Web motif profile b Wikipedia motif profile. The motif profiles of several web samples and social networks compared to profiles
found in the different language Wikipedias. The x axis depicts the possible triads, and the y axis represents normalized z-scores
comparing the frequency of each motif to randomized versions of the networks

slightly sublinear, but close to unity (v = 0.9 in Eq. (11)).
Second, the probability reaches a peak, where pages that
already contain many links are again not as likely to add
more, and those that are already heavily referenced do not
tend to attract more links. This could represent both ma-
ture pages and mature topics, where the links have already
been established.

Future Directions
Web 2.0

The Wikipedia and the blogosphere are just two of the
many exciting developments in Web 2.0. Web 2.0 refers
to collaborative and interactive applications that are fast
becoming integrated into the Web. Rather than simply be-
ing consumers of information that they retrieve on the
web, web users now can easily contribute content through
tools such as blogs and wikis. Unlike simple web pages,
that are generated by a single author or through a script
from a database, Web 2.0 allows users to interact with one
another by modifying pages. For example, bloggers can in-
teract with one another by leaving comments on each oth-
ers posts. Wikipedians interact by collaboratively editing
the same Wikipedia entires, and participating in discus-
sions on talk pages dedicated to those entries. Many con-
tent providers for text, images, and video allow users to
provide reviews in the form of ratings and comments on
the content, or to respond by adding content of their own.

In addition to reflecting a change in the way that web
content is generated, Web 2.0 sites allow the users to con-
sume web content in a collaborative way. Through RSS
feeds, users receive updates of web content rather than
having to remember to visit individual sites. They can
tag pages with keywords for easy subsequent retrieval,

not just for themselves, but for others interested in the
same topic. Through collaborative filtering, users can learn
about products, news articles, and media that their friends
enjoyed. The best recommenders need not be friends how-
ever. Collaborative tools such as RSS readers, bookmark-
ing websites, and content providers can automatically
identify users with like interests and make recommenda-
tions based on items that those users enjoyed. With Web
2.0 technologies, one can view the Web not only as a pro-
liferation of information and content, but also as giant,
distributed machinery that allows the most relevant, per-
sonalized content to bubble to the top. At the same time
that the Web may have been producing a problem through
over-production and over-participation, it has solved it
through the emergence of a collection of exceedingly sim-
ple yet effective filtering tools.

At this stage, it is unclear whether social networking
sites, which allow users to explicitly specify who their
friends are, will become platforms that other content
providers will be integrated into, or whether many dif-
ferent websites will be able to integrate an open, portable
social network the users can bring with them. In either
case, the Web graph may soon appear rather different,
with webpages becoming mere containers of segmented,
time-stamped, personalized content. One of the latest
trends in combining content is that of mashups. On can
use a mashup to overlay, for example, rental property list-
ings or restaurant reviews on a neighborhood map. These
mashups will be especially useful on location and user-
aware devices.

As our lives become easier to track, from the sites we
browse, to the people we know, to our physical movements
tracked by cellphones, we may find our lives increas-
ingly caught in the Web. Most people will readily trade
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such information for improved access to personalized and
geo-specific services and information. It does, however,
also raise interesting privacy concerns, since the Web is
a highly distributed storage and dissemination medium.

Mobile Web

Another forcing function for Web innovation is the fact
that many individuals access the Web from small mobile
devices. For many individuals in developing countries, this
may be their primary way of accessing the Web. This has
lead to the development of web services tailored to the mo-
bile Web.

Access patterns from mobile devices have been shown
to follow the same regularities as general web brows-
ing [78]. This holds despite the fact that Web access from
such devices presents challenges due to limited download
speed and small display size [79]. It also presents oppor-
tunities, as users are able to contribute content wherever
they may find themselves. Moblogging (mobile blogging)
involves updating one’s blog instantaneously with images
and videos as they are captured. Currently several news
sites encourage the contribution of such materials. The
mobile Web also allows users to access Web content, such
as maps, traffic and tourist information when they are on
the go. Again this may change the structure of the Web
graph, as its content is delivered in small, personalized
chunks to a variety of devices. Even so, one would expect
its main features to remain: billions of hyperlinked pieces
of information, showing strong regularities that are a re-
flection of the real world that is now inextricably tied to
the Web.
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