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Introduction

Conflicts are an inevitable part of human existence. This
is a consequence of the competitive stances of greed and
the scarcity of resources, which are rarely balanced with-
out open conflict. Epic poems of the Greek, Roman, and
Indian civilizations which document wars betweennation-
states or clans reinforce the historical legitimacy of this
statement. It can be deduced that domination is the re-
curring theme in human conflicts. In a primitive sense
this is historically observed in the domination of men over
women across cultures while on a more refined level it
can be observed in the imperialistic ambitions of nation-
state actors. In modern times, a new source of conflict has
emerged on an international scale in the form of economic
competition between multinational corporations.

While conflicts will continue to be a perennial part
of human existence, the real question at hand is how to
formalize mathematically such conflicts in order to have
a grip on potential solutions. We can use mock conflicts in
the form of parlor games to understand and evaluate so-

lutions for real conflicts. Conflicts are unresolvable when
the participants have no say in the course of action. For ex-
ample one can lose interest in a parlor game whose entire
course of action is dictated by chance. Examples of such
games are Chutes and Ladders, Trade, Trouble etc. Quite
a few parlor games combine tactical decisions with chance
moves. The game Le Her and the game of Parcheesi are
typical examples. An outstanding example in this category
is the game of backgammon, a remarkably deep game. In
chess, the player who moves first is usually determined by
a coin toss, but the rest of the game is determined entirely
by the decisions of the two players. In such games, players
make strategic decisions and attempt to gain an advantage
over their opponents.

A game played by two rational players is called zero-
sum if one player’s gain is the other player’s loss. Chess,
Checkers, Gin Rummy, Two-finger Morra, and Tic-Tac-
Toe are all examples of zero-sum two-person games. Busi-
ness competition between two major airlines, two major
publishers, or twomajor automobile manufacturers can be
modeled as a zero-sum two-person games (even if the out-
come is not precisely zero-sum). Zero-sum games can be
used to construct Nash equilibria in many dynamic non-
zero-sum games [64].

Gameswith Perfect Information

Emptying a Box

Example 1 A box contains 15 pebbles. Players I and II re-
move between one and four pebbles from the box in alter-
nating turns. Player I goes first, and the game ends when
all pebbles have been removed. The player who empties
the box on his turn is the winner, and he receives $1 from
his opponent.

The players can decide in advance howmany pebbles to re-
move in each of their turn. Suppose a player finds x pebbles
in the box when it is his turn. He can decide to remove 1,
2, 3 or at most 4 pebbles. Thus a strategy for a player is any
function f whose domain is X D f1; 2 : : : ; 15g and range is
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R � f1; 2; 3; 4g such that f (x) � min(x; 4). Given strate-
gies f ; g for players I and II respectively, the game evolves
by executing the strategies decided in advance. For exam-
ple if, say

f (x) D

(
2 if x is even
1 if x is odd ;

g(x) D

(
3 if x � 3
x otherwise :

The alternate depletions lead to the following scenario

move by I II I II I II I II
removes 1 3 1 3 1 3 1 2
leaving 14 11 10 7 6 3 2 0 :

In this case the winner is Player II. Actually in his first
move Player II made a bad move by removing 3 out of 14.
Player I could have exploited this. But he did not! Though
he made a good secondmove, he reverted back to his naive
strategy and made a bad third move. The question is: Can
Player II ensure victory for himself by intelligently choos-
ing a suitable strategy? Indeed Player II can win the game
with any strategy satisfying the conditions of g� where

g�(x) D

8
ˆ̂̂
<̂

ˆ̂
ˆ̂:

1 if x � 1 is a multiple of 5
2 if x � 2 is a multiple of 5
3 if x � 3 is a multiple of 5
4 if x � 4 is a multiple of 5 :

Since the game starts with 15 pebbles, Player I must leave
either 14 or 13 or 12, or 11 pebbles. Then Player II can in
his turn remove 1 or 2 or 3 or 4 pebbles so that the number
of pebbles Player I finds is a multiple of 5 at the beginning
of his turn. Thus Player II can leave the box empty in the
last round and win the game.

Many other combinatorial games could be studied for
optimal strategic behavior. We give one more example of
a combinatorial game, called the game of Nim [13].

Nim Game

Example 2 Three baskets contain 10, 11, and 16 oranges
respectively. In alternating turns, Players I and II choose
a non-empty basket and remove at least one orange from
it. The player may remove as many oranges as he wishes
from the chosen basket, up to the number the basket con-
tains. The game ends when the last orange is removed
from the last non-empty basket. The player who takes the
last orange is the winner.

In this game as in the previous example at any stage the
players are fully aware of what has happened so far and
what moves have been made. The full history and the state
of the game at any instance are known to both players.
Such a game is called a gamewith perfect information. How
to plan for future moves to one’s advantage is not at all
clear in this case. Bouton [13] proposed an ingenious so-
lution to this problem which predates the development of
formal game theory.

His solution hinges on the binary representation of any
number and the inequality that 1C2C4C: : :C2n < 2nC1.
The numbers 10, 11, 16 have the binary representation

Number Binary representation
10 D 1010
11 D 1011
16 D 10000

Column totals
(in base 10 digits) D 12021 :

Bouton made the following key observations:

1. If at least one column total is an odd number, then the
player who is about to make a move can choose one
basket and by removing a suitable number of oranges
leave all column totals even.

2. If at least one basket is nonempty and if all column to-
tals are even, then the player who has to make a move
will end up leaving an odd column total.

By looking for the first odd column total from the left, we
notice that the basket with 16 oranges is the right choice
for Player I. He can remove the left most 1 in the binary ex-
pansion of 16 and change all the other binary digits to the
right by 0 or 1. The key observation is that the new num-
ber is strictly less than the original number. In Player I’s
move, at least one orange will be removed from a basket.
Furthermore, the new column totals can all be made even.
If an original column total is even we leave it as it is. If an
original column total is odd, we make it even by making
any 1 a 0 and any 0 a 1 in those cases which correspond
to the basket with 16 oranges. For example the new binary
expansion corresponds to removing all but 1 orange from
basket 3. We have

10 D 1010
11 D 1011
1 D 0001

Column totals in base 10 D 2022 :

In the next move, no matter what a player does, he has to
leave one of the 1’s a 0 and the column total in that column
will be odd and the move is for Player I. Thus Player I will
be the first to empty the baskets and win the game.
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For the game of Nim we found a constructive and ex-
plicit strategy for the winner regardless of any action by
the opponent. Sometimes one may be able to assert who
should be the winner without knowing any winning strat-
egy for the player!

Definition 3 A zero-sum two person game has perfect
information if, at each move, both players know the com-
plete history so far.

There are many variations of nim games and other com-
binatorial games like Chess and Go that exploit the com-
binatorial structure of the game or the end games to de-
velop winning strategies. The classic monographs on com-
binatorial game theory is by Berlekamp, Conway, and
Guy [8] on Winning Ways for your Mathematical Plays,
whose mathematical foundations were provided by Con-
way’s earlier book On Numbers and Games. These are of-
ten characterized by sequential moves by two players and
the outcome is either a win or lose kind. Since the en-
tire history of past moves is common knowledge, the main
thrust is in developing winning strategies for such games.

Definition 4 A zero-sum two person game is called
a win-lose game if there are no chance moves and the fi-
nal outcome is either Player I wins or loses (Player II wins)
the game. (In other words, there is no way for the game to
end in a tie.)

The following is a fundamental theorem of Zermelo [70].

Theorem 5 Any zero-sum two person perfect informa-
tion win-lose game � with finitely many moves and finitely
many choices in each move has a winner with an optimal
winning strategy.

Proof Let Player I make the first move. Then depend-
ing on the choices available, the game evolves to a new set
of subgames which on their own right are also win-lose
games of perfect information. Among these subgames the
one with the longest play will have fewer moves than the
original game. By an induction on the length of the longest
play, we can find a winner with a winning strategy, one
for each subgame. Each player can develop good strategies
for the original game as follows. Suppose the subgames
are �1; �2; : : : ; �k . Now among these subgames, let � s be
a game where Player I can ensure a victory for himself, no
matter what Player II does in the subgame. In this case,
Player I can determine at the very beginning, the right
choice of action which leads to the subgame � s. A good
strategy for Player I is simply the choice s in the first
move followed by his good strategy in the subgame � s.
Player II’s strategy for the original game is simply a k-tuple
of strategies, one for each subgame. Player II must be ready

to use an optimal strategy for the subgame � r in case the
first move of Player I leads to playing � r, which is favor-
able to Player II. Suppose no subgame � s has a winning
strategy for Player I. Then Player II will be the winner in
each subgame. To achieve this, Player II must use his win-
ning strategy in each subgame they are lead to. Such a k-tu-
ple of winning strategies, one for each subgame, is a win-
ning strategy for Player II for the original game � . �

The Game of Hex

An interesting win-lose game was made popular by John
Nash in late forties among Princeton graduate students.
While the original game is aesthetically pleasing with its
hexagonal tiles forming a 10 � 10 rhombus, it is more con-
venient to use the following equivalent formulation for its
mathematical simplicity. The version below is extendable
to multi person games and is useful for developing impor-
tant algorithms [28].

Let Bn be a square board consisting of lattice points
f(i; j) : 1 � i � n; 1 � j � ng. The game involves occupa-
tion of unoccupied vertices by players I and II. The board
is enlarged with a frame on all sides. The frame F consists
of lattice points F D f(i; j) : 0 � i � nC 1; 0 � j � nC 1
where either i D 0 or nC 1, or j D 0 or nC 1g. The frame
on the west sideW D f(i; j) : i D 0g\F and the frame on
the east side E D f(i; j) : i D n C 1g \ F are reserved for
Player I. Similarly the frame on the south side S D f(i; j) :
0 < i < nC 1; j D 0g \ F and frame on the north side N
D f(i; j) : (0 < i < n C 1; j D n C 1)g \ F are reserved
for Player II. Two lattice points P D (x1; y1);Q D (x2; y2)
are called adjacent vertices iff either x1 � x2; y1 � y2 or x1
� x2; y1 � y2 andmax(jx1�x2j; jy1�y2j) D 1. For exam-
ple the lattice points (4; 10) and (5; 11) are adjacent while
(4; 10) and (5; 9) are not adjacent. Six vertices are adjacent
to any interior lattice point of the Hex board Bn while lat-
tice points on the frame will have fewer than six adjacent
vertices.

The game is played as follows: Players I and II, in alter-
nate turns, choose a vertex from the available set of unoc-
cupied vertices. The aim of Player I is to occupy a bridge of
adjacent vertices that links a vertex on the west boundary
with a vertex on the east boundary. Player II has a similar
objective to connect the north and south boundary with
a bridge.

Theorem 6 The game of Hex can never end in a draw. For
any T � Bn occupied by Player I and the complement Tc

occupied by Player II, either T contains a winning bridge
for Player I or Tc contains a winning bridge for Player II.
Further only one can have a winning bridge.
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Zero-Sum Two Person Games, Figure 1
Hex path via mate triangles

Proof We label any vertex with 1 or 2 depending on
who (Player I or Player II) occupies the vertex. Consider
triangles � formed by vertices that are mutually adjacent
to each other. Two such triangles are called mates if they
share a common side. Either all the 3 vertices of the tri-
angle are occupied by one player or two vertices by one
player and the third by the other player. For example if
P D (x1; y1);Q D (x2; y2); R D (x3; y3) are adjacent to
each other, and if P;Q; R are occupied by say, I, II, and I,
they get the labels 1, 2 and 1 respectively. The triangle
has exactly 2 sides (PQ and QR) with vertices labeled 1
and 2. The algorithm described below involves entering
such a triangle via one side with vertex labels 1 and 2
and exiting via the other side with vertex labels 1 and 2.
Suppose we start at the south west corner triangle �0
(in the above figure) with vertex AD (0; 0) occupied by
player I (labeled 1), B D (1; 0) occupied by player II (la-
beled 2), and suppose C D (1; 1) is occupied by, player I
(labeled 1). Since we want to stay inside the framed Hex
board, the only way to exit �0 via a side with vertices

labeled 1 and 2 is to exit via BC. We move to the unique
mate triangle�1 which shares the common side BC which
has vertex labels 1 and 2. The mate triangle�1 has vertices
(1; 0), (1; 1), and (1; 0) � (0; 0)C (1; 1) D (2; 1). Suppose
D D (2; 1) is labeled 2, then we exit via the side CD to the
mate triangle with vertices C;D, and E D (1; 1) � (1; 0)
C(2; 1) D (2; 2). Each time we find the player of the new
vertex with his label, we drop out the other vertex of the
same player from the current triangle and move into the
new mate triangle. In each iteration there is exactly one
new mate triangle to move into. Since in the initial step
we had a unique mate triangle to move into from �0,
there is no way for the algorithm to reenter a mate triangle
visited earlier. This process must terminate at a vertex on
the North or East boundary. One side of these triangles
will all have the same label forming a bridge which joins
the appropriate boundaries and forms a winning path.
The winning player’s bridge will obstruct the bridge the
losing player attempted to complete. The game of Hex
and its winning strategy is a powerful tool in developing
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algorithms for computing approximate fixed points. Hex
is an example of a game where we do know that the first
player can win, but we don’t know how (for a sufficiently
large board). �

Approximate Fixed Points

Let I2 be the unit square 0 � x; y � 1. Given any continu-
ous function: f D ( f1; f2) : I2 ! I2, Brouwer’s fixed point
theorem asserts the existence of a point (x�; y�) such that
f(x�; y�) D (x�; y�). Our Hex path building algorithm
due to Gale [28] gives a constructive approach to locating
an approximate fixed point.

Given � > 0, by uniform continuity we can find
a ı > 1

n > 0 such that if (i; j) and (i0; j0) are adjacent ver-
tices of a Hex board Bn, then

ˇ̌
ˇ
ˇ f1
�
i
n
;
j
n

�
� f1

�
i0

n
;
j0

n

�ˇ̌
ˇ
ˇ � � ;

ˇ
ˇ̌
ˇ f2
�
i
n
;
j
n

�
� f2

�
i0

n
;
j0

n

�ˇˇ̌
ˇ � � :

(1)

Consider the the 4 sets:

HC D
�
(i; j) 2 Bn : f1

�
i
n
;
j
n

�
�

i
n
> �

�
; (2)

H� D
�
(i; j) 2 Bn : f1

�
i
n
;
j
n

�
�

i
n
< ��

�
; (3)

VC D
�
(i; j) 2 Bn : f2

�
i
n
;
j
n

�
�

j
n
> �

�
; (4)

V� D
�
(i; j) 2 Bn : f2

�
i
n
;
j
n

�
�

j
n
< ��

�
: (5)

Intuitively the points in HC under f are moved further to
the right (with increased x coordinate) by more than �.
Points in V� under f are moved further down (with de-
creased y coordinate) by more than �. We claim that these
sets cannot cover all the vertices of the Hex board. If it were
so, then we will have a winner, say Player I with a winning
path, linking the East and West boundary frames. Since
points of the East boundary have the highest x coordinate,
they cannot be moved further to the right. Thus vertices in
HC are disjoint with the East boundary and similarly ver-
tices in H� are disjoint with the West boundary. The path
must therefore contain vertices from both HC and H�.
However for any (i; j) 2 HC; (i0; j0) 2 H� we have

f1
�
i
n
;
j
n

�
�

i
n
> � ;

� f1
�
i0

n
;
j0

n

�
C

i0

n
> � :

Summing the above two inequalities and using (1) we get

i0

n
�

i
n
> 2� :

Thus the points (i; j) and (i0; j0) cannot be adjacent and
this contradicts that they are part of a connected path. We
have a contradiction.

Remark 7 The algorithm attempts to build a winning
path and advances by entering mate triangles. Since the
algorithm will not be able to cover the Hex board, partial
bridge building should fail at some point, giving a vertex
that is outside the union of sets HC;H�;VC;V�. Hence
we reach an approximate fixed point while building the
bridge.

An Application of the Algorithm

Consider the continuous map of the unit square into itself
given by:

f1(x; y) D
x Cmax(�2C 2x C 6y � 6xy; 0)

1Cmax(�2C 2x C 6y � 6xy; 0)Cmax(2x � 6xy; 0)

f2(x; y) D
y Cmax(2 � 6x � 2y C 6xy; 0)

1Cmax(2 � 6x � 2y C 6xy; 0)Cmax(2y � 6xy; 0)
:

With � D :05, we can start with a grid of ı D :1 (hopefully
adequate) and find an approximate fixed point. In fact for
a spacing of .1 units we have the following iterations. The
iterations according to Hex rule passed through the fol-
lowing points with j f1(x; y) � xj and j f2(x; y) � yj given
by Table 1. Thus the approximate fixed point is x� D :4 ;
y� D :3 .

Extensive Games and Normal Form Reduction

Any game as it evolves can be represented by a rooted
tree � where the root vertex corresponds to the initial
move. Each vertex of the tree represents a particular move
of a particular player. The alternatives available in any
given move are identified with the edges emanating from
the vertex that represents the move. If a vertex is assigned
to chance, then the game associates a probability distri-
bution with the the descending edges. The terminal ver-
tices are called plays and they are labeledwith the payoff to
Player I. In zero-sum games Player II’s payoff is simply the
negative of the payoff to Player I. The vertices for a player
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Zero-Sum Two Person Games, Table 1
Table giving the Hex building path

(x, y) jf1 � xj jf2 � yj L
(.0, .0) 0 .6667 1
(.1, 0) .0167 .5833 2
(.1, .1) .01228 .4667 2
(0, .1) .0 .53333 1
(.1, .2) .007 .35 2
(0, .2) 0 .4 1
(.1, .3) .002 .233 2
(0, .3) 0 .26667 1
(.1, .4) .238 .116 1
(.2, .4) .194 .088 1
(.2, .3) .007 .177 2
(.3, .4) .153 .033 1
(.3, .3) .017 .067 2
(.4, .4) .116 0 1
(.4, .3) .0296 0 *

are further partitioned into information sets. Information
sets must satisfy the following requirements:

� The number of edges descending from any two moves
within an information set are same.

� No information set intersects the unique unicursal path
from the root to any end vertex of the tree in more than
one move.

� Any information set which contains a chance move is
a singleton.

We will use the following example to illustrate the exten-
sive form representation:

Example 8 Player I has 3 dice in his pocket. Die 1 is a fake
die with all sides numbered one. Die 2 is a fake die with
all sides numbered two. Die 3 is a genuine unbiased die.
He chooses one of the 3 dice secretly, tosses the die once,
and announces the outcome to Player II. Knowing the out-
come but not knowing the chosen die, Player II tries to
guess the die that was tossed. He pays $1 to Player I if his
guess is wrong. If he guesses correctly, he pays nothing to
Player I.

The game is represented by the above tree with the root
vertex assigned to Player I. The 3 alternatives at this move
are to choose the die with all sides 1 or to choose the die
with all sides 2 or to choose the unbiased die. The end
vertices of these edges descending from the root vertex
are moves for chance. The certain outcomes are 1 and 2
if the die is fake. The outcome is one of the numbers 1,
. . . , 6 if the die chosen is genuine. The other ends of these
edges are moves for Player II. These moves are partitioned

into information sets V1 (corresponding to outcome 1), V2
(corresponding to outcome 2), and singleton information
sets V3, V4, V5, V6 corresponding to outcomes 3, 4, 5 and 6
respectively. Player II must guess the die based on the in-
formation given. If he is told that the game has reached
a move in information set V1, it simply means that the
outcome of the toss is 1. He has two alternatives for each
move of this information set. One corresponds to guessing
the die is fake and the other corresponds to guessing it is
genuine. The same applies to the information set V2. If the
outcome is inV3; : : : ;V6, the clear choice is to guess the die
as genuine. Thus a pure strategy (master plan) for Player II
is to choose a 2-tuple with coordinates taking the values F
or G. Here there are 4 pure strategies for Player II. They
are: (F1; F2); (F1;G); (G; F2); (G;G). For example, the first
coordinate of the strategy indicates what to guess when the
outcome is 1 and the second coordinate indicates what to
guess for the outcome 2. For all other outcomes II guesses
the die is genuine (unbiased). The payoff to Player I when
Player I uses a pure strategy i and Player II uses a pure
strategy j is simply the expected income to Player I when
the two players choose i and j simultaneously. This can as
well be represented by a matrix AD (ai j) whose rows and
columns are pure strategies and the corresponding entries
are the expected payoffs. The payoff matrix A given by

AD

0

BB
@

(F1; F2) (F1;G) (G; F2) (G;G)

F1 0 0 1 1
F2 0 1 0 1
G 1

3
1
6

1
6 0

1

CC
A

is called the normal form reduction of the original exten-
sive game.

Saddle Point

The normal form of a zero sum two person game has
a saddle point when there is a row r and column c such
that the entry arc is the smallest in row r and the largest
in column c. By choosing the pure strategy correspond-
ing to row r Player I guarantees a payoff arc D min j ar j .
By choosing column c, Player II guarantees a loss no
more than maxi ai c D arc . Thus row r and column c are
good pure strategies for the two players. In a payoff ma-
trix A D (ai j) row r is said to strictly dominate row t if
ar j > at j for all j. Player I, the maximizer, will avoid row t
when it is dominated. If rows r and t are not identical and
if ar j � at j , then we say that row r weakly dominates row t.

Example 9 Player I chooses either 1 or 2. Knowing play-
er I’s choice Player II chooses either 3 or 4. If the total T
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Zero-Sum Two Person Games, Figure 2
Game tree for a single throw with fake or genuine dice

is odd, Player I wins $T from Player II. Otherwise Player I
pays $T to Player II.

The pure strategies for Player I are simply �1 = choose 1,
�2 = choose 2. For Player II there are four pure strate-
gies given by: �1: choose 3 no matter what I chooses.
�2: choose 4 no matter what I chooses. �3: choose 3 if I
chooses 1 and choose 4 if I chooses 2. �4: choose 4 if I
chooses 3 1 and choose 3 if I chooses 2. This results in
a normal form with payoff matrix A for Player I given by:

(3; 3) (4; 4) (3; 4) (4; 3)

AD 1
2

�
�4 5 �4 5
5 �6 �6 5

�
:

Here we can delete column 4 which dominates column 3.
We don’t have row domination yet. We can delete col-
umn 2 as it weakly dominates column 3. Still we have no
row domination after these deletions. We can delete col-
umn 1 as it weakly dominates column 3. Now we have
strict row domination of row 2 by row 1 and we are left
with the row 1, column 3 entry =�4. This is a saddle point
for this game. In fact we have the following:

Theorem 10 The normal form of any zero sum two per-
son game with perfect information admits a saddle point.
A saddle point can be arrived at by a sequence of row or
column deletions. A row that is weakly dominated by an-
other row can be deleted. A column that weakly dominates
another column can be deleted. In each iteration we can al-
ways find a weakly or strictly dominated row or a weakly or
strictly dominating column to be deleted from the current
submatrix.

Mixed Strategy andMinimax Theorem

Zero sum two person games do not always have saddle
points in pure strategies. For example, in the game of
guessing the die (Example 8) the normal form has no sad-
dle point. Therefore it makes sense for players to choose
the pure strategies via a random mechanism. Any prob-
ability distribution on the set of all pure strategies for
a player is called a mixed strategy. In Example 8 a mixed
strategy for Player I is a 3-tuple x D (x1; x2; x3) and
a mixed strategy for Player II is a 4-tuple y D (y1; y2;
y3; y4). Here xi is the probability that player I chooses pure
strategy i and yj is the probability that player II chooses
pure strategy j. Since the players play independently and
make their choices simultaneously, the expected payoff
to Player I from Player II is K(x; y) D

P
i
P

j ai j xi y j
where aij are elements in the payoff matrix A.

We call K(x; y) the mixed payoff where players choose
mixed strategies x and y instead of pure strategies i and j.
Suppose x� D ( 18 ;

1
8 ;

3
4 ) and y� D ( 34 ; 0; 0;

1
4 ). Here x�

guarantees Player I an expected payoff of 1
4 against any

pure strategy j of Player II. By the affine linearity of
K(x�; y) in y it follows that Player I has a guaranteed
expectation D 1

4 against any mixed strategy choice of II.
A similar argument shows that Player II can choose the
mixed strategy ( 34 ; 0; 0;

1
4 ) which limits his maximum ex-

pected loss to 1
4 against any mixed strategy choice of

Player I. Thus

max
x

K(x; y�) D min
y

K(x�; y) D
1
4
:

By replacing the rows and columns with mixed strategy
payoffs we have a saddle point in mixed strategies.
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Historical Remarks

The existence of a saddle point in mixed strategies for
Example 8 is no accident. All finite games have a sad-
dle point in mixed strategies. This important theorem,
called the minimax theorem, is the very starting point of
game theory. While Borel (see under Ville [65]) consid-
ered the notions of pure and mixed strategies for zero
sum two person games that have symmetric roles for the
players, he was able to prove the theorem only for some
special cases. It was von Neumann [66] who first proved
the minimax theorem using some intricate fixed point ar-
guments. While several proofs are available for the same
theorem [29,34,44,48,49,65,69], the proofs by Ville and
Weyl are notable from an algorithmic point of view. The
proofs by Nash and Kakutani allow immediate exten-
sion to Nash equilibrium strategies in many person non
zero sum games. For zero-sum two person games, opti-
mal strategies and Nash equilibrium strategies coincide.
The following is the seminal minimax theorem for matrix
games.

Theorem11 (vonNeumann) Let AD (ai j) be any m � n
real matrix. Then there exists a pair of probability vectors
x D (x1; x2; : : : ; xm) and y D (y1; y2; : : : ; yn) such that
for a unique constant v

mX

iD1

ai jxi � v j D 1; 2; : : : ; n ;

nX

jD1

ai j y j � v i D 1; 2; : : : ;m :

The probability vectors x, y are called optimal mixed strate-
gies for the players and the constant v is called the value of
the game.

H. Weyl [69] gave a complete algebraic proof and proved
that the value and some pair of optimal strategies for the
two players have all of their coordinates lie in the same or-
dered subfield as the smallest ordered field containing the
payoff entries. Unfortunately his proof was non-construc-
tive. It turns out that the minimax theorem can be proved
via linear programming in a constructive way which leads
to an efficient computational algorithm a la the simplex
method [18]. The key idea is to convert the problem to
dual linear programming problems.

Solving for Value and Optimal Strategies
via Linear Programming

Without loss of generality we can assume that the pay-
off matrix AD (ai j)m�n > 0, that is ai j > 0 for all (i; j) .

Thus we are looking for some v such that:

v D min v1 (6)

such that
nX

jD1

ai j y j � v1 ; (7)

y1; : : : ; yn � 0 ; (8)

nX

jD1

y j D 1 : (9)

Since the payoff matrix is positive, any v1 satisfying the
constraints above will be positive, so the problem can be
reformulated as

max
1
v1
D max

nX

jD1

� j (10)

such that
nX

jD1

ai j� j � 1 for all j ; (11)

� j � 0 for all j : (12)

With A > 0, the �j’s are bounded. The maximum of the
linear function

P
j � j is attained at some extreme point of

the convex set of constraints (11) and (12). By introduc-
ing nonnegative slack variables s1; s2; : : : ; sm we can re-
place the inequalities (11) by equalities (13). The problem
reduces to

max
nX

jD1

� j (13)

subject to
nX

jD1

ai j� j C si D 1 ; i D 1; 2; : : : ;m ; (14)

y j � 0 ; j D 1; 2; : : : ; n ; (15)

si � 0 ; i D 1; 2; : : : ;m : (16)

Of the various algorithms to solve a linear programming
problem, the simplex algorithm is among the most effi-
cient. It was first investigated by Fourier (1830). But no
other work was done for more than a century. The need
for its industrial application motivated active research
and lead to the pioneering contributions of Kantarowich
[1939] (see a translation inManagement Science [35]) and
Dantzig [18]. It was Dantzig who brought out the earlier
investigations of Fourier to the forefront of modern ap-
plied mathematics.
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Simplex Algorithm Consider our linear programming
problem above. Any solution � D (y1; : : : ; yn); s D (s1;
: : : ; sm) to the above system of equations is called a feasible
solution. We could also rewrite the system as

�1C1 C �2C2 C � � � C �nCn C s1e1 C s2e2 C sm em D 1
�1; �2; : : : ; �n ; s1; s2; : : : ; sm � 0 :

Here C j ; j D 1 : : : ; n are the columns of the matrix A
and ei are the columns of the m � m identity matrix. The
vector 1 is the vector with all coordinates unity. With any
extreme point (�; s) D (�1; �2; : : : ; �n ; s1; : : : ; sm) of the
convex polyhedron of feasible solutions one can associate
with it a set of m linearly independent columns, which
form a basis for the column span of the matrix (A; I).
Here the coefficients �j and si are equal to zero for coor-
dinates other than for the specific m linearly independent
columns. By slightly perturbing the entries we can assume
that any extreme point of feasible solutions has exactly m
positive coordinates. Two extreme feasible solutions are
called adjacent if the associated bases differ in exactly one
column.

The key idea behind the simplex algorithm is that an
extreme point P D (��; s�) is an optimal solution if and
only if there is no adjacent extreme point Q for which the
objective function has a higher value. Thus when the algo-
rithm is initiated at an extreme point which is not optimal,
there must be an adjacent extreme point that strictly im-
proves the objective function. In each iteration, a column
from outside the basis replaces a column in the current
basis corresponding to an adjacent extreme point. Since
there are mC n columns in all for the matrix (A; I), and
in each iteration we have strict improvement by our non-
degeneracy assumption on the extreme points, the proce-
dure must terminate in a finite number of steps resulting
in an optimal solution.

Example 12 Players I and II simultaneously show either
1 or 2 fingers. If T is the total number of fingers shown
then Player I receives from Player II $T when T, is odd and
loses $T to Player II when T is even.

The payoff matrix is given by

AD
�
�2 3
3 �4

�
:

Add 5 to each entry to get a new payoff matrix with all
entries strictly positive. The new game is strategically same
as A.

�
3 8
8 1

�
:

The linear programming problem is given by

max 1:y1 C 1:y2 C 0:s1 C 0:s2
such that

�
3 8 1 0
8 1 0 1

�
2

66
4

y1
y2
s1
s2

3

77
5 D

�
1
1

�
:

We can start with the trivial solution (0; 0; 1; 1)T. This cor-
responds to the basis e1; e2 with s1 D s2 D 1. The value
of the objective function is 0. If we make y2 > 0, then the
value of the objective function can be increased. Thus we
look for a solution to

s1 D 0 ; s2 > 0 ; y2 > 0

satisfying the constraints

8y2 C 0s2 D 1
y2 C s2 D 1

or to

s2 D 0 ; s1 > 0 ; y2 > 0

satisfying the constraints

8y2 C s1 D 1
y2 C 0s1 D 1

Notice that y2 D 1
8 ; s2 D

7
8 is a solution to the first sys-

tem and that the second system has no nonnegative so-
lution. The value of the objective function at this ex-
treme solution is 1

8 . Now we look for an adjacent extreme
point. We find that y1 D 7

61 ; y2 D
5
61 is such a solution.

The procedure terminates because no adjacent solution
with y1 > 0; s1 > 0 or y2 > 0; s1 > 0 or y1 > 0; s2 > 0
or y2 > 0; s2 > 0 if any has higher objective function
value. The algorithm terminates with the optimal value of
1
v1 D

12
61 . Thus the value of the modified game is 61

12 , and
the value of the original game is 61

12 � 5 D 1
12 . A good strat-

egy for Player II is obtained by normalizing the optimal so-
lution of the linear program, it is �1 D 7

12 ; �2 D
5
12 . Sim-

ilarly, from the dual linear program we can see that the
strategy �1 D 7

12 ; �2 D
5
12 is optimal for Player I.

Fictitious Play

Though optimal strategies are not easily found, even naive
players can learn to steer their average payoff towards the
value of the game from past plays by certain iterative pro-
cedures. This learning procedure is known as fictitious
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play. The two players make their next choice under the as-
sumption that the opponent will continue to choose pure
strategies at the same frequencies as what he/she did in the
past. If x(n); y(n) are the empirical mixed strategies used by
the two players in the first n rounds, then in round nC 1
Player I pretends that Player II will continue to use y(n) in
the future and selects any row i� such that
X

j

ai� j y
(n)
j D max

i

X

j

ai j y(n)j :

The new empirical mixed strategy is given by

x(nC1) D
1

nC 1
Ii� C

n
nC 1

x(n) :

(Here Ii� is the degenerate choice of pure strategy i�.) This
intuitive learning procedure was proposed by Brown [14]
and the following convergence theorem was proved by
Robinson [56].

Theorem 13

lim
n

min
j

X

i

ai j x
(n)
i D lim

n
max

i

X

j

ai j y
(n)
j D v :

We will apply the fictitious play algorithm to the following
example and get a bound on the value.

Example 14 Player I picks secretly a card of his choice
from a deck of three cards numbered 1, 2, and 3. Player II
proceeds to guess player I’s choice. After each guess
player I announces player II’s guess as “High”, “Low” or
“Correct” as the case may be. The game continues till
player II guesses player I’s choice correctly. Player II pays
to Player I $N where N is the number of guesses he made.

The payoff matrix is given by

AD

0

B
B
@

(1; 2) (1; 3) (2) (3; 1) (3; 2)

1 1 1 2 2 3
2 2 3 1 3 2
3 3 2 2 1 1

1

C
C
A :

Here the row labels are possible cards chosen by
Player I, and the column labels are pure strategies for
Player II. For example, the pure strategy (1, 3) for Player II,
means that 1 is the first guess and if 1 is incorrect then 3
is the second guess. The elements of the matrix are payoffs
to Player I. We can use cumulative total, instead average
for the players to make their next choice of row or column
based on the totals. We choose the row or column with
the least index in case more than one row or one column
meets the criterion. The total for the first 10 rounds using
fictitious play is given in Table 2.

Zero-Sum Two Person Games, Table 2

Row
choices

Total so far Column
choices

Total so far

R1 1 1 2 2 3 C1 1 2 3
R3 4 3 4 3 4 C2 2 5 5
R2 6 6 5 6 6 C3 4 6 7
R3 9 8 7 7 7 C3 6 7 9
R3 12 10 9 8 8 C4 8 10 10
R2 15 12 11 9 9 C4 10 13 11
R2 17 15 12 12 11 C5 13 15 12
R2 19 18 13 15 13 C3 15 16 14
R2 21 21 14 18 15 C3 17 17 16
R1 22 22 16 20 18 C3 19 18 18

The bold entries give the approximate lower and
upper bounds for the total payoff in 10 rounds giving
1:6 � v � 1:9.

Remark 15 Fictitious play is known to have a very poor
rate of convergence to the value.While it works for all zero
sum two person games, it fails to extend to Nash equi-
librium payoffs in bimatrix games even when the game
has a unique Nash equilibrium. It extends only to some
very special classes like 2 � 2 bimatrix games and to the so
called potential games.

(See Miyasawa [1961], Shapley [1964], Monderer and
Shapley [46], Krishna and Sjoestrom [41], and Berger [7]).

Search Games

Search games are often motivated by military applications.
An object is hidden in space. While the space where the
object is hidden is known, the exact location is unknown.
The search strategy consists of either targeting a single
point of the space and paying a penalty when the search
fails or continue the search till the searcher gets closer
to the hidden location. If the search consists of many at-
tempts, then a pure strategy is simply a function of the
search history so far. Example 14 is a typical search game.
The following are examples of some simple search games
that have unexpected turns with respect to the value and
optimal strategies.

Example 16 A pet shop cobra of known length t < 1 es-
capes out of the shop and has settled in a nearby tree some-
where along a particular linear branch of unit length. Due
to the camouflage, the exact location [x; x C t] where it
has settled on the branch is unknown. The shop keeper
chooses a point y of his choice and aims a bullet at the
point y. In spite of his 100% accuracy the cobra will escape
permanently if his targeted point y is outside the settled
location of the cobra.
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We treat this as a game between the cobra (Player I) and
the shop keeper (Player II). Let the probability of survival
be the payoff to the cobra. Thus

K(x; y) D

(
1 if y < x ; or y > x C t
0 otherwise :

The pure strategy spaces are 0 � x � 1 � t for the
snake and 0 � y � 1 for the shop keeper. It can be shown
that the game has no saddle point and has optimal mixed
strategies. The value function v(t) is a discontinuous func-
tion of t. In case 1

t is an integer n then, a good strat-
egy for the snake is to hide along [0; t], or [t; 2t] or
[(n � 1)t; 1] chosen with equal chance. In this case the op-
timal strategy for the shop keeper is to choose a random
point in [0; 1]. The value is 1 � 1

n . In case 1
t is a fraction,

let n D [ 1t ] then the optimal strategy for the snake is to
hide along [0; t]; or [t; 2t]; : : : or [(n � 1)t; nt]. An opti-
mal strategy for the shop keeper is to shoot at one of the
points 1

nC1 ;
2

nC1 ; : : : ;
n

nC1 chosen at random.

Example 17 While mowing the lawn a lady suddenly re-
alizes that she has lost her diamond engagement ring some
where in her lawn. She has maximum speed s and will
be able to locate the diamond ring from its glitter if she
is sufficiently close to, say within a distance � from the
ring. What is an optimal search strategy that minimizes
her search time.

If we treat Nature as a player against her, she is playing
a zero sum two person game where Nature would find
pleasure in her delayed success in finding the ring.

Search Games on Trees

The following is an elegant search game on a tree. For
many other search games the readers can refer to the
monographs by Gal [27] and Alpern and Gal [1]. Also
see [55].

Example 18 A bird has to look for a suitable location
to build its nest for hatching eggs and protecting them
against predator snakes. Having identified a large tree with
a single predator snake in the neighborhood, the bird has
to further decide where to build its nest on the chosen tree.
The chance for the survival of the eggs is directly propor-
tional to the distance the snake travels to locate the nest.

While birds and snakes work out their strategies based on
instinct and evolutionary behavior, we can surely approx-
imate the problem by the following zero sum two person
search game. Let T D (X;E) be a finite tree with vertex
setX and edge setE. Let O 2 X be the root vertex. A hider
hides an object at a vertex x of the tree. A searcher starts

at the root and travels along the edges of the tree such that
the path traced covers all the terminal vertices. The search
ends as soon as the searcher crosses the hidden location
and the payoff to the hider is the distance traveled so far.

By a simple domination argument we can as well as-
sume that the optimal hiding locations are simply the ter-
minal vertices.

Theorem 19 The search game has value and optimal
strategies. The value coincides with the sum of all edge
lengths. Any optimal strategy for the hider will necessar-
ily restrict to hide at one of the terminal vertices. Let the
least distance traveled to exhaust all end vertices one by one
correspond to a permutation � of the end vertices in the
order w1;w2; : : : ;wk. Let ��1 be its reverse permutation.
Then an optimal strategy for the searcher is to choose one
of these two permutations by the toss of a coin. The hider
has a unique optimal mixed strategy that chooses each end
vertex with positive probability.

Suppose the tree is a path with root O and a single termi-
nal vertex x. Since the search begins atO, the longest trip is
possible only when hider hides at x and the theorem holds
trivially. In case the tree has just two terminal vertices be-
sides the root vertex, the possible hiding locations are say,
O; x1; x2 with edge lengths a1; a2. The possible searches
are via paths: O ! x1 ! O ! x2 abbreviated Ox1Ox2
or O ! x2 ! O ! x1, abbreviated Ox2Ox1. The payoff
matrix can be written as

Ox1Ox2 Ox2Ox1
x1
x2

�
a1 2a2 C a1
2a1 C a2 a2

�
:

The value of this game is a1 C a2 D sum of the edge
lengths. We can use an induction on the number of sub-
trees to establish the value as the sum of edge lengths. We
will use an example to just provide the intuition behind the
formal proof.

Given any permutation � of the end vertices (leaves), of
the above tree let P be the shortest path from the root ver-
tex that travels along the leaves in that order and returns
to the root. Let the reverse path be P�1. Observe that it will
cover all edges twice. Thus if the two paths P and P�1 are
chosen with equal chance by the snake, the average dis-
tance traveled by the snake when it locates the bird’s nest
at an end vertex will be independent of the particular end
vertex. For example along the closed path O! t! d! t
! a! t ! x ! b! x ! c ! x ! t ! O ! u ! s
! e ! s! y ! f ! y ! g ! y ! s! u ! h! u
! j! u! O the distance traveled by the snake to reach
leaf e is (3C 7C 7C � � � C 8C 3) D 74. If the snake trav-
els along the reverse path to reach e the distance traveled
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Zero-Sum Two Person Games, Figure 3
Bird trying to hide at a leaf and snake chasing to reach the appro-
priate leaf via optimal Chinese postman route starting at root O
and ending at O

is (9C 5C 5C � � � C 5C 4C 3) D 66. For example if it is
to reach the vertex d then via path P it is (3C 7). Via P�1

it is to make travel to e and travel from e to d by the reverse
path. This is (66C 3C � � � C 6C 6C 7) D 130. Thus in
both cases the average distance traveled is 70. The average
distance is the same for every other leaf when P and P�1

are used. The optimal Chinese postman route can allow all
permutations subject to permuting any leaf of any subtree
only among themselves. Thus the subtree rooted at t has
leaves a, b, c, d and the subtree rooted at u has leaves e, f ,
g, h, j. For example while permuting a, b, c, d only among
themselves we have the further restriction that between
b; c we cannot allow insertion of a or d. For example a,
b, c, d and a, d, c, b are acceptable permutations, but not a,
b, d, c. It can never be the optimal permuting choice. The
same way it applies to the tree rooted at u. For example h, j,
e, g, f is part of the optimal Chinese postman route, but h,
g, j, e, f is not. We can think of the snake and bird play-
ing the game as follows: The bird chooses to hide in a leaf
of the subgame Gt rooted at t or at a leaf of the subgame
Gu rooted at u. These leaves exhaust all leaves of the origi-
nal game. The snake can restrict to only the optimal route
of each subgame. This can be thought of as a 2 � 2 game
where the strategies for the two players (bird) and snake
are:

Bird:
Strategy 1: Hide optimally in a leaf of Gt,
Strategy 2: Hide optimally in a leaf of Gu.

Snake:
Strategy 1: Search first the leaves of Gt along the optimal

Chinese postman route of Gt and then search along the
leaves of Gu.
Strategy 2: Search first the leaves of Gu along the optimal
Chinese postman route and then search the leaves of Gt
along the optimal postman route. The expected outcome
can be written as the following 2 � 2 game. (Here v(Gt),
v(Gu ) are the values of the subgames rooted at t; u respec-
tively.)

GtGu GuGt

Gt
Gu

�
[3C v(Gt )] 2[9C v(Gu)]C [3C v(Gt )]
2[3C v(Gt ]C [9C v(Gu)] [9C v(Gu)]

�

Observe that the 2 � 2 game has no saddle point and
hence has value 3C 9C v(Gt)C v(Gu ). By induction we
can assume v(Gt) D 24; v(Gu) D 34. Thus the value of
this game is 70. This is also the sum of the edge lengths
of the game tree. An optimal strategy for the bird can be
recursively determined as follows.

Umbrella Folding Algorithm Ladies, when storing
umbrellas inside their handbag shrink the central stem
of the umbrella and then the stems around all in one
stroke. We can mimic a somewhat similar procedure also
for our above game tree. We simultaneously shrink the
edges [xc] and [xb] to x. In the next round fa; x; dg
edges [a; t]; [x; t]; [d; t] can be simultaneously shrunk
to t and so on till the entire tree is shrunk to the root
vertex O. We do know that the optimal strategy for the
bird when the tree is simply the subtree with root x and
with leaves b; c is given by p(b) D 4

(4C2) ; p(c) D
2

(4C2) .
Now for the subtree with vertex t and leaves fa; b; c; dg,
we can treat this as collapsing the previous subtree to x
and treat stem length of the new subtree with vertices
ft; a; x; dg as though the three stems [ta]; [tx]; [td] have
lengths 6; 5C (4C 2); 7. We can check that for this sub-
tree game the leaves a; x; d are chosen with probabilities
p(a) D 6

(6C9C7) ; p(x) D
9

(6C9C7) ; p(d) D
7

(6C9C7) . Thus
the optimal mixed strategy for the bird for choosing leaf b
for our original tree game is to pass through vertices t; x; b
and is given by the product p(t)p(x)p(b). We can induc-
tively calculate these probabilities.

Completely Mixed Games and Perron’s Theorem
on Positive Matrices

Amixed strategy x for player I is called completely mixed if
it is strictly positive (x > 0). Amatrix gameA is completely
mixed if and only all optimal mixed strategies for Player I
and Player II are completely mixed. The following elegant
theorem was proved by Kaplanski [36].
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Theorem 20 A matrix game A with value v is completely
mixed if and only if

1. The matrix is square.
2. The optimal strategies are unique for the two players.
3. If v ¤ 0, then the matrix is nonsingular.
4. If v D 0, then the matrix has rank n � 1 where n is the

order of the matrix.

The theory of completely mixed games is a useful tool in
linear algebra and numerical analysis [4]. The following is
a sample application of this theorem.

Theorem 21 (Perron 1909) Let A be any n � n matrix
with positive entries. Then A has a positive eigenvalue with
a positive eigenvector which is also a simple root of the char-
acteristic equation.

Proof Let I be the identity matrix. For any  > 0, the
maximizing player prefers to play the game A rather than
the game A� I. The payoff gets worse when the di-
agonal entries are reached. The value function v() of
A� I is a non-increasing continuous function. Since
v(0) > 0 and v() < 0 for large  we have for some
0 > 0 the value of A� 0I is 0. Let y be optimal for
player II, then (A� 0I)y � 0 implies 0 < Ay � 0y.
That is 0. Since the optimal y is completely mixed, for
any optimal x of player I, we have (A� 0I)x D 0.
Thus x > 0 and the game is completely mixed. By (2)
and (4) if (A� 0I)u D 0 then u is a scalar multiple
of y and so the eigenvector y is geometrically simple. If
B D A� 0I, then B is singular and of rank n � 1. If
(Bi j) is the cofactor matrix of the singular matrix B thenP

j bi jBk j D 0 ; i D 1; : : : ; n. Thus row k of the cofac-
tor matrix is a scalar multiple of y. Similarly each column
of B is a scalar multiple of x. Thus all cofactors are of the
same sign and are different from 0. That is

d
d

det(A� I)
ˇ̌
ˇ
�0
D
X

i

Bi i ¤ 0 :

Thus 0 is also algebraically simple. See [4] for the most
general extensions of this theorem to the theorems of Per-
rron and Frobenius and to the theory of M-matrices and
power positive and polynomially matrices). �

Behavior Strategies in Gameswith Perfect Recall

Consider any extensive game � where the unique unicur-
sal path from an end vertex w to the root x0 intersects two
moves x and y of say, Player I. We say x � y if the the
unique path from y to x0 is via move x. Let U 3 x and
V 3 y be the respective information sets. If the game has

reached a move y 2 V ; Player I will know that it is his turn
and the game has progressed to somemove inV . The game
is said to have perfect recall if each player can remember all
his past moves and the choices made in those moves. For
example if the game has progressed to amove of Player I in
the information set V he will remember the specific alter-
native chosen in any earlier move. A move x is possible for
Player I with his pure strategy �1, if for some suitable pure
strategy �2 of Player II, the move x can be reached with
positive probability using �1; �2. An information set U is
relevant for a pure strategy �1, for Player I, if some move
x 2 U is possible with �1. Let ˘1;˘2 be pure strategy
spaces for players I and II.

Let �1 D fq	1; 	12˘1g be any mixed strategy for
Player I. The information set U for Player I is relevant for
the mixed strategy �1 if for some q	1 > 0;U is relevant
for �1. We say that the information set U for Player I is
not relevant for the mixed strategy�1 if for all q	1 > 0; U
is not relevant for �1. Let

S� D f�1 : U is relevant for �1 and �1(U) D �g ;

S D f�1 : U is relevant for �1g ;

T D f�1 : U is not relevant for �1 and �1(U) D �g :

The behavior strategy induced by a mixed strategy pair
(�1; �2) at an information set U for Player I is simply the
conditional probability of choosing alternative � in the in-
formation set U, given that the game has progressed to
a move in U, namely

ˇ1(U; �) D

8
<

:

P

12S� q
1P

12S q
1

if U is relevant for �1 ;
P
	12T q	1 if U is not relevant for �1 :

The following theorem of Kuhn [42] is a consequence of
the assumption of perfect recall.

Theorem 22 Let �1; �2 be mixed strategies for players I
and II respectively in a zero sum two person finite game� of
perfect recall. Let ˇ1; ˇ2 be the induced behavior strategies
for the two players. Then the probability of reaching any
end vertex w using �1; �2 coincides with the probability of
reaching w using the induced behavior strategy ˇ1; ˇ2. Thus
in zero-sum two person games with perfect recall, players
can play optimally by restricting their strategy choices just
to behavior strategies.

The following analogy may help us understand the ad-
vantages of behavior strategies over mixed strategies.
A book has 10 pages with 3 lines per page. Someone
wants to glance through the book reading just 1 line from
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each page. A master plan (pure strategy) for scanning the
book consists of choosing one line number for each page.
Since each page has 3 lines, the number of possible plans
is 310. Thus the set of mixed strategies is a set of dimen-
sion 310 � 1. There is another randomized approach for
scanning the book. When page i is about to be scanned
choose line 1 with probability xi1, line 2 with probability
xi2 and line 3 with probability xi3. Since for each i we
have xi1 C xi2 C xi3 D 1 the dimension of such a strategy
space is just 20. Behavior strategies are easier to work with.
Further Kuhn’s theorem guarantees that we can restrict to
behavior strategies in games with perfect recall.

In general if there are k alternatives at each informa-
tion set for a player and if there are n information sets for
the player, the dimension of the mixed strategy space is
kn � 1. On the other hand the dimension of the behav-
ior strategy space is simply n(k � 1). Thus while the di-
mension of mixed strategy space grows exponentially the
dimension of behavior strategy space grows linearly. The
following example will illustrate the advantages of using
behavior strategies.

Example 23 Player I has 7 dice. All but one are fake. Fake
die Fi has the same number i on all faces i D 1; : : : ; 6.
Die G is the ordinary unbiased die. Player I selects one of
them secretly and announces the outcome of a single toss
of the die to player II. It is Player II’s turn to guess which
die was selected for the toss. He gets no reward for correct
guess but pays $1 to Player I for any wrong guess.

Player I has 7 pure strategies while Player II has 26 pure
strategies. As an example the pure strategy (F1, G, G, F4,
G, F6) for Player II is one which guesses the die as fake
when the outcome revealed is 1 or 4 or 6, and guesses the
die as genuine when the outcome is 2 or 3 or 5. The nor-
mal form game is a payoff matrix of size 7 � 64. For ex-
ample if G is chosen by Player I, and (F1, G, G, F4, G, F6)
is chosen by Player II, the expected payoff to Player I is
1
6 [1C 0C 0C 1C 0C 1] D 1

2 . If F2 is chosen by Player I,
the expected payoff is 1 against the above pure strategy
of Player II. Now Player II can use the following behav-
ior strategy. If the outcome is i, then with probability qi
he can guess that the die is genuine and with probability
(1 � qi ) he can guess that it is from the fake die Fi. The ex-
pected behavioral payoff to Player I when he chooses the
genuine die with probability p0 and chooses the fake die Fi
with probability pi ; i D 1; : : : ; i D 6 is given by

K(p; q) D p0
1
6

6X

iD1

(1 � qi )C
6X

iD1

pi qi :

Collecting the coefficients of qi’s, we get

K(p; q) D
6X

iD1

qi
�
pi �

1
6
p0
�
C p0 :

By choosing pi � 1
6 p0 D 0, we get p1 D p2 D : : : ; p6 D

1
6 p0. Thus p D ( 12 ;

1
12 ;

1
12 ;

1
12 ;

1
12 ;

1
12 ;

1
12 ). For this mixed

strategy for Player I, the payoff to Player I is independent
of Player II’s actions. Similarly, we can rewrite K(p; q) as
a function of pi’s for i D 1 ; : : : ; 6 where

K(p; q) D
X

k¤0

pk

"

qk �
1
6

6X

rD1

(1 � qr )

#

C
1
6

 6X

kD1

(1 � qk)

!

:

This expression can be made independent of pi’s by choos-
ing qi D 1

2 ; i D 1; : : : ; 6. Since the behavioral payoff
for these behavioral strategies is 1

2 , the value of the game
is 1

2 , whichmeans that Player I cannot do any better than 1
2

while Player II is able to limit his losses to 1
2 .

Efficient Computation of Behavior Strategies

Introduction

In our above example with one genuine and six fake dice,
we used Kuhn’s theorem to narrow our search among op-
timal behavior strategies. Our success depended on ex-
ploiting the inherent symmetries in the problem. We were
also lucky in our search whenwewere looking for optimals
among equalizers.

From an algorithmic point of view, this is not pos-
sible with any arbitrary extensive game with perfect re-
call. While normal form is appropriate for finding op-
timal mixed strategies, its complexity grows exponential
with the size of the vertex set. The payoff matrix in nor-
mal form is in general not a sparse matrix (a sparse ma-
trix is one which has very few nonzero entries) a key issue
for data storage and computational accuracies. By stick-
ing to the normal form of a game with perfect recall we
cannot take full advantage of Kuhn’s theorem in its drasti-
cally narrowed down search for optimals among behavior
strategies. A more appropriate form for these games is the
sequence form [63] and realization probabilities to be de-
scribed below. The behavioral strategies that induce the re-
alization probabilities grow only linearly in the size of the
terminal vertex set. Another major advantage is that the
sequence form induces a sparse matrix. It has at most as
many non-zero entries as the number of terminal vertices
or plays.
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Sequence Form

When the game moves to an information set U1 of say,
player I, the perfect recall condition implies that wherever
the true move lies in U1, the player knows the actual al-
ternative chosen in any of the past moves. Let �u1 denote
the sequence of alternatives chosen by Player I in his past
moves. If no past moves of player I occurs we take �u1 D ;.
Suppose inU1 player I selects an action “c” with behavioral
probability ˇ1(c) and if the outcome is c the new sequence
is �u1 [ c. Thus any sequence s1 for player I is the string
of choices in his moves along the partial path from the
initial vertex to any other vertex of the tree. Let S0; S1; S2
be the set of all sequences for Nature (via chance moves),
Player I and Player II respectively. Given behavior strate-
gies ˇ0; ˇ1; ˇ2 Let

ri(si ) D
Y

c2s i

ˇi (c) ; i D 0; 1; 2 :

The functions: ri : Si :! R : i D 0; 1; 2 satisfy the follow-
ing conditions

ri(;) D 1 (17)

ri(�ui ) D
X

c2A(Ui )

ri (�ui ; c) ; i D 0; 1; 2 (18)

ri(si ) � 0 for all si ; i D 0; 1; 2 : (19)

Conversely given any such realization functions r1; r2 we
can define behavior strategies, ˇ1 say for player I, by

ˇ1(U1; c) D
r1(�u1 [ c)
r1(�u1 )

for c 2 A(U1) ; and r1(�u1 ) > 0 :

When r1(�u1 ) D 0 we define ˇ1(U1; c) arbitrarily so thatP
c2A(U1) ˇ1(U1; c) D 1. If the terminal payoff to player I

at terminal vertex ! is h(!), by defining h(a) D 0 for all
nodes a that are not terminal vertices, we can easily check
that the behavioral payoff

H(ˇ1; ˇ2) D
X

s2S

h(s)
2Y

iD0

ri(si ) :

When we work with realization functions ri ; i D 1; 2 we
can associate with these functions the sequence form of
payoff matrix whose rows correspond to sequence s1 2 S1
for Player I and columns correspond to sequence s2 2 S2
for Player II and with payoff matrix

K(s1; s2) D
X

s02S0

h(s0; s1; s2) :

Zero-Sum Two Person Games, Figure 4

Unlike the mixed strategies we have more constraints on
the sequences r1; r2 for each player given by the linear
constraints above. It may be convenient to denote the se-
quence functions r1; r2 by vectors x; y respectively. The
vector x has jS1j coordinates and vector y has jS2j coor-
dinates. The constraints on x and y are linear given by
Ex D e; Fy D f where the first row is the unit vector (1;
0; : : : ; 0) of appropriate size in both E and F. If U1 is the
collection of information sets for player I then the num-
ber of rows in E is 1C jU1j. Similarly the number of rows
in F is 1C jU2j. Except for the first row, each row has the
starting entry as � 1 and some 1’s and 0’s. Consider the
following extensive game with perfect recall.

The set of sequences for player I is given by S1 D f;; l ;
r; L; Rg. The set of sequences for player II is given by S2 D
f;; c; dg. The sequence form payoff matrix is given by

K(s1; s2) D AD

2

66
66
4

  

0 0 0
0 1 �1
0 �2 4
1 0 0

3

77
77
5
:

The constraint matrices E and F are given by

E D

2

4
1
�1 1 1
�1 1 1

3

5 ; F D
�

1
�1 1 1

�
:

Since no end vertex corresponds s1 D ;, for Player I, the
first row of A is identically 0 and so it is represented by 
entries.
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We are looking for a pair of vectors x�; y� such
that y� is the best reply vector y which minimizes (x� Ay)
among all vectors satisfying Fy D f ; y � 0. Similarly the
best reply vector is x� where it maximizes (x;Ay�) subject
to ETx D e; x � 0. The duals to these two linear program-
ming problems are

max ( f q) min (e p)
such that such that

FTq � ATx� : Ep � Ay�

q unrestricted: p unrestricted:

Since ETx� D e; and x� � 0; Fy� D f ; and y� � 0 these
two problems can as well be viewed as the dual linear pro-
grams

Primal: max( f q)
such that
�

FT �AT

0 �ET

� �
q
x

� �
� 0
D e

�
;

x � 0; q unrestricted.

Dual: min(e p)
such that
�

F 0
�A E

� �
y
p

� �
D f
� 0

�
;

y � 0 ; p unrestricted.

We can essentially prove that:

Theorem 24 The optimal behavior strategies of a zero sum
two person game with perfect recall can be reduced to solv-
ing for optimal solutions of dual linear programs induced
by its sequence form. The linear program has a size which
in its sparse representation is linear in the size of the game
tree.

General Minimax Theorems

The minimax theorem of von Neumann can be general-
ized if we notice the possible limitations for extensions.

Example 25 Players I and II choose secretly positive inte-
gers i; j respectively. The payoff matrix is given by

ai j D

(
1 if i > j
�1 if i < j

the value of the game does not exist.

The boundedness of the payoff is essential and the follow-
ing extension holds.

S-games

Given a closed bounded set S � Rm , let Players I and II
play the following game. Player II secretly selects a point
s D (s1; : : : ; sm) 2 S. Knowing the set S but not knowing
the point chosen by Player II, Player I selects a coordi-
nate i 2 f1; 2; : : : ;mg. Player I receives from Player II an
amount si.

Theorem 26 Given that S is a compact subset of Rm, ev-
ery S-game has a value and the two players have optimal
mixed strategies which use at most m pure strategies. If the
set S is also convex, Player II has an optimal pure strategy.

Proof Let T be the convex hull of S. Here T is also com-
pact. Let

v D min
t2T

max
i

ti D max
i

t�i : �

The compact convex set T and the open convex set
G D fs : maxi si < vg are disjoint. By the weak separation
theorem for convex sets there exists a � ¤ 0 and constant c
such that

for all s 2 G ; (� ; s) � c and
for all t 2 T ; (� ; t) � c :

Using the property that v D (v; v; : : : ; v) 2 Ḡ and t� 2 T
\ Ḡ, we have (� ; t�) D c. For any u � 0; t� � u 2 Ḡ.
Thus (� ; t� � u) � c. That is (�; u) � 0. We can assume �
is a probability vector, in which case

(� ; v) D v � c D (� ; t�) � max
i

t�i D v :

Now Player II has t� D
P

j � j x j a mixed strategy which
chooses xj with probability�j. Since t� is a boundary point
of T D con S, by the Caratheodary theorem for convex
hulls, the convex combination above involves at most m
points of S. Hence the theorem. See [50].

Geometric Consequences

Many geometric theorems can be derived by using the
minimax theorem for S-games. Here we give as an exam-
ple the following theorem of Berge [6] that follows from
the theorem on S-games.

Theorem 27 Let Si ; i D 1 : : : ;m be compact convex sets
in Rn. Let them satisfy the following two conditions.

1. S D
Sm

iD1 Si is convex.
2.
T

i¤ j Si ¤ ; ; j D 1; 2 : : : ;m.

Then
Tm

iD1 Si ¤ ;.
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Proof Suppose Player I secretly chooses one of the sets Si
and Player II secretly chooses a point x 2 S. Let the
payoff to I be d(Si ; x) where d is the distance of the
point x from the set Si. By our S-game arguments we
have for some probability vector � , and mixed strategy
� D (�1; : : : ; �m)

X

i

�i d(Si ; x) � v for all x 2 S (20)

X

j

� j d(Si ; x j) � v for all i D 1 : : : ;m : (21)

Since d(Si ; x) are convex functions, the second inequal-
ity (1) implies

d

0

@Si ;
X

j

� j x j

1

A � v : (22)

�

The game admits a pure optimal xı D
P

j � j x j for
Player II. We are also given

\

i¤ j

Si ¤ ; ; j D 1; 2 : : : ;m :

For any optimal mixed strategy � D (�1; �2; �m) of
Player I, if any �i D 0 and we choose an x� 2

T
i¤1 Si ,

then from (20) we have 0 � v and thus v D 0. When the
value v is zero, the third inequality (22) shows that xı2T

i Si . If � > 0, the second inequality (21) will become an
equality for all i andwe have d(Si ; xı) D v. But for xı2 S,
we have v D 0 and xı2

Tm
iD1 Si . (See Raghavan [53] for

other applications.)

Ky Fan–Sion Minimax Theorems

General minimax theorems are concerned with the fol-
lowing problem: Given two arbitrary sets X, Y and a real
function K : X � Y ! R, under what conditions on K , X,
Y can one assert

sup
x2X

inf
y2Y

K(x; y) D inf
y2Y

sup
x2X

K(x; y) :

A standard technique for proving general minimax the-
orems is to reduce the problem to the minimax theorem
for matrix games. Such a reduction is often possible with
some form of compactness of the space X or Y and a suit-
able continuity and convexity or quasi-convexity of the
kernel K .

Definition 28 A function f : X ! R is upper-semi-con-
tinuous on X if and only if for any real c; fx : f (x) < cg is
open in X. A function f : X ! R is lower semi-continu-
ous in X if and only if for any real c; fx : f (x) > cg is open
in X.

Definition 29 Let X be a convex subset of a topologi-
cal vector space. A function f : X ! R is quasi-convex if
and only if for each real c, the set fx : f (x) < cg is convex.
A function g is quasi-concave if and only if �g is quasi-
convex. Clearly any convex function (concave function) is
quasi-convex (conceive).

The following minimax theorem is a special case of
more general minimax theorems due to Ky Fan [21] and
Sion [61].

Theorem 30 Let X, Y be compact convex subsets of linear
topological spaces. Let K : X � Y ! R be upper semi con-
tinuous (u.s.c) in x (for each fixed y) and lower semi contin-
uous (l.s.c) in y (for each x). Let K(x; y) be quasi-concave
in x and quasi-convex in y. Then

max
x2X

min
y2Y

K(x; y) D min
y2Y

max
x2X

K(x; y) :

Proof The compactness of spaces and the u:s:c; l :s:c con-
ditions guarantee the existence of maxx2X miny2Y K(x; y)
and miny2Y maxx2X K(x; y). We always have

max
x2X

min
y2Y

K(x; y) � min
y2Y

max
x2X

K(x; y) :

�

If possible let maxx miny K(x;y)< c<miny maxx K(x;y).
Let Ax D fy : K(x; y) < cg and By D fx : K(x; y) > cg.
Therefore we have finite subsets X1 � X, Y1 � Y such that
for each y 2 Y and hence for each y 2 Con Y1, there is an
x 2 X1 with K(x; y) > c and for each x 2 X and hence
for each x 2 Con X1, there is a y 2 Y1, with K(x; y) < c.
Without loss of generality let the finite sets X1;Y1 be with
minimum cardinality m and n satisfying the above condi-
tions. The minimum cardinality conditions have the fol-
lowing implications. The sets Si D fy : K(xi ; y) � cgT

Con Y1 are non-empty and convex.
Further

T
i¤ j Si ¤ ; for all j D 1; : : : ; n, but

Tn
iD1 Si

D ;. Now by Berge’s theorem (Subsect. “Geometric Con-
sequences”), the union of the sets Si cannot be convex.
Therefore there exists y0 2 Con Y1, with K(x; y0) > c
for all x 2 X1. Since K(:; y0) is quasi-concave we have
K(x; y0) > c for all x 2 Con X1. Similarly there exists
an x0 2 Con X1 such that K(x0; y) < c for all y 2 Y1 and
hence for all y 2 Con Y1 (by quasi-convexity of K(x0; y)).
Hence c < K(x0; y0) < c, and we have a contradiction.
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When the sets X;Y are mixed strategies (probability
measures) for suitable Borel spaces one can find value for
some games with optimal strategies for one player but not
for both. See [50], Alpern and Gal [1988].

Applications of Infinite Games

S-games and Discriminant Analysis

Motivated by Fisher’s enquiries [25] into the problem of
classifying a randomly observed human skull into one of
several known populations, discriminant analysis has ex-
ploded into a major statistical tool with applications to di-
verse problems in business, social sciences and biological
sciences [33,54].

Example 31 A population ˘ has a probability density
which is either f 1 or f 2 where f i is multivariate normal
with mean vector �i ; i D 1; 2 and variance covariance
matrix, ˙ , the same for both f 1 and f 2. Given an ob-
servation X from population ˘ the problem is to clas-
sify the observation into the proper population with den-
sity f 1 or f 2. The costs of misclassifications are c(1/2) > 0
and c(2/1) > 0 where c(i/ j) is the cost of misclassifying an
observation from ˘ j to ˘i . The aim of the statistician is
to find a suitable decision procedure that minimizes the
worst risk possible.

This can be treated as an S-game where the pure strategy
for Player I (nature) is the secret choice of the population
and a pure strategy for the statistician (Player II) is to par-
tition the sample space into two disjoint sets (T1; T2) such
that observations falling in T1 are classified as from ˘1
and observations falling in T2 are classified as from ˘2.
The payoffs to Player I (Nature) when the observation is
chosen from ˘1;˘2 is given by the risks (expected costs):

r(1; (T1; T2)) D c(2/1)
Z

T2
f1(x)dx;

r(2; (T1; T2)) D c(1/2)
Z

T1
f2(x)dx :

The following theorem, based on an extension of Lya-
punov’s theorem for non-atomic vector measures [43],
is due to Blackwell [10], Dvoretsky-Wald and Wol-
fowitz [20].

Theorem 32 Let

S D
�
(s1; s2) : s1 D c(2/1)

Z

T2
f1(x)dx ; s2 D c(1/2)

Z

T1
f2(x)dx ; (T1; T2) 2 T

�

where T is the collection of all measurable partitions of the
sample space. Then S is a closed bounded convex set.

We know from the theorem on S games (Theorem 22) that
Player II (the statistician has a minimax strategy which is
pure. If v is the value of the game and if (��1 ; �

�
2 ) is an op-

timal strategy for Player I then we have:

��1 :c(2/1)
Z

T2
f1(x)dx C ��2 :c(1/2)

Z

T1
f2(x)dx � v

for all measurable partitions T . For any general parti-
tion T , the above expected payoff to I simplifies to:

��1 c(2/1)C
Z

T1
[��2 :c(1/2) f2(x) � �

�
1 c(2/1)] f1(x)dx :

It is minimized whenever the integrand is� 0 on T1. Thus
the optimal pure strategy (T�1 ; T

�
2 ) satisfies:

T�1 D
˚
x : ��2 c(1/2) f2(x)� ��1 c(2/1) f1(x) � 0

�

This is equivalent to

T�1 D
�
x : U(x) D (�1 � �2)T

�1X
x �

1
2
(�1 � �2)T

�1X
(�1 C �2) � k

�

and

T�2 D
�
U(x) D (�1 � �2)T

�1X
x

�
1
2
(�1 � �2)T

�1X
(�1 C �2) < k

�

for some suitable k. Let ˛ D (�1 � �2)T
P�1(�1 � �2).

The random variable U is univariate normal with
mean ˛2 , and variance ˛ if x 2 ˘1. The random variableU
has mean �˛2 and variance ˛ if x 2 ˘2. The minimax
strategy for the statistician will be such that

c(2/1)
Z 1
p

˛
(k�˛2 )

�1

1
p
2�

e�
y2
2 dy

D c(1/2)
Z 1

1
p

˛
(kC˛2 )

1
p
2�

e�
y2
2 dy :

The value of k can determined by trial and error.
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General Minimax Theorem and Statistical Estimation

Example 33 A coin falls heads with unknown probabil-
ity � . Not knowing the true value of � a statistician wants
to estimate � based ona single toss of the coin with squared
error loss.

Of course, the outcome is either heads or tails. If heads he
can estimate �̂ as x and if the outcome is tails, he can esti-
mate �̂ as y. To keep the problem zero-sum, the statistician
pays a penalty (� � x)2 when he proposes x as the estimate
and pays a penalty (� � y)2 when he proposes y as the es-
timate. Thus the expected loss or risk to the statistician is
given by

�(� � x)2 C (1 � �)(� � y)2 :

It was Abraham Wald [68] who pioneered this game the-
oretic approach. The problem of estimation is one of dis-
covering the true state of nature based on partial knowl-
edge about nature revealed by experiments. While nature
reveals in part, the aim of nature is to conceal its secrets.
The statistician has to make his decisions by using ob-
served information about nature. We can think of this as
an ordinary zero sum two person game where the pure
strategy for nature is to choose any � 2 [0; 1] and a pure
strategy for Player II (statistician) is any point in the unit
square I D f(x; y) : 0 � x � 1; 0 � y � 1gwith the payoff
given above. Expanding the payoff function we get

K(�; (x; y)) D �2(�2xC1C2y)C�(x2�2y� y2)C y2:

The statistician may try to choose his strategy in such
a way that no matter what � is chosen by nature, it has
no effect on his penalty given the choice he makes for x; y.
We call such a strategy an equalizer. We have an equal-
izer strategy if we can make the above payoff independent
of � . In fact we have used this trick earlier while deal-
ing with behavior strategies. For example by choosing x
and y such that the coefficient of �2 and � are zero we
can make the payoff expression independent of � . We find
that x D 3

4 ; y D
1
4 is the solution. While this may guaran-

tee the statistician a constant risk of 1
16 , one may wonder

whether this is the best?Wewill show that it is best by find-
ing a mixed strategy for mother nature that guarantees an
expected payoff of 1

16 no matter what (x; y) is proposed
by the statistician. Let F(�) be the cumulative distribution
function that is optimal for mother nature. Integrating the
above payoff with respect to F we get

K(F; (x; y) D (�2x C 1C 2y)
Z 1

0
�2dF(�)

C (x2 � 2y � y2)
Z 1

0
�dF(�)C y2 :

Let

m1 D

Z 1

0
�dF(�) and m2 D

Z 1

0
�2dF(�) :

In terms of m1;m2; x; y the expected payoff can be rewrit-
ten as

L((m1;m2); (x; y))

D m2(�2x C 1C 2y)C m1(x2 � 2y � y2)C y2 :

For fixed values of m2;m1 the minimum value of
m2(�2x C 1 C 2y) C m1(x2 � 2y � y2) C y2 must sat-
isfy the first order conditions

m2

m1
D x� ; and

m2 � m1

m1 � 1
D y  :

If m1 D 1/2 and m2 D 3/8 then x D 3/4 and y D 1/4
is optimal. In fact, a simple probability distribution can
be found by choosing the point 1/2 � ˛ with probabil-
ity 1/2 and 1/2C ˛ with probability 1/2. Such a distri-
bution will have mean m1 D 1/2 and second moment
m2 D (1/2 (1/2�˛)2 C 1/2 (1/2�˛)2) D 1/4C ˛2. When
m2 D 3/8, we get ˛2 D 1/8. Thus the optimal strategy for
nature also called the least favorable distribution, is to toss
an ordinary unbiased coin and if it is heads, select a coin
which falls heads with probability (

p
2 � 1)/(2

p
2) and if

the ordinary coin toss is tails, select a coin which falls heads
with probability (

p
2C 1)/(2

p
2). For further applications

of zero-sum two person games to statistical decision the-
ory see Ferguson [23].

In general it is difficult to characterize the nature of
optimal mixed strategies even for a C1 payoff function.
See [37]. Another rich source for infinite games do ap-
pear in many simplified parlor games. We give a simpli-
fied poker model due to Borel (See the reference under
Ville [65]).

Borel’s Poker Model

Two risk neutral players I and II initiate a game by adding
an ante of $1 each to a pot. Players I and II are dealt a hand,
a random value u of U and a random value v of V respec-
tively. Here U, V are independent random variables uni-
formly distributed on [0; 1].

The game begins with Player I. After seeing his hand he
either folds losing the pot to Player II, or raises by adding
$1 to the pot. When Player I raises, Player II after seeing
his hand can either fold, losing the pot to Player I, or call
by adding $1 to the pot. If Player II calls, the game ends
and the player with the better hand wins the entire pot.
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Zero-Sum Two Person Games, Figure 5
Poker partition when x < y

Suppose players I and II restrict themselves to using only
strategies g; h respectively where

Player I: g(u) D

(
fold if u � x
raise if u > x ;

Player II: h(v) D

(
fold if v � y
raise if v > y :

The computational details of the expected payoff K(x; y)
based on the above partitions of the u; v space is given be-
low in Table 3.

The payoff K(x; y) is simply the sum of each area times
the local payoff given by

K(x; y) D 2y2 � 3xy C x � y when x < y :

The payoff K(x; y) is simply the sum of each area times the
local payoff given by

K(x; y) D

(
�2x2 C xy C x � y for x > y
2y2 � 3xy C x � y for x < y :

Also K(x; y) is continuous on the diagonal and concave
in x and convex in y. By the general minimax theorem of
Ky Fan or Sion there exist x�, y� pure optimal strategies
for K(x; y). We will find the value of the game by explic-
itly computing miny K(x; y) for each x and then taking the
maximum over x.

Let 0 < x̄ < 1. (Intuitively we see that in our search for
saddle point, x D 0 or x D 1 are quite unlikely.) min0�y�1
K(x̄; y) D minfinfy<x̄ K(x̄; y);miny�x̄ K(x̄; y)g. Observe

Zero-Sum Two Person Games, Figure 6
Poker partition when x > y

that infy<x̄ K(x̄; y) D min(�2x̄2C x̄ yC x̄�y) D y(x̄ � 1)
C terms not involving y.

Clearly the infimum is attained at y D x̄ giving a value
�x̄2. Now for y > x̄ we have K(x̄; y) D 2y2 � 3x̄ y C
x̄ � y. This being a convex function in y, it has its min-
imum either at the boundary or at an interior point of
the interval [x̄; 1]. We have K(x̄; x̄) D �x̄2;K(x̄; 1) D
1 � 2x̄ or the minimum is attained at y D (3x̄ C 1)/4,
the unique solution to (@K(x̄; y))/(@y) D 0. At y D
(3x̄ C 1)/4, the value of K(x̄; y) D (�9x̄2 C 2x̄ � 1)/8.
Clearly for x̄ ¤ 1 we have (�9x̄2 C 2x̄ � 1)/8 <

�x̄2 < 1 � 2x̄. Thus miny K(x; y) D (�9x2 C 2x � 1)/8.
Now maxminy K(x; y) D maxx (�9x2 C 2x � 1)/8 D
�1/9. It is attained at x� D 1/9. Now miny K(1/9; y) is
attained at y� D 1/3.

Thus the value of the game is �1/9. A good pure strat-
egy for I is to raise when x > 1/9 and a good pure strategy
for II is to call when y > 1/3.

For other poker models see von Neumann and Mor-
genstern [67], Blackwell and Bellman [5], Binmore [9] and
Ferguson and Ferguson [22] who discuss other discrete
and continuous poker models.

War Duels and Discontinuous Payoffs
on the Unit Square

While general minimax theorems make some stringent
continuity assumptions, rarely they are satisfied in mod-
eling many war duels as games on the unit square. The
payoffs are often discontinuous along the diagonal. The
following is an example of this kind.
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Zero-Sum Two Person Games, Table 3

Outcome Action by players: Region Area Payoff
u � x I drops out A[ D[ F x � 1
u > x; v � y II drops out E [ G y(1� x) 1

u < v; u > x; v > y both raise B (1�y)(1�2xCy)
2 � 2

u > v; u > x; v > y both raise C 1
2 (1� y)2 2

Zero-Sum Two Person Games, Table 4

Outcome Action by players: Region Area Payoff
u � x I drops out H[ I[ J [ K x � 1
u > x; v � y II drops out N y(1� x) 1

u < v; u > x; v > y both raise L (1�x)2
2 � 2

u > v; u > x; v > y both raise M 1
2 (1� x)(1C x � 2y) 2

Example 34 Players I and II start at a distance D 1 from
a balloon, and walk toward the balloon at the same speed.
Each player carries a noisy gun which has been loaded
with just one bullet. Player I’s accuracy at x is p(x) and
Player II’s accuracy at x is q(x) where x is the distance
traveled from the starting point. Because the guns can be
heard, each player knows whether or not the other player
has fired. The player who fires and hits the balloon first
wins the game.

Some natural assumptions are

� The functions p; q are continuous and strictly increas-
ing

� p(0) D q(0) D 0 and p(1) D q(1) D 1.

If a player fires and misses then the opponent can wait un-
til his accuracyD 1 and then fire. Player I decides to shoot
after traveling distance x provided the opponent has not
yet used his bullet. Player II decides to shoot after trav-
eling distance y provided the opponent has not yet used
his bullet. The following payoff reflects the outcome of this
strategy choice.

K(x; y) D
8
<̂

:̂

(1)p(x)C (�1)(1 � p(x) D 2p(x) � 1 when x < y
p(x) � q(x) when x D y ;
(�1)q(y)C (1 � q(y)(1) D 1 � 2q(y) when x > y :

We claim that the players have optimal pure strategies
and there is a saddle point. Consider miny K(x; y) D
minf2p(x) � 1; p(x) � q(x); infy<x (1 � 2q(y))g. We can
replace infy<x (1 � 2q(y)) by 1 � 2q(x). Thus we get

min
0�y�1

K(x; y) D minf2p(x)�1; p(x)�q(x); (1�2q(x))g :

Since the middle function p(x)� q(x) is the average of the
two functions 2p(x)�1 and 1�2q(x), theminimum of the
three functions is simply the minf2p(x) � 1; (1 � 2q(x))g.
While the first function is increasing in x the second one
is decreasing in x. Thus the maxx miny K(x; y) = the so-
lution to the equation 2p(x) � 1 D 1 � 2q(x). There is
a unique solution to the equation p(x)C q(x) D 1 as both
functions are strictly increasing. Let x� be that solution
point. We get p(x�)C q(x�) D 1. The value v satisfies

v D p(x�)� q(x�)
D min

y
max
x

K(x; y)

D max
x

min
y

K(x; y) :

Remark 35 In the above example the winner’s payoff is 1
whether player I wins or player II wins. This is crucial for
the existence of optimal pure strategies for the two players.
Suppose the payoff has the following structure:

˛ if I wins
ˇ if II wins
� if neither wins
0 if both shoot accurately and ends in a draw.

Depending on these values while the value exists only one
player may have optimal pure strategy while the other
may have only an epsilon optimal pure strategy, close to
but not the same as the solution to the equation p(x�)
Cq(x�) D 1.

Example 36 (silent duel) Players I and II have the same ac-
curacy p(x) D q(x) D x. However, in this duel, the play-
ers are both deaf so they do not know whether or not the
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opponent has fired. The payoff function is given by

K(x; y) D
8
<̂

:̂

(1)x C (�1)(y)(1 � x) D x � y C xy when x < y ;
0 when x D y;
(�1)y C (1)(1 � y)x D x � y � xy when x > y :

This game has no saddle point. In this case, the value of
the game if it exists must be zero. One can directly verify
that the density

f (t) D

(
0 0 � t < 1/3
1
4 t
�3 1/3 � t � 1 :

is optimal for both players with value zero.

Remark 37 In the above game suppose exactly one player,
say Player II is deaf. Treating winners symmetrically, we
can represent this game with the payoff

K(�; �) D

8
<̂

:̂

(1)� � (1 � �)� � < �

0 � D �

(�1)�C (1 � �)(1) � > � :

Let a D
p
6 � 2. Then the game has value v D 1 � 2a D

5 � 2
p
6. An optimal strategy for Player I is given by the

density

f (�) D

(
0 for 0 � � < a
p
2a(�2 C 2� � 1)�3/2 for a � � � 1 :

For Player II it is given by

g(�) D

(
0 for 0 � � < a
2
p
2: a

2Ca (�
2 C 2�� 1)�3/2

p
6 � 2 � � < 1

with an additional mass of a
2Ca at � D 1. The deaf player

has to maintain a sizeable suspicion until the very end!
The study of war duels is intertwined with the study

of positive solutions to integral equations. The theorems
of Krein and Rutman [40] on positive operators and their
positive eigenfunctions are central to this analysis. For fur-
ther details see [19,37,51].

Dynamic versions of zero sum two person games
where the players move among several games according
to some Markovian transition law leads to the theory of
stochastic games [60]. The study of value and the com-
plex structure of optimal strategies of zero-sum two person
stochastic games is an active area of research with applica-
tions to many dynamic models of competition [24].

While stochastic games study movement in discrete
time, the parallel development of dynamic games in con-
tinuous timewas initiated by Isaacs in several Rand reports
culminating in his monograph on Differential games [31].
Many military problems of pursuit and evasion, attrition
and attack lead to games where the trajectory of a moving
object is being steered continuously by the actions of two
players. Introducing several natural examples Isaacs ex-
plicitly tried to solve many of these games via some heuris-
tic principles. The minimax version of Bellman’s optimal-
ity principle lead to the so called Isaacs Bellman equations.
This highly non-linear partial differential equation on the
value function plays a key role in this study.

Epilogue

The rich theory of zero sum two person games that we
have discussed so far hinges on the fundamental notions
of value and optimal strategies. When either zero sum or
two person assumption is dropped, the games cease to
have suchwell defined notions with independent standing.
In trying to extend the notion of optimal strategies and
the minimax theorem for bimatrix games Nash [48] in-
troduced the concept of an equilibrium point. Even more
than this extension it is this concept which is simply the
most seminal solution concept for non-cooperative game
theory. This Nash equilibrium solution is extendable to
any non-cooperative N person game in both extensive
and normal form. Many of the local properties of opti-
mal strategies and the proof techniques of zero sum two
person games do play a significant role in understanding
Nash equilibria and their structure [15,32,39,52,53].

When a non-zero sum game is played repeatedly, the
players can peg their future actions on past history. This
leads to a rich theory of equilibria for repeated games [62].
Some of them, like the repeated game model of Prisoner’s
dilemma impose tacitly, actual cooperation at equilibrium
among otherwise non-cooperative players. This was first
recognized by Schelling [58], and was later formalized by
the so called folk theorem for repeated games (Aumann
and Shapley [1986], [3]). Indeed Nash equilibrium per se
is a weak solution concept is also one of the main mes-
sages of Folk theorem for repeated games. With a plethora
of equilibria, it fails to have an appeal without further re-
finements. It was Selten who initiated the need for refining
equilibria and came up with the notion of subgame perfect
equilibria [59]. It turns out that subgame perfect equilibria
are the natural solutions for many problems in sequential
bargaining [57]. Often one searches for specific types of
equilibria like symmetric equilibria, or Bayesian equilib-
ria for games with incomplete information [30]. Auctions
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as games exhibit this diversity of equilibria and Harsanyi’s
Bayesian equilibria turn out to be the most appropriate so-
lution concept for this class of games [47].

Zero sum two person games and their solutions will
continue to inspire researchers in all aspects non-cooper-
ative game theory.
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