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Glossary

Bose–Einstein condensation (BEC) Low temperature
phase of systems of identical bosons, characterized by
superfluidity.

Boson Particles with integer spin S D 0; 1; 2; : : : Media-
tors of interactions, such as photons and gluons are
bosons. Objects made of an even number of fermions
are bosons: positronium (electron + positron), meson
(two quarks), 87Rb (37 protons, 48 neutrons and 37
electrons), 7Li (3 protons, 4 neutrons, 3 electrons).

Cooper pairs At low temperatures and for attractive in-
teractions fermions form a superconducting state, in
which fermions form pairs which condense.

Fermi surface Since fermions obey Pauli’s exclusion
principle, the ground state of N non-interacting
fermions in d-dimensions is the state with theN lowest
energy states occupied. In momentum space the last

occupied state and the first unoccupied state define
a surface of dimensions d � 1, called the Fermi surface.

Fermion Particles with half-odd integer spin S D 1/2;
3/2; 5/2; : : : Examples include elementary particles
such as electrons and quarks. Objects made of an odd
number of fermions are also fermionic, such as pro-
tons, 40K (19 protons, 21 neutrons, and 19 electrons),
and 6Li (3 protons, 3 neutrons, and 3 electrons).

Laser cooling In a typical experimental setup, the atoms
are cooled to the regime of 102�K, by using pairs
of counterpropagating laser beams that are slightly
red-detuned below an atomic transition. Due to the
Doppler effect the atoms can only absorb a photon
if they travel towards the beam with a high velocity.
From that process the atoms experience a recoil, which
slows them down.

Evaporative cooling To slow the atoms down further, to
the �K regime, one applies radio frequency radiation
that flips the internal state to a high-field seeking, i. e.
non-trapped, state in such a way, that only atoms of
high kinetic energy can escape. Due to thermalization,
this leads to cooling of the remaining atomic ensemble.

Magnetic trap The atoms are trapped by applying a spa-
tially inhomogeneous magnetic field. This field leads
to an energy shift due to the Zeeman effect, which the
atoms experience as an external potential, for large en-
ergy splittings of the magnetic levels. Different geo-
metric designs are in use, such as the TOP trap, or the
Ioffe–Pritchard trap.

Optical lattice Counterpropagating laser beams create
a standing wave field, which the atoms experience as
a periodic potential, due to the ac Stark shift. If the
temperature and all energy scales are small compared
to the energy splitting due the spatial confinement in
each well, this system is well approximated by a Hub-
bard model, i. e. by taking into account nearest-neigh-
bor hopping and on-site interaction.

Nesting Fermi surface with portions that are parallel. The
vector that connects different parallel portions is called
the nesting vector EQ.
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Definition of the Subject

The work presented in this article belongs to the recently
emerging interface of atomic physics and condensed mat-
ter theory. One of the crucial connections between these
fields is the fact that ultra-cold atom ensembles in opti-
cal lattices, i. e. periodic potentials provided by standing
waves of laser light, are well described by Hubbard models,
the quintessential model of many-body theory. Therefore,
these experiments allow for the study of many-body effects
in a well-defined and tunable environment.

The subject of this article is the study of quantum
phases of ultra-cold atoms in optical lattices. The objec-
tive is to propose experimental configurations, such as
what lattice geometry or which types of atoms to use, for
which unusual many-body effects can be found. Besides
the applicability to ultra-cold atom systems, and given
the generic nature of the underlying models, the resulting
phases are also of interest in solid state systems.

Using techniques such as a numerical implementation
of functional renormalization group equations and Lut-
tinger liquid theory, we find the phase diagrams of various
low-dimensional systems of different geometry, and dis-
cuss how the various phases could be detected.

Introduction

The technology of cooling and trapping atomic ensem-
bles has been one of the most important developments
in physics over the last decades. It has been a critical in-
gredient in creating Bose–Einstein condensates [4,14], im-
proving atomic clocks [79], and studying atomic prop-
erties [43,55]. A new direction in this development was
the realization of the Mott insulator transition [27] with
ultra-cold atoms, which demonstrated that these systems
can be used to create various types of quantum phases
in a tunable and well-defined environment. The subse-
quent progress that has been made in controlling and ma-
nipulating ensembles of ultra-cold atoms [52,58,59,92],
was followed by a number of experiments to create
and study more and more sophisticated many-body ef-
fects, such as fermionic superfluids [28,42,109], one-
dimensional strongly correlated Fermi and Bose sys-
tems [47,70,77], or noise correlations in interacting atomic
systems [3,18,29,61] . These developments established the
notion of ‘engineering’ many-body states in a tunable
environment, i. e. manipulating ensembles of ultra-cold
atoms in optical lattices.

This article further explores this development. The
first step of creating novel states of matter is to deter-
mine the phase diagram of the system under considera-
tion. For this purpose we use Luttinger liquid theory for

studying one-dimensional quantum systems and two-di-
mensional thermal systems, and functional renormaliza-
tion group equations to study two-dimensional quantum
systems, which are both sophisticated methods that gener-
ate a lot of insight into the physics of these systems.

This article contains three main sections, which can be
read independently of each other, organized as follows: In
Sect. “One-Dimensional Lattices” we first study the phase
diagram of an incommensurate Bose–Fermi mixture in
one dimension, which can be understood as a Luttinger
liquid of polarons (see [60,64]). We then broaden the
scope of this study to include the effects of commensurate
densities (see [63]). In Sect. “Phase-Locking Transition
of Coupled Low-Dimensional Superfluids”, we study the
phases of two coupled two-dimensional superfluids, and
we propose how the phase-locking transition of such sys-
tems can be used to realize the Kibble–Zurek mechanism,
i. e. to create topological defects by ramping across a phase
transition (see [66]). In Sect. “Bose–Fermi Mixtures in
Two-Dimensional Optical Lattices”, we use a numeri-
cal implementation of functional renormalization group
equations to study the phase diagrams of Bose–Fermi
mixtures in optical lattices in two dimensions. For both,
a square and a triangular lattice, we find a rich structure of
competing phases (see [50,62,65]).

One-Dimensional Lattices

The theory of one-dimensional many-body systems has
been a highly active and fascinating field of physics for
many decades, the centerpiece of which is the notion of
the Luttinger liquid [22,24,90]. In this section, we propose
several systems that display various features of Luttinger
liquids, such as quasi-long range order, competing orders,
and Kosterlitz–Thouless transitions due to commensurate
densities, as will be explained.

Recent advances in controlling ultra-cold atoms lead
to the realization of truly one-dimensional systems, and
the study of many-body effects therein. Important bench-
marks, such as the Tonks–Girardeau gas [47,77] and
the Mott transition in one dimension [92], have been
achieved by trapping bosonic atoms in tight tubes formed
by an optical lattice potential. Novel transport properties
of one-dimensional lattice bosons have been studied us-
ing these techniques [17]. More recently, a strongly in-
teracting one-dimensional Fermi gas was realized using
similar trapping methods [70]. Interactions between the
fermion atoms were controlled by tuning a Feshbach res-
onance in these experiments. On the theory side, numer-
ous proposals were given for realizing a variety of differ-
ent phases in ultra-cold Fermi systems [10,19,83], Bose–
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Fermi mixtures [9,60,64,88], as well as Bose–Bose mix-
tures [37,38].

In the first part of this section, we describe the phase
diagram of an incommensurate Bose–Fermi mixture, in
the second part we consider the effect of commensurate
fillings.

Luttinger Liquid of Polarons
in One-Dimensional Bose–Fermi Mixtures

In this section we investigate one-dimensional (1D) Bose–
Fermi mixtures (BFM) using bosonization [8,32]. The re-
sulting quantum phases can be understood by introducing
polarons, i. e. atoms of one species surrounded by screen-
ing clouds of the other species. In our analysis the po-
larons emerge as the most well-defined quasi-particles in
the interacting system while quantum phases of the sys-
tem arise from a competition of various ordering instabili-
ties of such polarons. The phase diagrams we obtain show
a remarkable similarity to the Luttinger liquid phase di-
agrams of 1D interacting electron systems [90,102], sug-
gesting that 1D BFM may be understood as Luttinger liq-
uids of polarons.

To illustrate the results of this section, we show a typ-
ical phase diagram for a BFM in an optical lattice in Fig. 1,
as a function of experimentally controlled parameters.
We consider two types of atoms, one fermionic and one
bosonic, moving in a lattice potential with the ampli-
tude Vb;k (see [64]), and interacting via a short-ranged
interaction characterized by the scattering length abf be-
tween bosons and fermions. We use these parameters,
the scattering length abf and the strength of the longitu-
dinal optical lattice for bosonic atoms (Vb;k)1, as tuning
parameters in Fig. 1. For relatively weak interactions and
slow bosons (i. e. large Vb;k) the system is in the charge-
density-wave (CDW) phase, in which the densities of
fermions and bosons have a periodic modulation2. For
very strong interactions the system is unstable to phase
separation (PS) [1,7,9]. The two regimes are separated by
a p-wave pairing phase of fermionic polarons (f -PP). Our
analysis is carried out for the most promising system of
atoms in an optical lattice. However, qualitative results
should also apply to atoms in a tight 1D cigar-shaped

1In this paper, we use Vf/b;k(?) to denote the optical lattice po-
tential experienced by fermionic/bosonic atoms in the longitudinal
(perpendicular) directions. Independent tuning of the optical lattices
for two species of atoms can be achieved even with a single pair of
lasers by controlling the laser detuning and intensity separately.

2We note that in a homogeneous 1D system only quasi-long-
range order for CDWphase is possible. However, the inhomogeneous
trap boundary in a realistic experiment can pin the CDW phase to
generate a true density modulation.

Ultracold Atomic Gases: Novel States of Matter, Figure 1
Phase diagram for a mixture of bosonic and spinless fermionic
atoms in a 1D optical lattice. Shading in the f -PP phase de-
scribes the strength of the bosonic screening cloud (2�, see
Eq. (4)) around a pair of fermions. �L and ER are respectively
the lattice period and recoil energy. Other parameters used for
this figure are (see text for notations, [64] for details): b D 4,
f D 0:5, Vb;? D Vf;? D 20ER, Vf;k D 2ER, boson-boson scat-
tering length abb D 0:01�L

magnetic trap [23]. A sketch of the two phases is shown in
Fig. 2.

The essence of the bosonization procedure is to diago-
nalize the effective low-energy Hamiltonian, which allows
for the exact calculation of all relevant correlation func-
tions. The phase diagrams are determined by finding the
order parameter which has the most divergent suscepti-
bility [90,102]. Bosonization approach has been applied to
BFM in [9]. However, that work did not consider the for-
mation of polarons and, as a result, did not describe most
of the quantum phases discussed here. The present sys-
tem also has a close analogy to 1D electron–phonon sys-
tems discussed previously (see e. g. [101]). A qualitative
difference of the electron–phonon system is that the sound
velocity is usually much smaller than the Fermi velocity,
whereas for a BFM the velocity of the phonon modes (of
the bosonic condensate) can be larger than the Fermi ve-
locity. We also note that the 1D p-wave superfluid we ob-
tain here may be of relevance to a recent proposal for
quantum computation [48].

We now give an overview over the, somewhat tech-
nical, derivation of this phase diagram, before we discuss
issues concerning the experimental realization and detec-
tion of these phases, and conclude. We consider a mix-
ture of spinless fermionic (f ) and bosonic (b) atoms.
For a sufficiently strong optical potential the microscopic
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Ultracold Atomic Gases: Novel States of Matter, Figure 2
Illustration of the two phases that occur in a BFMwith spinless fermions, CDW and f -PP. In the CDW phase the system develops a 2kf
density modulation in both the fermionic and the bosonic liquid. In the f -PP phase, the fermions form polarons, indicated by the
reduced bosonic density in their vicinity, that is, their polarization cloud. This polarization leads to an effective attractive interaction,
which causes these fermionic polarons to pair up and form a superfluid state

Hamiltonian is given by a single band Hubbard model

H D �
X

hi ji



tbb

�
i b j C tf f

�
i f j
�
�
X

i

�
�fnf;i C �bnb;i



C
Ub

2

X

i

nb;i(nb;i � 1)C Ubf
X

i

nb;i nf;i ; (1)

where nb/f;i are the boson/fermion density operators with
�b/f being their chemical potentials. The tunneling ampli-
tudes tf/b, and the particle interactions Ub and Ubf can
be expressed explicitly in terms of the s-wave scattering
lengths, the laser beam intensities and atomic masses [39].
For simplicity we assume that the filling fraction of
fermions �f � hnf;ii is not commensurate with the lattice
or with the filling fraction of bosons �b. Therefore, we can
neglect lattice-assisted backward/Umklapp scattering. The
Fermi momentum and velocity are given by kf D ��f and
vf D 2tf sin(kf), respectively.

InHaldane’s bosonization approach [8,32] 1D fermion
and boson operators can be represented by f (x) D
[�f C ˘f]1/2

P1
mD�1 e(2mC1)i�f ei˚f and b(x) D [�b C

˘b]1/2
P1

mD�1 e2mi�b ei˚b , where x is a continuous coor-
dinate that replaces the site index i. The operators ˘f/b(x)
and ˚f/b(x) are the bosonized density and phase fluctu-
ation operators. The 	f/b(x) fields are given by 	f/b �

��f/bxC�
R x dy˘f/b(y). The low-energy effective Hamil-

tonian thus can be written as:

Heff D
X

˛Db; f

v˛
2

Z
dx
�
K˛
�

(@x˚˛)2 C
�

K˛
˘ 2
˛

�

C Ubf

Z
dx˘b˘f C

2G
2�

Z
dx
�
�2˘ 2

f � (@x˚f)2
�
: (2)

where vb and Kb are the phonon velocity and Luttinger
exponent of the bosons and Kf D 1 for noninteracting
fermion atoms.

To obtain the last term of Heff we have integrated
out the high energy (2kf) phonons within the instaneous
approximation (i. e. assuming vb 	 vf). G � g22kf /!2kf ,
where !k is the (Bogoliubov) phonon energy disper-
sion [98] and gk D Ubf

p
�b "b;k/2�!k is the fermion–

phonon (FP) coupling vertex with "b;k being the nonin-
teracting boson band energy. In the long wavelength limit
we have a conventional FP coupling gk D gjkj1/2 with
g � Ubf

p
Kb/2� . The effective Hamiltonian, Eq. (2), is

quadratic and can be diagonalized [16]. The resulting two
eigenmode velocities are given by [9]

v2a;A D
1
2
(v2b C ṽ2f )˙

1
2

q
(v2b � ṽ2f )

2 C 16g̃2vbṽf ; (3)

where ṽf � (v2f � 4G2)1/2 and g̃ � g e� with e� D ((vf �
2G)/(vf C 2G))1/4. When the FP coupling g becomes suf-
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ficiently strong the eigenmode velocity vA becomes imag-
inary, indicating an instability of the system. This insta-
bility corresponds to phase separation (global collapse) for
positive (negative)Ubf [9].

To understand the nature of the many-body state of
BFM outside of the instability region we analyze the long
distance behavior of the correlation functions. For the bare
bosonic and fermionic particles we find hb(x)b�(0)i �
jxj�

1
2 K
�1
� and h f (x) f �(0)i � cos(kfx)jxj�

1
2 (KˇCK�1� ) 3. To

describe particles dressed by the other species we intro-
duce the composite operators

f̃ (x) � e�i�˚b(x) f (x) ; b̃(x) � e�i�˚f(x)b(x) ; (4)

with  and � being some real numbers. The correlation
functions of these operators are given by h f̃ (x) f̃ �(0)i �
cos(kfx)jxj�

1
2 (KˇC�

2K�1� CK�1� �2�K�1�� ) and hb̃(x)b̃�(0)i �
jxj�

1
2 (K
�1
� C�

2K�1� �2�K�1�� ) 3. We observe that the expo-
nents of the correlation functions are maximized for
c D K�/K�� and �c D K� /K�� . From now on we will use
Eq. (4) with c and �c to construct polaronic particles. In
the limit of weak interactions we have c ! Ubf/Ub and
�c ! 2Ubf/�vb. This result can be understood by a sim-
ple density counting argument that a fermionic polaron
(f -polaron) locally suppresses (enhances) a bosonic cloud
by c particles, whereas a bosonic polaron (b-polaron) de-
pletes (enhances) the fermionic system by �c atoms for
positive (negative) g.

The polaronic operators defined in Eq. (4) can also
be introduced via the canonical polaron transformation
(CPT), which is often used in polaron theory [2,57]. The
CPT operator is given by U D e�i�

P
k¤0(Fkˇk�

�
kCh.c.),

where ˇk is the phonon annihilation operator, �k is
the fermion density operator, Fk is some function of
wavevector k, and  specifies the strength of the phonon
dressing. When applied to a fermion operator, the CPT
transforms it to a polaron operator, U�1 f (x)U D

f (x) exp[�i
P

k¤0(Fkˇke�i k�x C h.c.)] [2,57], which is
the same as Eq. (4), provided that one takes Fk Dp
2�/(KbjkjL) sgn(k). (Note that in 1D fermionic sys-

tems density operators correspond to Luttinger bosons.)
We note, however, unlike in ordinary polaron theory,
where further approximations after the CPT have to be

3Here we defined Kˇ � e2� ṽf(cos2 /vAC sin2 /va),
Kı � Kbvb(sin2 /vAC cos2 /va),
K�1� � e�2� /ṽf(vA cos2 C va sin2 ),
K�1� � K�1b /vb(vA sin2 C va sin2 ),
Kˇı D e�

p
Kbṽfvb sin(2 )/2(1/va � 1/vA), and

K�1�� D e�� /
p
Kbṽfvb sin(2 )/2(va � vA). is given by

tan 2 D 4g̃(vbṽf)1/2/(v2b � ṽ2f ). These expressions are obtained
from diagonalizing Heff. For details see [64].

made [2,57], in the 1D BFM system we consider here, the
full low energy quantum fluctuations have been included
via bosonization method and exact diagonalization of the
resulting Hamiltonian Eq. (2). This allows for an essen-
tially exact determination of the polarization parameter .

Now we study the many-body ground state phase di-
agram of a 1D BFM, which is characterized by specify-
ing the order parameters that have the slowest long dis-
tance decay of the correlation functions [90,102]. Two
types of ordering were found to occur: 2kf-ordering due
to a Peierls-type instability and f -polaron pairing due
to their effective attractive interactions induced by the
screening clouds, see Fig. 2. For the 2kf CDW order pa-
rameter, OCDW D f �L fR, we find ˛CDW D 2 � 2Kˇ , and
for the f -polaron pairing field, Of�PP D f̃L f̃R, we obtain
˛ f�PP D 2 � 2[2cK�1� C K�1� � 2cK�1�� ]. We did not in-
clude polaron dressing in OCDW, since this operator has
no net fermionic charge and the exponent of OCDW does
not change if we replace f by f̃ . Scaling exponents shown
in Fig. 3a demonstrate that divergencies of the CDW
and f -PP susceptibilities (corresponding to positive ˛) are
mutually exclusive and cover the entire phase diagram
outside the PS regime. In the same figure, we also show
the scaling exponents calculated for bare fermion pair-
ing (OBFP D fL fR), bare boson condensate (OBB D b),
and b-polaron condensate (Ob�P D b̃). It is easy to see
that the polaronic order parameters always have larger
exponents than their counterparts constructed with bare
atoms, showing the stability of polaronic quasi-particle
in a 1D BFM system. Moreover, the necessity to con-
sider f -polaron pairing instead of bare fermion pairing is
further supported by considering the stability of super-
fluidity: we introduce a single weak impurity potential in
the 1D BFM and determine its relevance by a renormal-
ization group (RG) calculation [44]. We find that the im-
purity potential is relevant within the CDW phase and ir-
relevant outside of it. This indicates that there should be
a superfluid phase outside of the insulating CDW phase,
which supports the existence of f -polaron pairing instead
of bare fermion pairing according to Fig. 3a.

In Fig. 3b we show a global phase diagram of a BFM
considering the FP coupling (g) and effective fermion–
fermion interaction (G) as independent variables. One can
see that the polaronic effects and the associated pairing
phase are important when FP coupling (g) is large, while
the CDW phase dominates when the effective fermion
interaction (G) is increased. This phase diagram is very
similar to what one finds for spinless electrons in Lut-
tinger liquid theory [90,102], where CDW and pairing
phase compete with each other in the whole phase dia-
gram. Therefore one can introduce a Luttinger liquid of
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Ultracold Atomic Gases: Novel States of Matter, Figure 3
Ground state of a BFMwith spinless fermions. a Scaling exponents of different order parameters (see the text). Parameters are chosen
to be vb/vf D 3, Kb D 5 and G/vf D 0:1. b Global phase diagram for vb/vf D 5 and Kb D 10. Shading density indicates the strength
of the screening clouds of a polaron pair, 2�c

polarons to describe BFM in 1D systems. The phase di-
agram in terms of experimentally controlled parameters
was shown in Fig. 1. When considering finite temperature
effects in a realistic experiment, we note that the corre-
lation function is cut-off by thermal correlation lengths,
which are approximately given by � � vf/kBT . Therefore
the zero temperature ground states should appear when
� > L with L being the system size. This corresponds to
a temperature regime of 1% of the Fermi temperature for
systems of approximately 100 sites in the longitudinal di-
rection.

Several approaches can be used to detect the quan-
tum phases discussed above. First, in the CDW phase the
fermion density modulation will induce a 2kf density wave
in the boson field in addition to the zero momentum con-
densation so that the CDWphase can be observed as inter-
ference peaks at momentum k D 2kf in a standard time-
of-flight (TOF) measurement for bosons4. Secondly, the
polaron pairing phase can be observed by measuring the
noise correlation of fermions in a TOF experiment as pro-
posed in [3]. Thirdly, a laser stirring experiment [72,82]
can be used to probe the phase transition between the in-
sulating (pinned by trap potential) CDW and the super-
fluid f -PP phase: one can use a laser beam focused at the
center of the cloud and stir such local potential to measure
the response of the BFM. If the system is in the pairing
phase, the laser beam can be moved through the system
without dissipation if only its velocity is slower than some
critical value [72,82]. At the f -PP/CDW phase boundary
this critical velocity goes to zero, reflecting a transition to

4We note that in a homogeneous 1D system only quasi-long-
range order forCDWphase is possible. However, the inhomogeneous
trap boundary in a realistic experiment can pin the CDW phase to
generate a true density modulation.

the insulating (CDW) state. This scenario follows from the
above described RG analysis of a single impurity poten-
tial [44]. Finally, a way to probe the PS boundary could be
to measure the dipolar collective oscillations of the system,
generated by a sudden displacement of the harmonic trap
potential with respect to the lattice potential [21,56,100].
When the system is near the PS boundary, fermion–boson
interaction will strongly reduce the frequency of the dipo-
lar mode.

In summary, we used bosonization to investigate the
quantum phases of 1D mixtures of bosonic and fermionic
atoms involving spinless fermions. The phase diagram that
we found can be understood in terms of a Luttinger liquid
of polarons. We also described several experimental tech-
niques for probing these quantum phases.

Commensurate Mixtures of Ultra-Cold Atoms
in One Dimension

In this section we explore the behavior of ultra-cold atomic
mixtures, confined to one-dimensional (1D) motion in an
optical lattice, that exhibit different types of commensura-
bility, by which we mean that the atomic densities and/or
the inverse lattice spacing have an integer ratio. Commen-
surable fillings arise naturally in many ultra-cold atom sys-
tems, because the external trap potential approximately
corresponds to a sweep of the chemical potential through
the phase diagram, and therefore passes through points of
commensurability. At these points the system can develop
an energy gap, which fixes the density commensurability
over a spatially extended volume. This was demonstrated
in the celebrated Mott insulator experiment by Greiner et
al. [27], where Mott phases with integer filling occurred
in shell-shaped regions in the atom trap. These gaped
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phases gave rise to the well-known signature in the time-
of-flight images5, and triggered the endeavor of ‘engineer-
ing’ many-body states in optical lattices. Further examples
include the recently created density-imbalanced fermion
mixtures [78,110] in which the development of a balanced,
i. e. commensurate, mixture at the center of the trap is ob-
served.

In 1D, this phenomenon is of particular importance,
because it is the only effect that can lead to the opening of
a gap, for a system with short-range interactions. In con-
trast to higher-dimensional systems, where, for instance,
pairing can lead to a state with an energy gap, in 1D only
discrete symmetries can be broken, due to the importance
of fluctuations. Orders that correspond to a continuous
symmetry can, at most, develop quasi long range order
(QLRO), which refers to a state in which an order param-
eter O(x) has a correlation function with algebraic scal-
ing, hO(x)O(0)i � jxj�(2�˛), with a positive scaling expo-
nent ˛.

Due to its importance in solid state physics, the most
thoroughly studied commensurate 1D system is the SU(2)
symmetric system of spin-1/2 fermions. This system de-
velops a spin gap for attractive interaction and remains
gapless for repulsive interaction, as can be seen from a sec-
ond order RG calculation. However, the assumed sym-
metry between the two internal spin states, which is nat-
ural in solid state systems, does not generically occur in
Fermi–Fermi mixtures (FFMs) of ultra-cold atoms, where
the ‘spin’ states are in fact different hyperfine states of
the atoms. An analysis of the generic system is therefore
highly called for. Furthermore, we will extend this analy-
sis to both Bose–Fermi (BFMs) and Bose–Bose mixtures
(BBMs), as well as to the dual commensurability, in which
the charge field, and not the spin field, exhibits commen-
surate filling, as will be explained below.

The main results of this section are the phase dia-
grams shown in Figs. 4 and 5. We find that both attrac-
tive and repulsive interactions can open an energy gap.
For FFMs the entire phase diagram is gaped, except for the
repulsive SU(2) symmetric regime (cf. [10]), for BFMs or
BBMs the bosonic liquid(s) need(s) to be close to the hard-
core limit, otherwise the system remains gapless. Further-
more, we find a rich structure of quasi-phases, including
charge and spin density wave order (CDW, SDW), singlet
and triplet pairing (SS, TS), polaron pairing [60,64], and
a supersolid phase, which is the first example of a super-

5Due to the confining trap the transition is, while visible, ‘blurred’
into a gradual cross-over, due to finite size effects, and, more impor-
tantly, due to the coexistence of several phases in the trap. This can
also be expected for the phase transitions predicted in this paper.

solid phase in 1D. These results are derived within a Lut-
tinger liquid (LL) description, which treats bosonic and
fermionic liquids on equal footing.

We will now classify the types of commensurability
that can occur in a system with short-ranged density–
density interaction. We consider Haldane’s representa-
tion [8,32] of the densities for the two species:

n1/2 D [�1/2 C˘1/2]
X

m
e2mi�1/2 : (5)

�1 and �2 are the densities of the two liquids, ˘1/2(x)
are the low-k parts (i. e. k 
 1/�) of the density fluctua-
tions; the fields 	1/2(x) are given by 	1/2(x) D ��1/2x C
�1/2(x), with �1/2(x) D �

R x dy˘1/2(y). These expres-
sions hold for both bosons and fermions. If we use
this representation in a density–density interaction term
U12

R
dxn1(x)n2(x), we generate to lowest order a term

of the shape U12
R
dx˘1(x)˘2(x), but in addition an infi-

nite number of nonlinear terms, corresponding to all har-
monics in the representation. However, only the terms for
which the linear terms (2�m1/2�1/2x) cancel, can drive
a phase transition. For a continuous system this happens
for m1�1 � m2�2 D 0, whereas for a system on a lattice we
have the conditionm1�1 � m2�2 D m3, wherem1,m2 and
m3 are integer numbers. In general, higher integer num-
bers correspond to terms that are less relevant, because the
scaling dimension of the non-linear term scales quadrati-
cally with these integers. We are therefore lead to consider
small integer ratios between the fillings and/or the lattice
if present. In [64], we considered two cases of commen-
surabilities: A Mott insulator transition coupled to an in-
commensurate liquid, and a fermionic liquid at half-fill-
ing coupled to an incommensurate bosonic liquid. In both
cases the commensurability occurs between one species
and the lattice, but does not involve the second species.
Here, we consider the two most relevant, i. e. lowest order,
cases which exhibit a commensurability that involves both
species. The first case is the case of equal filling �1 D �2,
the second is the case of the total density being unity, i. e.
�1 C �2 D 1, where the densities �1 and �2 themselves are
incommensurate. The first case can drive the system to
a spin-gaped state, the second to a charge gaped state. We
will determine in which parameter regime these transi-
tions occur, and what type of QRLO the system exhibits
in the vicinity of the transition. These two cases can be
mapped onto each other via a dual mapping, which en-
ables us to study only one case and then infer the results
for the second by using this mapping. We will write out
our discussion for the case of equal filling and merely state
the corresponding results for complementary filling.
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The action of a two-species mixture with equal filling
in bosonized form is given by:

S D S0;1 C S0;2 C S12 C Sint : (6)

The terms S0; j , with j D 1; 2, are given by

S0; j D
1

2�Kj

Z
d2r

 1
v j
(@�� j)2 C v j(@x� j)2

�
: (7)

Each of the two types of atoms, regardless of being bosonic
or fermionic, are characterized by a Luttinger param-
eter K1/2 and a velocity v1/2. Here we integrate over
r D (v0�; x), where we defined the energy scale v0 D (v1C
v2)/2. The term S12 describes the acoustic coupling be-
tween the two species, and is bilinear:

S12 D
U12

�2

Z
d2r@x�1@x�2C

V12
�2

Z
d2r@� �1@��2 : (8)

The second term is created during the RG flow; its pref-
actor therefore has the initial value V12(0) D 0. We define
S0 D S0;1 C S0;2 C S12, which is the diagonalizable part of
the action. Sint corresponds to the non-linear coupling be-
tween the two liquids, which we study within an RG ap-
proach:

Sint D
2g12

(2�˛)2

Z
d2r cos(2�1 � 2�2) : (9)

This bosonized description applies to a BBM, a BFM, and
a FFM. Depending on which of these mixtures we want to
describe we either construct bosonic or fermionic opera-
tors according to Haldane’s construction [8,32]:

f /b D [�0 C˘ ]1/2
X

m odd/even

emi�ei˚ : (10)

�0 is the zero-mode of the density, ˚(x) is the phase
field, which is the conjugate field of the density fluctua-
tions˘ (x). The action for a mixture with complementary
filling, �1 C �2 D 1, is of the form S0 C S0int, where the in-
teraction S0int is given by:

S0int D
2g12

(2�˛)2

Z
d2r cos(2�1 C 2�2) : (11)

To map the action in Eq. (6) onto this system we use the
mapping: �2!� �2, �2!� �2, and g12!� g12, which
evidently maps a mixture with complementary filling and
attractive (repulsive) interaction and onto a mixture with
equal filling with repulsive (attractive) interaction.

To study the action given in Eq. (6), we perform an
RG calculation along the lines of the treatment of the sine-

Gordon model in [24,51]. In our model, a crucial mod-
ification arises: The linear combination �1 � �2, that ap-
pears in the non-linear term, is not proportional to an
eigenmode of S0, and therefore the RG flow does not
affect only one separate sector of the system, as in an
SU(2)-symmetric system. The RG scheme that we use here
proceeds as follows: First, we diagonalize S0 through the
transformation (see [63]) �1 D B1�̃1 C B2�̃2, and �2 D
D1�̃1 C D2�̃2, where B1/2 and D1/2 are some coefficients,
and �̃1/2 are the eigenmode fields with velocities ṽ1/2. Now
we introduce an energy cut-off � on �̃1/2 according to
!2/ṽ1/2C ṽ1/2k2 < �2. We shift this cut-off by an amount
d�, and correct for this shift up to second order in g12. At
first order, only g12 is affected, its flow equation is given
by:

dg12
dl
D


2 � K1 � K2 �

2
�

U12 C V12v1v2
v1 C v2

�
g12 ; (12)

with dl D d�/�. At second order several terms are cre-
ated that are quadratic in the original fields �1 and �2. We
undo the diagonalization, and absorb these terms into the
parameters of the action, which concludes the RG step. By
iterating this procedure we obtain these flow equations at
second order in g12:

dK1/2

dl
D �

g212
16�2



2C


v2
v1
C

v1
v2

��
; (13)

dv1
dl
D v1

g212
16�2


v2
v1
�

v1
v2

�
; (14)

dv2
dl
D v2

g212
16�2


v1
v2
�

v2
v1

�
; (15)

dU12

dl
D �

g212
8�

(v1 C v2) ; (16)

dV12
dl
D �

g212
8�

(1/v1 C 1/v2) : (17)

The system of differential equations, Eqs. (12) to (17),
can show two types of qualitative behavior: The coefficient
g12 of the non-linear term (9) can either flow to zero, i. e.
Sint is irrelevant, or it diverges, leading to the formation of
an energy gap. In the first case, the system flows to a fixed
point that is described by a renormalized diagonalizable
action of the type S0, from which the quasi-phases can be
determined.

When Sint is relevant, we introduce the fields [102]
��/
 D

1p
2
(�1 ˙ �2), which define the charge and the spin

sector of the system. In this regime, these sectors decouple.
Each of the two sectors is characterized by a Luttinger pa-
rameter and a velocity, K�/
 and v�/
 , which are related to
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Ultracold Atomic Gases: Novel States of Matter, Figure 4
a Phase diagram of a commensurate FFM or a BBM of hardcore bosons (with the replacement TSz!SS), b phase diagram of a BFM
with hardcore bosons, in terms of the interaction U12 and the parameter z D jv1 � v2j/(v1 C v2). For both attractive and repulsive
interactions a spin gap opens, except for z D 0 and positive interaction. In the attractive regime, a FFMor a BBM shows either singlet
pairing or CDW order, or a coexistence of these phases, a BFM shows either CDW order or polaron pairing. For repulsive interaction
all mixtures show SDW ordering, with FFMs and BBMs showing subdominant triplet or singlet pairing, respectively, for a large range
of z. In the gapless regime, a FFM shows degenerate SDW and CDW order, a BFM shows CDW order for the fermions and SF for
the bosons, and a BBM shows SF with subdominant CDW, i. e. supersolid behavior. For very large positive values of U12 the system
undergoes phase separation (PS); for very large negative values it collapses (CL)

the original parameters in S0 in a straightforward way. Us-
ing the numerical solution of the flow equations, we find
that K
 ! 0, as can be expected for an ordering of the na-
ture of a spin gap, leaving K� the only parameter charac-
terizing the QLRO in this phase.

In order to determine the QLRO in the system we will
determine the scaling exponents of various order parame-
ters. The order parameter with the largest positive scaling
exponent shows the dominant order, whereas other orders
with positive exponent are subdominant.

We will now apply this procedure to the different types
of mixtures. For a FFM we find that the system always de-
velops a gap, with the exception of the repulsive SU(2)
symmetric regime (cf. [10]). To determine the QLRO we
introduce the following operators [22,102]:

OSS D
X


;
 0

�̃ fR;
ı
;
 0 fL;3�
 0 ;

Oa
TS D

X


;
 0

�̃ fR;
� a

;
 0 fL;3�
 0 ;

OCDW D
X


;
 0

f �R;
ı
;
 0 fL;
 0 ; and

Oa
SDW D

X


;
 0

�̃ f �R;
�
a

;
 0 fL;
 0 ;

with �; � 0 D 1; 2, �̃ D 3 � 2� , and a D x; y; z. In the
gapless SU(2) symmetric regime, both CDW and SDW

show QLRO, with both scaling exponents of the form
˛SDW/CDW D 1 � K� [102], which shows that these or-
ders are algebraically degenerate.Within the gaped regime
the scaling exponents of these operators are given by
˛SS;TSz D 2 � K�1� and ˛CDW,SDWz D 2 � K�. As dis-
cussed in [22], the sign of g12 determines whether CDW
or SDWz, and SS or TSz appears. In Fig. 4a, we show
the phase diagram based on these results. In addition to
these phases we indicate the appearance of the Wentzel–
Bardeen instability, shown as phase separation for repul-
sive interaction and collapse for attractive interaction.

We will now use the dual mapping to obtain the
phase diagram of a FFM with complementary filling from
Fig. 4a. Under this mapping, the attractive and repul-
sive regimes are exchanged with the following replace-
ments: CDW!SDWz , SDWz!CDW, SS;TSz!SDW,
and SDW!SS. Note that the gapless regime is now on
the attractive side, with degenerate CDW and SS pair-
ing.

For BBMs we proceed in the sameway as for FFMs.We
introduce the following set of order parameters: OCDW D

b�1 b1 C b�2 b2, OSS D b1b2, OSDWz D b�1b1 � b�2 b2, OSDWx

D b�1b2 C b�2 b1, OSDWy D �i(b
�
1b2 � b�2b1), and in addi-

tion the superfluid (SF) order parameters b1 and b2. In
Fig. 4a we show the phase diagram of a mixture of a BBM
of hardcore bosons, which is almost identical to the one
of a FFM. The phase diagram of the mixture with com-
plementary filling, as obtained from the dual mapping, is
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Ultracold Atomic Gases: Novel States of Matter, Figure 5
a Phase diagram of a BFM, b phase diagram of a BBM with the first species being in the hardcore limit, in terms of U12, and the Lut-
tinger parameter of the second species (K2), at the fixed velocity ratio jv1 � v2j/(v1 C v2) D 0:5. For large repulsive interaction the
system undergoes phase separation (PS), for large attractive interaction the system collapses (CL). In the regime below the thick line
the system opens a gap, i. e. if species 2 is close to the hardcore limit. However, for larger values of K2, the gapless phase is restored.
Close to the transition, the properties of the fermions, respectively hardcore bosons, are still affected by the RG flow, leading to CDW
order for the fermions and to supersolid behavior for the bosons

also of the same form as its fermionic equivalent, with the
exception of the gapless regime, in which BBMs show su-
persolid behavior (coexistence of SF and CDWorder), and
with the replacement TSz!SS.

In Fig. 5b, we show the phase diagram of a mixture
of hardcore bosons (species 1) and bosons in the interme-
diate to hardcore regime (species 2). If species 2 is suffi-
ciently far away from the hardcore limit, the system re-
mains gapless. However, in the vicinity of the transition
the scaling exponents of the liquids are affected by the RG
flow. As indicated, the effective scaling exponent of the
hardcore bosons is renormalized to a value that is smaller
than 1, and therefore we find both SF and CDW order,
i. e. supersolid behavior. The phase diagram of the dual
mixture is of the following form: the attractive and the re-
pulsive regime are exchanged, and in the gaped phase we
again have the mapping: CDW!SDWz , SDWz!CDW,
SS!SDW, and SDW!SS. The gapless regime is unaf-
fected.

For a BFM we find that the order parameters OCDW,
OSDWz , Of�PP D fR fLe�2i�˚b [60,64], and b can develop
QLRO in the gapless regime. In the gaped regime, the or-
der parameters OPP � fRb fLb and OPP0 � fRb� fLb�, in
addition to OCDW, show QLRO. (OPP/PP0 are special cases
of the polaron pairing operators discussed in [60,64].) In
Fig. 4b we show the phase diagram of a BFM with hard-
core bosons, and in Fig. 5a, we vary the Luttinger parame-
ter of the bosons. In both the gapless phase and the gaped

phase, we find that CDW and f -PP or PP, respectively,
are mutually exclusive and cover the entire phase diagram,
cf. [60,64]. The dualmapping againmaps attractive and re-
pulsive regimes onto each other. Within the gaped phase
we find the mapping CDW!SDWz , SDWz!CDW, and
PP!PP0, the gapless regime is unaffected.

Before we conclude, we discuss how these predictions
could be measured experimentally. CDW order will cre-
ate additional peaks in TOF images, corresponding to
a wavevector Q D 2kf. As demonstrated and pointed out
in [3,18,29,61], the noise in TOF images allows to identify
the different regimes of both gaped and gapless phases. As
discussed in [60,64], a laser stirring experiment could de-
termine the onset of CDW order for fermions, or the su-
persolid regime for bosons. RF spectroscopy [12] can be
used to determine the presence and the size of an energy
gap.

In conclusion, we have studied mixtures of ultra-cold
atoms in 1D with commensurate filling. We used a Lut-
tinger liquid description which enables us to study FFMs,
BFMs, and BBMs in a single approach. We find that FFMs
are generically gaped for both attractive and repulsive in-
teractions, whereas for BFMs and BBMs the bosons need
to be close to the hardcore limit.We find a rich structure of
quasi-phases in the vicinity of these transitions, in partic-
ular a supersolid phase for BBMs, that occurs close to the
hardcore limit. Experimental methods to detect the pre-
dictions were also discussed.
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Phase-Locking Transition
of Coupled Low-Dimensional Superfluids

Most phase transitions that have been realized in ultra-
cold atom systems are generic first or second order tran-
sitions. However, the paradigm of phase transitions in
two dimensions at finite temperature is of a more intri-
cate type, a Kosterlitz–Thouless transition, which is char-
acterized by a change of the functional form of the cor-
relation function of the order parameter, from algebraic
decay to exponential decay. In an intriguing new devel-
opment in studying low-dimensional strongly correlated
systems, such a Kosterlitz–Thouless (KT) transition [11]
was indeed realized and observed [30]. In this experiment
the interference amplitude between two independent two-
dimensional (2D) Bose systems was studied as a function
of temperature. This analysis revealed the jump in the su-
perfluid stiffness (see also [80]) and the emergence of un-
paired isolated vortices as they crossed the phase transi-
tion.

The other focus of this section, the physics of ramping
across a phase transition, is also triggered by a recent ex-
periment: Sadler et al. observed spontaneous generation of
topological defects in the spinor condensate after a sudden
quench (i. e. a rapid, non-adiabatic ramp) through a quan-
tum phase transition [84]. A similar experiment in a dou-
ble-layer system was reported in [85]. The topological de-
fects are generated [45] at a density which is related to
the rate at which the transition is crossed [108]. Later it
was argued that the dependence of the number of such
defects on the swipe rate across a quantum critical point
can be used as a probe of the critical exponents charac-
terizing the phase transition [81]. This Kibble–Zurek (KZ)
mechanism was originally considered as an early universe
scenario creating cosmic strings, which would serve as an
ingredient for the formation of galaxies6. Cold atom sys-
tems appear to be a very suitable laboratory for perform-
ing such “cosmological experiments”, since these systems
are highly tunable and well isolated from the environment.
So far the experiments and the theoretical proposals ad-
dressed the KZ scenario across a quantum phase transi-
tion. The main reason is that it is generally hard to cool
such systems sufficiently fast to observe non-equilibrium
effects. In this work we provide an example of a partic-
ular system where this difficulty can be easily overcome
by quenching the transition temperature Tc instead of T.
Thus the relevant ratio T/Tc can be tunedwith an arbitrary
rate and the KZ mechanism can be observed. Specifically,

6Since then, it has been established that cosmic strings can only
contribute a small fraction of the initial density perturbations. We
thank T. Kibble for this comment.

we examine a system of two superfluids (SF): As we show
below, by turning on tunneling between the two systems
the transition temperature increases rapidly, and the sys-
tem attempts to create long-range order (LRO). However,
in this process, defects in the SF phase are created, which
develop into long-lived vortex-anti-vortex pairs or in fi-
nite system unbalanced population between vortices and
anti-vortices. We note that because the systems are iso-
lated and there is no external heat bath, the temperature
itself also changes due to the quench. However, the long-
wavelength fluctuations relevant for the KT transition are
only a small subset of all degrees of freedom, majority of
which are only weakly affected by small inter-layer tunnel-
ing. So we believe that the change of the Tc is the main
effect of the quench.

In this section we consider two SFs coupled via tunnel-
ing and/or interactions. In the experiments the hopping or
tunneling rate between two systems can be tuned to a high
precision [30,31,77,87]. Interactions between the atoms in
different systems can either be realized in ensembles of po-
lar molecules or by using mixtures of two hyperfine states,
where the tunneling rate is controlled by an infrared light
source [41], which induces spin-flipping between the hy-
perfine states. In this case the atoms in different states nat-
urally interact with each other since they are not physically
separated in space. The main results of our analysis are the
phase diagrams of coupled SFs in Figs. 6 and 7, the behav-
ior of Tc and the energy gap shown in Fig. 8, as well as the

Ultracold Atomic Gases: Novel States of Matter, Figure 6
Phase diagrams of two 2D SFs, coupled through a term of the
form S12, Eq. (22), in terms of Jint/J and T/TKT. For low tempera-
tures we find antisymmetric quasi-order (AQ) and/or symmetric
quasi-order (SQ), which either simultaneously undergo a KT tran-
sition due to single vortices (AQ/SQ to thermal Bose gas (TBG)
phase), or individually due to correlated vortex pairs: symmetric
(anti-symmetric) vortex pairs drive the AQ/SQ to AQ (SQ) transi-
tion
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Ultracold Atomic Gases: Novel States of Matter, Figure 7
Phase diagram, temperature (in units of TKT) versus interaction
(in units of J). We assume J

?
/J � 10�3 and A1/J � 10�3. DLSF:

double layer superfluid; TBG: thermal Bose gas; ASF: anti-sym-
metric superfluid; SQ: symmetric quasi-order. The order of the
transition lines are either first (I), second order (II), or KT (thin
lines)

proposal of realizing the KZ mechanism by switching on
the tunneling between two SFs.

2D Superfluids

In this section we consider two 2D SFs, each character-
ized by a KT temperature TKT. We write the bosonic op-
erators b1/2 in the two layers in a phase-density repre-

Ultracold Atomic Gases: Novel States of Matter, Figure 8
a Critical temperature Tc of the DLSF-TBG transition (in units of TKT) for different values of A1/J: 10�3; 0:1;0:4 (I–III), and for Jint D 0.
b Energy gap in the anti-symmetric sector (in units of J

?
) as a function of J

?
/J and temperature (in units of TKT). We have set

A1/J D 0:1 and Jint D 0

sentation [11,24], b1/2 �
p
�1/2 exp(i�1/2), where �1/2 are

the density operators of the two systems, and �1/2 the
phases. The low-momentum fluctuations of the phase
fields are described by Gaussian contributions to the
HamiltonianH0. Because of the formal analogy between
the quantum 1D and thermal 2D systems [22] we adopt
the quantum terminology throughout the paper and refer
to the ratio of the Hamiltonian and the temperature as the
action. Then

S0 �
H0

T
D

J
2T

Z
d2r

�
(r�1)2 C (r�2)2

�
: (18)

The energy scale J here is related to TKT by J D 2TKT/� .
Besides these long-wavelength fluctuations, the system
also contains additional degrees of freedom, vortex-anti-
vortex pairs [11]. The corresponding term in the action is
expressed through the dual fields �1;2 [24]:

S1 D
2A1

T

Z
d2r

(2�˛)2
[cos(2�1)C cos(2�2)] ; (19)

where ˛ is a short-distance cut-off of the size of the vor-
tex core, and A1 is proportional to the single-vortex fu-
gacity: A1 � J exp(�J/T), where we assume both SFs
to have the same effective parameters J and A1. Oper-
ators of the type exp(2i�) create kinks in the field � :
exp(�2i�(x))�(x0) exp(2i�(x)) � �(x0)C 2�	(x � x0),
	(x) being the step function, which corresponds to the
effect of vortices in the original 2D problem ([22], p 92).

In addition, the two systems are coupled by a hopping
term� t?b

�
1 b2 C h.c., which results in the following con-
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tribution to the action:

S? D
2J?
T

Z
d2r

(2�˛)2
cos(�1 � �2) ; (20)

where the bare value of J? corresponds approximately to
t?�0. In principle, the hopping term is modified by the
vortex contributions, however, these corrections are al-
ways irrelevant under renormalization group (RG).

For most of the discussion in this paper we use the
symmetric and anti-symmetric combinations of �1/2 and
�1/2:

�s/a D (�1 ˙ �2)/
p
2 ; �s/a D (�1 ˙ �2)/

p
2 : (21)

Written in these fields, the term S0 in Eq. (18) is again
a sum of Gaussian models, now in the fields �s and �a,
with the same energy scale J. However, we will consider
a broader class of actions, in which the energy scales of the
symmetric and anti-symmetric sector differ. We include
the following term in the action:

S12 D
Jint
T

Z
d2rr�1r�2 : (22)

With this, the quadratic part of the action is given by:

S0CS12 D
Js
2T

Z
d2r(r�s)2C

Ja
2T

Z
d2r(r�a)2 ; (23)

where Js and Ja are given by Js/a D J ˙ Jint.
We now motivate the existence of such a term S12 in

ultra-cold atom systems, by considering two BECs cou-
pled by a short-range density–density interaction. Start-
ing from a Hamiltonian of the form H D

P
k[�kb

�
kbk C

(g/2V)��k�k], where bk is the boson operator, �k the free
dispersion �k D k2/2m, g is the interaction strength of the
contact interaction, V the volume, and �k is the density
operator of momentum k, given by �k D

P
p b
�
pbpCk, we

assume that the zero momentum mode is macroscopi-
cally occupied, and formally replace the operator b0 by
a number, b0 !

p
N0, where N0 is the number of con-

densed atoms which is comparable to the total atom num-
ber N , i. e. N0 � N . Next we keep all terms that are
quadratic in bk (with k ¤ 0), and perform a Bogoliubov
transformation, given by: bk D ukˇk C vkˇ

�
�k, to diago-

nalize the Hamiltonian. The eigenmodes ˇk have a dis-
persion relation !k D

p
�k(�k C 2gn), with n being the

density N/V . The low-k limit is given by !2
k � v2jkj2,

with v D
p
gn/m, which corresponds to the contribu-

tion in Eq. (18) of the action. Next, we consider the sum
of two copies of the previous Hamiltonian with boson
operators b1/2. In addition we consider an interaction

H12 D g12/V
P

k �
�
1;k�2;k, where the density operators

�1/2;k are given by �1/2;k D
P

p b
�
1/2;pb1/2;pCk. Follow-

ing the same procedure as before, we find two eigen-
mode branches, corresponding to in-phase and out-of-
phase superpositions of the modes of each condensate,
with the dispersions !2

s/a;k � v2s/ajkj
2, with the velocities

vs/a D
p
(g ˙ g12)n/m. Therefore, for this example, the

energy scale Jint is related to g12n/m, which would be of
similar order as J for a system interacting via contact in-
teraction, for small temperatures. This discussion only ap-
plies to the weakly interacting limit of a true condensate.
However, it demonstrates that a density–density contact
interaction term can lead to a substantial energy splitting
of the in-phase and out-of phase modes.

Finally, in addition to single vortices in each SF, we
have to consider the possibility of correlated vortex pairs,
i. e. one vortex in each layer at the same location of either
the same or of opposite vorticity. We will refer to these
vortex configurations as symmetric or anti-symmetric vor-
tex pairs, respectively. These excitations appear as the fol-
lowing terms in the action:

Ss;a D
2As;a

T

Z
d2r

(2�˛)2
cos(2

p
2 �s;a) : (24)

These correlated vortex terms, which describe new degrees
of freedom, can be the most relevant non-linear terms in
the action, which derives from the possibility that the vor-
tices in different layers interact with each other, through
the terms (20) and (22). The effect of these terms is the fol-
lowing: At low temperatures the energy between two sin-
gle vortices of opposite vorticity due to tunneling grows
as the square of the distance D between them, i. e. as
J?(D/˛)2. As a result, the tunneling term attempts to con-
fine vortices of opposite vorticity, leading to phase-lock-
ing between the layers, which we describe further later
on. The interaction S12 changes the energy of correlated
vortex pairs as follows: The energy of a single vortex is
given by 2� J log L/˛, where L is the system size, whereas
a symmetric/anti-symmetric vortex pair has an energy
of 4�(J ˙ Jint) log L/˛. Therefore, symmetric vortex pairs
are the lowest energy vortex excitations for Jint < �J/2,
whereas for Jint > J/2 anti-symmetric vortex pairs are the
lowest energy excitations. As we will see below, in these
regimes correlated vortex pairs drive transitions to phases,
in which one sector is (quasi-)SF whereas the other is dis-
ordered. We will also see that these terms are generated
under the RG flow, even if not present at the onset.

We note that a similar system has been studied in [8].
Here, we consider a larger class of systems by including the
interaction term (22), which in turn requires us to include
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the correlated vortex excitations (24). These terms give rise
to additional phases as we will see in the following.

Next we analyze our system within the RG approach.
This RG flow is perturbative in the vortex fugacities A1,
As, and Aa, and the tunneling energy J?, and therefore ap-
plies to the weak-coupling limit (in particular J? !C0).
At second order the flow equations are given by [6]:

dJ?
dl
D

�
2 �

T
2� Ja

�
J? ; (25)

dAs

dl
D

�
2 � 2�

Js
T

�
As C ˛3

A2
1(Ja � Js)
2T2 ; (26)

dAa

dl
D

�
2 � 2�

Ja
T

�
Aa C ˛3

A2
1(Js � Ja)
2T2 ; (27)

dA1

dl
D

�
2 �

�(Js C Ja)
2T

C ˛3
As Js C Aa Ja

T2

�
A1 ; (28)

dJa
dl
D ˛2

 
J2
?

4�4Ja
� 4

A2
a

T4 J
3
a �

A2
1

2T4 (Js C Ja)J2a

!

; (29)

dJs
dl
D �˛2

�
2
A2
s

T4 J
2
s C

A2
1

4T4 (Js C Ja)Js
�
2Js : (30)

The coefficients ˛2/3 are non-universal parameters that
appear in the RG procedure [51], and which do not af-
fect the results qualitatively. For consistency, we have to
expand the right-hand site of the above equations up to
second order, around the resulting Gaussian fixed point:
Js/a D J ˙ Jint C js/a. We emphasize again that Jint near
the fixed point can be generated by RG and be nonzero
even if it is not present at the onset.

Before we consider the full RG flow, we consider the
simpler case of no tunneling, i. e. we solve the RG equa-
tions while setting J? D 0. In Fig. 6 we show the phase di-
agram of two 2D SFs coupled by S12, Eq. (22). Such a sys-
temwould be realized by a 2Dmixture of bosonic atoms in
two different hyperfine states, interacting via some short-
range potential. The order parameters we consider are
Os(x) D b1(x)b2(x) and Oa(x) D b�1 (x)b2(x). To obtain
the phase diagram we consider the correlation functions
of each of these order parameters, which can either scale
algebraically or exponentially. In Fig. 6 we refer to alge-
braic scaling of Os(x) as symmetric quasi-order (SQ), and
of Oa(x) as anti-symmetric quasi-order (AQ). In each of
the sectors a KT transition marks the transition from the
algebraic to the exponential regime, which occur either si-
multaneously and are driven by single-vortex excitations,
or at different temperatures and are driven by correlated
vortex pairs. As a result we find four regimes: At temper-
atures above TKT, both sectors are disordered, giving rise
to a thermal Bose gas (TBG) phase. For temperatures be-
low TKT, and for a wide range of Jint, we find that both

sectors are quasi SF (AQ/SQ), which is the only phase in
which the correlation function of the single boson opera-
tors show algebraic scaling. We also find regimes in which
only one sector shows algebraic scaling, whereas the other
is disordered (AQ and SQ). From the perspective of vor-
tices, the TBG phase is a gas of free single vortices in each
layer, whereas the AQ (SQ) phase is a gas of symmetric
(anti-symmetric) vortex pairs.

We now consider the full RG system, including J?.
We numerically integrate the RG equations, and find the
phase diagram shown in Fig. 7 in terms of the tempera-
ture T and the interaction Jint. We again find four differ-
ent phases that are different combinations of LRO, QLRO,
and disorder in the symmetric and anti-symmetric sector.
At high temperatures we find that both sectors are disor-
dered in a TBG phase, as before. For lower temperatures,
and for a wide range of Jint, the system is in a double-layer
SF phase (DLSF): The symmetric sector shows algebraic
scaling, whereas the exponent of the anti-symmetric sector
is renormalized to zero, i. e. we find two SFs that are phase-
locked due to J?. Note that the transition temperature Tc
between DLSF and TBG has been noticeably increased rel-
ative to the decoupled value TKT, as we will discuss fur-
ther later on. We also find two additional phases, which
are partially (quasi-)SF and partially disordered. One of
them is the SQ phase, as before, whereas the other one
(ASF), now shows true LRO in the anti-symmetric sector
due to J?, whereas the symmetric sector remains disor-
dered. We note that the generic double-layer action that
we discuss in this paper does not show a sliding phase [71],
for any non-zero J?. Either S1 or Sa, which is generated by
RG, drives the anti-symmetric sector to a disordered state,
or S? creates true LRO in the field �a.

We also use the RG flow to find the order of the phase
transitions in the weak-coupling limit that the anti-sym-
metric sector undergoes, by determining the energy gap
using a ‘poor-man’s scaling’ argument: when the coupling
amplitude J?(l�) is of order unity the corresponding gap
is given by the expression� � J? exp(�l�). From the be-
havior of� at the phase transition we can read off whether
it is of first or second order, as indicated in Fig. 7.

Given the nature of an effective theory, only approx-
imate statements can be made about how the different
regimes of the phase diagram relate to the microscopic in-
teractions. To create the ASF or AQ phase an attraction
between the two atom species is needed that is of order J,
whereas to create the SQ phase, a repulsion of that order
would be needed. To detect the different phases, one could
use the interference method used in [30] to distinguish the
phase-locked phases (DLSF and ASF), which would show
a well-defined interference pattern, from the uncorrelated
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phases. Another approach would be time-of-flight images:
The DLSF phase would display a quasi-condensate signa-
ture, whereas the other phases would appear disordered.
However, at the transition from ASF or SQ to TBG, the
width of the distribution would abruptly increase.

Kibble–Zurek Mechanism

In this section we discuss how the phase-locking transition
found in the previous section could be used to realize the
KZ mechanism. The defining property of this mechanism
is the generation of topological defects by ramping across
a phase transition, coming from the disordered phase. The
disordered phase that we propose to use is the TBG phase
of the decoupled 2D systems, that is, we consider the ex-
perimental setup reported in ref. [30] for a temperature T
above the KT temperature TKT. The ordered phase we con-
sider is the DLSF phase, i. e. the phase-locked phase of two
coupled SFs. The ramping is achieved by turning on the
tunneling between the two layers, which can be done by
lowering the potential barrier between them. For this pro-
cedure the critical temperature Tc of the DLSF-TBG tran-
sition needs to be above the KT temperature of the un-
coupled systems. We now show that the RG flow indeed
predicts such a scenario. In the experiments in [30], the
atoms in different layers do not interact with each other.
Therefore, it can be expected that Jint is small, of order J?,
which motivates us to discuss the case Jint D 0 here. We
note however, that the desired scenario of an increased
critical temperature, is found for a wide range of Jint, as
can be seen in Fig. 7. In Fig. 8a we show how the criti-
cal temperature of the DLSF-TBG transition behaves, pre-
dicted by the RG flow, for different values of A1. The criti-
cal temperature shows a sizable increase, due to the phase-
locking transition. Due to the perturbative nature of the
RG scheme, the RG flow underestimates the effects of the
term S1, and predicts a finite jump of the critical temper-
ature when J? is turned on. However, to lock the SFs to-
gether in the regime slightly above TKT, J? needs to be at
least of the order of the vortex core energy, giving rise to
a finite slope of Tc instead of a jump. The energy gap of this
transition is shown in Fig. 8 fromwhich we can see that the
transition is of first order, in contrast to the second order
transition described in [45,108], which is advantageous be-
cause the onset of order is instantaneous rather than con-
tinuous. We note that the phase diagram was obtained us-
ing the assumption that the bare parameters of the model,
in particular J, do not depend on temperature. This is true
only if temperature is close to TKT. Here we find that the
ratio Tc/TKT can be relatively large. In fact Tc/TKT will be
always smaller than that shown in Fig 8a, however, quali-

tatively the behavior of Tc/TKT as a function of J? should
remain intact. We point out that our results can be gen-
eralized to a system of N > 2 coupled SFs. One finds that
the SFs still show a strong tendency to phase-lock together.
As a result the critical temperature should approximately
satisfy the equality � J(Tc)N D 2Tc. Thus as N increases
Tc approaches themean-field critical temperature at which
the stiffness J vanishes and we recover the usual 3D result.

In finite size systems there is another constraint on
the minimum value of J?: We consider the free en-
ergy of a single vortex in the anti-symmetric field: �a �
arctan(x/y). For the decoupled system we get for the free
energy [51]: F � 2(� J � 2T) log L/˛, where L is the sys-
tem size. The coupling term gives a free energy con-
tribution F? � J?(L/˛)2. In the thermodynamic limit,
L!1, this term diverges faster than the others, which
is consistent with our finding of LRO in the antisymmet-
ric sector. For a finite system, comparing these terms gives
the estimate J? � J log(L/˛)/(L/˛)2 , that is required for
this order to develop. With a system size L/˛ � 102, that
would require J? � 10�3 J, which, for the setup in [30],
would be around 102s�1.

As an estimate of the number of domains that would
be created, we follow the argument in [45]: The coherence
scale of the DLSF phase is given by (J/�)1/2˛, which is the
scale of a Klein–Gordonmodel with a kinetic energy scale J
and a ‘mass-term’ with a prefactor�/˛2. The domain size
is then given by (J/�)˛2, and the number of domains by
� (�/J)L2/˛2. As we show in Fig. 8b for J?/J � 10�2,
we find �/J? � 10�1, and therefore J/� � 103. With
L/˛ � 102, we would get Ndom � 101 � 102, which would
generate a similar number of vortices. We estimate the
vortex-antivortex imbalance by considering the number of
domains around the periphery of the system, which scales
as L/� . If we imagine that the phase behaves like a ran-
dom walk, the total phase mismatch, corresponding to the
vortex-antivortex imbalance, will scale as

p
L/� � N1/4

dom,
which, for L/˛ � 102, is of the order 100–101.

In summary, we propose the following procedure:
i) Prepare two uncoupled SFs at a temperature T slightly
above TKT. ii) Switch on the tunneling between the two
layers, which creates a DLSF phase with a critical tempera-
ture Tc higher than T. As a result, one should find a num-
ber of long-lived vortex-antivortex pairs in the anti-sym-
metric phase field �a, which would be visible in an inter-
ference measurement, at a temperature where there would
be none in thermal equilibrium.

In conclusion of the section, we studied the phase-
locking transition of 2D superfluids, within an renormal-
ization group approach. We find that this transition is ac-
companied by an increase of the transition temperature.
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We suggest that this effect can be used to probe the Kibble–
Zurek mechanism in cold atom systems by rapidly chang-
ing the ratio T/Tc. When we include interactions between
the layers we find additional phases, in which either the
symmetric or the anti-symmetric sector is disordered, and
the other sector stays superfluid or quasi-superfluid.

Bose–FermiMixtures
in Two-Dimensional Optical Lattices

In the spirit of engineering many-body systems that are
relevant in other fields, we now turn to atomic mixtures
that resemble qualitatively, i. e. in terms of degrees of free-
dom of the system, electron–phonon systems. In two di-
mensions, these systems are actively studied and prove
to be of considerable complexity. In order to study their
atomic counterparts, Bose–Fermi mixtures in optical lat-
tices, we use the powerful method of functional renor-
malization group equations, with which we can determine
their phase diagrams in the weak-coupling limit in a sys-
tematic fashion. We find a rich competition of phases for
both the square lattice and triangular lattice geometry that
we consider.

In this section we consider mixtures of one bosonic
type of atom and either two fermionic types that are
SU(2) symmetric or spinless fermions. The Hamiltonian
for a mixture on a square lattice is given by:

H D �tf
X

hi ji;s

f �i;s f j;s � tb
X

hi ji

b�i b j

�
X

i

(�fnf;i C �bnb;i)

C
X

i

h
Uffnf;i;"nf;i;# C

Ubb

2
nb;i nb;i C Ubfnb;i nf;i

i
;

(31)

where f �i;s ( fi;s) creates (annihilates) a fermion at site iwith
pseudo-spin s (s D";#), b�i (bi) creates (annihilates) a bo-
son at site i, nf;i D

P
s f
�
i;s fi;s (nb;i D b�i bi ) is the fermion

(boson) number operator, tf and tb are the fermionic and
bosonic tunneling energies between neighboring sites, �f
(�b) is the chemical potential for fermions (bosons), Ubb
is the repulsion energy between bosons on the same site,
Uff is the repulsion energy between the two species of
fermions, and Ubf is the repulsion energy between bosons
and fermions. The two fermion species have been treated
as a pseudo-spin-1/2 index (" and #). The case of spin-
less fermions can be immediately obtained from (31) by
ignoring one of the spin states. In momentum space, the

Hamiltonian (31) is written as:

H D
X

k

(

(�f;k � �f)
X

s
f �k;s fk;s C (�b;k � �b)b

�
kbk

C
Uff

V
�f;k;"�f;�k;# C

Ubb

2V
�b;k�b;�k C

Ubf

V
�b;k�f;�k

�
;

(32)

where �f;k D
P

q;s f
�
kCq;s fk;s (�b;k D

P
q b
�
kCqbk) is the

fermion (boson) density operator, �b/f;k D �2tb/f(cos kxC
cos ky), is the bosonic/fermionic dispersion relation.

We consider the limit of weakly interacting bosons
that form a BEC [62,104], where we assume that the
zero momentum bosonic mode is macroscopically oc-
cupied, and the corresponding operator b0 can be for-
mally replaced by a real number b0 !

p
N0, where N0 is

the number of condensed atoms. After this replacement
we keep all terms that are quadratic in bk (with k ¤ 0),
and perform a Bogoliubov transformation, given by:
bk D ukˇk C vkˇ

�
�k, to diagonalize the bosonic Hamilto-

nian. The resulting eigenmodes ˇk have a dispersion rela-
tion given by !k D

p
�b;k(�b;k C 2Ubbnb), with the low-k

limit !k � vbjkj, with vb D
p
2tbUbbnb. The parameters

uk and vk are given by: u2k D (!k C �b;k C Ubbnb)/(2!k)
and v2k D (�!k C �b;k C Ubbnb)/(2!k).

The density fluctuations of the bosons are approxi-
mated by: �b;k �

p
N0(uk C vk)(ˇk C ˇ

�
�k), with k ¤ 0.

The interaction between bosons and fermions is then
given by Ubf

p
N0/V

P
k(uk C vk)(ˇk C ˇ

�
�k)�f;�k. As

a next step we integrate out the bosonic modes and use
an instantaneous approximation, leading to the following
effective Hamiltonian:

Heff. D
X

k

(

(�k � �f)
X

s
f �k;s fk;sC

Uff

V
�f;k;"�f;�k;#

C
1
2V

Vind.;k �f;k;�f;�k
�
; (33)

where the induced potential Vind.;k is given by:

Vind.;k D �Ṽ /(1C �2(4 � 2 cos kx � 2 cos ky)) ; (34)

with Ṽ given by Ṽ D U2
bf/Ubb, and � is the healing length

of the BEC and is given by � D
p
tb/2nbUbb. This ap-

proach is only valid when vb 	 vf, so that the fermion–
fermion interaction mediated by the bosons can be con-
sidered as instantaneous. Away from this limit, retarda-
tion effects are present. In this case, one has to con-
sider the frequency dependence of the interaction explic-
itly [50,96,97]. The full effective interaction, including re-
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tardation, is given by:

Vind.(!; k) D

�

�
Ṽ

1C �2(4 � 2 cos kx � 2 cos ky)

�
!2
k

!2 C !2
k
; (35)

and the static limit (34) is recovered when !k 	 !. Equa-
tion (33) describes the scattering of two fermions from
momenta k1 and k2, that are scattered into momenta k3
and k4. Momentum conservation at the interaction vertex
requires that k4 D k1 C k2 � k3, and hence the interaction
vertex, U(k1; k2; k3), depends on three momenta. Its bare
value from (33) can be written as:

U(k1; k2; k3) D Uff C Vind.;k1�k3 : (36)

For the case with retardation, there is dependence on both
the momenta and frequencies of the electrons so we have
U(k1; k2; k3), with k4 D k1 C k2 � k3, where ki D (!; k).

Starting from non-interacting fermions, we ask the
general question of what new many-body phases can
emerge when the system is subjected to a given interaction
U(k1; k2; k3). Our approach to address this question is the
renormalization-group method, described in the next sec-
tion.

Renormalization-Group Method

Starting with a microscopic model of interacting electrons
on a lattice, the renormalization-group (RG) method pro-
vides the effective model at a given temperature or energy
scale [89]. The RG is implemented by systematically trac-
ing out high energy degrees of freedom in a region be-
tween � and �C d�, where � is the energy cut-off of
the problem. In this process, the vertex U is renormal-
ized. At the initial value of the cut-off � D �0, the value
of U is given by its bare value. For the BFM system we
describe here, it is given by (36). At one loop, the RG
flow is obtained from a series of coupled integral-differen-
tial equations [106] for all the different interaction vertices
U(k1; k2; k3). The RG equations read:

@`U`(k1; k2; k3) D

�

Z

p;!
@`[Gp`Gk`]U`(k1; k2; k)U`(p; k; k3)

�

Z

p;!
@`[Gp`Gq1`]U`(p; k2; q1)U`(k1; q1; k3)

�

Z

p;!
@`[Gp`Gq2`]

n
� 2U`(k1;p; q2)U`(q2; k2; k3)

C U`(p; k1; q2)U`(q2; k2; k3)

C U`(k1;p; q2)U`(k2; q2; k3)
o

(37)

where ` D ln(�0/�), k D k1 C k2 � p, q1 D pC k2 � k3,
q2 D pC k1 � k3, and Gk` D 	(j�kj ��)/(i! � �k)
with �k D �f;k � �f and k D (!; k).

From the general interaction vertices U(k1; k2; k3),
the specific interaction channels, such as charge-density
wave (CDW), antiferromagnetic (AF), and superconduct-
ing (BCS), can be obtained:

VCDW D 4Uc(k1; k2; k1 CQ) ; (38)

VAF D 4U
 (k1; k2; k1 C Q) ; (39)

VBCS D U(k1;�k1; k2) ; (40)

where we have used the notation: Uc D (2 � X̂)U/4,
U
 D �X̂U/4 with X̂U(k1; k2; k3) D U(k2; k1; k3), andQ
is the nesting vector, Q D (�; �).

In a numerical implementation, one discretizes the
Fermi surface into M patches, and hence each of the in-
teraction channels (38), (39), (40) is represented by an
M �M matrix. At each RG step, we diagonalize each of
these matrices. The channel with the largest eigenvalue
(with the caveat that a BCS-channel needs to be attractive
to drive a transition) corresponds to the dominant order.
The elements of the eigenvector are labeled by the discrete
patch indices around the Fermi surface and the symme-
try of the order parameter is given by this angular depen-
dence.

The RG method for interacting fermions has been ex-
tended to also include retardation effects, as for the case
of interacting electrons which are also coupled to phonons
in a crystal [96,97]. In this case: (i) the interaction vertices
also depend on frequencies of the incoming and outgoing
fermions, so the RG equations are written for given ex-
ternal frequencies and the integral over intermediate fre-
quencies can not be done analytically, and (ii) there are
important self-energy corrections (in particular the imag-
inary part of the self-energy is non-zero). Eliashberg equa-
tions for strong-coupling superconductivity has been de-
rived with this method [96,97] for the case of electrons,
with a circular Fermi surface, coupled to phonons. This
method has also been applied to other electron–phonon
problems [49,94], and to mixtures of cold atoms in an op-
tical lattice [50].

Phase Diagram and Sub-Dominant Orders

The microscopic parameters in the Hamiltonian (31) de-
termine the initial conditions for the RG flow, and the
shape of the Fermi surface. With these, we write the RG
flow equations and solve them numerically. We first dis-
cuss the case without retardation. For some parameters,
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Ultracold Atomic Gases: Novel States of Matter, Figure 9
RG flow for the different effective interactions (in units of tf)
as a function of the RG parameter l (Ṽ/tf D 3 and � D 1).
a Uff/tF D 0:5; b Uff/tf D 1:2

we encounter a divergence in the RG flow, indicating
the onset of ordering with a gap that is in the detectable
regime, i. e. larger than 10�3tf. In other regimes, where
such a divergence is not reached, one can read off the dom-
inant tendency of the RG flow. In Fig. 9 we show examples
of RG flows as a function of `. In Fig. 9a, we show the com-
petition between d-wave and s-wave pairing, with d-wave
being dominant and s-wave being subdominant. In Fig. 9b
we show an example with dominant d-wave channel and
subdominant AF channel. In both cases we find that for
short distances (or high energies) CDW fluctuations are
dominant, giving rise to a state that resembles the find-
ings for high-Tc superconductors [33,34,99]. In some sit-
uations the many-body states are almost degenerate and
small changes in the initial conditions (that is, changes in
the form of the interactions) can be used to select one par-
ticular ground state.

With this procedure we determine the phase diagram
of the system, which is shown in Fig. 10. We now discuss
the general features of the phase diagram. In the absence
of any coupling to the bosons, i. e. for Ṽ D 0, the system
shows s-wave pairing for attractive interaction, Uff < 0,
and no ordering for Uff > 0, i. e. Fermi liquid behavior,
except for the special case of half-filling where Fermi sur-
face nesting drives the system to AF order for repulsive in-
teractions, and to s-wave pairing (degenerate with CDW)
for attractive interaction. If we now turn on the interac-
tion to the bosons, this picture is modified in the follow-
ing way: The boundary of the s-wave regime is moved
into the regime of positive Uff, approximately to a value of
Uff where the effective interaction at the nesting vector Q
between the fermions, Uff C Vind.;Q, is positive, i. e. for

Ultracold Atomic Gases: Novel States of Matter, Figure 10
Phase diagram, interaction strength, Uff/tf , versus number of
fermions per site, n, for a Fermi–Bose mixture in a square lattice
in 2D (Ṽ/tf D 2, � D 1)

Uff � Ṽ/(1C 8�2). On the repulsive side, and away from
half-filling, we find the tendency to form a paired state,
either d-wave or p-wave. This tendency becomes weaker
the further the system is away from half-filling. We typ-
ically find a gap in the vicinity of half-filling and further
away from � D 0 we find only an increasing strength of
the corresponding interaction channel. For the half-filled
system, we find that for attractive interactions the degen-
eracy between s-wave pairing and CDW ordering is lifted,
with s-wave pairing being the remaining type of order.
For repulsive interactions, we find an intermediate regime
of d-wave pairing, and for larger values of Uff we obtain
AF order.

The RG approach also allows the extraction of the
many-body gaps in the system through a “poor man’s scal-
ing” analysis of the divergent flow: at the point where
the coupling becomes of order of tf the scaling parame-
ter ` reaches the maximum value `c D ln(tf/�), where �
is the value of the gap. Hence,�/tf � expf�`cg can be ob-
tained from the RG flows such as the ones in Fig. 9. In
Fig. 11 we show the gaps of the problem as a function of
Uff/tf in the half-filled case. One can see that as Uff in-
creases, from negative to positive values, the s-wave gap
is replaced by a d-wave gap, and finally for an antiferro-
magnetic gap. As is apparent from this figure, the gap in
the d-wave phase is much smaller than the gaps of the AF
order and the s-wave pairing, and, furthermore, almost in-
dependent of the value ofUff. The latter is the case because
the Uff term is a pure s-wave contribution to the interac-
tion and therefore does not contribute to the d-wave chan-
nel. The d-wave channel has an initial contribution which
is entirely due to the anisotropy of the induced interaction,
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Ultracold Atomic Gases: Novel States of Matter, Figure 11
Many-body energy gaps at half-filling (�D 0), as a function of
Uff/tf , for Ṽ/tf D 3 and at a fixed value of the coherence length
� D 1.Dashed line: s-wavegap; continuous line:d-wave gap; dot-
ted-dashed line: antiferromagnetic gap. The inset shows a mag-
nified plot of the d-wave regime

which gives only a small value, and as a consequence only
a small value for the gap. The value of the gap (in units
of tf) can be numerically fitted with a BCS expression of
the form a exp(�b/Ṽ ), with the parameters a and b given
by a D 0:31 and b D 14:2.

For a system of spinless fermions, one can simply sup-
press one of the spin indices in (31) and (32). In this
case there is a major simplification in the problem since
Uff is absent: in a spinless problem there can be only
one fermion per site, as per Pauli’s principle. Hence, in
the absence of bosons, the spinless gas is non-interact-
ing. The bosons, however,mediate the interaction between
the fermions. Since the fermions are in different lattice
sites the pair wavefunction has necessarily a node and
hence, no s-wave pairing is allowed. In other words, in the
spinless case the anti-symmetry of the wavefunction re-
quires pairing in an odd angular momentum channel. In
fact, we find that throughout the entire phase diagram the
fermions develop p-wave pairing. At half-filling we find
a similar behavior of CDW fluctuations on short scales,
analogous to the flow shown in Fig. 9. One should point
out that in real solids the conditions of “spinlessness” be-
havior is hard to achieve since it usually requires complete
polarization of the electron gas, that is, magnetic energies
of the order of the Fermi energy (a situation experimen-
tally difficult to achieve in good metals). However, in cold
atom lattices this situation can be easily accomplished with
the correct choice of atoms.

Finally, when retardation is important, the numeri-
cal task of solving the RG flow equations become much
more demanding. In addition to the discretization of the
Fermi surface, one has to also discretize the frequency (for

Ultracold Atomic Gases: Novel States of Matter, Figure 12
Relevant processes in the two-patch approximation

T D 0), or consider a certain number of Matsubara fre-
quencies (T ¤ 0). This has been done for this Bose–Fermi
system only for a fixed density of fermions corresponding
to one half [50]. In this case the Fermi surface has a di-
amond shape and scattering processes are dominated by
the van Hove points (corners of the diamond) where the
density of states is singular. The Fermi surface can there-
fore be approximated by the van Hove points only [86] so
that he types of relevant processes are reduced, as shown
in Fig. 12. Each of the processes still depend on frequen-
cies: gi (!1; !2; !3), for i D 1; 2; 3; 4. The phase diagram is
shown in Fig. 13. Retardation leads to additional phases at
half-filling and by tuning the lattice parameters, the system
undergoes AF (or spin-density-wave SDW), d-wave SC
pairing, s-wave-pairing, and CDW. In the limit of vb 	 vf
discussed previously, when retardation is not important,
CDW does not become dominant (Fig. 10). It is at most
degenerate with s-wave pairing for Uff < 0. As the bosons
become slower, there is stronger tendency for CDW for-
mation (Fig. 13).

Quantum Frustration in Triangular Lattices

It is known that the geometric shape of the lattice is a cru-
cial factor in determining the properties of interacting
many-body systems. For instance, localized spins inter-
acting antiferromagnetically on a triangular lattice suf-
fer from the phenomenon of frustration, when antiferro-
magnetic order cannot be achieved because of the par-
ticular lattice structure. For itinerant fermionic systems,
the lattice structure, together with the dispersion rela-
tion and the filling fraction, determine the shape of the
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Ultracold Atomic Gases: Novel States of Matter, Figure 13
Phase diagram forUff D 0:4tf,Ubb D 0:8tf, and nb D 2:5. Blue circles indicate s-wave SC, red rhombuses indicate d-wave SC,magenta
squares AF (also called spin-density-wave SDW), and green stars CDW type of ordering. Dashed lines are guides to the eye

Fermi surface. The Fermi surface, by its turn, is a cru-
cial factor in determining what type of orders the sys-
tem can develop. Indeed, for the triangular lattice we con-
sider in this section, which shows a rich and subtle com-
petition between superconducting phases with different
symmetries, small changes in the shape of the FS deter-
mine which pairing symmetry is dominant. This is a re-
flection of the “lattice frustration” on the superconduct-
ing phases. In solids, this intriguing lattice geometry is
realized in materials such as cobaltates [93], transition
metal dichalcogenides [105] and �-(ET)2X layered organic
crystals [40] (if each lattice site is represented by one ET
dimer [46]), and has been the subject of several theoretical
studies [5,13,20,35,54,95,103,107].

In this section we consider a BFM on a triangular lat-
tice. The geometry of the lattice under consideration here
is shown in Fig. 15a. This system is described by a simi-
lar Hubbard model as for the square lattice. But now, be-
sides the triangular geometry, we allow for two different
values for the hopping amplitudes, for two types of lat-
tice bonds, as indicated in Fig. 15a by dashed and con-
tinuous lines. tf;a and tb;a with a D 1; 2 are the fermionic

and bosonic tunneling amplitudes between neighboring
sites, where the index a D 1 (a D 2) refers to the contin-
uous (dashed) bonds. For the description of the isotropic
case we equate tb/f;1 and tb/f;2, and define tf � tf;1 D tf;2
and tb � tb;1 D tb;2. �f (�b) is the chemical potential
for fermions (bosons), Ubb, Uff, and Ubf are the on-site
boson-boson, fermion–fermion and boson–fermion re-
pulsion energy, respectively.

Just as for the case of a square lattice, we con-
sider the limit of weakly interacting bosons, in which
the bosons form a BEC, for which we use the same de-
scription. The resulting dispersion relation is now given
by !k D

p
(�b;k � �b;0)(�b;k � �b;0 C 2Ubbnb), where the

bare lattice dispersion is given by:

�b;k D� tb;12 cos kx

� tb;2(2 cos(kx /2C
p
3ky/2)

C 2 cos(kx /2 �
p
3ky /2)) :

(41)

For small values of kx and ky, !k can be expanded as:

!k �
q
((2tb;1 C tb;2)k2x C 3tb;2k2y)Ubbnb, which gives us
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Ultracold Atomic Gases: Novel States of Matter, Figure 14
a Fermi surfaces for an isotropic lattice, for�f < 2tf;1/2,�f D 2tf;1/2 (hexagonal shape), and�f > 2tf;1/2 (six disjoint arcs). b Diagram
of the different types of Fermi surfaces that can be created on an anisotropic lattice, by varying the ratio tf;2/tf;1 and�f . c Fermi sur-
faces for tf;2 < tf;1, for�f < 4tf;2 � 2tf;1, 4tf;2 � 2tf;1 < �f < 2tf;1, and�f > 2tf;1, corresponding to the regimes I–III, respectively.
d Fermi surfaces for tf;2 > tf;1, for �f < 2tf;1, 2tf;1 < �f < 4tf;2 � 2tf;1, and�f > 4tf;2 � 2tf;1, corresponding to the regimes IV–VI,
respectively

the two velocities vb;x D
p
(2tb;1 C tb;2)Ubbnb and vb;y Dp

3tb;2Ubbnb.
We again assume that these velocities of the conden-

sate fluctuations are much larger than the Fermi velocity,
which corresponds to the conditions vb;x/y > tf;1/2. There-
fore, large bosonic hopping amplitudes, a bosonic density
of� 1 � 3, and some intermediate value for tf;1/2 will sat-
isfy this requirement. As before, the bosonic modes can be
integrated out, and we obtain an approximately non-re-
tarded fermion–fermion interaction. The induced poten-
tial Vind.;k is given by: Vind.;k D �Ṽ /(1C�21 (2�2 cos kx )C
�22 (4 � 4 cos(kx /2) cos(

p
3ky/2))) with Ṽ D U2

bf/Ubb, and
�a are the healing lengths of the Bose–Einstein conden-
sate (BEC) and are given by �a D

p
tb;a/2nbUbb with

a D 1; 2. We again arrive at a purely fermionic, non-re-
tarded description of the same form as before. This is
the effective model that we study with a numerical im-
plementation of the functional renormalization group.
For the isotropic case, perfect nesting occurs at 3/4-fill-
ing, with three possible nesting vectors: Q1 D (0; 2�),
Q2 D (�;

p
3�), and Q3 D (��;

p
3�), leading to three

different possible types of instabilities per density wave
channel. For the anisotropic case, only Q1 can be a nest-
ing vector, for the condition �f D 2tf;1. To determine the
scale of the gaps, �, associated with each of these order
parameters, we again use a ‘poor man’s’ scaling estimate,
specifically: � � �0e�`c , where `c is the point at which
the RG flow diverges and the instability occurs.

The RG is implemented numerically by discretizing
the FS into M patches. For the results shown in this sec-
tion, M D 24 or 36 was used. The CDW, AF and BCS
channels are diagonalized at each RG step. The dominant
instability is the channel that has an eigenvalue (divided
by the dimension of the matrix) with the largest magni-
tude (for BCS one has to ensure that such eigenvalue is
negative so that the channel is attractive). Each element of
the corresponding eigenvector represents a given FS patch,
and hence, the symmetry of the dominant order parame-
ter is reflected on the patch (i. e., angular) dependence of
each element around the FS. Using this method, we de-
termine the phase diagram of the system in various lim-
its.
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Ultracold Atomic Gases: Novel States of Matter, Figure 15
a Lattice geometry of the system. The continuous (dashed) bonds correspond to the hopping amplitudes tb/f;1(2). For tb/f;1 D tb/f;2,
the lattice is an isotropic triangular lattice. b schematic representation of the AF order corresponding to nesting vector Q1. c,dOrder
parameters of the extended d-wave orders D1 and D2. e Order parameter of the f -wave phase. This order can also be interpreted as
two s-wave paired hole states whose order parameters are out of phase by� . fOrder parameter of the extended p-wave phase, that
appears in anisotropic lattices

Wefirst consider spin-1/2 fermions on an isotropic tri-
angular lattice, i. e. with tf;1 D tf;2 � tf. The FS for such
a lattice behaves as follows: For small filling the FS con-
sists of one near-circular piece, which then approaches
the shape of a hexagon as �f approaches the special value
�f D 2tf. At this special chemical potential, which corre-
sponds to 3/4-filling, the FS is nested with the three dis-

tinct nesting vectors Qi . For filling fractions larger than
3/4 the FS breaks into six disjoined arcs. Examples for
these different regimes are shown in Fig. 14a. Without
coupling to the BEC, the fermions form an s-wave pairing
phase for attractive interactions, and a Fermi liquid phase
for repulsive interactions (ignoring high angular momen-
tum pairing phases predicted by the Kohn–Luttinger the-
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orem [53] which would occur at energy scales much lower
than the experimentally accessible regime), except for the
specific case �f D 2tf, where the system shows AF order
for repulsive interactions. A schematic picture of this or-
der is shown in Fig. 15b for the nesting vector Q1. This
behavior is similar to the one found for isotropic square
lattice in the previous section [62]: s-wave pairing for at-
tractive interaction, and Fermi liquid behavior for repul-
sive interaction, except at an special filling, for which we
find AF order due to nesting. An interesting difference for
the triangular lattice is the three-fold degeneracy of the AF
phase, an indication of frustration.

When the coupling to the BEC is turned on, the
isotropic triangular lattice shows a phase diagram of the
type shown in Fig. 8. The s-wave pairing phase slightly
extends into the regime of positive Uff, because of the in-
duced attractive interaction mediated by the bosonic fluc-
tuations. The regime that showed Fermi liquid behavior in
the absence of the induced interaction now shows a rich
competition of various types of pairing. In the regime
where the density is below half-filling, when the FS is ap-
proximately circular, the system shows p-wave pairing. For
fillings larger than 3/4, when the FS consists of six dis-
joined parts, the fermions Cooper pair in a superconduct-
ing state with f symmetry. As shown in Fig. 15e, the FS in
this regime can also be interpreted as two distinct near-cir-
cular Fermi surfaces of holes. In this interpretation each of
these two fermionic systems is in an s-wave pairing phase,
but the relative phase between the two order parameters
is � . At 3/4-filling and large values of Uff, the system still
shows AF order. However, for smaller values of Uff, and
also for smaller fillings, two phases with degenerate ex-
tended d symmetry develop. These superconducting or-
ders have a sizable g-wave component and are approxi-
mately given by:

 D1 D sin 2� C 0:5 sin 4� ; (42)

 D2 D cos 2� � 0:5 cos 4� : (43)

These order parameters are shown in Fig. 15c and d. The
shapes of the order parameters are energetically advanta-
geous because, on the one hand, the order parameter max-
ima are located at points at which the system has a high
density of states (the ‘corners’ of the FS). Hence, when the
superconducting gap opens, there is a large gain of con-
densation energy coming from these regions on the FS. On
the other hand, the d-wave state has lower kinetic energy
than the f -wave, and hence is selected.

The phase diagram Fig. 8 has a number of similarities
to the phase diagram for a BFM on a square lattice, such as

Ultracold Atomic Gases: Novel States of Matter, Figure 16
Phase diagram of a Bose–Fermi mixture on a 2D isotropic tri-
angular lattice. The vertical axis corresponds to the interaction
strength, Uff/tf, whereas the horizontal axis corresponds to the
filling fraction of the fermions per site, n. The other parameters
are given by Ṽ/tf D 3, and �a D 1 with a D 1;2

the s- and the p-wave pairing phase, and the existence of
AF order for a nested Fermi surface for large Uff.

However, the competition of pairing orders for posi-
tive Uff and intermediate and large filling is much richer,
due to the more complex shape of the Fermi surface.

The energy gaps associated with these order param-
eters can be determined as we did in the previous sec-
tion [62], by using a ‘poor man’s’ scaling argument. We
find for the s-wave pairing and the AF order, that they are
around 0:1TF , where TF is the Fermi temperature of the
system. For most of the exotic phases, we energy gaps of
the order of 0:01 � 0:001TF .

We now consider a BFM with spin-1/2 fermions on
an anisotropic triangular lattice, i. e. with unequal hopping
amplitudes, tf(b);1 ¤ tf(b);2. The shape of the FS behaves as
follows: For tf;2 > tf;1, as one increases the chemical po-
tential, the FS first breaks into four arcs at �f D 2tf;1, and
then breaks into six arcs at �f D 4tf;2 � 2tf;1, correspond-
ing to the regimes IV–VI, in Fig. 14b and d. For tf;2 < tf;1
the FS first breaks into two arcs at �f D 4tf;2 � 2tf;1, and
then breaks into six arcs at�f D 2tf;1 corresponding to the
regimes I–III, in Fig. 14b and c. At the special chemical
potential �f D 2tf;1 the FS is still nested, but there is only
one nesting vector along the direction of the bonds with
hopping amplitude tf;1. In the absence of the coupling to
the BEC the phase diagram has a similar structure as for
the isotropic case: s-wave pairing for attractive interaction,
Fermi liquid behavior for repulsive interaction, with the
exception of the nested FS at �f D 2tf;1 where one finds
AF order (notice that in this case the filling is not 3/4).

When the coupling to the bosons is turned on,
one generates an even more complicated competition of
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Ultracold Atomic Gases: Novel States of Matter, Figure 17
Phase diagram of a Bose–Fermi mixture on an anisotropic trian-
gular lattice. The vertical axis corresponds to the ratio tf;2/tf;1,
the horizontal axis corresponds to the chemical potential�f. The
other parameters are given by Ṽ/tf D 3, Uff/tf;1 D 2, and �a D 1
with a D 1;2)

pairing phases for repulsive Uff in the vicinity of the point
�f D 2tf;1, as is shown in Fig. 17. Generally, for unequal
hopping the degeneracy between D1 and D2 in (43), as
well as px and py is lifted: In the regime with tf;2 > tf;1
(tf;2 < tf;1), D1 (D2) and px (py) dominate. For tf;2 > tf;1,
in the intermediate regime, in which the FS consists of four
disjoined arcs, corresponding to the regime V in Fig. 14,
the type of ordering changes from D1 to f . For tf;2 < tf;1,
the type of pairing also eventually becomes f -wave, but
first develops two other types of pairing, in the regime II
in Fig. 14. Firstly, one finds an unusual extended p-wave
symmetry, which is schematically shown in Fig. 15f. Its
wavefunction is of the form:

 Pext D

(
sin2 � ��/2 < � < �/2
� sin2 � �/2 < � < 3�/2 :

(44)

The second type of pairing that appears before the sys-
tem develops f -wave pairing is D1. These unusual pairing
states are energetically favorable because of the anisotropic
shape of the FS. For the regime in which the FS has just
barely broken up into two arcs, the order parameter as-
sumes p-wave symmetry and themaxima are located along
the y-axis, where the density of states is highest. As the
region of open FS widens (see Fig. 15f), this pairing be-
comes energetically unfavorable, and the system develops
D1-pairing, so that the maxima of the order parameter can
again be located near the point of highest density of states.
The energy gaps associated with these order parameters
are of the same order of magnitude as for the isotropic lat-
tice.

Finally, we consider a BFM with spinless fermions on
an isotropic lattice. Due to the absence of s-wave scat-
tering between fermions of the same spin state, there is
no direct interaction, that is, Uff D 0. Hence, in the ab-
sence of bosons, the spinless gas is non-interacting. The
boson fluctuations, however, mediate an induced interac-
tion between the fermions. Due to the anti-symmetry of
the Cooper pair wavefunction, pairing occurs in an odd
angular momentum channel. We find a competition be-
tween p and f -wave pairing symmetry. For small to in-
termediate filling (n < 0:65), p-wave pairing dominates.
For larger fillings, for which the FS first approaches the
shape of a hexagon and then breaks up into six arcs, the
system shows f -wave pairing. Since these larger fillings of
fermions are typically realized in the center of an atomic
trap, this result would suggest a comparatively easy way to
create an exotic pairing state experimentally. In contrast to
this, a spinless BFM on a square lattice only shows p-wave
pairing, since for the quadrangular shape of its FS, chan-
nels of higher angular momentum are of no advantage en-
ergetically.

The many-body states discussed in this section can be
observed through various methods: AF order could be re-
vealed in time-of-flight images and Bragg scattering [91],
noise correlations [3,18,29,61] can be used to detect the
various pairing phases, laser stirring experiments [72,82]
can be used to detect the phase boundary between AF or-
der and pairing. The short-scale CDW fluctuations should
give a signature in a photo-association measurement. RF
spectroscopy [12] can be used to quantify the gaps of the
various phases.

Conclusions

In this article we studied the phase diagrams of vari-
ous low-dimensional ultra-cold atom systems. In Sect.
“One-Dimensional Lattices” we studied atomic mixtures
in one dimension, using Luttinger liquid theory. We ar-
gued that a Bose–Fermi mixture can be naturally looked
at as a Luttinger liquid of polarons, and we discussed
the rich phase diagrams of commensurate mixtures. In
Sect. “Phase-Locking Transition of Coupled Low-Dimen-
sional Superfluids”, we studied the phases of two cou-
pled two-dimensional superfluids at finite temperature.
We found that the critical temperature of the phase-locked
phase is significantly increased over its bare value, which
we propose to use for realizing the Kibble–Zurek mecha-
nism. When interactions between the two superfluids are
present, we find additional phases which are partially su-
perfluid, and partially disordered. In Sect. “Bose–Fermi
Mixtures in Two-Dimensional Optical Lattices”, we used
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the powerful method of functional renormalization group
equations to determine the phases of Bose–Fermimixtures
in two-dimensional optical lattices. We found an intricate
competition of orders, including new types of exotic pair-
ing for triangular lattices. In all these sections, ideas how
to probe our predictions were also given.
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Unconventional Computing deals with computing and
information processing derived from or implemented in
physical, chemical and biological systems. As Toffoli said
once “a computing scheme that today viewed as uncon-
ventional maywell be so because its time hasn’t come yet –
or is already gone” [1].

Mechanical and analogue computers are characteris-
tics representatives of such computing schemes. When
mechanical computation concerned the unconventional
computers can be traced back to many centuries old har-
monic analyzers and synthesizers, Napier’s bones, and
Pascal’s wheeled calculator, and they are revived re-
cently in self-assembling devices and molecular machines
(see�Mechanical Computing: The Computational Com-
plexity of Physical Devices).

In 1876 Lord Kelvin envisaged that a computation by
directly exploiting law of Nature [2] and invented differen-
tial analyzer. Ideas of analog computation emerged, flour-
ished, almost deceased by 1980s and then were resurrected
in 1990s in ever growing field of computing based on con-
tinuous representations by means of continuous processes
(see�Analog Computation). This also branched into the-
ory of computing with light and related continuous state
machines (see�Optical Computing).

Chemical and molecular media and substrates are
now widely explored as prototypes of future non-stan-
dard computing devices. They can be classified into the
following groups. First, models based interpretations of
chemical reactions as computing processes, including au-
tocatalytic polymer chemistries, chemistries inspired by
Turing machines, lattice molecular systems (see � Arti-
ficial Chemistry). Second, computers which utilize repli-
cation of macro-molecules. Here DNA and other polymer
molecules are basic elements of computing devices, they
solve Hamiltonian path problem, simulate implementa-
tion of chess problem, and binary arithmetic (see � DNA
Computing) and also molecular finite state machines,
therapeutic and diagnostic automata (see�MolecularAu-
tomata). Chemical computers of the third type compute
by interactions between propagating diffusive and phase
wave fronts in chemical media.

When waves, e. g. in excitable chemical medium, are
confined to geometrical restrictions of channels and junc-
tions one implement diodes, frequency transformers, log-
ical gates and chemical sensors (see� Computing in Geo-
metrical Constrained Excitable Chemical Systems). Waves
propagating in unconstrained, or free-space, chemical sys-
tems are also proved to be capable for implementation of
logical circuits, and robot control and computational ge-
ometry (see� Reaction-Diffusion Computing).

While going into domains of physics we must high-
light two more types of computing devices: soliton-based
computers and quantum-computers. The soliton-based
devices compute by colliding self-preserved solitary waves,
which change their state or trajectories in result of the col-
lision and thus are capable of implementing basic logi-
cal gates (see � Computing with Solitons). The quantum
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computers are based on the laws of quantum mechan-
ics, such as superposition and entanglement, interpreted
in terms of logical operations (see � Quantum Comput-
ing).

Consequently not only the laws of physics can be ex-
ploited in computation but reversely computing and com-
puters themselves can be analyzed in terms of physical
laws, e. g. computer equivalents of the first and second laws
of thermodynamics, thermodynamics of digital and ana-
log computers (see � Thermodynamics of Computation).
Fundamental microscopic physical properties of natural
systems are reflected in the models of reversible comput-
ing (see � Reversible Computing) which also forms the
underlying paradigm of thermodynamically efficient com-
putation.

The next range of unconventional computers in our –
very conditional, and somewhat illusory – classification of
non-standard computing devices would be those relying
on biological substrates (in addition to DNA computing).
They are bacterial and cellular computers (see � Bacte-
rial Computing, � Cellular Computing) employing bio-
chemistry, genetic circuitry and inter- and intra-cellular
communication for transformation of information, im-
mune-computers, which mimic behavior of immune sys-
tem (see� Immunecomputing), and computing based on
comparmentalization of a computing medium with mem-
branes (see�Membrane Computing).

There is also a family of computers classified not by
implementation substrate but some other characteristics.
For instance, nano-computers are based on technology
employing devices and wires with feature sizes in the or-
der of a few nano-meters (see� Nanocomputers). Amor-
phous computers are built of a collection of computational
particles, with no a priori knowledge of their positions or
orientations, dispersed irregularly on a surface or through-
out a volume (see � Amorphous Computing).

Evolving unconventional computers can learn, and
programmed, to reconfigure their physical structure to
meet certain computational demands, so far we have ex-
amples of evolving computing abilities of liquid crystals,
conducting and electro-activated polymers, voltage con-
trolled colloids (see� Evolution in Materio).

Biological, chemical and other ‘wet’ substrates are in-
deed exciting prototypes for future computing devices.
However, there is still a great potential for further en-
hancement and miniaturization of hardware systems, e. g.
hardware analogs of reaction-diffusion systems, digital
CMOS quasi-chemical chips, devices based on minority-
carrier transport in semiconductors, networks of single-
electron oscillators (see � Unconventional Computing,
Novel Hardware for).
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Glossary

Analog circuit An electronic circuit that operates with
currents and voltages that vary continuously with time
and have no abrupt transitions between levels. Since
most physical quantities, e. g., velocity and tempera-
ture, vary continuously, as does audio, an analog cir-
cuit provides the best means of representing them.

Current mirror A circuit that copies single input current
to single (or multiple) output nodes. Two types of cur-
rent mirrors exist; nMOS for current sinks and pMOS
for current sources. Combining both types of current
mirrors, one can invert a direction of currents; e. g.,
sink to source or source to sink.

Digital circuit An electronic circuit that can take on only
a finite number of states. Binary (two-state) digital cir-
cuits are the most common. The two possible states of
a binary circuit are represented by the binary digits, or
bits, 0 and 1. The simplest forms of digital circuits are
built from logic gates, the building blocks of the digital
computer.
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Diode A device that allows current flow only in one direc-
tion. Chemical diode allows for propagation of chemi-
cal waves only in one direction.

Flip-flop circuit A synchronous bistable device where the
output changes state only when the clock input is trig-
gered. That is, changes in the output occur in synchro-
nization with the clock.

Floating-gate transistor A device consisting of a control
gate, floating gate and the thin oxide layer; when float-
ing gate is given an electrical charge, the charge is
trapped in the insulating think oxide layer. The tran-
sistors are used as non-volatile storage devices because
they store electrical charge for a long time without
powering.

LSI, large-scale integration circuit An electronic circuit
built on a semiconductor substrate, usually one of sin-
gle-crystal silicon. It contains from 100 to 1000 tran-
sistors. Some LSI circuits are analog devices; an opera-
tional amplifier is an example. Other LSI circuits, such
as the microprocessors used in computers, are digital
devices.

Minority-carrier transport A physical phenomenon in
forwardly-biased semiconductor p-n junctions. Mi-
nority carriers are generated in both area of p- and
n-type semiconductors. For p-type semiconductors,
the minority carriers are electrons, while they are holes
in n-type semiconductors. Once minority carriers are
generated, they diffuse among the semiconductor and
finally disappears by the recombination of electrons
and holes.

nMOS FET Abbreviation of n-type metal-oxide-semi-
conductor field effect transistor, where semiconductor
is negatively charged so the transistors are controlled
by movement of electrons; these transistors have three
modes of operation: cut-off, triode, and saturation (ac-
tive).

pMOS FET A device which works by analogy to nMOS
FET but the transistors are moved on and off by move-
ment of electron vacancies.

Single-electron circuit An electrical circuit that is func-
tionally constructed by controlling movements of sin-
gle electrons. Single-electron circuit consists of tun-
neling junctions and electrons are controlled by using
physical phenomena called the Coulomb blockade.

Definition of the Subject

Natural systems give us examples of amorphous, unstruc-
tured devices, capable of fault-tolerant information pro-
cessing, particularly with regard to the massive paral-
lel spatial problems that digital processors have difficulty

with. For example, reaction-diffusion (RD) chemical sys-
tems have the unique ability to efficiently solve combinato-
rial problems with natural parallelism [5]. In liquid-phase
parallel RD processors (RD chemical computers), both the
data and the results of the computation are encoded as
concentration profiles of the reagents. The computation is
performed via the spreading and interaction of the wave
fronts. In experimental chemical processors, data are rep-
resented by local disturbances in the concentrations, and
computation is accomplished via the interaction of waves
caused by the local disturbances.

The RD chemical computers operate in parallel since
the chemical medium’s micro-volumes update their states
simultaneously, and the molecules diffuse and react in par-
allel. We see a similar parallelism in cellular automata
(CA). Various RD systems can be modeled in terms of CA,
including the Belousov–Zhabotinsky (BZ) reaction [5,30],
the Turing system [62], a precipitating BZ system for com-
putation of Voronoi diagram [1,2], and so on. A two-di-
mensional CA is particularly well suited for the coming
generation of massively parallel machines, in which a very
large number of separate processors act in parallel. If an
elemental processor in the CA is constructed from a smart
processor and photosensor, various CA algorithms can
easily be used to develop intelligent image sensors.

Implementing RD systems in hardware has several ad-
vantages. Hardware RD systems are very useful in simu-
lating RD phenomena, even if the phenomena never occur
in nature. This implies that a hardware system is a possi-
ble candidate for developing an artificial RD system that
is superior to a natural system. For instance, hardware RD
systems can operate at much faster speeds than actual RD
systems. The velocity of chemical waves in a BZ reaction
is O(10�2)m/s [56], while that of a hardware RD system
will be over a million times faster than that of the BZ re-
action, independent of system size. This property is useful
for developers of RD applications because every RD appli-
cation benefits from high speed operations. These proper-
ties encouraged us to develop novel hardware for uncon-
ventional (RD-based) computing.

Introduction

This chapter presents an overview of the semiconduc-
tor implementation of reaction-diffusion (RD) computers
in large-scale integrated (LSI) circuits for unconventional
computing. There, we see how to model RD processes in
LSI circuits and discuss several designs of RD digital chips,
based on cellular-automaton models of RD and excitable
systems. Feasibility of a RD digital chip is demonstrated in
the construction of a Voronoi diagram and decomposition
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of images. The chapter concludes with analogue RD chips,
where closer to physical reality nonlinear characteristics
of chemical systems are employed. We see designs of RD
chips based on Oregonator, Turing and so on. Moreover,
functionality of analogue RD chips in feature extraction
and fingerprint reconstruction tasks are exemplified.

A RD chip consists of i) reaction circuits that emu-
late elementary interactions between neurons (or chemical
substances) and ii) diffusion devices that imitate synapses
(or chemical diffusion of the substances). RD chips were
mostly designed by digital, analog, or mixed-signal com-
plementally metal-oxide-semiconductor (CMOS) circuits
of cellular neural networks (CNNs) or cellular automata
(CA). Electrical cell circuits were designed to implement
several CA and CNN models of RD systems [8,17,20,38],
as well as fundamental RD equations [18,21,24,33,50].
Each cell is arranged on a 2D square or hexagonal grid and
is connected with adjacent cells through coupling devices
that transmit a cell’s state to its neighboring cells, as in
conventional CAs. For instance, an analog-digital hybrid
RD chip [17] was designed for emulating a conventional
CA model for BZ reactions [30]. A precipitating BZ sys-
tem for computation of Voronoi diagram [1,2] was also
implemented on an analog-digital hybrid RD chip [20].
A full-digital RD processor [38] was also designed on the
basis of a multiple-valued CA model, called excitable lat-
tices [5]. Furthermore, a RDCA processor for complex im-
age processing has been proposed [19]. It performs quadri-
lateral-object extraction based on serial and parallel CA
algorithms. An analog cell circuit was also designed to
be equivalent to spatial-discrete Turing RD systems [24].
A full-analog RD chip that emulates BZ reactions has
also been designed and fabricated [21]. Furthermore, blue-
prints of non-CMOS RD chips have been designed; i. e.,
a RD device based on minority-carrier transport in semi-
conductor devices [18]. In the following sections, we see
how to construct an artificial RD system on solid-state me-
dia, and to develop some applications using the solid-state
RD system that could cope with conventional digital com-
puters.

Constructing Electrical Analog
of Reaction-Diffusion Systems

The behavior of RD systems, or the spatiotemporal pat-
terns of chemical concentration, can be expressed by the
reaction-diffusion equation, a partial differential equation
with chemical concentrations as variables:
@u
@t
D f(u)C D
u ; [u D (u1; u2; u3; : : :)] ; (1)

where t is time, u is the vector of chemical concentrations,

Unconventional Computing, Novel Hardware for, Figure 1
Simplified model of RD systems, consisting of many chemical os-
cillators. Each oscillator has variables corresponding to chemi-
cal concentrations u1; u2;u3; : : : in Eq. (1) and interacts with its
neighbors through diffusion of substances

ui is the concentration of the ith substance, and D is the
diagonal matrix of diffusion coefficients. Nonlinear func-
tion f(u) is the reaction term that represents the reaction
kinetics of the system. Spatial derivative D
u is the diffu-
sion term that represents the change of u due to the diffu-
sion of the substance. A greater number of variables results
in more complex dynamics and a more complicated dissi-
pative structure. A simple reaction-diffusion system with
few variables, however, will still exhibit dynamics similar
to biological activity.

An RD system can be considered an aggregate of cou-
pled chemical oscillators, or a chemical cellular automa-
ton, as described in Fig. 1. Each oscillator represents the
local reaction of chemical substances and generates non-
linear dynamics du/dt D f(u) that corresponds to reac-
tion kinetics in Eq. (1). The oscillator interacts with its
neighbors through nonlocal diffusion of substances; this
corresponds to the diffusion term in Eq. (1) and produces
dynamics du/dt D D
u. Because of diffusion, all oscilla-
tors correlate with one another to generate synchroniza-
tion and entrainment. Consequently, the system as a whole
produces orderly dissipative structures on a macroscopic
level. The size of each oscillator, or the size of the local
space in which chemical concentrations are roughly uni-
form, depends on the diffusion coefficients and reaction
velocities in the system. It is several micrometers in diam-
eter in many liquid RD systems; therefore, even a tiny RD
system in a test tube contains millions of oscillators.

An electrical analog of RD systems can be created by
using electrical oscillation circuits instead of chemical os-
cillators and coupling these circuits with one another in
a way that imitates diffusion. Variables are the electrical
potential of nodes in the oscillation circuits in this elec-
trical RD system. The system will produce electrical dissi-
pative structures, i. e., orderly spatiotemporal patterns of
node potentials, under appropriate conditions.
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reaction circuit

diffusion device

reaction diffusion chipba

Unconventional Computing, Novel Hardware for, Figure 2
Basic construction of RD chip

Unconventional Computing, Novel Hardware for, Figure 3
Excitatory modelock operations of RD circuit [17]

The key to building an electrical RD system is to inte-
grate a large number of oscillation circuits on a chip with
coupling subcircuits. A large arrangement of oscillators
(e. g., 1000 × 1000 or more) is needed to generate com-
plex, varied dissipative structures as observed in chemical
RD systems. Oscillators constructed by micro- or nano-
scale circuits are thus useful to achieve such large scale in-
tegration. Such circuits can generate nonlinear oscillation
through a simple circuit structure, so it can effectively be
used in producing small oscillators for electrical RD sys-
tems.

Digital CMOS Reaction-DiffusionChips

A Reaction-Diffusion Circuit Based
on Cellular-Automaton Processing Emulating
the Belousov–Zhabotinsky Reaction

The Belousov–Zhabotinsky (BZ) reaction provides us im-
portant clues to control 2D phase-lagged stable syn-
chronous patterns in excitable medium. Because of the dif-
ficulty in computing RD systems in large systems using
conventional digital processors a cellular-automaton (CA)
circuit that emulates the BZ reaction was proposed [17].
In the circuit, a two-dimensional array of parallel process-
ing cells, shown in Fig. 2, is responsible for the emulation,

and its operation rate is independent of the system size.
The operations of the CA circuit were demonstrated by us-
ing a simulation program with integrated circuit emphasis
(SPICE). In the circuit’s initial state, cells adjacent to in-
active cells were in a refractory period (step 0 in Fig. 3).
The inactive cells adjacent to the white bar in Fig. 3 were
suppressed by adjacent cells in the refractory period (cells
in the white bar). The inactive cells then entered an active,
inactive, or refractory period, depending on the degree of
the refractory condition. When the inactive cells were in
an active or inactive period, the tip of the bar rotated in-
ward (step 4 to 8 in Fig. 3), resulting in the generation
of the modelock (spiral patterns) typically observed in the
BZ reaction (step 40 in Fig. 3). A hexagonal distortion of
the propagating waves was generated by interactions be-
tween adjacent cells. These results indicated that the RD
chip could be easily integrated into existing digital systems
and can be used to clarify RD systems, aiming at develop-
ing further novel applications.

Reaction-Diffusion Chip Implementing Excitable
Lattices with Multiple-Valued Cellular Automata

A RD chip was fabricated based on a multiple-valued
CA model of excitable lattices [38]. The experiments
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Unconventional Computing, Novel Hardware for, Figure 4
Snapshots of recordedmovie obtained from fabricated RD chip [38]

confirmed the expected operations, i. e., excitable wave
propagation and annihilation. One could obtain a bi-
nary stream from the common output wire by select-
ing each cell sequentially. Using a conventional display-
ing technique, the binary stream was reconstructed on
a 2-D display. Figure 4 shows snapshots taken from the
recorded movie. Each dot represents an excitatory cell
where EXC is logical “1”. In the experiment, the supply
voltage were set at 5V, and the system clock was set at
low frequency (2.5Hz) so that “very-slow” spatiotempo-
ral activities could be observed visually (the low frequency
was used only for the visualization, and was not the up-
per limit of the circuit operation). Pin-spot lights were ap-
plied to several cells at top-left and bottom right corners
of the chip. The circuit exhibited the expected results; i. e.,
two excitable waves of excited cells triggered by the corner
cells propagated toward the center and disappeared when
they collided. This result suggests that if we use a more

microscopic process and a large number of cells were im-
plemented, we would observe the same complex (BZ-like)
patterns, as observed in the original excitable lattices [5].

This chip can operate much faster than real chemi-
cal RD systems, even when the system clock frequency
is O(1) Hz, and is much easier to use in various experi-
mental environments. Therefore, the chip should encour-
age RD application developers who use such properties
of excitable waves to develop unconventional computing
schemes, e. g., chemical image processing, pattern recog-
nition, path planing, and robot navigation.

Silicon Implementation
of a Chemical Reaction-Diffusion Processor
for Computation of Voronoi Diagram

RD chemical systems are known to realize sensible com-
putation when both data and results of the computation
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Unconventional Computing, Novel Hardware for, Figure 5
Skeleton operation with “T” shape [20]

Unconventional Computing, Novel Hardware for, Figure 6
Skeleton operation with “+” shape [20]

are encoded in concentration profiles of chemical species;
the computation is implemented via spreading and inter-
action of either diffusive or phase waves, while a silicon
RD chip is an electronic analog of the chemical RD sys-
tems.

A prototype RD chip implementing a chemical RD
processor for a well-knownNP-complete problem of com-
putational geometry – computation of a Voronoi diagram
was fabricated. Here we see experimental results for fab-

ricated RD chips and compare the accuracy of informa-
tion processing in silicon analogs of RD processors and
their experimental ‘wetware’ prototypes [20]. Figures 5
and 6 show examples of skeleton operation of a T and ‘+’
shaped images. As initial images, a glass mask was pre-
pared where ‘T’ and ‘+’ areas were exactly masked. There-
fore, cells under the ‘T’ and ‘+’ areas are initially resting
and the rest are initially excited. At its equilibrium, skele-
tons of ‘T’ and ‘+’ were successfully obtained.
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Unconventional Computing, Novel Hardware for, Figure 7
Simulation results for 181� 238 image; a original image, bmixed image of quantized image given to CA LSI and detected quadrilat-
eral objects [19]

AQuadrilateral-Object Composer for Binary Images
with Reaction-Diffusion Cellular Automata

A CA LSI architecture that extracted quadrilateral ob-
jects from binary images was proposed in [19] with a se-
rial combination of parallel CA algorithms, based on RD
chemical systems model. Each cell in the CA was imple-
mented by a simple digital circuit called an elemental pro-
cessor. The CA LSI can be constructed by a large number
of elemental processors and their controllers operating in
serial and parallel.

Figure 7a demonstrates object extraction for a natu-
ral image. The image was quantized, and given to the CA
LSI. Figure 7b show the results. The maximum boxes were
correctly detected in order, as predicted. The input bitmap
image that consisted of 181 � 238 pixels was decomposed
of 1020 quadrilateral objects. The bitmap image occupied
43,078 bits (5385 bytes) onmemory, while the objects used
4080 bytes (8-bit address of 4 corners × 1020 boxes). The
important thing is not discussing the compression rate
between bitmap images and extracted objects, but that
bitmap images were represented by small number of vec-
tor objects, which facilitates picture drawing in terms of
the drawing speed if we have variable box window.

One of the most important application targets for the
proposed chip is a computer-aided design (CAD) system
for LSIs. Conventional LSI CAD tools use polygons to rep-

resent device structures. However, recent LSIs include not
only polygon patterns but also graphical patterns, consist-
ing of large number of dots, usually imported from image
files such as JPEGs, to implement complex analog struc-
tures. In the maskmanufacturing process, exposing a large
number of dot patterns is quite a time-consuming task. Re-
cently, electron beam (EB) lithography systems that can
expose wide areas through a quadrilateral window have
been produced on a commercial basis. The proposed LSI
can produce efficient stream files from binary image files
that can easily be handled by the new EB systems, by devel-
oping simple software that converts the box format, pro-
duced by the proposed LSI, to a conventional stream for-
mat.

Analog CMOS Reaction-DiffusionChip

Analog Reaction-Diffusion Chip
with Hardware Oregonator Model

Silicon devices that imitate the autocatalytic and dissipa-
tive phenomena of RD systems were developed [21]. Nu-
merical simulations and experimental results revealed that
an RD device could successfully produce concentric and
spiral waves in the same way as natural RD systems. These
results encouraged us to develop new applications based
on natural RD phenomena using hardware RD devices.
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Unconventional Computing, Novel Hardware for, Figure 8
Spiral patterns on RD chip (weak connections between cells) [21]

Figure 8 presents an example where some spiral (mod-
elock) patterns of cell clusters were observed. Snapshots
were takenwith at intervals of 100ms. The active-cell clus-
ters and cores of the spirals are superimposed with the
figure by white curves and white circles, respectively. Al-
though observing “beautiful” spirals as in chemical RD
systems is difficult because of the small number of cells,
the appearance and disappearance of small sections of spi-
ral waves were successfully observed.

RD devices and circuits are useful not only for hard-
ware RD systems but also for constructing modern neuro-
chips. The excitatory and oscillatory behaviors of an RD
device and circuit are very similar to actual neurons that
produce sequences of identically shaped pulses in time,
called spikes. Recently, Fukai demonstrated that an in-
hibitory network of spiking neurons achieves robust and
efficient neural competition on the basis of a novel timing
mechanism of neural activity [28]. A network with such
a timing mechanismmay provide an appropriate platform
to develop analog LSI circuits and could overcome prob-
lems with analog devices, namely their lack of precision
and reproducibility.

Striped and Spotted Pattern Generation
on RD Cellular Automata

A novel RD model that is suitable for LSI implementa-
tion and its basic LSI architecture were proposed in [55].
The model employs linear diffusion fields of activators
and inhibitors and a discrete transition rule after diffu-
sion. Image-processing LSI circuits based on pattern for-
mation in RD systems were developed. Continuous diffu-
sion fields and an analog state variable were introduced to
improve the Young’s local activator-inhibitor model [62].
A model pattern diagram was produced on a 2D param-
eter space through extensive numerical simulations. The
spatial frequency and form (striped or spotted) could be
controlled with only two parameters. Theoretical analysis
of the one dimensional model proved that i) spatial distri-
bution given by a periodic square function is stable at the
equilibrium and ii) the spatial frequency is inversely pro-
portional to the square root of a diffusion coefficient of the
inhibitors.

A basic circuit for the proposed model was designed,
i. e., an RD LSI based on the analog computing method
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Unconventional Computing, Novel Hardware for, Figure 9
Snapshots of pattern formation from initial fingerprint image [55]

where the concentration of chemicals was represented by
a two-dimensional voltage distribution and the cell volt-
age was diffused step by step. By mimicking two diffusion
fields with the proposed model in one diffusion circuit on
the LSI, one can reduce the area of the unit cell circuit.

Figure 9a has snapshots of pattern formation in the cir-
cuit. One can estimate that the system produces striped
patterns from the theory [55]. Therefore, a fingerprint pat-
tern was used as an initial input. Noisy local patterns were
repaired by their surrounding striped patterns, as time in-
creased. The circuit required 50 cycles (8000 clocks) to
reach equilibrium. Figure 9b shows the results for spot pat-
tern generation. The same initial input as in Fig. 9a was
given to the circuit. As expected from the theory, spotted
patterns were obtained. The pattern formation process was
the same as in Fig. 9a where noisy local spots were restored
by surrounding global spotted patterns. Therefore, this
circuit would be suitable for restoring regularly-arranged
spotted patterns such as polka-dot patterns. The system
took 100 cycles (16,000 clocks) until it reached equilibrium
to restore the spotted patterns.

Reaction-DiffusionComputing Devices Based
onMinority-Carrier Transport in Semiconductors

A massive parallel computing device was designed [18]

based on principles of information processing in RD
chemical media [4,5] (Figs. 10 and 11). This device im-
itates auto-catalytic and dissipative phenomena of the
chemical RD systems, however comparing to real chem-
ical medium the semi-conductor analog of RD comput-
ers, functions much faster. Operational characteristics of
the RD silicon devices and feasibility of the approach on
several computational tasks are shown in [18]. The results
indicate that the proposed RD device will be a useful tool
for developing novel hardware architectures based on RD
principles of information processing.

Unconventional Computing, Novel Hardware for, Figure 10
Construction of two-dimensional RD device with vertical p-n-p-n
device [18]
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Unconventional Computing, Novel Hardware for, Figure 11
Simulation results of RD device producingmultiplicating patterns [18]

Practical value of RD chemical systems are signifi-
cantly reduced by low speed of traveling waves which
makes real-time computation senseless. One of the cost-
efficient options to overcome the speed-limitations of RD
computers while preserving unique features of wave-based
computing is to implement RD chemical computers in sil-
icon. The velocity of traveling wavefronts in typical reac-
tion diffusion systems, e. g., BZ reaction, is 10�2 m/s [56],
while that of a hardware RD system will be over a million
times faster than that of the BZ reaction, independent of
system size [7]. The increase in speed will be indispensable
for developers of RD computers. Moreover, if a RD system
is implemented in integrated circuits, then we would be
able to artificially design various types RD spatio-temporal
dynamics and thus develop parallel computing processors
for novel applications. Basing on experimental evidences
of RD-like behavior, namely traveling current density fila-
ments [41], in p-n-p-n devices a novel type of semiconduc-
tor RD computing device, where minority carriers diffuse
as chemical species and reaction elements are represented
by p-n-p-n diodes, was proposed.

Single-Electron Reaction-Diffusion System

This section introduces a single-electron device that is
analogous to the RD system. This electrical RD device con-
sists of a two-dimensional array of single-electron nonlin-
ear oscillators that are combinedwith one another through
diffusive coupling. The device produces animated spa-
tiotemporal patterns of node voltages, e. g., a rotating spi-
ral pattern similar to that of a colony of cellular slime
molds and a dividing-and-multiplying pattern that re-
minds us of cell division. A method of fabricating actual
devices by using self-organized crystal growth technology
is also described. The following is an excerpt from [43].
For details, see the reference.

Figure 12 shows an electrical oscillator constructed
by a single-electron circuit. It consists of tunneling junc-
tion Cj and high resistance R connected in series at node 1
and biased by positive voltage Vdd. This circuit is an ele-

Unconventional Computing, Novel Hardware for, Figure 12
Single-electron oscillator (a SET cell) consisting of tunneling
junction Cj, high resistance R connected at node 1, and positive
bias voltage Vdd

mentary component of single-electron circuits known as
the single-electron transistor (SET) cell (see [31] for de-
tailed explanation). A SET cell only has a single variable,
voltage V1 of node 1, but it can be oscillatory or excita-
tory in operation – which is indispensable in creating RD
systems – because the node voltage can produce a discon-
tinuous change because of electron tunneling. In contin-
uous-variable systems such as chemical reaction systems,
two or more variables are needed for oscillatory and exci-
tatory operations.

The SET cell operates as a nonlinear oscillator at the
low temperatures at which the Coulomb-blockade effect
occurs. It is oscillatory (astable) if Vdd > e/(2Cj) (e is el-
ementary charge) and produces nonlinear oscillation in
voltage at node 1 (Fig. 13a). The node voltage gradually
increases as junction capacitance Cj is charged through re-
sistance R, then drops discontinuously because of electron
tunneling through the junction, again gradually increasing
to repeat the same cycles. In contrast, the oscillator is exci-
tatory (monostable) if Vdd < e/(2Cj) and produces single-
pulse operation excited by an external trigger (Fig. 13b).
A modified Monte Carlo method is used for the simula-
tion. Kuwamura and his colleagues [35] have given details
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Operation of the oscillator. Waveforms of node voltage are shown for a self-induced oscillation and bmonostable oscillation, sim-
ulated with following set of parameters: tunneling junction capacitance Cj D 20aF, tunneling junction conductanceD 1 µS, high
resistance R D 400M#, and zero temperature. Bias voltage Vdd D 4:2mV for self-induced oscillation, and Vdd D 3:8mV for monos-
table oscillation

Unconventional Computing, Novel Hardware for, Figure 14
Single-electron oscillator with amultiple tunneling junction: a circuit configuration, andb simulated self-induced oscillation. Param-
eters are: capacitance of single tunneling junction Cj D 10aF, conductance of the single tunneling junction D 1 µS, 30 tunnelling
junctions in themultiple tunneling junction, capacitance and conductance of a tunneling junction in themultiple tunneling junction
are 300aF and 50nS, bias voltage Vdd D 8:6mV, and zero temperature

of this method. Also see Appendix in [59]. For construct-
ing electrical RD systems, oscillatory oscillators and exci-
tatory ones, or both, can be used.

The oscillator exhibits discontinuous, probabilistic ki-
netics resulting from electron tunneling. The kinetics is
given in the form of

dV1
dt
D

Vdd � V1
RCj

�
e
Cj
ı


V1 �

e
2Cj
�
V

�
;

where ı(�) represents a discontinuous change in node volt-
age caused by electron tunneling. Probabilistic operation
arises from the stochastic nature of tunneling; i. e., a time
lag (a waiting time) exists between when junction volt-
age exceeds tunneling threshold e/(2Cj) and when tun-

neling actually occurs. This effect is represented by de-
lay term 
V in the equation. Because the value of 
V
has probabilistic fluctuations in every tunneling event and
cannot be expressed in analytical form, so Monte Carlo
simulation is necessary for studying the behavior of the os-
cillator.

In fabricating actual oscillators, a high resistance of
hundreds of mega-ohms or more is not easy to implement
on an LSI chip. A better way is to use a multiple tunneling
junction, i. e., a series of many tunneling junctions, instead
of high resistance (Fig. 14a). This structure also enables os-
cillatory and excitatory operations to be obtained because
sequential electron tunneling through a multiple tunnel-
ing junction has a similar effect to current flowing at high
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Unconventional Computing, Novel Hardware for, Figure 15
Diffusive connection of oscillators. a One-dimensional chain of oscillators (A1, A2, . . . ) with intermediary cells (B1, B2, . . . ) and cou-
pling capacitors C. For study of the transmission of tunneling, a triggering pulse generator is connected to the left end. b Trans-
mission of tunneling through the chain of excitatory oscillators. The waveform of node voltage is plotted for each oscillator. A trig-
gering pulse was applied to the leftmost oscillator, and tunneling started at the oscillator to transmit along the chain with delay.
Jumps in curves A1–A4 result from electron tunneling in oscillators A1–A4. Simulated with a set of parameters: Cj D 10 aF, C D 2 aF,
R D 77M#, tunneling junction conductanceD 5 µS, Vdd D 5mV,�Vss D �5mV, and zero temperature

resistance (Fig. 14b). In the following sections, however,
the high-resistance SET cell (Fig. 12) is used to construct
electrical RD systems because less computing time is re-
quired in simulating RD operation. One can expect that
the knowledge obtained from high-resistance RD systems
will be able to be applied to RD systems consisting of mul-
tiple-junction oscillators.

To construct RD systems, oscillators have to be con-
nected with one another so that they will interact through
“diffusive” coupling to generate synchronization and en-
trainment. To do this, the oscillators are connected by
means of intermediary oscillation cells and coupling ca-
pacitors. Figure 15a illustrates the method of connection
with a one-dimensional chain of oscillators. The oscillators
(SET cells denoted by A1, A2, . . . , with their nodes repre-
sented by closed circles) are connected with their neigh-
boring oscillators through intermediary oscillation cells
(SET cells denoted by B1, B2, . . . , with their nodes rep-
resented by open circles) and coupling capacitors C. One
can use an excitatory SET cell biased with a negative volt-
age�Vss as the intermediary oscillation cell. An excitatory
SET cell biased with a negative voltage�Vss is used here as
the intermediary oscillation cell.

When electron tunneling occurs in an oscillator in this
structure, the node voltage of the oscillator changes from
positive to negative, and this induces, through coupling ca-
pacitor C, electron tunneling in an adjacent intermediary
cell. The induced tunneling changes the node voltage of
the intermediary cell from negative to positive, and this in-
duces electron tunneling in an adjacent oscillator. In this
way, electron tunneling is transmitted from one oscillator
to another along the oscillator chain. There is a time lag

between two tunneling events in two neighboring oscil-
lators as if these oscillators interacted through diffusion.
This phenomenon is not diffusion itself and cannot be ex-
pressed in the form D
u in Eq. (1) but can be used as
a substitute for diffusion.

The transmission of tunneling with delay is illustrated
in Fig. 15b with simulated results for a chain of excitatory
oscillators with intermediary cells. Electron tunneling was
induced in the leftmost oscillator by a triggering pulse, and
it was transmitted to the right along the chain with delay.
In other words, an excitation wave of tunneling traveled
to the right along the chain. Its delay in traveling from
one oscillator to a neighbor has probabilistic fluctuations
because of the stochastic nature of tunneling, but this is
not a problem for applications to RD systems.

An electrical RD system can be constructed by con-
necting oscillators into a network by means of intermedi-
ary cells and coupling capacitors (Fig. 16). Each oscillator
is connected to its neighboring 4 oscillators by means of 4
intermediary cells and coupling capacitors. This is a two-
dimensional RD system. A three-dimensional RD system
can also be constructed in a similar way by arranging oscil-
lators into a cubic structure and connecting each oscillator
with its 6 neighboring oscillators by means of 6 intermedi-
ary cells and coupling capacitors.

In the single-electron RD system, the node voltage of
each oscillator changes temporally as the oscillators oper-
ate through mutual interactions. Consequently, a two-di-
mensional spatiotemporal pattern of the node voltages is
produced on the RD system. Since this voltage pattern cor-
responds to the dissipative structure in chemical RD sys-
tems, it can be called an “electrical dissipative structure”.
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Unconventional Computing, Novel Hardware for, Figure 16
Two-dimensional RD system consisting of the network of single-
electron oscillators. Each oscillator (closed-circle node) is con-
nected with 4 neighboring oscillators by means of 4 intermedi-
ary cells (open-circle nodes) and coupling capacitors

A variety of electrical dissipative structures are pro-
duced from different sets of system parameters. To un-
derstand the behavior of an electrical RD system entirely,
a phase diagram for the system must be drawn, i. e., a di-
agram that depicts – in the multidimensional space of
system parameters – what kind of dissipative structure
will appear for each set of parameter values. However,
a phase diagram for the RD system cannot be drawn with-
out a long numerical computer simulation because its re-
action-diffusion kinetics cannot be expressed in analytical
form. Instead, few examples of electrical dissipative struc-
tures simulated with a few sample sets of parameter values
are demonstrated.

Although a single-electron RD system differs greatly
from chemical RD systems in terms of reaction-diffu-
sion kinetics, it can produce dissipative structures simi-
lar to those of chemical RD systems. Here, three exam-
ples are exhibited, i. e., an expanding circular pattern, a ro-
tating spiral pattern, and a dividing-and-multiplying pat-
tern. The following will have the results simulated for a RD
system consisting of 201 � 201 excitatory oscillators and
200 � 200 intermediary cells.

Expanding Circular Pattern

A single-electron RD system consisting of excitatory oscil-
lators is in a stable uniform state as it stands. Once a trig-
gering signal is applied to an oscillator in the system, an ex-
citation wave of tunneling starts at the oscillator and prop-

Unconventional Computing, Novel Hardware for, Figure 17
Expanding circular pattern in the single-electron RD sys-
tem. Snapshots for three time steps. Simulated with pa-
rameters: tunneling junction capacitance Cj D 1 aF, tunneling
junction conductanceD 1 µS, high resistance R D 137:5M#,
coupling capacitance C D 1 aF, bias voltage Vdd D 16:5mV,
�Vss D �16:5mV, and zero temperature

agates in all directions to form an expanding circular pat-
tern. This can be seen in Fig. 17; the node voltage of each
oscillator is represented by a gray scale: the light shading
means high voltage, and the dark means low voltage. The
front F of the wave is the region where tunneling just oc-
curred and, therefore, the node voltage of the oscillators
is at the lowest negative value. The front line is uneven or
irregular because the velocity of the traveling wave fluctu-
ated in each direction throughout the process because of
the stochastic waiting time of tunneling.

After the excitation wave passed through, the node
voltage of each oscillator gradually increased to return to
its initial value, the positive bias voltage. This is indicated
in the figure by the light shading on the rear R of the wave.
If a triggering signal is applied repeatedly to one oscilla-
tor, a concentric circular wave – called a target pattern in
chemical RD systems – will be generated.

Rotating Spiral Pattern

This pattern appears when an expanding circular wave is
chipped by external disturbance, thereby making an end-
point to appear in the wave front. With this endpoint act-
ing as a center, the wave begins to curl itself to form a ro-
tating spiral pattern (Fig. 18). The principle of curling is
similar to that in chemical RD systems.

In this example, a triggering signal was applied to the
middle oscillator on the left of the RD system. When an
excitation wave started and expanded a little, the lower
half of the wave was chipped by resetting the node volt-
age of oscillators to zero (Fig. 18a). After that, the RD sys-
tem was left to operate freely, and a rotating spiral pattern
of node voltages automatically generated as can be seen in
Figs. 18b–f.
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Unconventional Computing, Novel Hardware for, Figure 18
Rotating spiral pattern. Snapshots for six time steps. Simulated
with the same parameters as used for Fig. 17

Dividing-and-Multiplying Pattern

This pattern appears when the coupling between oscilla-
tors is weak (i. e., small coupling capacitance or low bias
voltage). When this happens, electron tunneling in an os-
cillator cannot be transmitted to all four adjacent interme-
diary cells; e. g., tunneling can be transmitted to the right
and left cells but not to the upper and lower cells. As a re-
sult, an expanding node-voltage pattern splits into pieces,
and each piece again expands to split again. This produces
dividing-and-multiplying patterns (Fig. 19). The principle
of division is different from that in chemical RD systems,

Unconventional Computing, Novel Hardware for, Figure 19
Dividing-and-multiplying pattern. Snapshots for six time steps.
Simulated with the same parameters as used for Fig. 17 except
that R D 150:5M#, Vdd D 15:8mV, and�Vss D �15:8mV

Unconventional Computing, Novel Hardware for, Figure 20
Device structure for the single-electron RD system. a Three-di-
mensional and cross-sectional schematics; b SEM photograph of
a two-dimensional array of GaAs nanodots with coupling arms
and tunneling junctions; c schematic diagram of the nanodots
with coupling arms

but the behavior of created patterns is somewhat similar.
In a way, we may consider that there are electrical mi-
crobes consisting of negative voltages living on the RD sys-
tem, eating positive charges on nodes as food, and propa-
gating so that they can will spread all over the system.

The unit element in this RD system is a single-elec-
tron oscillator coupled with four neighbors. The multiple-
tunneling-junction oscillator (Fig. 14) is preferable for this
element because it can be made without high resistance,
which is difficult to implement on an LSI chip. Arranging
such oscillators into a two-dimensional array produces an
RD system, so the next task is to fabricate many identical
oscillators on a substrate. Figure 20a shows the three-di-
mensional and cross-sectional schematics for the structure
of the device. Each oscillator consists of a conductive nan-
odot (minute dot) with four coupling arms, and there is
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a tunneling junction between the nanodot and the conduc-
tive substrate beneath it. Many series-connected junctions
run between the nanodot and a positive-bias or a negative-
bias electrode. Capacitive coupling between neighboring
oscillators can be achieved by laying their coupling arms
close to each other.

The key in this construction is to prepare a large ar-
rangement of nanodots with coupling arms and tunnel-
ing junctions. A process technology that could be used
to fabricate the RD-system structure was previously pro-
posed and demonstrated [42]. This technology uses self-
organized crystal growth achieved by selective-area met-
alorganic vapor-phase epitaxy (SA-MOVPE), and it can be
used to fabricate GaAs nanodots with arms and tunneling
junctions on a GaAs substrate by making use of the depen-
dence of the crystal-growth rate on crystal orientation (for
detailed explanation, see [36] and [37]). With this tech-
nology, a nanodot with four coupling arms can be formed
automatically in a self-organizing manner. This technol-
ogy can also be used to automatically create the structure
for multiple tunneling junctions on nanodots simply by re-
peating the growth of an n-type GaAs layer and an insulat-
ing AlGaAs layer. Using such a process, the formation of
GaAs nanodots with their arms and tunneling junctions
beneath them was succeeded, in the form of a two-dimen-
sional array on a substrate (Figs. 20b and c), though the
technology is not yet perfect and a complete device has
not been fabricated yet. An improved process technology
to form GaAs nanodots with arms and multiple tunnel-
ing junctions is now under development, where the arms
and multiple tunneling junctions are arranged regularly
with a smaller pitch of 100 nm or less (corresponding to
1010 oscillators/cm2).With the improved process technol-
ogy, we will be able to integrate coupled single-electron
oscillators on a chip and proceed from there to develop
reaction-diffusion LSIs.

Collision-Based RD Computers

Present digital LSI systems consist of a number of combi-
national and sequential logic circuits as well as related pe-
ripheral circuits. A well-known basic logic circuit is a two-
input NAND circuit that consists of four metal-oxide semi-
conductor field-effect transistors (MOS FETs) where three
transistors are on the current path between the power sup-
ply and the ground. Many complex logic circuits can be
constructed by not only populations of a large number of
NAND circuits but also special logic circuits with a small
number of transistors (there are more than three transis-
tors on the current path) compared with NAND-based cir-
cuits.

A straight-forward way to construct low-power digi-
tal LSIs is to decrease the power-supply voltage because
the power consumption of digital circuits is proportional
to the square of the supply voltage. In complex logic cir-
cuits, where many transistors are on the current paths, the
supply voltage cannot be decreased due to stacking effects
of transistors’ threshold voltages, even though the thresh-
old voltage is decreasing as LSI fabrication technology ad-
vances year by year. On the other hand, if two-input basic
gates that have the minimum number of transistors (three
or less) on the current path are used to decrease the sup-
ply voltage, a large number of the gates will be required for
constructing complex logic circuits.

The Reed–Muller expansion [40,48], which expands
logical functions into combinations of AND and XOR logic,
enables us to design ‘specific’ arithmetic functions with
a small number of gates, but it is not suitable for arbitrary
arithmetic computation. Pass-transistor logic (PTL) cir-
cuits use a small number of transistors for basic logic func-
tions but additional level-restoring circuits are required
for every unit [52]. Moreover, the acceptance of PTL cir-
cuits into mainstream digital design critically depends on
the availability of tools for logic, physical synthesis, and
optimization. Current-mode logic circuits also use a small
number of transistors for basic logic, but their power con-
sumption is very high due to the continuous current flow
in turn-on states [15]. Subthreshold logic circuits where
all the transistors operate under their threshold voltage
are expected to exhibit ultra-low power consumption, but
the operation speed is extremely slow [53]. Binary deci-
sion diagram logic circuits are suitable for next-genera-
tion semiconductor devices such as single-electron tran-
sistors [16,51], but not for present digital LSIs because of
the use of PTL circuits.

To address the problems above concerning low-
power and high-speed operation in digital LSIs, a method
of designing logic circuits with collision-based fusion
gates, which is inspired by collision-based RD comput-
ing (RDC) [6,7], is described. In the following sections,
we see a new interpretation of collision-based RDC, espe-
cially concerning directions and speeds of propagating in-
formation quanta. We also see basic logical functions con-
structed by collision-based fusion gates, and discuss the
number of transistors in classical and fusion-gate logic cir-
cuits [60].

Collision-Based Reaction-Diffusion Computing
for Digital LSIs

Adamatzky proposed how to realize arithmetical scheme
using wave fragments traveling in a RDmediumwhere ex-
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Construction of collision-based fusion gates [60]. a Definition of 2-in 2-out (C22) and 2-in 1-out (C21) gates and their corresponding
circuits; b NOT; c AND, NOR, and OR; d XOR and XNOR functions

citable chemical waves disappear when they collide each
other [6,7]. His cellular-automaton model mimicked lo-
calized excitable waves (wave fragments) traveling along
columns and rows of the lattice and along diagonals. The
wave fragments represented values of logical variables
where logical operations were implemented when wave
fragments collided and were annihilated or reflected as
a result of the collision. One can achieve basic logical gates
in the cellular-automaton model, and build an arithmetic
circuit using the gates [6].

The cellular-automatonmodel for basic logic gates has
been implemented on digital LSIs [7]. Each cell consisted
of several tens of transistors and was regularly arranged
on a 2D chip surface. To implement a one-bit adder, for
example, by collision-based cellular automata, at least sev-
eral tens of cells are required to allocate sufficient space for
the collision of wave fragments [6]. This implies several
hundreds of transistors are required for constructing just
a one-bit adder. Direct implementation of the cellular au-
tomaton model is therefore a waste of chip space, as long
as the single cell space is decreased to the same degree of
chemical compounds in spatially-continuous RD proces-
sors.

What happens if wave fragments travel in ‘limited di-
rections instantaneously’? Our possible answers to this
question are depicted in Fig. 21. Figure 21a shows 2-in

2-out (C22) and 2-in 1-out (C21) units representing two
perpendicular ‘limited’ directions of wave fragments, i. e.,
North-South and West-East fragments. The number of
MOS transistors in each unit is written inside the black
circle in the figure. The input fragments are represented
by values A and B where A (or B) = ‘1’ represents the
existence of a wave fragment traveling North-South (or
West-East), and A (or B) = ‘0’ represents the absence of
wave fragments. When A = B = ‘1’ wave fragments col-
lide at the center position (black circle) and then disap-
pear. Thus, East and South outputs are ‘0’ because of the
disappearance. If A = B = ‘0’, the outputs will be ‘0’ as well
because of the absence of the fragments. When A = ‘1’ and
B = ‘0’, a wave fragment can travel to the South because it
does not collide with a fragment traveling West-East. The
East and South outputs are thus ‘0’ and ‘1’, respectively,
whereas they are ‘1’ and ‘0’, respectively, when A = ‘0’ and
B = ‘1’. Consequently, logical functions of this simple ‘op-
erator’ are represented by AB and AB, as shown in Fig. 21a
left. We call this operator a collision-based ‘fusion gate’,
where two inputs correspond to perpendicular wave frag-
ments, and one (or two) output represents the results of
the collision (transparent or disappear) along the perpen-
dicular axes. Figures 21b to d represent basic logic circuits
constructed by combining several fusion gates. The sim-
plest example is shown in Fig. 21b where the NOT function
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Unconventional Computing, Novel Hardware for, Figure 22
Fusion gate architectures of multiple-input functions [60]; a AND, b OR, c majority logic gates. Half and full adders are shown in
d and e, respectively

is implemented by a C21 gate (2 transistors). The North
input is always ‘1’, whereas the West is the input (A) of
the NOT function. The output appears on South node (A).
Figure 21c represents a combinational circuit of three fu-
sion gates (two C21 gates and one C22 gate) that produces
AND, NOR, and OR functions. Exclusive logic functions are
produced by three (for XNOR) or four (for XOR) fusion
gates as shown in Fig. 21d. The number of transistors for
each function is depicted in the figure (inside the white
boxes).

A collision-based fusion gate receives two logical in-
puts (A and B) and produces one (C21) or two (C22) log-
ical outputs; i. e., AB for C21, AB and AB for C22. Unit
circuits for C22 and C21 gates receive logical (voltage) in-
puts (A and B) and produce these logic functions. The
minimum circuit structure is based on PTL circuits where
a single-transistor AND logic is fully utilized. For instance,
in Fig. 21a right, a pMOS pass transistor is responsible
for the AB function, and an additional nMOS transistor is
used for discharging operations. When the pMOS transis-
tor receives voltages A and B at its gate and drain, respec-
tively, the source voltage approaches AB at equilibrium. If
a pMOS transistor is turned off, an nMOS transistor con-
nected between the pMOS transistor and the ground dis-
charges the output node, which significantly increases the

upper bound of the operation frequency. When A = B =
‘0’, the output voltage is not completely zero because of
the threshold voltage of theMOS transistors, however, this
small voltage shift is restored to logical ‘0’ at the next in-
put stage. Therefore additional level-restoring circuits are
unnecessary for this circuit.

Figure 22 shows constructions of multiple-input logic
functions with fusion gates. In classical circuits, two-input
AND and OR gates consist of six transistors. To decrease
the power supply voltage for low-power operation, a small
number of transistors (three or less) should be on each
unit’s current path. Since each unit circuit has six transis-
tors, n-input AND and OR gates consist of 6(n � 1) tran-
sistors (n � 2). On the other hand, in fusion gate logic [(a)
and (b)], a n-input AND gate consisted of 4(n � 1) tran-
sistors, whereas 2(nC 1) transistors were used in an n-in-
put OR gate. Therefore, in case of AND logic, the number
of transistors in fusion gate circuits is smaller than that
of classical circuits. The difference will be significantly ex-
panded as n increases. Figure 22c shows fusion gate im-
plementation of majority logic circuits with multiple in-
puts. Again, in classical circuits, the number of transistors
on each unit’s current path is fixed to three. For n-bit in-
puts (nmust be an odd number larger than 3), the number
of transistors in the classical circuit was 30C 36(n � 3)2,
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Total number of transistors in classical and collision-based (CB) multiple-input logic gates [60]

while in the fusion gate circuit, it was 2(n2 � nC 1),
which indicates that the collision-based circuit has a great
advantage in the number of transistors. Half- and full
adders constructed by fusion gate logic are illustrated in
Figs. 22d and e. The number of transistors in a classical
half adder was 22, while it was 10 in a fusion gate half
adder (Fig. 22d). For n-bit full adders (n � 1), the num-
ber of transistors in a classical circuit was 50n � 28, while
it was 26(n � 1)C 10 in a fusion gate circuit (Fig. 22e).
Again, the fusion gate circuit has a significantly smaller
number of transistors, and the difference will be increased
as n increases.

Figure 23 summarizes the comparison of the num-
ber of transistors between classical and fusion gate logic.
The number of transistors in fusion gate logic was always
smaller than that of transistors in classical logic circuits,
especially in majority logic gates.

Future Directions

Before starting any computation one should input data-
information in the RD medium. A parallel input is an es-
sential feature of an edge-cutting parallel computing ar-
chitecture. Serial inputs, so common for vast majority of
massively-parallel processors, dramatically decrease per-
formance of the computing devices, particularly those op-
erating in transducer mode, where information is con-
stantly fed into the processor (e. g. in tasks of image pro-
cessing). Experimental RD chemical computers, at least
in certain case, may well have analogs of parallel inputs.
It has been demonstrated widely that applying light of
varying intensity we can control excitation dynamic in
BZ-medium [22,27,32,44], wave velocity [49], patter for-
mation [58]. Of particular interest are experimental ev-

idences of light-induced back propagating waves, wave-
front splitting and phase shifting [61]; we can also ma-
nipulate medium’s excitability by varying intensity of the
medium’s illumination [23]. In fact, optical input of data-
information has been already used at the beginning of RD
research [34]. This was proved to particularly important
in experiments in image processing in BZ-medium-based
computing devices [34,45,46,47]. We are not aware of any
rigorous experimental results demonstrating a possibility
of optical inputs of RD semi-conductor devices there is
however a simulation-related evidence of a possibility of
optical parallel inputs. Paper [39] discusses particulars of
a photo-response, photon-induced generation of electron-
hole pairs in p-n-p-n devices, depending on primary color
components in the stimulating input because elementary
processors can also act as color sensors.

There exists a possibility of parallel optical outputs
on semiconductor devices. Technologies for integrating
optoelectronic devices and electronic circuitry are fully
developed, but limited hybrid integration is available
commercially at present. An important problem of such
integration is that pursuing it involves simultaneous devel-
opment of sophisticated technologies for optoelectronic
devices (III-V semiconductors) and silicon integrated cir-
cuits. Indeed, recent development in optoelectronic in-
tegrated circuits (OEICs) enables us to implement light-
emitting devices (LEDs) on silicon substrate by controlling
defects at III-V/silicon interface. For example, Furukawa
et al. demonstrated that lattice-matched and defect-free
GaPN epilayers can be grown on silicon with a thin GaP
buffer layer [29]. The task is enormous and as a practical
matter only small scale OEICs have been demonstrated.
While the integration levels of III-V OEICs have remained
low, the degree of integration in commercial GaAs inte-
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grated circuits has reached LSI levels in recent years. These
advances offer a route to achieving much higher levels
of optoelectronic integration through epitaxial growth of
III-V heterostructures on GaAs-based LSI electronics.

Most experimental prototypes of chemical excitable
computing devices suffer from difficulties with represen-
tation of results of wave interaction. This is because being
excited a medium’smicro-volume becomes refractory and
then recovers back to the resting state. Excitation wave-
fronts usually annihilate in the result of collision. There-
fore, experimental excitable RD computers require some
external devices, like digital camera, to record their spa-
tio-temporal dynamics. Thus, e. g. to compute a collision-
free path around obstacles in thin-layer BZ-medium one
must record snapshots of BZ-medium’s activity and then
analyze this series of snapshots to extract results of the
computation [11,14]. This is the cost we pay for reusable
(because the excitable medium eventually returns to rest-
ing state) RD processors. Another option of preserving re-
sults of computation may be to employ non-excitable RD
media, where a precipitate is formed (or do not formed)
in the result of diffusion wave interaction with a sub-
strate (or competition of several wave fronts for the sub-
strate) [9,10,13,25]. Precipitation is an analog of infinite
memory. The feature is priceless however makes exper-
imental prototypes simply disposable, in contrast to ex-
citable media the precipitate-forming media can be used
just once.

RD semiconductor computers, because they are es-
sentially man-made devices, may allow us to combine
reusability and rich space-time dynamics of excitable RD
media with low post-processing costs of precipitate-form-
ing RD media. This can be done by embedding a lattice
of oscillatory semiconductor elements into a lattice of ex-
citatory semiconductor elements. The excitatory elements
(EEs) will form a substrate to support traveling excita-
tion waves while oscillatory elements (OEs) will play a role
of rewritable memory. For example, to represent sites of
wave-front collision we must adjust an activation thresh-
old of OEs in such manner that front of a single wave
will not trigger OEs, however when two or more wave-
fronts collide the OEs at the sites of collision are triggered
and continue oscillate even when the wave-fronts annihi-
late.

What computational tasks can be realized in RD semi-
conductor devices? Most primitive operations of image
processing (see overview in [5]), e. g. detection of con-
tour and enhancement, are straightly mapped onto the
silicon architecture. Silicon implementation of RD (pre-
cipitate formation based) algorithms for computational
geometry – Voronoi diagram [13,25,26] and skeletoniza-

tion [12] – requires embedding of oscillatory elements in
the lattice of excitatory p-n-p-n devices; the oscillating el-
ements will represent bisectors of a Voronoi diagram and
segments of a skeleton.

Universal computation can be realized in RD semi-
conductor devices using two approaches. Firstly, by em-
ploying collision-based mode of computation in excitable
media [3], where functionally complete sets of Boolean
gates are implemented by colliding waves. In collision-
based mode, however we must force the medium to be
in a sub-excitable regime which may pose some problems
from fabrication point of view. Secondly, we can ‘physi-
cally’ embed logical circuits, namely their diagram-based
representations, into the excitable medium [54,57]. In this
we employ particulars of photo-response of p-n-p-n ele-
ments and project the logical circuit onto the medium as
pattern of heterogeneous illumination.
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