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Glossary

Observability An observed (and eventually controlled)
dynamical system is observable if two distinct initial
conditions can be distinguished (via the observations)
by choosing the control function.

Universal inputs A universal input is a control function
allowing to distinguish between all initial conditions.

Observer An observer system is a device, given in general
under the guise of a differential equation (or a differ-
ences equation in the discrete case), allowing to track
asymptotically the state trajectory of the system, using
only the controls and the observations.

Input-output map An input-output map is a mapping
(for fixed initial condition) which to “control func-
tions” associates “output functions”. It is in general as-
sumed to be “causal” in some sense.

Realization A realization of an input-output map is
a (controlled) nonlinear system realizing the given in-
put-output map. A realization (system) is said to be
minimal if it is controllable and observable.

Definition of the Subject

Observability analysis, design of nonlinear observers and
realization of input-output maps are subjects of central in-
terest in control theory and systems analysis. Related to the
synthesis of observer systems is the very important ques-
tion of “dynamic output stabilization”: usually in practice
a stabilizing feedback law is applied to the system via the
estimation of the state provided by some observer device.
Also, the topic is strongly connected with filtering theory,
including the standard linear Kalman filter but also non-
linear filtering theory. Realization of some input-output
behavior covers the practical idea of modeling systems by
differential equations on the basis of input-output experi-
ments (identification).

Introduction

In this article, we discuss the basic concepts and meth-
ods in observability, observation and realization theories.
The area is so large that there are thousands of contri-
butions. We provide a nonexhaustive limited list of ref-
erences which is certainly far from complete, but corre-
sponds to our taste: an entirely subjective selection. We
focus on the continuous finite dimensional case, but there
are very important developments for systems governed by
PDE’s, and for discrete time systems.

In this continuous, finite dimensional context, we
chose the geometric setting, however there are other pos-
sibilities (algebraic setting, formal power series, Volterra
series, . . . ).

For more details, we provide a list of books of signifi-
cant interest dealing with the topics.

After setting the general definitions, we consider
briefly linear systems for which the theory has been well
established for a long time, the pioneers being Kalman and
Luenberger.

Then we state some important results from the ge-
ometric nonlinear observability theory, the most signifi-
cant contributions being undoubtedly those of Hermann
and Krener [12] and Sussmann [25,26,27]. Also, contrarily
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to the case of linear systems, the observability of a sys-
tem depends on the control applied to it. The existence of
universal controls is a very important point, clarified by
Sussmann [28]. We state the main result. Concerning ob-
servability in an analytic-geometry setting, there are also
interesting and important results by Bartoziewicz.

The next part of the paper is devoted to realization the-
ory, where mostly two problems may be considered:

1. Given a nonlinear system, find a minimal realization;
2. Given some input-output mapping, find a realization of

it (it will be minimal by construction).

The most important contribution in this setting is that
of Jakubczyk [14,15]. In fact, it follows a basic idea of
Kalman, first for finite automata and second for linear sys-
tems. We like Jakubczyk’s approach since in particular, it
contains very naturally the linear case. To our knowledge,
this natural approach has not been used (in the nonlinear
framework) for practical identification of nonlinear sys-
tems. However, it is rather clear that interesting develop-
ments are possible. Moreover, it is not so hard to show
complete equivalence between this geometric approach
and the formal power series approach.

The contribution of Crouch [4] about realization of fi-
nite Volterra series is also important, original and involves
a lot of geometric considerations. We just refer to the orig-
inal paper.

Realizing or approximating a system by a bilinear or
state linear one is an important question in view of the
observer synthesis problem. We state some results on the
subject. In particular, there is an important geometric rep-
resentation theorem (by bilinear systems) due to Fliess and
Kupka [10], that we explain.

After these theoretical considerations, we go to a more
practical topic: observers. Besides the linear case, there
are several contributions on nonlinear observers synthe-
sis (sliding modes, high gain, . . . ). Here, we focus on two
natural generalizations of the linear results:

1. The output injection method (the equivalent for ob-
servability of feedback linearization) due mostly to
Isidori, Krener, Respondek [19,20];

2. The use of the deterministic version of the linear
Kalman’s filter: it applies to bilinear systems, that are
popular also by several approximation results (Fliess
and Jacob in particular [13]).

Preliminaries

Surprisingly in the nonlinear case controllability plays
a role in the observability properties of a system. It is the
reason for the title of the next section.

Nonlinear Systems Under Consideration
and Controllability

We consider nonlinear systems (˙) of the usual form:

(˙)

(
ẋ D f (x; u) ; u 2 U ;

y D h(x) :
(1)

Here, the state x lives either in Rn or more generally in
some n-dimensional differentiable manifold X. The set U
of values of control u is some arbitrary set (for simplicity,
we assume a closed subset of Rl , may be finite). The ob-
servation function h takes values in Rp . To simplify, we
will consider the analytic case only, i. e. f and h are real-
analytic w.r.t. x. In the special cases where U has some an-
alytic structure (i. e. U D Rl for instance) we assume joint
real analyticity w.r.t. (x; u).

If W is an open subset of X, we denote by ˙ jW the
system˙ restricted toW.

Some initial condition x0 2 X being fixed, such a sys-
tem˙ defines (via Cauchy existence and uniqueness The-
orem) an input-output mapping P˙ : L1[U]! AC[Rp],
u(�)! y(�), where L1[U] is the set of functions de-
fined on semi-open intervals [0; Tu[ (depending on the
control u(�)). Possibly Tu D C1. Here AC[Rp] de-
notes the set of absolutely continuous functions over
some interval [0; Ty[ possibly depending on the out-
put function y(�). Moreover, Ty D inffTu ; e(u; x0)g, where
e(u; x0) is the explosion time of the solution of (1) as-
sociated with the initial condition x0, and the control
u(�).

Particular cases of systems under consideration are the
usual linear systems (L), bilinear systems (B) or state-lin-
ear systems (LX):

8
<̂

:̂

(L) ẋ D Ax C Bu; y D Cx; X D Rn ; U D Rl ;

(B) ẋ D Ax C Bx ˝ u; yDCx; XDRn; UDRl ;

(LX) ẋ D A(u)x; y D Cx; X D Rn :

(2)

In these formulas, A; B;C;A(u) are linear. Of course,
in the case of a linear system (L), with initial condition
x0 D 0, the input-output mapping PL is a linear map-
ping.

Our system˙ is said to be “controllable” if the Lie al-
gebra Lie(˙) of smooth vector fields on X generated by
the vector fields f u, u 2 U (where fu(x) D f (x; u)) has di-
mension n at each point of X.

Also, we say that a system˙ is symmetric if 8 u 2 U ,
9 v 2 U s. t. fv D � fu , and ˙ is complete if all the vector
fields f u, u 2 U , are complete.
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The following fact is standard, for analytic systems.
A system is controllable iff:

1. The accessibility set A(x0) of x0 2 X, i. e. the set of
points that can be reached from x0 by some trajectory
of˙ , in positive time, has open interior in X, whatever
x0 2 X.

2. The orbit O(x0) of x0 2 X, i. e. the set of points that
can be joined to x0 by some continuous curve which
is a concatenation of trajectories of ˙ in positive or
negative time, is equal to X; whatever x0 2 X.

Moreover in 1, 2 above, it is enough to restrict to piece-
wise constant control functions. Also, if ˙ is symmetric,
O(x0) D A(x0), 8 x0 2 X.

Definition and Characterization
of Observability, Minimal Systems

Here, C!(X) denotes the vector space of real analytic
functions over X. First, let 	 � C!(X) denote the “ob-
servation space of ˙”, i. e. the smallest vector subspace
of C!(X) containing the p components hi (�) of the out-
put function h and closed under Lie derivation L fu in the
direction of the vector fields f u, u 2 U . Then, 	 is also
closed under Lie derivation in the direction of vector fields
in Lie(˙) and	 is generated as a real vector space by the
functions (L fur )

kr (L fur�1 )
kr�1 � � � (L fu1 )

k1hi .

Definition 1 The observability distribution � of ˙ is
the distribution ker(d	) formed by the kernel of the one-
forms d�; � 2 	. The system˙ is said to be rank-observ-
able if the distribution � is trivial. This fact is also called
the “observability rank condition”.

The important fact relating the observability and control-
lability properties is that the observability distribution �
has no singularities as soon as ˙ is controllable: the
rank of� is preserved along trajectories of vector fields f u.
Moreover, it is clear that � is involutive, hence integrable
by Frobenius’s Theorem. Leaves of� are levels of 	.

Definition 2 (Indistinguishability and weak indistin-
guishability relations) Let I be the binary relation overX
defined by x10 Ix

2
0 if for any (piecewise constant) con-

trol u(�) : [0; Tu[! U such that e(u; x10) D e(u; x20) D Tu ,
then the corresponding output functions y1(t); y2(t) from
both initial conditions x10 ; x

2
0 are equal, t 2 [0; Tu[. The re-

lation I is called the indistinguishability relation for˙ . IfV
is an open subset of X, we denote by IV (V-indistinguisha-
bility relation) the indistinguishability relation for the re-
striction ˙ jV . The weak-indistinguishability relation, de-
noted by Iw is the equivalence relation associated with the
foliation of X generated by�.

The indistinguishability relation is an equivalence relation
as soon as ˙ is complete. It is not an equivalence relation
in general. Hence in general, V-indistinguishability also is
not equivalence over V .

Definition 3 The system ˙ is said to be observable if
the relation I is the trivial relation. It is said to be weakly
observable if for all x0 2 X, there is a neighborhood W
of x0 such that for each neighborhood V of x0, V � W ,
IV (x0) D x0.

Then weak observability means that locally, we can find
inputs such that the initial conditions are distinguished
by the observations, in arbitrarily short time. Observabil-
ity means just that distinct initial conditions can be distin-
guished by observations. The system ˙ being observable,
analytic, this can be done in arbitrary short time.

In view of realization theory, we say that˙ isminimal
if it is both controllable and observable. We say that it is
weaklyminimal if it is controllable andweakly observable.

Definition 4 A universal input for˙ is an input u(�), that
distinguishes among any pair of distinct states in arbitrar-
ily short time.

Observers

For a system ˙ of the form (1) (that we assume to be ob-
servable) an observer is a system of the form:

(
ż D F(z; y; u) ;
x̂ D H(z; u) ;

(3)

where z 2 Z, some manifold. The observer system is fed
by y(t) and u(t), the output and input of ˙ . The map-
ping H : Z � U ! X, and we require that, for a large set
of initial condition z0 for z, the output x̂(t) tracks asymp-
totically the state x(t) of the system, i. e. at least,

lim
t!C1

d(x̂(t); x(t)) D 0 ; (4)

where d is some (Riemannian) metric over X. In general,
there are additional requirements on the rate of conver-
gence to zero of the estimation error "(t) D d(x̂(t); x(t))
(such as exponential convergence, with arbitrary exponen-
tial rate).

Of course even without such additional requirements,
this definition is very vague and not serious at all. It has
to be made more precise, depending on the context. There
are mostly two types of problems:

� This definition depends on the metric d. It may happen
that "(t) goes to zero for some Riemannian metric d,
although it goes to infinity for some other metric d0.
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Also, the state variables z or x may explode in finite
time. Therefore, in general it is reasonable to require (4)
only for trajectories of ˙ that remain in a given com-
pact subset of X for all positive times. In that case, the
usual convergence requirements becomes independent
of the Riemannian metric d.

� One cannot expect to observe unobservable systems.
Therefore, one has to require convergence for “good”
inputs only.

Abstract Definition of an Input-Output Map

We define the topological group G (resp. the topological
semi group S) of extended (resp. positive time) piecewise
constant controls as follows: typical elements of G and S
are words of the form:

ǔ(ť) D (uk ; tk) � � � (u1; t1) ; (5)

where ui 2 U and ti 2 R (resp. RC). The operation
over G and S is the concatenation of words. We consider
also the neutral element " : ǔ(ť)" D "ǔ(ť) D ǔ(ť). We de-
fine the equivalence relation� over G and S as being gen-
erated by the relations:

(
(u; 0) � " ;
(u; s)(u; �) � (u; s C �) :

(6)

We consider the quotient spaces G :D G/�, S :D
S/�. Both are embedded with the topology co-induced by
the maps:

ǔ(�) : Rk ! G (resp. (RC)k ! S) :

For � 2 RC and ǔ(ť) D (uk ; tk ) � � � (u1; t1) 2 S, we
define

� 
 ǔ(ť) D (urC1; � � �r)(ur ; tr) � � � (u1; t1)
for � 2 [�r ; �rC1[ ;

�r D t1 C � � � C tr ;
� 
 ǔ(ť) D ǔ(ť) for � � �k :

A real mapping: P : D � G ! R (resp. S ! R) with
open domain D is said to be analytic if, for all ǔ(ť) 2 D,
the mapping ť ! P(ǔ(ť)) is analytic at ť as a mapping
Rk ! R.

The domain D of P : D � S ! R is said to be “star-
shaped” if � 
 a 2 D for all � 2 RC and a 2 D.

Denote B̌(š) D ((b̌m (šm); : : : ; b̌1(š1)) 2 Gm (resp. Sm),
with

b̌i (š i ) D
�
bini ; sini



� � �
�
bi1 ; si1



; bi j 2 U;

and set:

�
B̌(š)
ǔ( ť) D



�

b̌m (šm )
ǔ( ť) ; : : : ; �

b̌1(š1)
ǔ( ť)

�
;

�
b̌ i (š i )
ǔ( ť) D P(b̌i (š i )ǔ(ť)) :

The rank of P is defined as

rank(P) D sup
k;B̌(š);ǔ( ť)

rankDť�
B̌(š)
ǔ( ť) ;

where Dť means the differential w.r.t. ť 2 Rk , and all the
arguments belong to the possible domain defined by the
domain D of P.

Definition 5 An (abstract) input-output mapping P is an
analytic mapping, from some open and star-shaped subset
D � S, with finite rank.

An extension PC of an analytic mapping P is an an-
alytic mapping such that dom(P) � dom(PC) � S and
P D PCjdom(P) (restriction of PC to dom(P)).

Remark 6 Given a pointed nonlinear system (˙; x0)
where ˙ is of the form (1) and x0 2 X, it is clear that the
associated input-output mapping defines an abstract in-
put-output mapping, the rank of which is the dimension n
of the state space.

Linear Systems

The simplest case for observability, design of observers
and realization theory is the linear case.

Given a linear system (L) from (2) the following results
are standard and more or less obvious:

� The observability property is independent of the con-
trol u(�) applied to the system, i.e (L) is observable iff it
is observable for some fixed arbitrary control u(�).

� The observability distribution � is a field of constant
planes, given by � D \n�1

iD1 ker(CA
i ). Then ˙ is ob-

servable iff rank(�) D 0. This condition is known as
the observability rank condition.

� If (L) is observable the following device (Luenberger
observer):

(
ż D (A�˝C)z C˝ y C Bu ;
˝ : Rn ! Rp ; z 2 Rn ;

(7)

is an arbitrary exponential rate observer, i. e. the ma-
trix ˝ can be chosen in such a way that the matrix
A�˝C has arbitrary spectrum, which implies:

k"(t)k D kz(t) � x(t)k
� k(˛)e�˛tkz0 � x0k D k(˛)e�˛tk"0k ; (8)
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where˛ > 0 is arbitrary, and k is some polynomial in˛,
independent of˝ .

� Any linear system restricts to a controllable one on
some subspace, and is mapped to an observable one,
by the canonical projection˘ : Rn ! Rn/I (where I is
the indistinguishability relation from Definition 2).

� Let Y(t) denote an “impulse response” (Y(t) : Rl !

Rp; t � 0). The input-output map is the causal lin-
ear mapping P : u(�)! y(�) D Y 
 u, where 
 denotes
the convolution of (positive time) signals. Then assume
that (as a formal power series) Y(t) D

P1
kD1Gk

tk
k! ,

and let H denote the infinite block-Hankel matrix
constructed from the sequence of blocks G1;G2; : : : ;

Gk ; : : :

Then, Y(t) is the impulse response of a linear system
(L) iffH has finite rank n.

Observability of Nonlinear Systems

What is clear is that if a system is rank-observable, then
it is weakly observable. This is due to a Baker–Campbell–
Hausdorf like formula, valid for piecewise constant con-
trols ǔ(ť):

y(t) D
X

(L fuk )
rk � � � (L fu1 )

r1h(x0)
trkk � � � t

r1
1

rk ! � � � r1!
: (9)

Indeed by real analyticity, if y1(t) D y2(t), all the terms
(L fuk )

rk � � � (L fu1)r1h(x10) and (L fuk )
rk � � � (L fu1)r1h(x20)

are equal, which contradicts the rank assumption, for x10 ;
x20 close enough.

Conversely, assume that ˙ is controllable and not
rank-observable. Then, the observability distribution � is
constant rank, integrable, nontrivial. Leaves of � are lev-
els of	. By the same formula (9) points of such leaves are
indistinguishable. Therefore ˙ is not weakly observable.
Then, the following theorem holds:

Theorem 7 A controllable system ˙ is weakly observable
iff it is rank-observable.

The other important result (Sussmann [28]) is:

Theorem 8 If ˙ is observable, there is a universal input.
Moreover, the set of universal inputs is generic.

Realization Theory

Minimal Realizations Given a Realization

We are given a realization i. e. a pointed system (˙; x0),
x0 2 X. In fact, the results follow from the Sussmann’s
theorem on quotient manifolds: a closed equivalence rela-
tionR differentiably passes to the quotient (i. e. quotient is

a manifold and canonical projection is submersive) if there
are enough complete vector fields that respect R. We ap-
ply this theorem to the indistinguishability relationR D I
in the case of a complete and controllable system. Then
all vector fields of Lie(˙) respect I. This is exactly Suss-
mann’s requirement, so that not only there is a quotient
manifold and canonical mapping is submersive, but more-
over vector fields of Lie(˙) pass to the quotient. Also, the
elements of	 obviously pass to the quotient.

If ˙ is not controllable, then, as a first step, we can
use the standardHermann–Nagano Theorem to restrict to
a (controllable) leaf of the distribution Lie(˙). Then, we
have a similar theorem to the one of the linear case.

Theorem 9 If˙ is complete, then we can restrict to the leaf
of Lie(˙) containing x0 2 X to get a controllable system.
Passing to the quotient manifold by the indistinguishabil-
ity relation I, we get a minimal realization. Moreover, two
minimal realizations are unique up to a diffeomorphism of
the state spaces.

For complete systems, there is an interesting refinement of
this theorem. A realization is said to be weakly-minimal if
it is controllable, weakly observable. It turns out that the
equivalence relation Iw associated to � meets also Suss-
mann’s conditions. It follows that the system goes to the
quotient, and we get a weakly minimal realization ˆ̇ with
state space X̂. We can apply the previous Theorem 9 to ˆ̇
to get again the (unique) minimal realization ˙m of ˙ ,
with state space Xm. The following theorem is almost ob-
vious.

Theorem 10 X̂ is a covering space of Xm. Moreover, any
covering space of Xm determines a weakly-minimal realiza-
tion of˙ , by a trivial lifting procedure.

In particular, there is (up to diffeomorphisms) a single
simply-connected weakly-minimal realization.

Note that in fact the relation Iw is the same relation as:
x10 I

wx20 if there is a continuous curve � : [0; 1]! X con-
necting x10 to x20 and for r; s 2 [0; 1], � (r)I� (s).

Minimal Realizations
Given an Abstract Input-OutputMap

The set of controls U being given, we consider an ab-
stract input-output map defined over the whole group G
(domain D D G). Note that this is the case in particular
for the input-output mappings determined by a complete
symmetric system.

In that case we have the following theorem, due to
Jakubczyk [14].
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Theorem 11 An abstract input-output mapping with
domain G has a unique minimal realization, which is
complete.

Remark 12 The finite rank assumption for the input-out-
put mapping is a generalization of the finite rank assump-
tion of the Hankel matrix of the linear case. It is also the
analog of certain finite rank assumptions appearing in the
formal power series approach of Fliess, or in the Volterra-
kernels approach.

Remark 13 There is one ugly detail in this theory: in gen-
eral, we do not get a paracompact manifold as the state
space X.

The idea for the proof of the theorem is very simple:
we consider the subgroup H of G defined by H D

fa 2 GjP(ca) D P(c);8c 2 Gg. Then, the state space
will just be X D G/H. The finite rank condition implies
that X has the structure of a Hausdorff analytic mani-
fold. The output function h is defined by h(gH) D P(g).
The vector-field f u is defined via its one parameter group:
exp(t fu)(gH) D ˘ ((u; t)g), where ˘ : G ! G/H is the
canonical projection.

A more practical result is the following: if we assume
that the set U of values of the control is a finite set, then
the following global result (containing a local one) can be
proven.

Theorem 14 Assume U is finite, then, a necessary and suf-
ficient condition for P to have a realization (weakly-min-
imal) is that P has an extension PC with star-shaped do-
main DC. The state space X of this realization is Hausdorff,
paracompact.

In the general analytic case with infinite U, existence of
certain local realizations only, can be proved.

Bilinear or State-Linear Realization

This point will be extremely important for the problem of
constructing observer systems (Sect. “Observers”). A sys-
tem is said to be control affine if the vector fields f u form
an affine family w.r.t. u. The single control case (l D 1) is
just the case f (x; u) D f (x)C g(x)u where f and g are two
vector fields on X. Note that a bilinear system is just a state
linear system, which is moreover affine in the controls.

A state linear realization (LX; x0) from Eq. (2) is said
to be minimal if it is observable and controllable in the
following sense: the orbit of x0 is not contained in a strict
subspace of Rn (the smallest such subspace would be au-
tomatically invariant under all the operators A(u); u 2 U).
First, it is rather simple to show that any pointed state-

linear system (LX; x0) has a minimal state-linear realiza-
tion. Of course, the additional property to be bilinear is
hereditary.

Note that for state-linear systems, the observation
space is a (finite-dimensional) vector space of linear forms
over X. It turns out that this finite dimensionality condi-
tion is in fact a necessary and sufficient condition. This is
a very important result from Fliess and Kupka [10]:

Theorem 15 Assume that ˙ has a finite dimensional ob-
servation space	. Then,˙ is embeddable in a state-linear
system. In other terms (˙; x0) has a state linear (minimal)
realization.

The proof is very easy. It is enough to take:

� X D 	� (dual space of 	),
� For ' 2 	�; Ci' D '(hi ), i D 1; : : : ; p,
� A(u) D (L fu )

� (transpose of L fu ),
� The initial state x̂0 meets x̂0(') D '(x0) for ' 2 	.

Besides the fact that this result allows one to solve the
observer problem for such systems, “truncating” in some
manner the observation space is a way to approximate
systems by state-linear ones, and to get approximate ob-
servers.

An interesting particular case where this theorem ap-
plies is the case of systems with polynomial observation h
and state-linear dynamics:
(
ẋ D A(u)x ;
y D P(x) ;

where P is some polynomial mapping. It is clear that 	 is
finite-dimensional. More generally, if we start with a sys-
tem with state-linear dynamics, we can uniformly approx-
imate h on compact sets by a polynomial mapping to get
a state-linear realization (and later on, an approximate ob-
server device).

State-Linear Skew-Adjoint Realization

Here, for the sake of simplicity in the exposition we limit
ourselves to the single output case p D 1.

This section describes some particular cases and some
generalizations of the results of the previous section, in
view of synthesis of observers with a method presented
in Subsect. “Observers for Skew-Adjoint State Linear
Systems”.

For some reason that will be made clear in the Sub-
sect. “Observers for Skew-Adjoint State Linear Systems”
we would like to know when it is possible to embed a sys-
tem (or to have a realization of a system) into a skew-sym-
metric, or more generally skew-adjoint, state-linear one.
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This means that all the matrices A(u) are skew-symmetric
w.r.t. the usual scalar product over the state spaceRn of the
realization. By Theorem 15, a necessary condition for the
nonlinear system˙ (minimal and complete) to be embed-
dable is that 	 be finite dimensional and hence the group
of diffeomorphisms of X generated by the vector fields f u
be a Lie group G. One could think that a necessary condi-
tion is that G be a compact Lie group. This is not the case
as the following example shows:
(
ẋ D u ; x; u 2 R ;

y D cos(x)C cos(˛x) ; where ˛ is irrational ;

since the group of diffeomorphisms is R, while a skew
symmetric embedding does exist.

The proper condition is given by the following
theorem:

Theorem 16 The system ˙ (complete, minimal) can be
embedded into a state-linear skew symmetric system iff:

1. dim(	) <1 (from which it follows that G is a Lie
group),

2. The observation function h(x) lifts over G into h̃ (in
a natural way), an almost periodic function over G.

Recall that an almost periodic function overG is a function
that prolongs into a continuous function over the Bohr
compactification G[ of G [5]. The two conditions of Theo-
rem 16 are equivalent to the fact thatG is a Lie group and h̃
is a finite linear combination of coefficients1 of unitary ir-
reducible finite dimensional representations of G.

IfG is “embeddable in a compact group”, i. e. ifG is the
semi-direct product of a compact group by a finite dimen-
sional real vector space then, any h can be approximated
in some sense by an almost periodic one.

Actually, a special interesting case is the following: the
system ˙ is such that X D G, a compact Lie group, and
the vector fields f u are right invariant vector fields over G.
We can take h as any continuous function h : G ! R, and
consider the abstract Fourier transform ĥ of h. In fact, by
Peter–Weyl’s Theorem [3], h is a uniform limit over G of
finite linear combinations of the form

h(g) D
X

i

˛i˚i (g) ;

where ˚i (g) is a coefficient of an irreducible (hence fi-
nite dimensional) unitary representation of G. This means

1A coefficient of a representation is a coefficient of the matrix rep-
resenting the representation operator in certain orthonormal basis.

that h has approximations hm that converge uniformly to h
over G, such that each system

(˙m)

(
ġ D A(u)g ;
y D hm(g) ;

has a state-linear minimal realization of the form:
(
ẋ D Am(u)x ; x 2 Cn ; Am(u) is skew-adjoint ;
y D Cmx :

Hence the input-outputmapping of any right invari-
ant system over a compact group can be approximated
by the one of a skew-adjoint state-linear one.

Now, let us consider again a (complete, minimal)
system ˙; with finite dimensional Lie algebra, but the
group G is not compact. In that case h̃ (a lift of h over G)
can be approximated uniformly on any compact subset
of G by a function hm, which is a finite linear combina-
tion of “positive type” functions over G. This approxima-
tion result is known as the Gelfand–Raikov Theorem [5].
As a consequence we have the theorem:

Theorem 17 The system

(˙n)

(
ġ D A(u)g ;
y D hm(g) ;

has a (infinite dimensional) skew-adjoint state linear real-
ization on a separable complex Hilbert space H, i.e:
(
�̇ D A(u)� ;
y D h�; �i :

Here �; � 2 H and h�; �i is the scalar product over H. All
the operators A(u) are densely defined, essentially skew-
adjoint operators, infinitesimal generators of strongly
continuous one parameter groups of unitary operators
over H.

With this result, in Subsect. “Observers for Skew-Ad-
joint State Linear Systems”, we will be able to construct
reasonable approximate observers for˙ .

Observers

Kalman’s Observer for State-Linear Systems

This is just the deterministic version of the linear time-
dependant Kalman filter. Therefore, inputs being known,
it applies to state-linear systems (LX) from (2). Contrar-
ily to linear systems, observability for those systems is not
a property independent of the inputs: for some input u(�)
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it might be observable, for others it might not be. Clearly,
if we want the observer to have some asymptotic prop-
erty of convergence of the estimation error, it is reasonable
to require that the input under consideration keeps a cer-
tainminimum level of observability when the time grows
to infinity. It is natural to consider inputs living in the
space U D L1[0;1[;Rp of measurable U-valued bounded
functions. For an input u 2 U and for a real a � 0, set
ua(t) D u(t C a). We denote by ˚u(t) the matrix resol-
vent of the linear equation ˙̊u(t) D A(u(t))˚u(t). Then
for T > 0, the Gramm-observability matrix:

Gu;T D

Z T

0
˚u(t)�C�C˚u(t) dt ; (10)

where � stands for adjoint operator, measures observabil-
ity in the following sense: the system is observable for
u : [0; T]! U iffGu;T is positive definite. Hence there are
several types of assumptions that are possible to express
that u : [0;C1[! U keeps a certain level of observability
when time passes. The most simple one is the following:

There are ˛; T; T0 > 0 such that for all � � T0,
Gu� ;T � ˛:Idn , where Idn is the identity matrix. This con-
dition means intuitively that, from time T0 on, the input u
has minimum observability level ˛ on all time intervals of
length T. Such an input could be called a “persistent-exci-
tation” for˙ .

Then, the following theorem is just a restatement of
the classical results about the deterministic version of the
linear time-dependant Kalman’s filter:

Theorem 18 ([18]) The matrices Q and R being positive
definite symmetric matrices with adequate dimensions, the
Riccati system:

(
(1) ṠD�A(u(t))0S(t)�S(t)A(u(t))CC�R�1C�SQS;
(2) żDA(u(t))z � S�1C�R�1(Cz � y(t)) ;

(11)

is an asymptotic observer for persistent-excitations u(�).
Convergence of the estimation error is exponential. The ma-
trices S(t) (as soon as the same holds for the initial condi-
tion S0) live in the open cone of positive definite symmetric
matrices.

Observers for Systems that are Injectable
in a State-Linear One

Of course, the technique of the previous section applies
stricto-sensu to such systems from Subsect. “Bilinear or
State-Linear Realization”.

The Output-Injection Idea

It turns out that both the Luenberger observer (7) for
linear systems and the Kalman observer (11) for state-
linear systems can be applied in more general nonlinear
situations.

Assume that˙ is linear “up to output injection”, i. e.

(˙)
�

ẋ D Ax C '(y; u)
y D Cx

�
; (12)

or respectively that ˙ is state-linear (or bilinear) up to
output injection, i. e.

(˙)
�

ẋ D A(u)x C '(y; u)
y D Cx

�
; (13)

where ' (the output injection) is some nonlinear term
depending on the output and input only. Then there are
easy modifications of the Luenberger observer (resp. the
Kalman’s observer) that provide exactly the same results of
convergence of the estimation error as for the correspond-
ing systems without the output-injection term.

For case (12) we take the observer under the Luen-
berger-modified form:

ż D (A�˝C)z C '(y; u)C˝(y � Cz) ;

while for case (13) we take:
(
Ṡ D �A(u(t))0S(t) � S(t)A(u(t))C C�R�1C � SQS
ż D A(u(t))z C '(y; u) � S�1C�R�1(Cz � y(t)) :

To check the result it is enough to write the estimation
error equation and to see that it is exactly the same as in
the situation without output-injection.

For that reason, it is important to characterize sys-
tems that can be put under the form of a linear or state-
linear system up to output-injection.

There is an industry around this question. It starts with
the works of Isidori, Krener, Respondek [19,20]. The first
result of this type is in the uncontrolled case. For an un-
controlled system

(˙)

(
ẋ D f (x)
y D h(x) ;

with single output (p D 1), consider the vector fields Xi
defined by

LX1 (L f )i�1h D ıi;n ; i D 1; : : : ; n ;
where ı is the Kronecker symbol ;

Xj D � [ f ; Xj�1] ; j D 2; : : : ; n ;

The system ˙ can be linearized up to a diffeomorphism
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and an output injection iff the two following conditions
are met [19]:

1. The family fdh; dL f h; : : : ; d(L f )n�1hg has full rank n
at all points of X.

2. [Xk ; Xm] D 0 for 1 � k, m � n.

Of course, this is a “local almost everywhere result” only.
There is also a lot of results on the problem of charac-

terizing systems that are diffeomorphic to or embeddable
in state-linear systems up to output injection. A signifi-
cant result to the problem of embedding up to output in-
jection is the one of Jouan [16].

Observers for Skew-Adjoint State Linear Systems

Again, to simplify the exposition we consider the single
output case p D 1 only.

In this case we have a (minimal) state-linear realization
which is also skew-adjoint, there is a construction of an ob-
server which ismuch simpler than Kalman’s one [no Ric-
cati equation besides the prediction-correction Eq. (11),
(2)]. Moreover this construction extends to infinite-di-
mensional realizations, a fact which allows it to treat any
(complete minimal) system with finite dimensional Lie
algebra.

To start, consider some skew-symmetric state linear
system:

(LX)

(
ẋ D A(u)x ; A(u) skew-symmetric 8 u 2 U ;

y D Cx ;
(14)

We consider the following candidate observer system:

ż D A(u)z � rC�(Cz � y) ; (15)

in which r > 0 is a parameter. The estimation error is
" D z � x:

"̇ D (A(u) � rC�C)" :

Then it is not so hard to show that, if u : [0;1[! U is
a “persistent excitation” of ˙ in some sense (for instance
in the sense of Subsect. “Kalman’s Observer for State-Lin-
ear Systems”, then we have:

lim
t!C1

k"(t)k D 0 :

As a consequence, the systems with compact group G
of diffeomorphisms (or with G semidirect product of
compact group by vector space), admit also approxi-
mate observers, using the results of Subsect. “State-Linear
Skew-Adjoint Realization”.

It turns out that this method can be extended in
a reasonable way to systems with (infinite dimensional)
skew-adjoint state-linear realization. In particular, it is
possible to construct approximate observers for all (com-
plete minimal) systems with finite dimensional Lie alge-
bra.

Consider a skew adjoint realization from Subsect.
“State-Linear Skew-Adjoint Realization”:
(
�̇ D A(u)� ;
y D h�; �i

on the (separable) Hilbert space H. Then, the candidate
observer device is:

�̇ D A(u)� � r�(h�; �i � y(t)) : (16)

In fact, the persistency assumption cannot be of the
same type as in the finite dimensional case. The reason is
that the Gramm observability matrix Gu;T is a compact
operator in that case. Hence it cannot satisfy an inequal-
ity of the type Gu;T � ˛IdH since H is infinite dimen-
sional.

Hence, the definition of a persistent excitation has to
be replaced by one of the following type: there is a time
T > 0 and a real sequence �n , �n !C1, with �nC1 � �n
bounded, such that the translated inputs u�n : [0; T]! Rl

converge to u� in the weak–* topology of L1[0;T];Rl (which
topology is precompact over bounded sets) and u� is a uni-
versal input for˙ on [0; T].

This means also that a certain level of observability
is preserved, on regularly spaced time intervals, while the
time increases.

In that case, of course the result is weaker than in the
finite dimensional case. We have only:

weak– lim
t!C1

"(t) D 0 :

Future Directions

For observability and synthesis of observers, besides the
improvement of the current methods (including sliding
modes, high gain, . . . ) several directions have to be inves-
tigated more deeply, namely infinite dimensional systems,
delay and hybrid systems.

For realization theory, and as a consequence identifi-
cation theory, almost no “practical result” is known in the
nonlinear context. However, we think interesting and con-
sistent developments are possible, even starting from the
apparently abstract theory outlined there. This is clearly
the challenge for the future.
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Glossary

Cluster Clusters are sets of neighboring sites of the same
type.

Ising model Each site carries a magnetic dipole which
points up or down; neighboring dipoles “want” to be
parallel.

Opinion dynamics How do people change opinions?
Simulations usually ignore all details of the brain and
represent the opinion by one or several numbers which
can be changed due to contact with others.
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Schelling model People belonging to different groups
may produce segregated neighborhoods just by their
personal preferences, not by outside force.

Sociophysics Application of methods from (mostly sta-
tistical) physics to human relations can be traced cen-
turies backwards.

Definition of the Subject

Sociophysics is the study of social questions by physicists
using their physics methods. In contrast to biophysics, it
is a field which is not yet very well established. Opinion
dynamics is one of the most widespread topics of socio-
physics.

Introduction

The application of concepts from the natural sciences to
social sciences, partly to be reviewedhere, is at least 25 cen-
turies old. Then the Greek philosopher Empedokles stated
(according to J. Mimkes) that humans are like liquids:
Some mix easily like wine and water, and others like oil
and water refuse to mix. We start with the Schelling model
of 1971, which implemented this idea, and its criticism (see
� Social Processes, Simulation Models of). Then we will
review opinion dynamics in large populations, summariz-
ing only shortly other aspects like self-organization of hi-
erarchies or competition between human languages.

Humans do not like to be treated like a number, and
indeed the human brain is much more complex than a bi-
nary variable (called “spin” by physicists) which is ei-
therC1 or�1. We do not deal here with the psychological
processes of an individual but with mass psychology, and
this author learned half a century ago in school that mass
psychology is different from individual psychology: The
law of large numbers averages out over individual fluctua-
tions and makes general trends more clearly visible. Thus
what we call today statistical physics plays a useful rule,
and social scientists [15,36] have applied it, without know-
ing then that they dealt with an Ising model of ferromag-
nets.

The astronomer Halley, best known through his
comet, tried to establish mortality tables already three cen-
turies ago. Of course, the time of death of one given indi-
vidual is usually difficult to predict but averaged over mil-
lions of people the statistical offices of many countries pre-
pare regularly life tables which tell us how probable it is
for a newborn child to live up to x years, provided there
are no changes of the mortalities in the coming decades.
Insurance for automobiles is another example: We do not
want to produce accidents, but we know that they happen,
and take precautions against their financial consequences.

Thus the whole insurance industry is based on treating hu-
mans like numbers, ignoring their individuality.

Finally, human opinions are often fluctuating and
ill-defined, but nevertheless in elections people cast one
choice, out of a limited number of choices. And election
results belong to those social data for which we have lots
of accurate numbers, based on large populations.

Thus it is not at all the merit (or ignorance) of physi-
cists which treats humans like numbers; this method has
a very long tradition and is an indispensable part of mod-
ern life.

SchellingModel

Ising Simulations

Following (but not citing) Empedokles, the later eco-
nomics Nobel laureate Schelling [36] asked whether the
racial segregation in American cities can emerge from in-
trinsic behavior of the individual people, instead of or in
addition to extrinsic reasons like discrimination, rent dif-
ferences, etc. In particular, can “black” ghettos in the pre-
dominantly “white” USA arise just because people prefer
to have neighbors of their own group over neighbors from
the other group? In many other countries we find many
other types of residential segregation, based on religion,
ethnicity, .... In physics, such a process is easily simulated
through the two-dimensional Ising model, as shown in
Figs. 1 and 2.

In this Ising model, each site on a square lattice car-
ries a variable Si D ˙1, and each pair hi; ki of nearest
neighbors produces an “energy” �JSi Sk with some pro-
portionality constant J. The total energy E (= total unhap-

Opinion Dynamics and Sociophysics, Figure 1
Isingmodel after 20Glauber kinetic steps per site on a 500� 500
square lattice at kBT/J D 2. We start from a random distribution
of equally many black and white sites
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Opinion Dynamics and Sociophysics, Figure 2
As Fig. 1 but after 2000 instead of 20 iterations

piness) is the sum of this pair energy over all neighbor
pairs of the lattice. In physics, different distributions of
the “spins” Si are realized with a probability proportional
to exp (�E/kBT) where T is the absolute temperature and
kB the Boltzmann constant. There is no need to worry
about values for T, kB, J since the only relevant quantity is
the ratio kBT/J, taken as 2 in these pictures. The “Glauber”
kinetics is simulated on the computer by flipping a spin if
and only if a random number between 0 and 1 is smaller
than the probability exp(�
E/kBT)/[1Cexp(�
E/kBT)].
The Fortran program of Algorithm 1 contains less than
40 lines and takes a few seconds.

Such models and programs are taught in courses on
computational or theoretical physics all over the world; the
model was published in 1925. If in the above flipping prob-
ability the denominator is omitted one gets the Metropo-
lis kinetics. If instead of flipping one spin, we exchange
two opposite spins, we get the Kawasaki dynamics. For
Glauber or Metropolis, after very long times (measured by
the number of sweeps through the lattice) one of the two
possibilities dominates at the end, if T is not larger than
the critical temperature Tc, with 2J/kBTc D ln(1C

p
2) '

0:88 known since 1940. For Kawasaki dynamics the frac-
tion of black sites remains constant, and we get two large
domains. For higher temperatures above Tc only small
clusters and no large domains are formed, Fig. 3.

In this Ising model, two neighboring spins have due
to their interaction �JSi Sk a higher probability to be-
long to the same group than to belong to the two dif-
ferent groups. If the difference between these two prob-
abilities is large enough, T < Tc, domain sizes can grow
to infinity in an infinite lattice, Figs. 1 and 2, while only
small clusters are formed in Fig. 3 for smaller differences

Opinion Dynamics and Sociophysics, Figure 3
As Fig. 2 but at kBT/J D 3 instead of 2. Only small clusters and no
large domains are formed. After 200 and 20,000 iterations the
pictures look similar to this one made after 2000 iterations

in the probabilities, T > Tc. That these probabilities, con-
trolled through �J/kBT , lead to these different regimes,
separated by a sharp phase transition at T D Tc, is not
obvious from the definition of the interaction JSi Sk , took
physicists many years to find, and is typical of complex sys-
tems.

The social meaning of temperature T is not what we
hear in the weather reports but an overall approximation
for all the more or less random events which influence our
decisions but are not explicitly included in the model. For
residential segregation the model only counts how many
neighbors of which group one has. But not all people of
one group are alike, housing in different parts of a city
costs different amounts of money, some parts are more
beautiful then others, and job hunting may force us into
a temporary residence of a new city which does not con-
form to our wishes. In this way, a positive temperature
allows for rare moves which increase the energy, i. e. we
move to a new residence where the neighborhood com-
position along makes us less happy. At zero temperature,
the Ising model does not properly order into one or two
“infinite” domains.

Schelling’s Version and Later Improvements

Schelling [36] avoided probabilistic rules and thus counted
neighbors Sk D ˙1 at zero temperature. Then it does not
matter if all neighbors or only a majority of them belong
to the own group. Thus people are defined as happy if at
least half of the neighbors belong to the own group, and as
unhappy otherwise (i. e. if the majority belong to the op-
posite group). Unhappy people move to the nearest place
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parameter(L=500,Lmax=(L+2)*L)
dimension is(Lmax),iex(9)
byte is
data t,max,ibm/2.00,2000,1/
print *, L,max,ibm,t
Lp1=L+1
L2pL=L*L+L
do 1 i=1,Lmax

is(i)=-1
ibm=ibm*16807

1 if(ibm.gt.0) is(i)=1
do 2 ie=1,9

ex=exp(-2*(ie-5)/t)
2 iex(ie)=(2.0*ex/(1.0+ex) - 1.0)*2147483647

ibm=2*ibm+1
do 3 mc=1,max

do 4 i=Lp1,L2pL
ie=5+is(i)*(is(i-1)+is(i+1)+is(i-L)+is(i+L))
ibm=ibm*16807

4 if(ibm.lt.iex(ie)) is(i)=-is(i)
mag=0
do 6 i=Lp1,L2pL

6 mag=mag+is(i)
3 if(mc.eq.(mc/100000)*100000) print *, mc,mag

do 5 i=Lp1,L2pL
if(is(i).ne.1) goto 5
iy = (i-1)/L
ix=i-L*iy
print *, ix, iy+1

5 continue
stop
end

Opinion Dynamics and Sociophysics, Algorithm 1
Simple Fortran program to produce pictures like Figs. 1 to 3

where they are happy. Since Schelling moved only one per-
son (or family) at a time, and made no exchange of two
people simultaneously as in Kawasaki kinetics, he intro-
duced a large fraction of empty residences. Thus at each
step, one unhappy person or family moves into the closest
vacancy where life would be happy.

This model, and also many variants [16,36], fail to
give large domains; only small clusters are seen. In real-
ity, Harlem in Manhattan (New York), is not a cluster of
a few houses but extends over many square kilometers.
Thus the original version does not give the desired re-
sults. Large domains are formed if people also change resi-
dences if this brings no improvement [46] (hardly a realis-
tic assumption), or at a finite temperature [41]. The latter
paper also gives some alternatives to the Schelling model
which also allow for large domains, and a simple example
of a finite cluster where everybody is “happy” and which
therefore never grows or dissolves on its own “will”. More

quantitative analyses of domain growth are given by [13,
27,39].

Much earlier and simpler is the zero-temperature ver-
sion of Jones [15] who at each iteration removes a ran-
dom fraction of the people and fills the vacancies with
people who are there happy in the Schelling sense. This
randomness, just like the finite temperature, leads to large
domains as desired. Neither physicists nor social scientists
have taken much note of [15]. The history of the Schelling
model is an example how the lack of communication be-
tween disciplines has hampered progress in research, even
very recently [41,46]. Only computational statistical physi-
cists know everything. ([15] also mention a probabilistic
version closer to the Ising model.)

For finite temperatures, [41] follow the above Glauber
dynamics, but instead of an energy E uses a variable which
is 0 or 1 depending on the happiness of the residents.Mov-
ing from one place to the other then depends exponentially
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on the ratio of this variable to kBT , instead of on the ratio

E/kBT . Many variants are possible, e. g. in the treatment
of neutral cases [30,46] where the number of neighbors of
both groups is exactly the same.

But we are on safer grounds and can use decades of
physics research if we use the normal Ising model, or
its generalization to Q different groups, the Q-state Potts
model. Then Refs. [28,37] implemented a suggestion of
Weidlich [47] that people slowly learn to live together with
neighbors from the other group. Thus T not only takes
into account the various accidents from outside the model,
but also measures the tolerance: The higher T is the more
are people willing to live in neighborhoods of the other
group. In the limit T D 1 the neighbors would not matter
at all, for intermediate T, Fig. 3 showed small clusters but
no large domains, and for low T the domains grow to in-
finite sizes on an infinite lattice. The learning suggested by
Weidlich thus means that this parameterT (= temperature
or tolerance) no longer is kept constant but slowly in-
creases.

For an Ising model, [28] showed how an initial large
domain dissolves if the temperature is slowly increased
from below to above Tc. More realistically, for five (in-
stead of only two) different groups in a modified five-state
Potts model, [37] increased T from low to high values
and showed that with a slow increase one has appreciable
domain formation during intermediate times, while with
a fast increase this segregation is mostly avoided, Fig. 4.

Instead of imposing a fixed temperature or tolerance T
to everybody, one can also let it self-organize according to

Opinion Dynamics and Sociophysics, Figure 4
Amount of neighbors of the same type in a Potts model of five
groups, normalized to unity for the initial random distribution.
The temperature or tolerance increases from low to high values,
slowly in the top curves, and fast in the lower curves; the latter
mostly avoid the segregation into different group. (The lowest
line holds for a constant high temperature.). From [37]

the neighborhood [30]. Or one may introduce two differ-
ent T, one for tolerance against people of the other group,
and the other for the random noise from events outside
the model, like marriages, job losses, deaths [32].

Poor people cannot afford expensive housing. If we as-
sume one of the two groups to be poor and the other to be
rich, and if we assume that each residence is randomly ei-
ther expensive or cheap, thenwe have a random-field Ising
model [43]. This “field” gives the probability for the poor
to select only cheap housing and for the rich to live in ex-
pensive residences. For intermediate lattice sizes and inter-
mediate times, the field prevents the growth of infinite do-
mains, and the clusters are the smaller the larger the field
is [43].

Opinion Dynamics

The following section describes several rules for simulated
people to change opinions; each of these rules is applied
again and again to these agents until some stationary or
static state has been achieved.

Ising Model

Also for human opinions, one could use the Ising model
of the previous section [9,19]; see also [47]. People can
vote for or against the government or a new constitution,
for one of two presidential candidates, or (using general-
ized models) for one out of Q > 2 different parties. Their
neighbors on a lattice influence them in their vote, and in
addition mass media may influence everybody in one di-
rection. The latter effect can be modeled through an ex-
ternal “magnetic” field, Eq. (1b) in “Phase transitions . . . ”
by this author in this encyclopedia. No motion of people
needs to be taken into account, and the complications of
Kawasaki kinetics (exchange of two people with oppos-
ing opinions) are not needed. Thus the Glauber program
of the previous section still can be used, and we only re-
fer here to the old generalization into the social impact
model [24,25] and to a recent financial application [50].

Voter Model

Also quite old is the votermodel [26]: Each person chooses
between two opinions, by taking over the one of a ran-
domly selected neighbor. One may rewrite this rule as stat-
ing that each person selects the opinion of the neighbor-
hood, with a probability proportional to the number n
of neighbors having that opinion. Thus in contrast to the
Ising model where the probabilities depend exponentially
on n, now they depend linearly on n. A final equilibrium
(absorbing fixed point) is reached if everybody shares the
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same opinion. The deviations from that final state can be
measured by the magnetization (difference between the
numbers for the two opinions) or energy (average num-
ber of neighbors having the opposite opinion). The time
needed to reach the consensus increases with a power of
the lattice size, and the exponent depends on the dimen-
sionality. A nice and short review of the voter model, also
on various networks, is given by the Majorca group [35].

Axelrod Model

Axelrod [1] wondered how different opinions or cultures
may coexists even if people tend to become more alike in
their beliefs. Looking at the above Ising Figs. 1, 2, 3, we
see that due to finite time and/or finite temperature such
coexistence of two opposing opinions is possible. But Ax-
elrod generalized it not only to Q > 2 different possible
opinions as in the Potts model of the above “Schelling
Model” section, but also to F different questions. People
may have one set of opinions on which political party they
want to vote for, another set about what is the best foot-
ball team, a third about recent cinema films, etc. This al-
lows for QF different opinion sets on all F questions (“fea-
tures”). Of course, one could generalize this model to the
case where the number Qf of possible choices is different
for the different features f , allowing then for ˘ F

fD1Qf in-
stead of simply QF different sets of opinions.

Another aspect of the model takes into account that
people prefer to talk to, or tomake political coalitions with,
others with whom they share many opinions. Thus the
probability of one person to take over the different opinion
of a neighbor is proportional to the number of features on
which their opinions already agree. In the next subsection
we will use a similar concept under the name of bounded
confidence.

Whether a total consensus (“globalization”) is reached
or multiculturality persists depends on parameters: Small
Q lead to consensus. Again, the Majorca group [35] re-
viewed the many follow-up papers on this Axelrod model.

Sznajd, Krause–Hegselmann and Deffuant Models

Much of the opinion dynamics research since 2000 cen-
tered on three different models S, KH and D, originally
invented independently around that year: Sznajd [44] (S),
Krause–Hegselmann [23] (KH) and Deffuant et al. [14]
(D). They were also called missionaries, opportunists and
negotiators by some computational physicists [42].

The S model is closest to the earlier models since it
allows for Q discrete opinions, while KH and D use real
opinions, e. g. between zero and one. S happens on a lat-

tice or network while for KH and D everybody may in-
teract with everybody. In the most widespread S version
a pair of neighboring sites on a square lattice convinces its
six neighbors of its opinion, if and only if the two opinions
of the pair agree [29]; governments and parties usually
lose support if their internal opinion differences make it to
the headlines. For KH, the new opinion of a person is the
arithmetic average over the opinion of the whole popula-
tion. For D, each person selects randomly another person
and then both move in their opinion towards each other
by an amount proportional to their opinion difference.

In all three cases, “bounded confidence” applies: The
KH agents average only over those people who differ from
their own opinion by less than �, and the D agents only
select negotiation partners differing by less than � from
their own opinions. In both models 0 < � < 1 is a fixed
parameter. For S agents with Q D 2 such a rule makes no
difference, but for Q > 2 one can modify the convincing
rule such that only neighbors differing by at most˙1 from
the pair opinion adopt the pair opinion. Thus 1/Q for S
plays the role of � for D and KH. A rule similar to this
bounded confidence was mentioned above for the Axelrod
model [1].

In spite of the differences in their definitions, the re-
sults are quite similar for S, KH and D. For large � or
Q � 3 a complete consensus is usually reached; for small �
or Q � 4 different opinions may coexist forever. In addi-
tion to computer simulations, also analytical calculations
were made [2,40] which agree with many aspects of the
simulations. More results, also for opinions on more than
one feature and agents sitting on scale-free networks [8],
are summarized in [42].

One particular application is shown in Fig. 5: Various
Brazilian election results for candidates in city councils

Opinion Dynamics and Sociophysics, Figure 5
Brazilian elections (x) and simulations of Sznajd model on
Barabási–Albert networks (+); from [4]
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showed great similarity if the number of candidates getting
a given number v of votes is plotted against this v. Putting
the S model with Q D 1000 candidates onto a scale-free
network instead of a square lattice, excellent agreement of
simulation and reality was found after the numbers were
scaled by suitable factors. Also Indian elections were sim-
ulated this way [20], while proportional elections are dif-
ferent [11]. It would be nice to apply other opinion dy-
namics models to the same election problem. As usual in
statistical physics, these studies can predict and simulate
the shape of the distributions but not the winner in a spe-
cific election, just as we can predict the pressure of the air
molecules around us but not where which molecule will be
one minute from now.

Galam Conservatism

Galam has published since many years theoretical mod-
els which may explain why reforms are very difficult and
why aminority can stay in power. Usually thesemodels are
solvable analytically and assume that the population is di-
vided into small groups of people which to the outside are
represented by one person who follows the majority wish
of the group. Several of these representatives form a super-
group, and this supergroup again decides according to the
majority of the representatives in it. In this way an “infi-
nite” hierarchy of people, groups, supergroups etc can be
built. In the case of equally many voting for one choice as
for the opposite choice, within one unit, that unit votes for
the status quo. Starting with everybody having opinion�1,
a very large majority of people must switch to opinionC1
before the top of the hierarchy finally also changes opin-
ion [17]. We refer to [42] for a summary of more recent
Galam papers, and to [18] for a more complete review.

Languages, Hierarchies and Football

Language Competition

Darwinian survival of the fittest is established biology,
but similar concepts can be applied to human languages,
bridging the gap to opinion dynamics. There are now
thousands of different languages, and their “size” is the
number of native speakers of that language. The size dis-
tribution extends from 1 (on the verge of extinction) to
109 (Mandarin Chinese). The grammar of a language [22]
can be characterized by F features each of which can have
Q different values, just as in Axelrod’s model explained
above. Features can change spontaneously or be taken over
from a (neighboring) language; speakers of a small lan-
guage give it up and learn a widespread language (as done
with physics research publications since 1945); people mi-

Opinion Dynamics and Sociophysics, Figure 6
Simulated language size distribution on a 20;000� 20;000
square lattice using a modified Viviane model [33]

grate to other places and bring their language with them.
All these processes can lead to the extinction of existing
languages and the creation of new ones (by the branching
of one language into several sub-languages.) The present
language size distribution is roughly log-normal, with an
enhancement at small sizes [21]. Similar languages form
families, and the size distribution of families is a power
law at intermediate sizes [49] (where the size is now the
number of different languages belonging to that family).

Various computer simulations of this language com-
petition have been made, mostly since 2003 and reviewed
recently [38]; see also [10,12]. We only mention Fig. 6
from a modified Viviane model, which agrees well with
the real language size distribution. For language families,
the empirical statistics is worse [49] and one model also
works well [38]. Good distributions were also obtained
in a model which avoids dealing with individual speak-
ers [45].

Self-Organization of Social Hierarchies

The elites of all countries and all times always had excellent
reasons why they should be on top and others on the bot-
tom. This holds evenwhen the United Nations criticize the
school system as violating human rights. In contrast, the
Bonabeau model [7] explains social hierarchies as purely
accidental, without any merit. People are put on a lattice,
occupying a fraction p of all lattice sites and having an ini-
tial score of zero. Then they move randomly to neighbor-
ing sites, and whenever one person wants to move into the
site occupied by another person, a fight erupts. The win-
ner takes the contested site, the loser moves into (or stays
at) the other site. Also, the winner adds one point and the
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loser subtracts one point in its score, and in the future the
agents with a positive score have a higher probability to
win, those with a negative score have a lower probability to
win. Slowly the history is forgotten, by reducing the score
at each time step by, say, ten percent.

With some suitable feedback between the distribution
of scores and the probability to win, a phase transition was
simulated such that for p above some critical concentra-
tion, the standard deviation in the scores becomes positive
for long times and large populations. For p < pc it fluc-
tuates near zero, which means that everybody has close to
a 50 percent chance to win. So, just by accident at a high
population density some people rise to the top, and others
fall to the bottom. However, the people on top (bottom)
are not always the same; only the differences between top
and bottom, not the people, remain the same. [3,31,48] are
some of the more recent references in this field.

Football

Football (= soccer) is the world’s most popular spectator
sport, though in the author’s city it is more a frustration.
Randomness surely plays a role and makes it attractive.
Can we explain all results just by chance, in the spirit of
Bonabeau hierarchies? Assuming a constant probability to
make a goal within one minute, the distribution of goals
and victories is more narrow than in reality. If instead we
assume that this probability varies from team to team, still
no good agreement is found. Good agreement with reality
is obtained only if correlations are taken into account [6],
in the sense that a goal makes the scoring team happy,
shocks the opposing team, and thus with an enhanced
probability leads to another goal for the scoring team.
Thus if we lose it is not just bad luck; it is also the referee’s
fault.

Future Directions

The Schelling model of Sect. “Schelling Model” is not the
only case of missed opportunities because of a lack of
cooperation between social sciences on the one side and
physics, mathematics or computer science on the other
side. The two books [5,42] were written without the au-
thors of one book knowing of the preparation of the other
book. One group of authors works in physics departments;
none of the other group lists physics as institutional ad-
dress. Nevertheless the two books show strong overlap in
fields and methods covered, but little overlap in the litera-
ture cited. More interdisciplinary cooperation would help.
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40. Slanina F, Lavička H (2003) Eur Phys J B 35:279
41. Stauffer D, Solomon S (2007) Eur Phys J B 57:473

http://www.ethnologue.org
http://www.ethnologue.org


6388 O Optical Computing

42. Stauffer D, Moss de Oliveira S, de Oliveira PMC, Sá Martins JS
(2006) Biology, sociology, geology by computational physi-
cists. Elsevier, Amsterdam

43. Sumour MA, El-Astal AH, Radwan MA, Shabat MM (2008) Int J
Mod Phys C 19:637; see also Emboloni F (preprint)

44. Sznajd-Weron K, Sznajd J (2000) Int J Mod Phys C 11:1157
45. Tuncay Ç (2007) Int J Mod Phys C 18:1641
46. Vinkovic D, Kirman A (2006) Proc Natl Acad Sci USA 103:19261
47. Weidlich W (2000) Sociodynamics; A systematic approach to

mathematical modelling in the social sciences. Harwood Aca-
demic Publishers, 2006 reprint, Dover, Mineola

48. Weisbuch G, Stauffer D (2007) Physica A 384:542
49. Wichmann S (2005) J Linguist 41:117
50. Zhou WX, Sornette D (2007) Eur Phys J B 55:175

Optical Computing
THOMAS J. NAUGHTON2,3, DAMIEN WOODS1,4
1 Department of Computer Science, University College
Cork, Cork, Ireland

2 Department of Computer Science, National University
of Ireland, Maynooth County Kildare, Ireland

3 Oulu Southern Institute, University of Oulu, RFMedia
Laboratory, Ylivieska, Finland

4 Department of Computer Sience and Artificial
Intelligence, University if Seville, Seville, Spain

Article Outline

Glossary
Definition of the Subject
Introduction
History
Selected Elements of Optical Computing Systems
Continuous Space Machine (CSM)
Example CSM Datastructures and Algorithms
C2-CSM
Optical Computing and Computational Complexity
Future Directions
Acknowledgments
Bibliography

Glossary

Coherent light Light of a narrow band of wavelengths
(temporally coherent), and a light beam whose phase
is approximately constant over its cross sectional area
(spatial coherence). For example, coherent light can be
produced by a laser.

Incoherent light Light which is not spatially coherent
and not temporally coherent. For example, incoherent
light is produced by a conventional light bulb.

Source A device for generating light.
Spatial light modulator (SLM) A device that imposes

some form of spatially-varying modulation on a beam
of light. An SLMmaymodulate the intensity, phase, or
both, of the light.

Detector A device for sensing light.
Continuous space machine (CSM) A general optical

model of computation that is defined in Sect. “Contin-
uous Space Machine (CSM)”.

Parallel computation thesis This thesis states that paral-
lel time corresponds, within a polynomial, to sequen-
tial space, for reasonable parallel and sequential ma-
chines [29,52,74,98,126].

P, NP, PSPACE, NC Complexity classes, these classes are
respectively defined as the set of problems solvable on
polynomial time deterministic Turing machines; poly-
nomial time nondeterministic Turing machines; poly-
nomial space Turingmachines; and parallel computers
that use polylogarithmic time and polynomial hard-
ware [97].

Definition of the Subject

An optical computer is a physical information processing
device that uses photons to transport data from one mem-
ory location to another, and processes the data while it is
in this form. In contrast, a conventional digital electronic
computer uses electric fields (traveling along conductive
paths) for this task. The optical data paths in an optical
computer are effected by refraction (such as the action of
a lens) or reflection (such as the action of amirror). A prin-
cipal advantage of an optical data path over an electrical
data path is that optical data paths can intersect and even
completely overlap without corrupting the data in either
path. Optical computers make use of this property to ef-
ficiently transform the optically-encoded data from one
representation to another, for example, to shuffle or re-
verse the order of an array of parallel paths, or to con-
volve the data in several arrays of parallel paths. Other ad-
vantages of optical computers include inherent parallelism
and the ability to encode a two-dimensional spatial func-
tion in the cross-section of a single beam of light, higher
bandwidths (in contrast to the free transmission of pho-
tons, electric fields generate noise in parallel conductors as
they are pushed down their conductor), lower energy con-
sumption (an argument deriving from the fact that optical
computers in principle generate very little heat), easier cir-
cuit design, and lower latency in comparison to electrical
transmission.

However, the property of non-interference of inter-
secting data paths means that it is not straightforward to
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effect a switch or branch instruction in optics since in
a vacuum the presence or absence of light in one data path
cannot affect another path. In order to perform a conven-
tional computation (e. g. solve a decision problem) optical
computers invariably need to be equipped with an elec-
tronic interface, which would sense the presence or ab-
sence of light at some stage of the computation, and set
the optical computer on a new course. Although this lim-
itation has been addressed with varying levels of success
through the development of nonlinear optical materials
for all-optical switching and storage devices, it is generally
accepted that if optical computers become mainstream,
it will be through a symbiotic relationship with their ex-
tremely flexible digital electronic counterparts. Further-
more, currently there is no convincing alternative to using
digital electronics for optical computer data input devices
(liquid-crystal display panels, for example) and data out-
put devices (digital cameras, for example).

Optical computing is an inherently multidisciplinary
subject whose study routinely involves a spectrum of ex-
pertise that threads optical physics, materials science, opti-
cal engineering, electrical engineering, computer architec-
ture, computer programming, and computer theory. Ap-
plying ideas from theoretical computer science, such as
analysis of algorithms and computational complexity, en-
ables us to place optical computing in a framework where
we can try to answer a number of important questions. For
example, which problems are optical computers suitable
for solving? Also, how does the resource usage on opti-
cal computers compare with more standard (e. g. digital
electronic) architectures? Furthermore, optical computing
gives one an opportunity to apply computer theory on
a completely new suite of machine models. In contrast to
a number of other nature-inspiredmodels of computation,
optical computers have very real and immediate realiza-
tion possibilities.

Traditionally, in optical information processing a dis-
tinction was made between signal/image processing
through optics and numerical processing through optics,
with only the latter (and often only the digital version of
the latter) being called optical computing [44,73,85,142].
However, it was always difficult to clearly delineate be-
tween the two, since it was largely a question of the in-
terpretation the programmer attached to the output op-
tical signals. The most important argument for referring
to the latter only as optical computing had to do with
the fact that the perceived limits (or at least, ambitions)
of the former was simply for special-purpose signal/image
processing devices while the ambitions for the latter was
general-purpose computation. Given recent results on the
computational power of optical image processing architec-

tures [91,131,136], it is not the case that such architectures
are limited to special-purpose tasks. Furthermore, as the
field become increasingly multidisciplinary, and in partic-
ular as computer scientists play a more prominent role,
it is necessary to bring the definition of optical comput-
ing in line with the broad definition of computing. In par-
ticular, this facilitates analysis from the theoretical com-
puter science point of view. The distinction between ana-
log optical computing and digital optical computing is
similarly blurred given the prevalence of digital multipli-
cation schemes effected through analog convolution [73].
Our broad interpretation of the term optical computing
has been espoused before [25].

Introduction

The three most basic hardware components of an optical
information processing system are a source, a modulator,
and a detector. A source generates the light, a modulator
multiplies the light by a (usually, spatially varying) func-
tion, and a detector senses the resulting light. The sim-
plest example of a modulator encoding a spatially vary-
ing function is a transparency (a sheet of clear plastic or
photographic film) with an opaque pattern handwritten or
printed onto it. When placed in the path of an advanc-
ing wavefront, which we define simply as being a wide
beam of light, the modulator encodes its pattern onto this
wavefront. The common liquid-crystal display projector is
a programmable example of the same principle. Keeping
this kind of system in mind, we now highlight some at-
tributes of optical information processing systems.

Time Efficiency

Consider a light detector that converts incident light into
an electrical current. Consider also an encoding scheme
whereby the intensity in a beam of light represented a par-
ticular nonnegative integer. Further, assume there are no
fluctuations in the light source output, that the encoding
scheme is linear, and that the detector’s response is lin-
ear. Then, the sum of two such nonnegative integers in-
cident on the detector could be determined by measuring
the detector’s current. In fact, several nonnegative integers
could be summed in this way, with a single measurement
(see Fig. 1). (This concept is not unknown to designers
of analog electrical ANNs. However, the important dif-
ference is that since the medium is free space, the prac-
tical fan-in limitations of Kirchoff Law summation [86]
in analog electronics do not apply here.) Such an optical
arrangement can find the sum of n nonnegative integers
in O(1) addition steps. On a model of a sequential digi-
tal electronic computer this would require n � 1 addition
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Optical Computing, Figure 1
A light detector apparatus converts incident light into an electri-
cal current. Multiple nonnegative integers, encoded in beams of
light, can be summed in unit time

operations and even a parallel digital electronic machine
with n or more processors requires O(log n) timesteps.
Tasks that rely on scalar summation operations (such as
matrix multiplication) would benefit greatly from an op-
tical implementation of the scalar sum operation. Simi-
larly,O(1) multiplication andO(1) convolution operations
can be realized optically. In Sect. “Optical Computing and
Computational Complexity” we formally describe the time
efficiency of a broad class of optical computers. Very re-
cently, an optics-based digital signal processing platform
has been marketed that claims digital processing speeds of
tera (1012) operations per second [79].

Efficiency in Interconnection Complexity

As optical pathways can cross in free space without mea-
surable effect on the information in either channel, high
interconnection densities are possible with optics [20,27].
Architectures with highly parallel many-to-many inter-
connections between parallel surfaces have already been
proposed for common tasks such as sorting [8,37,83,115].
Currently, intra-chip, inter-chip, and inter-board connec-
tions are being investigated for manufacturing feasibil-
ity [87].

Energy Efficiency

Electrical wires suffer from induced noise and heat, which
increases dramatically wheneverwires aremade thinner or
placed closer together, or whenever the data throughput
is increased [87]. As a direct consequence of their resis-
tance-free pathways and noise-reduced environments, op-
tical systems have the potential to generate less waste heat
and so consume less energy per computation step than
electronic systems [21]. This has been demonstrated ex-
perimentally with general-purpose digital optical proces-
sors [59,116,117].

Coherence

Mutually spatially coherent optical wavefronts (such as
from a laser) interfere with each other just as waves in
a water tank do. In the theory of physical optics, coher-
ent wavefronts can be described by, and thus can repre-
sent, a complex-valued function (both positive and nega-
tive values in each of the real and imaginary axes). Using
the language of this theory to interpret optical phenomena
permits the definition of (at least) three important infor-
mation processing constant-time operations: spatial mod-
ulation, Fourier transformation, and signal squaring [55].
The ability to perform such operations has resulted in
many constant-time optical implementations of standard
convolution-based digital image processing tasks.

While incoherent light (such as from an ordinary light-
bulb) has some advantages in terms of tolerances in mis-
alignment of optical components and less susceptibility to
certain types of noise, coherent light is more general (in
that its mathematics can be used to describe both coherent
and incoherent wavefronts). Incoherent wavefronts can be
modeled as being nonnegative everywhere, and so only
admit possibilities to directly represent nonnegative spa-
tially-varying and temporally-varying functions.

Optical Image Processing

It has long been appreciated that spatial optical signals are
the most natural means of representing continuous tone
2D signals. There are many positive aspects to processing
information using these (sometimes unwieldy and always
inaccurate) physical signals instead of the more accurate
digital electronic representations of 2D signals. These in-
clude the ability to concurrently modify all parts of an im-
age (spatial light modulation), the capability to substitute
space computational complexity for time computational
complexity when performing certain transformations [22,
82,91,107,131] (such as constant-time Fourier transforma-
tion with coherent light), the potential significant energy
savings [21] (in both creating the signal and effecting the
computation), and the ease with which analog signals can
be digitized or resampled at an arbitrary frequency for sub-
sequent digital electronic handling. Themost common ap-
plications of optical image processing are pattern recogni-
tion and numerical matrix computations (see Sect. “His-
tory” for elaboration).

Pattern recognition is one of the most commonly
implemented signal, image, and information processing
tasks. A significant number of the algorithms for these
tasks involve a convolution operation, either as the prin-
cipal operation (e. g. comparing two images on a pixel-by-
pixel basis using correlation) or as part of necessary pre-
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processing (e. g. edge detection prior to applying a Hough
transform [64]). The inherent parallel nature of optical
systems can be used to facilitate low time and space com-
plexity implementations of the convolution operation, ei-
ther by multiplication in the Fourier domain or by systolic
action [26].

Overview of the Chapter

In this chapter, we focus on optical image processing as
it is an optical computing paradigm that makes full use
of the degrees of freedom afforded by optics. Other opti-
cal computing architectures that seek to emulate perfectly
in step-by-step fashion the operations of digital electronic
architectures (for example, architectures built upon all-op-
tical flip-flops [34] and all-optical network routers [39])
occupy an important place in the taxonomy of optical
computing. However, in terms of computational complex-
ity, the analyzes of these digital optical computers are in
many respects identical to that of the digital electronic
counterparts they emulate.

In Sect. “History”, we give a brief overview of the
history of optical computing, commonly referred to as
optical information processing. Section “History” also
includes an overview of existing optical models of compu-
tation. This is followed in Sect. “Selected Elements of Op-
tical Computing Systems” by a summary of the most im-
portant elements of optical computing that could be used
to define the functionality of an optical model of compu-
tation. In Sect. “Continuous Space Machine (CSM)”, we
take a detailed look at a particular model of optical com-
puting (the CSM) that encompasses most of the function-
ality that coherent optical information processing has to
offer. We begin by defining the CSM and a total of seven
complexity measures that are inspired by real-world (op-
tical) resources. We go on to discuss how the CSM’s op-
erations could be carried out physically. Section “Exam-
ple CSM Datastructures and Algorithms” contains some
example datastructures and algorithms for the CSM. In
Sect. “C2-CSM” we motivate and introduce an important
restriction of the model called the C2-CSM, and in Sect.
“Optical Computing and Computational Complexity” we
describe a number of C2-CSM computational complexity
results, and their implications. We conclude with some fu-
ture directions in Sect. “Future Directions”.

History

It could be argued that the field of optical information pro-
cessing began in earnest with the realization that spatially
coherent laser light could be used to conveniently Fourier
transform an image, allow one to modify the complex-

valued spatial frequency components, and then inverse
Fourier transform back to the spatial domain. This con-
cept is called spatial filtering [35,36,78,95,121,123,124], it
is a generalization that encompasses convolution and cor-
relation operations, and it could be performed over two-
dimensional (2D) images in constant time while limited
in speed only by the refresh rates of the input and output
devices. It first found application in the 1950s for paral-
lel processing and analysis of the huge amounts of radar
data produced at the time. The initial special-purpose spa-
tial filtering systems performed optical Fourier transforms,
performed image processing (for example, noise reduction
and edge enhancement), and recognized patterns through
correlation. The fundamentals of optical spatial filtering
were formulated in that decade, and built upon previous
work on optimum linear filtering in communication the-
ory. Achieving the full potential of optical spatial filtering
theory requires filters that are complex-valued, and a tech-
nique to obtain such filters was first proposed by Vander-
Lugt [123,125]. The technique allows one to physically en-
code a complex-valued image on an amplitude-modulat-
ing SLM such as an LCD panel.

Research continued into this form of image-based
computation. Many important image processing tasks
were demonstrated at that time, from character recogni-
tion [4], to real-time tracking of moving objects [48,122],
to telescope/microscope image deblurring [118]. Two im-
portant strands of this research at the time were the de-
velopment of sophisticated pattern recognition algorithms
and numerical computation using values encoded in the
complex amplitude or intensity of the light.

Optical Pattern Recognition

In pattern recognition [6,13,16,17,24,31,66,72], effort fo-
cused on achieving systems invariant to scaling, rotation,
out-of-plane rotation, deformation, and signal dependent
noise, while retaining the existing invariance to translat-
ing, adding noise to, and obscuring parts of the input.
Effort also went into injecting nonlinearities into these
inherently linear systems to achieve wider functional-
ity [70,71]. Improvements were made to the fundamental
limitations of the VanderLugt filter, most notably the joint
transform correlator architecture [130].

Optical correlators that use incoherent sources of illu-
mination (both spatially and temporally) rather than lasers
are also possible [14,15,42,100,143]. The simplest incoher-
ent correlator would have the same basic architecture as
that used for matched filtering. While coherent systems in
principle are more capable than incoherent systems (prin-
cipally because the former naturally represents complex
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functions while the latter naturally represents real func-
tions), incoherent systems require less precise positioning
when it comes to system construction and are less suscep-
tible to noise.

A common example of an optical correlator’s use in
practical systems involved it being used as a front end to
a generalized hybrid object recognition system. The op-
tical processing component would quickly and efficiently
identify regions of interest in a cluttered scene and pass
these on to the slower but more accurate digital electronic
components for false-alarm reduction, feature extraction,
and classification. Today, the matched filter and the joint
transform correlator are the two most widely used optical
pattern recognition techniques [45,63,84,140].

Trade-offs between space and time were proposed and
demonstrated. These included time integrating correla-
tors [125] (in contrast to the space integrating correla-
tors mentioned thus far) and systolic architectures [18,
26,50] where, for example, the propagation of an ampli-
tude-modulated pressure wave through an acousto-optic
device naturally effects the required correlation lags [108].
In addition to pattern recognition, a common application
for these classes of architectures was numerical calcula-
tion.

Analog Optical Numerical Computation

An important strand of image-based optical computation
involved numerical calculations: analog computation as
well as multi-level discrete computation. Matrix-vector
and matrix-matrix multiplication systems were proposed
and demonstrated [5,44,63,73,76,85,125]. The capability
to expand a beamof light and to focus many beams of light
to a common point directly corresponded to high fan-out
and fan-in capabilities, respectively. The limitations of en-
coding a number simply as an intensity value (finite dy-
namic range and finite intensity resolution in the modula-
tors and detectors) could be overcome by representing the
numbers in some base. Significant effort went into dealing
with carry operations so that in additions, subtractions,
and multiplications each digit could be processed in paral-
lel. Algorithms based on convolution to multiply numbers
in this representation were demonstrated [73], with a sin-
gle post-processing step to combine the sub-calculations
and deal with the carry operations. Residue arithmetic was
demonstrated as a viable alternative in which carry oper-
ations did not arise at all, and for which a matrix-vector
multiplier was proposed [68], but of course conversion to
and from residue format is necessary.

An application that benefited greatly from the tightly-
coupled parallelism afforded by optics was the solv-

ing of sets of simultaneous equations and matrix inver-
sion [1,23]. An application that, further, was tolerant to the
inherent inaccuracies and noise of analog optics was opti-
cal neural networks [27,43,65,104] including online neural
learning in the presence of noise [90].

Digital Optical Computing

The next major advances came in the form of optical
equivalents of digital computers [67]. The flexibility of dig-
ital systems over analog systems in general was a major
factor behind the interest in this form of optical compu-
tation [109]. Specific drawbacks of the analog computing
paradigm in optics that this new paradigm addressed in-
cluded no perceived ability to perform general purpose
computation, accumulation of noise from one computa-
tion step to another, and systematic errors introduced by
imperfect analog components. The aim was to design dig-
ital optical computers that followed the same principles as
conventional electronic processors but which could per-
form many binary operations in parallel. These systems
were designed from logic gates using nonlinear optical el-
ements: semitransparent materials whose transmitted in-
tensity has a nonlinear dependence on the input intensity.
Almost always, the coherence of the light was not used in
the computation. All-optical bistable devices acting as flip-
flops were demonstrated. The field drew on many decades
of research into fast on-off optical switching speeds which
was heralding an explosion in optical fiber communica-
tions. The difficulties that the digital optical paradigm ex-
perienced included how to fully exploit the theoretical par-
allelism of optics within an optical logic framework, how
to efficiently manufacture very large systems of cascaded
nonlinear optical elements (for which integrated optics
holds promise [51]), and the more fundamental mathe-
matical problem of how to parallelize arbitrary algorithms
in the first place to exploit the parallelism afforded by dig-
ital optics.

Digital optical computing was also proposed as an ap-
plication of architectures designed originally for image-
based processing, for example logic effected through sym-
bolic substitution [11,12]. At the confluence of comput-
ing and communication, optical techniques were proposed
for the routing of signals in long-haul networks [44,142].
This is a promising application given that most long-
haul communications already use light in optical fibers,
and the conversion from optical to electronic in order to
switch, and them back to optical to retransmit, can be
costly. Initial implementations followed the concept of an
optoelectronic crossbar switch with n inputs and n out-
puts [109], while latterly more effort is now going into
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all-optical packet switching in a single channel configura-
tion [34,39,49].

Optical Models of Computation

As already discussed, optical computers were designed and
built to emulate conventional microprocessors (digital op-
tical computing), and for image processing over contin-
uous wavefronts (analog optical computing and pattern
recognition). Here we are interested in the latter class:
optical computers that store data as images. Numerous
physical implementations exist and example applications
include fast pattern recognition and matrix-vector alge-
bra [56,125]. There have been much resources devoted
to designs, implementations and algorithms for such op-
tical information processing architectures (for example
see [5,22,40,44,56,77,82,85,90,107,125,142] and their ref-
erences).

However the computational complexity theory of op-
tical computers (that is, finding lower and upper bounds
on computational power in terms of known complexity
classes) had received relatively little attention when com-
pared with other nature-insired computing paradigms.
Some authors have even complained about the lack of suit-
able models [44,82]. Many other areas of natural comput-
ing (e. g. [2,58,62,80,88,89,99,112,139]) have not suffered
from this problem. Even so, we discuss some optical com-
putation research that is close to the goals of the theoretical
computer scientist.

Reif and Tyagi [107] study two optically inspired mod-
els. The first model is a 3D VLSI model augmented with
a 2D discrete Fourier transform (DFT) primitive and par-
allel optical interconnections. The second model is a DFT
circuit with operations (multiplication, addition, compar-
ison of two inputs, DFT) that compute over an ordered
ring. Parallel time complexity is defined for bothmodels in
the obvious way. For the first model, volume complexity is
defined as the volume of the smallest convex box enclos-
ing an instance of the model. For the DFT circuit, size is
defined as the number of edges plus gates. Constant time,
polynomial size/volume, algorithms for a number of prob-
lems are reported including 1D DFT, matrix multiplica-
tion, sorting and string matching [107].

Feitelson [44] gives a call to theoretical computer sci-
entists to apply their knowledge and techniques to optical
computing. He then goes on to generalize the concurrent
read, concurrent write parallel random access machine, by
augmenting it with two optically inspired operations. The
first is the ability to write the same piece of data to many
global memory locations at once. Secondly, if many val-
ues are concurrently written to a single memory location

then a summation of those values is computed in a single
timestep. Essentially Feitelson is using ‘unbounded fan-in
with summation’ and ‘unbounded fan-out’. His architec-
ture mixes a well known discrete model with some optical
capabilities.

A symbolic substitution model of computation has
been proposed by Huang and Brenner, and a proof
sketched of its universality [11]. Thismodel of digital com-
putation operates over discrete binary images and derives
its efficiency by performing logical operations on each
pixel in the image in parallel. It has the functionality to
copy, invert, and shift laterally individual images, and OR
and AND pairs of images. Suggested techniques for its op-
tical implementation are outlined.

In computer science there are two famous classes of
problems called P and NP [97]. P contains those problems
that are solvable in polynomial time on a standard sequen-
tial computer, while NP is the class of problems that are
solvable in polynomial time on a nondeterministic com-
puter. NP contains P, and it is widely conjectured that they
are not equal. A direct consequence of this conjecture is
that there are (NP-hard) problems for which we strongly
believe there is no polynomial time algorithm on a stan-
dard sequential computer.

It is known that it is possible to solve any NP (and
even any PSPACE) problem in polynomial time on opti-
cal computers, albeit with exponential use of some other,
space-like, resources [131,133,135]. In Sect. “C2-CSM and
Parallel Complexity Theory”, we describe how parallel op-
tical algorithms can solve such problems.

Along with these rather general results, there are
a number of specific examples of algorithms with related
resource usage for NP-hard problems. Shaked et al. [110,
111] design an optical system for solving the NP-hard trav-
eling salesman problem in polynomial time. Basically they
use an optical matrix-vector multiplier to multiply the (ex-
ponentially large) matrix of tours by the vector of intercity
weights. They give both optical experiments and simula-
tions. Dolev and Fitoussi [38] give optical algorithms that
make use of (exponentially large) masks to solve a num-
ber of NP-hard problems. Oltean [94], and Haist and Os-
ten [60], give polynomial time algorithms for Hamilto-
nian path, and traveling salesman problem, respectively,
via light travelling through optical cables. As is to be ex-
pected, both suffer from exponential (space-like) resource
use. Nature-inspired systems that apparently solve NP-
hard problems in polynomial time, while using an ex-
ponential amount of some other resource(s), have been
around for many years. So the existence of massively par-
allel optical systems for NP-hard problems should not
really surprise the reader. Nevertheless, it is interesting
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to know the computational abilities, limitations, and re-
source trade-offs of such optical architectures, as well as to
find particular (tractable or intractable) problems which
are particularly suited to optical algorithms.

Reif, Tygar and Yoshida [106] examined the computa-
tional complexity of ray tracing problems. In such prob-
lems we are concerned about the geometry of the an op-
tical system where diffraction is ignored and we wish to
predict the position of light rays after passing through
some system of mirrors and lenses. They gave undecid-
ability and PSPACE hardness results, which gives an in-
dication of the power of these systems as computational
models.

Selected Elements of Optical Computing Systems

If one is designing an optical model of computation, one
will incorporate the functionality of a subset of the follow-
ing selected elements (devices and functionality) of optical
computing systems.

Sources

Lasers are a common source of illumination because at
some levels they are mathematically simpler to under-
stand, but incoherent sources such as light-emitting diodes
are also used frequently for increased tolerance to noise
and when nonnegative functions are sufficient for the
computation. Usually, the source is monochromatic to
avoid the problem of color dispersion as the light passes
through refracting optical components, unless this disper-
sion is itself the basis for the computation.

Spatial Light Modulators

It is possible to encode a spatial function (a 2D im-
age) in an optical wavefront. A page of text when illumi-
nated with sunlight, for example, does this job perfectly.
This would be called an amplitude-modulating reflective
SLM. Modulators can also act on phase and polarization,
and can be transmissive rather than reflective. They in-
clude photographic film, and electro-optic, magneto-op-
tic, and acousto-optic devices [5,44,56,73,85]. One class
of note are the optically-addressed SLMs, in which, typi-
cally, a 2D light pattern falling on a photosensitive layer
on one side of the SLM spatially varies (with an identical
pattern) the reflective properties of the other side of the
SLM. A beam splitter then allows one to read out this spa-
tially-varying reflectance pattern. The liquid-crystal light
valve [41,57,69,128,129] is one instance of this class. Other
classes of SLMs such as liquid-crystal display panels and
acousto-optic modulators allow one to dynamically alter

the pattern using electronics. It is possible for a single de-
vice (such as an electronically programmed array of indi-
vidual sources) to act as both source and modulator.

Detectors and Nature’s Square Law

Optical signals can be regarded as having both an ampli-
tude and phase. However, detectors will measure only the
square of the amplitude of the signal (referred to as its in-
tensity). This phenomenon is known as Nature’s detector
square law and applies to detectors from photographic film
to digital cameras to the human eye. Detectors that obey
this law are referred to as square-law detectors. This law is
evident inmany physical theories of light. In quantum the-
ory, the measurement of a complex probability function
is formalized as a projection onto the set of real numbers
through a squaring operation. Square-law detectors need
to be augmented with a interferometric or holographic ar-
rangement to measure both amplitude and phase rather
than intensity [19,47], or need to be used for multiple cap-
tures in different domains to heuristically infer the phase.

Since it squares the absolute value of a complex func-
tion, this square law can be used for some useful computa-
tion (for example, in the joint transform correlator [130]).
Detectors most commonly used include high range point
(single pixel) detectors such as photodiodes, highly sensi-
tive photon detectors such as photomultiplier tubes, and
1D and 2D array detectors such as CCD- or CMOS-digi-
tal cameras. Intensity values outside the range of a detector
(outside the lowest and highest intensities that the detector
can record) are thresholded accordingly. The integration
time of some detectors can be adjusted to sum all of the
light intensity falling on them over a period of time. Other
detectors can have quite large light sensitive areas and can
sum all of the light intensity falling in a region of space.

Lenses

Lenses can be used to effect high fan-in and fan-out in-
terconnections, to rescale images linearly in either one
or two dimensions, and for taking Fourier transforms. In
fact, a coherent optical wavefront naturally evolves into
its Fresnel transform, and subsequently into its Fourier
transform at infinity, and the lens simply images those fre-
quency components at a finite fixed distance.

VanderLugt [125] has derived an expression for the co-
herent optical Fourier transform, given here in 1D for con-
venience, using the Fresnel transform of a complex-valued
function f (x) positioned in the front focal plane of a con-
vex lens (plane P1 in Fig. 2), which is illuminated from the
back by a plane wave of constant amplitude and phase. In
terms of the physical coordinate � , the signal at the back
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Optical Computing, Figure 2
Optical spatial frequency filtering using two convex lenses with
a plane wave illuminating the input from the left. Lenses L1
and L2 have focal lengths of f1 and f2, respectively. If we assume
that the physical dimensions of the lenses allow all diffracted or-
ders to pass, the output is a transposed (and rescaled if f1 ¤ f2)
but otherwise identical version of the input. Any modification to
the light field in the Fourier plane results in a spatial frequency
filtered output

focal plane P2 can be written as

F(�) D
r

i

L

1Z

�1

f (x) exp (i2�x�/
L) dx ; (1)

where 
 is the wavelength of the illumination and L is the
focal length of the lens. Rewriting so it is a function of the
spatial frequency variable˛ (˛ is ameasurement of radians
per unit distance) gives the common equation

F(˛) D
r

i

L
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�1

f (x) exp (i2�˛x) dx ; (2)

where � D 
L˛, and where we ignore the architecture-
specific scaling constant. The Fourier transform in optics
can be formed under a wide variety of conditions, and not
just with a plane wave and not just in the focal plane of
the lens [125]. This formalism adopts the paraxial approx-
imation: that the distance between planes P1 and P2 is very
much greater than the extent of the information in P1, thus
avoiding the need for curved opposing surfaces in planes
P1 and P3. When a Fourier transform is detected directly,
only its square, called the power spectrum, is recorded. As
mentioned, holography [19,47] overcomes this.

Interference and Complex Addition

Although photons, being bosons, do not interact with each
other, coherent wavefronts can bemade to interact at a de-
tector. The addition (called superposition) of complex-
valued wavefronts at a measurement is termed interfer-
ence. Optically, interference is the same phenomenon as
diffraction and is responsible for the formation of optical

Fourier transforms. The linearity property is a useful prop-
erty when analyzing coherent optical phenomena. If sev-
eral images are coplanar then the optical field at their com-
mon Fourier plane is the superposition of their frequency
spectra. This superposition, or interference, of complex-
valued signals can be regarded as a pointwise addition of
the complex amplitudes of the images.

Incoherent wavefronts are nonnegative everywhere.
The addition of several incoherent wavefronts is linear in
the intensity of each of those wavefronts. The addition of
coherent wavefronts is linear in their complex amplitudes.

Image Copying and Combining

Images can be copied using optically-addressed SLMs or
by dividing the optical energy along two paths using
a beam splitter [33,125,130]. Beam splitters can also be
used to combine several images to make them coplanar.

Multiplication of Images

When a signal’s Fourier spectrum F(˛; ˇ) is coplanar with
a transparency that encodes a second Fourier spectrum
H(˛; ˇ), and if their centers are coincident, the complex
signal in the plane immediately behind the transparency
can be described as the pointwise multiplication of the two
spectra

G(˛; ˇ) D F(˛; ˇ)H(˛; ˇ) : (3)

The signal G(˛; ˇ), which is also a frequency spectrum,
could be inverse Fourier transformed to reveal a suitably
correlated, convolved, or spatial frequency filtered origi-
nal signal. A significant proportion of analog optics’ role in
the area of computation through filtering concerns convo-
lution and those signal processing operations derived from
it. Convolution filters are used extensively in the digital
signal processing world to perform such tasks as deblur-
ring, restoration, enhancement, and recognition [73]. The
possibility of performing constant time convolution oper-
ations using coherent light is a promising concept.

To an approximation, optical systems can be regarded
as both linear and shift-invariant. This is the basis for
their convolution capabilities. Referring to Eq. (3), one
can see that H(˛; ˇ) acts as a spatial frequency filter, al-
tering the frequency content of the signal F. It could be
used as a simple band-pass filter, damping the high-fre-
quency components (noise suppression) or low frequency
components (edge enhancement), or used to modulate
the frequency spectrum with a more sophisticated spatial
function. Mathematically, convolution with a mask A is
equivalent to a frequency-domain multiplication with the
Fourier transform of A.
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Phase shifts can be introduced to a coherent wavefront
by adding by a constant phase value. These could be con-
stant shifts to effect numerical subtraction [44], or time-
varying using a piezoelectric transducer mirror [138].

Other Elements of Optical Computation

A mirror changes the direction of the wavefront and si-
multaneously reflects it along some axis. A phase conju-
gate mirror [33] returns an image along the same path at
which it approached the mirror.

In-plane rotation of an image by 180° can be accom-
plished using the apparatus in Fig. 2, a single lens, or
even a pinhole camera. An out-of-plane tilt can be ac-
complished using a prism. In-plane flipping of an image
(mirror image) can be accomplished using a prism, or us-
ing a beam splitter and some mirrors. Arbitrary in-plane
rotation (with some tilting and translation, if required)
can be achieved by combining several flip operations us-
ing a Dove prism or Pechan prism [96,119] or by combin-
ing several shearing operations [81]. Image rescaling can
be accomplished using a combination of lenses (rescaling
both dimensions identically), or using cylindrical lenses or
an anamorphic prism (rescaling in one dimension only).

A prism or diffraction grating can be used to separate
by wavelength the components of a multi-wavelength op-
tical channel. For optical fiber communications applica-
tions, more practical (robust, economical, and scalable) al-
ternatives exist to achieve the same effect [142].

Polarization is an important property of wavefronts, in
particular in coherent optical computing, and is the basis
for how liquid crystal displays work. At each point, an op-
tical wavefront has an independent polarization value de-
pendent on the angle, in the range [0; 2�), of its electrical
field. This can be independent of its successor (in the case
of randomly polarizedwavefronts), or dependent (as in the
case of linear polarization), or dependent and time varying
(as in the case of circular or elliptical polarization). Mathe-
matically, a polarization state, and the transition from one
polarization state to another, can be described using the
Mueller calculus or the Jones calculus.

Photons can also be used for quantum computa-
tion, and quantum computers using linear optical ele-
ments (such as mirrors, polarizers, beam splitters, and
phase shifters) have been proposed and demonstrated [28,
75,101].

Continuous SpaceMachine (CSM)

For the remainder of this chapter we focus on an opti-
cal model of computation called the CSM. The model was
originally proposed by Naughton [91,92]. The CSM is in-

spired by analog Fourier optical computing architectures,
specifically pattern recognition and matrix algebra pro-
cessors [56,90]. For example, these architectures have the
ability to do unit time Fourier transformation using co-
herent (laser) light and lenses. The CSM computes in dis-
crete timesteps over a number of two-dimensional images
of fixed size and arbitrary spatial resolution. The data and
program are stored as images. The (constant time) op-
erations on images include Fourier transformation, mul-
tiplication, addition, thresholding, copying and scaling.
The model is designed to capture much of the impor-
tant features of optical computers, while at the same time
be amenable to analysis from a computer theory point of
view. Towards these goals we give an overview of how the
model relates to optics as well as giving a number of com-
putational complexity results for the model.

Section “CSM Definition” begins by defining the
model. We analyze the model in terms of seven com-
plexity measures inspired by real-world resources, these
are described in Section “Complexity Measures”. In Sect.
“Optical Realization” we discuss possible optical imple-
mentations for the model. We then go on to give exam-
ple algorithms and datastructures in Sect. “Example CSM
Datastructures and Algorithms”. The CSM definition is
rather general, and so in Sect. “CSM Definition” we de-
fine a more restricted model called the C2-CSM. Com-
pared to the CSM, the C2-CSM is somewhat closer to op-
tical computing as it happens in the laboratory. Finally, in
Sect. “Optical Computing and Computational Complex-
ity” we show the power and limitations of optical com-
puting, as embodied by the C2-CSM, in terms computa-
tional complexity theory. Optical information processing
is a highly parallel form of computing and we make this
intuition more concrete by relating the C2-CSM to parallel
complexity theory by characterizing the parallel complex-
ity class NC. For example, this shows the kind of worst
case resource usage one would expect when applying CSM
algorithms to problems that are known to be suited to par-
allel solutions.

CSM Definition

We begin this section by describing the CSM model in its
most general setting, this brief overview is not intended to
be complete and more details are to be found in [131].

A complex-valued image (or simply, image) is a func-
tion f : [0; 1) � [0; 1)! C, where [0; 1) is the half-open
real unit interval. We let I denote the set of complex-val-
ued images. Let NC D f1; 2; 3; : : :g, N D NC [ f0g, and
for a given CSMM letN be a countable set of images that
encodeM’s addresses. An address is an element ofN �N .
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h(i1; i2) : replace image at i2 with horizontal 1D Fourier transform of i1.
v(i1; i2) : replace image at i2 with vertical 1D Fourier transform of image at i1.

(i1; i2) : replace image at i2 with the complex conjugate of image at i1.
�i1; i2; i3 : pointwise multiply the two images at i1 and i2. Store result at i3.
C(i1; i2; i3) : pointwise addition of the two images at i1 and i2. Store result at i3.
�(i1; zl ; zu; i2) : filter the image at i1 by amplitude using zl and zu as lower and upper amplitude threshold images,

respectively. Place result at i2.
[� 01; � 02; �01; �02] [�1; �2; �1; �2] : copy the rectangle of images whose bottom left-hand address is (�1; �1) and

whose top right-hand address is (�2; �2) to the rectangle of images whose bottom left-hand address
is (�10; �10) and whose top right-hand address is (�20; �20). See illustration in Fig. 4.

Optical Computing, Figure 3
CSM high-level programming language instructions. In these instructions i; zl; zu 2N �N are image addresses and �; � 2N. The
control flow instructions are described in the main text

Additionally, for a given M there is an address encoding
function E : N !N such that E is Turing machine de-
cidable, under some reasonable representation of images
as words.

Definition 1 (CSM) A CSM is a quintuple M D (E; L; I;
P;O), where

� E : N !N is the address encoding function,
� L D ((s� ; s�); (a� ; a�); (b� ; b�)) are the addresses: sta,

a and b, where a ¤ b,
� I and O are finite sets of input and output addresses,

respectively,
� P D f(�1; p1� ; p1�); : : : ; (�r ; pr� ; pr� )g are the r pro-

gramming symbols � j and their addresses (p j� ; p j� )
where � j 2 (fh; v;
; �;C; �; st; ld; br; hl tg [N ) � I .

Each address is an element from f0; : : : ; � � 1g � f0; : : : ;
Y � 1g, where �;Y 2 NC.

Addresses whose contents are not specified by P in a CSM
definition are assumed to contain the constant image
f (x; y) D 0. We interpret this definition to mean that M
is (initially) defined on a grid of images bounded by the
constants � and Y, in the horizontal and vertical direc-
tions respectively. The grid of images may grow in size as
the computation progresses.

In our grid notation the first and second elements of
an address tuple refer to the horizontal and vertical axes
of the grid respectively, and image (0; 0) is located at the
lower left-hand corner of the grid. The images have the
same orientation as the grid. For example the value f (0; 0)
is located at the lower left-hand corner of the image f .

In Definition 1 the tuple P specifies the CSM program
using programming symbol images � j that are from the
(low-level) CSM programing language [131,136]. We re-
frain from giving a description of this programming lan-

guage and instead describe a less cumbersome high-level
language [131]. Figure 3 gives the basic instructions of
this high-level language. The copy instruction is illustrated
in Fig. 4. There are also if/else and while control flow
instructions with conditional equality tests of the form
( f DD f�) where f and f� are binary symbol images
(see Fig. 5a and b).

Address sta is the start location for the program so
the programmer should write the first program instruc-
tion at sta. Addresses a and b define special images that are
frequently used by some program instructions. The func-
tion E is specified by the programmer and is used to map
addresses to image pairs. This enables the programmer to
choose her own address encoding scheme. We typically

Optical Computing, Figure 4
Illustration of the instruction i [�;� C 3; �; �] that copies
four images to a single image that is denoted i

Optical Computing, Figure 5
Representing binary data. The shaded areas denote value 1 and
thewhite areas denote value 0. a Binary symbol image represen-
tation of 1 and b of 0, c list (or row) image representation of the
word 1011, d column image representation of 1011, e 3� 4 ma-
trix image, f binary stack image representation of 1101. Dashed
lines are for illustration purposes only
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don’t want E to hide complicated behavior thus the com-
putational power of this function should be somewhat re-
stricted. For example we put such a restriction on E in
Definition 7. At any given timestep, a configuration is de-
fined in a straightforward way as a tuple hc; ei where c is
an address called the control and e represents the grid con-
tents.

Complexity Measures

In this section we define a number of CSM complexity
measures. As is standard, all resource bounding functions
map from N into N and are assumed to have the usual
properties [7]. We begin by defining CSM TIME complex-
ity in a manner that is standard among parallel models of
computation.

Definition 2 The TIME complexity of a CSM M is the
number of configurations in the computation sequence
of M, beginning with the initial configuration and ending
with the first final configuration.

The first of our six space-like resources is called GRID.

Definition 3 The GRID complexity of a CSM M is the
minimum number of images, arranged in a rectangular
grid, forM to compute correctly on all inputs.

Let S : I � (N �N)! I , where S( f (x; y); (˚;� )) is
a raster image, with ˚� constant-valued pixels arranged
in ˚ columns and � rows, that approximates f (x, y). If we
choose a reasonable and realistic S then the details of S are
not important.

Definition 4 The SPATIALRES complexity of a CSM M
is the minimum ˚� such that if each image f (x, y) in
the computation of M is replaced with S( f (x; y); (˚;� ))
thenM computes correctly on all inputs.

One can think of SPATIALRES as a measure of the number
of pixels needed during a computation. In optical image
processing terms, and given the fixed size of our images,
SPATIALRES corresponds to the space-bandwidth product
of a detector or SLM.

Definition 5 The DYRANGE complexity of a CSM M is
the ceiling of the maximum of all the amplitude values
stored in all ofM’s images duringM’s computation.

In optical processing terms DYRANGE corresponds to the
dynamic range of a signal.

We also use complexity measures called AMPLRES,
PHASERES sand FREQ [131,136]. Roughly speaking, the
AMPLRES of a CSM M is the number of discrete, evenly
spaced, amplitude values per unit amplitude of the com-
plex numbers inM’s images, and so AMPLRES corresponds

to the amplitude quantization of a signal. The PHASERES
ofM is the total number (per 2�) of discrete evenly spaced
phase values inM’s images, and so PHASERES corresponds
to the phase quantization of a signal. Finally, the FREQ
complexity of a CSMM is the minimum optical frequency
necessary for M to compute correctly, this concept is ex-
plained further in [136].

Often we wish to make analogies between space on
some well-known model and CSM ‘space-like’ resources.
Thus we define the following convenient term.

Definition 6 The SPACE complexity of a CSM M is the
product of all ofM’s complexity measures except TIME.

Optical Realization

In this section, we outline how some of the elementary op-
erations of the CSM could be carried out physically. We
do not intend to specify the definitive realization of any
of the operations, but simply convince the reader that the
model’s operations have physical interpretations. Further-
more, although we concentrate on implementations em-
ploying visible light (optical frequencies detectable to the
human eye) the CSM definition does not preclude employ-
ing other portion(s) of the electromagnetic spectrum.

A complex-valued image could be represented phys-
ically by a spatially coherent optical wavefront. Spatially
coherent illumination (light of a single wavelength and
emitted with the same phase angle) can be produced by
a laser. SLM could be used to encode the image onto the
expanded and collimated laser beam. One could write to
a SLM offline (expose photographic film, or laser print
or relief etch a transparency) or online (in the case of
a liquid-crystal display [90,129,141] or holographic ma-
terial [32,105]). The functions h and v could be effected
using two convex cylindrical lenses, oriented horizontally
and vertically, respectively [55,56,90,125]. As mentioned,
a coherent optical wavefront will naturally evolve into its
own Fourier spectrum as it propagates to infinity.What we
do with a convex lens is simply image, at a finite distance,
this spectrum at infinity. This finite distance is called the
focal length of the lens. The constant � used in the def-
initions of h and v could be effected using Fourier spec-
trum size reduction techniques [56,125] such as varying
the focal length of the lens, varying the separation of the
lens and SLM, employing cascaded Fourier transforma-
tion, increasing the dimensions/reducing the spatial reso-
lution of the SLM, or using light with a shorter wavelength.
The function 
 could be implemented using a phase conju-
gate mirror [33]. The function � could be realized by plac-
ing a SLM encoding an image f in the path of a wave-
front encoding another image g [56,123,125]. The wave-
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front immediately behind the SLM would then be �( f ; g).
The function + describes the superposition of two op-
tical wavefronts. This could be achieved using a 50:50
beam splitter [33,125,130]. The function � could be im-
plemented using an electronic camera or a liquid-crystal
light valve [129]. The parameters zl and zu would then be
physical characteristics of the particular camera/light valve
used. zl corresponds to the minimum intensity value that
the device responds to, known as the dark current signal,
and zu corresponds to the maximum intensity (the satura-
tion level).

A note will be made about the possibility of automat-
ing these operations. If suitable SLMs can be prepared
with the appropriate 2D pattern(s), each of the opera-
tions h, v, 
, �, and + could be effected autonomously and
without user intervention using appropriately positioned
lenses and free space propagation. The time to effect these
operations would be the sum of the flight time of the im-
age (distance divided by velocity of light) and the response
time of the analog 2D detector; both of which are constants
independent of the size or resolution of the images if an
appropriate 2D detector is chosen. Examples of appro-
priate detectors would be holographic material [32,105]
and a liquid-crystal light valve with a continuous (not
pixellated) area [129]. Since these analog detectors are
also optically-addressed SLMs, we can very easily arrange
for the output of one function to act as the input to an-
other, again in constant time independent of the size or
resolution of the image. A set of angled mirrors will allow
the optical image to be fed back to the first SLM in the
sequence, also in constant time. It is not known, how-
ever, if � can be carried out completely autonomously for
arbitrary parameters. Setting arbitrary parameters might
fundamentally require offline user intervention (adjusting
the gain of the camera, and so on), but at least for a small
range of values this can be simulated online using a pair of
liquid-crystal intensity filters.

We have outlined some optics principles that could be
employed to implement the operations of the model. The
simplicity of the implementations hides some imperfec-
tions in our suggested realizations. For example, the im-
plementation of the + operation outlined above results in
an output image that has been unnecessarily multiplied
by the constant factor 0.5 due to the operation of the
beam splitter. Also, in our suggested technique, the out-
put of the � function is squared unnecessarily. However,
all of these effects can be compensated for with a more
elaborate optical setup and/or at the algorithm design
stage.

A more important issue concerns the quantum nature
of light. According to our current understanding, light ex-

ists as individual packets called photons. As such, in order
to physically realize the CSM one would have to modify it
such that images would have discrete, instead of contin-
uous, amplitudes. The atomic operations outlined above,
in particular the Fourier transform, are not affected by
the restriction to quantized amplitudes, as the many ex-
periments with electron interference patterns indicate.We
would still assume, however, that in the physical world
space is continuous.

A final issue concerns how a theoretically infinite
Fourier spectrum could be represented by an image (or
encoded by a SLM) of finite extent. This difficulty is ad-
dressed with the FREQ complexity measure [136].

Example CSMDatastructures and Algorithms

In this section we give some example data representations.
We then to go on to give an example CSM algorithm that
efficiently squares a binary matrix.

Representing Data as Images

There are many ways to represent data as images and in-
teresting new algorithms sometimes depend on a new data
representation. Data representations should be in some
sense reasonable, for example it is unreasonable that the
input to an algorithm could (non-uniformly) encode so-
lutions to NP-hard or even undecidable problems. From
Sect. “C2-CSM”, the CSM address encoding function gives
the programmer room to be creative, so long as the repre-
sentation is logspace computable (assuming a reasonable
representation of images as words).

Here we mention some data representations that are
commonly used. Figures 5a and 5b are the binary sym-
bol image representations of 1 and 0 respectively. These
images have an everywhere constant value of 1 and 0 re-
spectively, and both have SPATIALRES of 1. The row and
column image representations of the word 1011 are re-
spectively given in Figs. 5c and 5d. These row and column
images both have SPATIALRES of 4. In the matrix image
representation in Fig. 5e, the first matrix element is rep-
resented at the top left corner and elements are ordered
in the usual matrix way. This 3 � 4 matrix image has SPA-
TIALRES of 12. Finally the binary stack image representa-
tion, which has exponential SPATIALRES of 16, is given in
Fig. 5f.

Figure 4 shows how we might form a list image by
copying four images to one in a single timestep. All of the
above mentioned images have DYRANGE, AMPLRES and
PHASERES of 1.

Another useful representation is where the value of
a pixel directly encodes a number, in this case DYRANGE
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becomes crucial. We can also encode values as phase val-
ues, and naturally PHASERES becomes a useful measure of
the resources needed to store such values.

AMatrix Squaring Algorithm

Here we give an example CSM algorithm (taken
from [133]) that makes use of the data representations de-
scribed above. The algorithm squares a n � n matrix in
O(log n) TIME and O(n3) SPATIALRES (number of pixels),
while all other CSM resources are constant.

Lemma 1 Let n be a power of 2 and let A be a n � n binary
matrix. The matrix A2 is computed by a C2-CSM, using the
matrix image representation, in TIME O(log n), SPATIAL-
RES O(n3), GRID O(1), DYRANGE O(1), AMPLRES 1 and
PHASERES 1.

Proof In this proof thematrix and its matrix image repre-
sentation (see Fig. 5e) are both denoted A. We begin with
some precomputation, then one parallel pointwise multi-
plication step, followed by log n additions to complete the
algorithm.

We generate thematrix imageA1 that consists of n ver-
tically juxtaposed copies of A. This is computed by placing
one copy of A above the other, scaling to one image, and
repeating to give a total of log n iterations. The image A1
is constructed in TIME O(log n), GRID O(1) and SPATIAL-
RES O(n3).

Next we transpose A to the column image A2. The
first n elements of A2 are row 1 of A, the second n ele-
ments of A2 are row 2 of A, etc. This is computed in TIME
O(log n), GRID O(1) and SPATIALRES O(n2) as follows.

Let A0 D A and i D n. We horizontally split A0 into
a left image A0L and a right image A0R . Then A0L is point-
wise multiplied (or masked) by the column image that
represents (10)i , in TIME O(1). Similarly A0R is pointwise
multiplied (or masked) by the column image that repre-
sents (01)i . The masked images are added. The resulting
image has half the number of columns as A0 and double
the number of rows, and for example: row 1 consists of the
first half of the elements of row 1 of A0 and row 2 consists
of the latter half of the elements of row 1 of A0. We call the
result A0 and we double the value of i. We repeat the pro-
cess to give a total of log n iterations. After these iterations
the resulting column image is denoted A2.

We pointwise multiply A1 and A2 to give A3 in TIME
O(1), GRID O(1) and SPATIALRES O(n3).

To facilitate a straightforward addition we first trans-
pose A3 in the following way: A3 is vertically split into
a bottom and a top image, the top image is placed to the
left of the bottom and the two are scaled to a single image,
this splitting and scaling is repeated to give a total of log n

iterations and we call the result A4. Then to perform the
addition, we vertically split A4 into a bottom and a top im-
age. The top image is pointwise added to the bottom image
and the result is thresholded between 0 and 1. This split-
ting, adding and thresholding is repeated a total of log n
iterations to create A5. We ‘reverse’ the transposition that
created A4: image A5 is horizontally split into a left and
a right image, the left image is placed above the right and
the two are scaled to a single image, this splitting and scal-
ing is repeated a total of log n iterations to give A2.

The algorithm highlights a few points of interest about
the CSM. The CSM has quite a number of space-like re-
sources, and it is possible to have trade-offs between them.
For example in the algorithm above, if we allow GRID to
increase from O(1) to O(n) then the SPATIALRES can be
reduced from O(n3) to O(n2). In terms of optical architec-
tures modeled by the CSM this phenomenon could be po-
tentially very useful as certain resources may well be more
economically viable than others. The algorithm is used in
the proof that that polynomial TIME CSMs (and C2-CSMs,
see below) compute problems that are in the PSPACE class
of languages. PSPACE includes the famous NP class. Such
computational complexity results are discussed further in
Sect. “Optical Computing and Computational Complex-
ity” below.

There are a number of existing CSM algorithms, for
these we point the reader to the literature [91,92,93,131,
133,135,136].

C2-CSM

In this section we define the C2-CSM. One of the motiva-
tions for this model is the need to put reasonable upper
bounds on the power of reasonable optical computers. As
discussed below, it turns out that CSMs can very quickly
use massive amounts of resources, and the C2-CSM defi-
nition is an attempt to rein in this power.

Worst Case CSM Resource Usage

For the case of sequential computation it is usually obvious
how the execution of a single operation will affect resource
usage. In parallel models, execution of a single operation
can lead to large growth in a single timestep. Characteriz-
ing resource growth is useful for proving upper bounds on
power and choosing reasonable model restrictions.

We investigated the growth of complexity resources
over TIME, with respect to CSM operations [131,134].
As expected, under certain operations some measures do
not grow at all. Others grow at rates comparable to mas-
sively parallel models. By allowing operations like the
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Optical Computing, Table 1
CSM resource usage after one timestep. For a given operation and complexity measure pair, the relevant table entry defines the
worst case CSM resource usage at TIME T C 1, in terms of the resources used at TIME T. At TIME T we have GRID D GT , SPATIAL-
RESD RS;T , AMPLRESD RA;T , DYRANGED RD;T , PHASERESD RP;T and FREQD 
T

GRID SPATIALRES AMPLRES DYRANGE PHASERES FREQ

h GT 1 1 1 1 1

v GT 1 1 1 1 1

� GT RS;T RA;T RD;T RP;T �T

� GT RS;T (RA;T )2 (RD;T )2 RP;T �T

+ GT RS;T 1 2RD;T 1 �T

� unbounded RS;T RA;T RD;T RP;T �T

st unbounded RS;T RA;T RD;T RP;T �T

ld unbounded unbounded RA;T RD;T RP;T unbounded
br GT RS;T RA;T RD;T RP;T �T

hlt GT RS;T RA;T RD;T RP;T �T

Fourier transform we are mixing the continuous and dis-
crete worlds, hence some measures grow to infinity in one
timestep. This gave strong motivation for CSM restric-
tions.

Table 1 summarizes these results; the table defines the
value of a complexity measure after execution of an oper-
ation (at TIME T C 1). The complexity of a configuration
at TIME T C 1 is at least the value it was at TIME T, since
complexity functions are nondecreasing. Our definition of
TIME assigns unit time cost to each operation, hence we
do not have a TIME column. Some entries are immediate
from the complexity measure definitions, for others proofs
are given in the references [131,134].

C2-CSM

Motivated by a desire to apply standard complexity the-
ory tools to the model, we defined [131,134] the C2-CSM,
a restricted class of CSM.

Definition 7 (C2-CSM) A C2-CSM is a CSM whose com-
putation TIME is defined for t 2 f1; 2; : : : ; T(n)g and has
the following restrictions:

� For all TIME t both AMPLRES and PHASERES have con-
stant value of 2.

� For all TIME t each of GRID, SPATIALRES and
DYRANGE is 2O(t) and SPACE is redefined to be the
product of all complexity measures except TIME and
FREQ.

� Operations h and v compute the discrete Fourier trans-
form in the horizontal and vertical directions respec-
tively.

� Given some reasonable binary word representation of
the set of addressesN , the address encoding function
E : N!N is decidable by a logspace Turing machine.

Let us discuss these restrictions. The restrictions on AM-
PLRES and PHASERES imply that C2-CSM images are
of the form f : [0; 1) � [0; 1)! f0;˙1/2;˙1;˙3/2; : : :g.
We have replaced the Fourier transform with the discrete
Fourier transform [10], this essentially means that FREQ
is now solely dependent on SPATIALRES; hence FREQ
is not an interesting complexity measure for C2-CSMs
and we do not analyze C2-CSMs in terms of FREQ com-
plexity [131,134]. Restricting the growth of SPACE is not
unique to ourmodel, such restrictions are to be found else-
where [54,98,102].

In Sect. “CSM Definition” we stated that the address
encoding function E should be Turingmachine decidable,
here we strengthen this condition. At first glance sequen-
tial logspace computability may perhaps seem like a strong
restriction, but in fact it is quite weak. From an optical im-
plementation point of view it should be the case that E

is not complicated, otherwise we cannot assume fast ad-
dressing. Other (sequential/parallel) models usually have
a very restricted ‘addressing function’: in most cases it is
simply the identity function on N . Without an explicit
or implicit restriction on the computational complexity
of E, finding non-trivial upper bounds on the power of
C2-CSMs is impossible as E could encode an arbitrarily
complex Turingmachine. As a weaker restriction we could
give a specific E. However, this restricts the generality of
the model and prohibits the programmer from developing
novel, reasonable, addressing schemes.

Optical Computing and Computational Complexity

There have been a number of optical algorithms given that
use the inherent parallelism of optics to speed up the solu-
tions to certain problems. An alternative approach is to ask
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the following question: How does a given optical model re-
late to standard sequential and parallel models? Establish-
ing a relationship with computational complexity theory,
by describing both upper and lower bounds on the model,
gives immediate access to a large collection of useful algo-
rithms and proof techniques.

The parallel computation thesis [29,52,74,98,126]
states that parallel time (polynomially) corresponds to se-
quential space, for reasonable parallel and sequentialmod-
els. An example would be the fact that the class of prob-
lems solvable in polynomial space on a number of paral-
lel models is equivalent to PSPACE, the class of problems
solvable on Turing machines that use at most polynomial
space [3,9,30,46,53,54,61,113,114,120,127].

Of course the thesis can never be proved, it relates the
intuitive notion of reasonable parallelism to the precise
notion of a Turingmachine.When results of this type were
first shown researchers were suitably impressed; their par-
allelmodels truly had great power. For example if modelM
verifies the thesis thenM decides PSPACE (including NP)
languages in polynomial time. However there is another
side to this coin. It is straightforward to verify that given
our current best algorithms, M will use at least a super-
polynomial amount of some other resource (like space or
number of processors) to decide a PSPACE-complete or
NP-complete language. Since the composition of polyno-
mials is itself a polynomial, it follows that if we restrict
the parallel computer to use at most polynomial time and
polynomial other resources, then it can atmost solve prob-
lems in P.

Nevertheless, asking if M verifies the thesis is an im-
portant question. Certain problems, such as those in the
class NC, are efficiently parallelisable. NC can be defined as
the class of problems that are solvable in polylogarithmic
time on a parallel computer that uses a polynomial amount
of hardware. So one can think of NC as those problems
in P which are solved exponentially faster on parallel com-
putation thesis models than on sequential models. If M
verifies the thesis then we know it will be useful to applyM
to these problems. We also know that ifM verifies the the-
sis then there are (P-complete) problems for which it is
widely believed that we will not find exponential speed up
usingM.

C2-CSM and Parallel Complexity Theory

Here we summarize some characterizations of the com-
puting power of optical computers. Such characteriza-
tions enable the algorithm designer to know what kinds
of problems are solvable with resource bounded optical al-
gorithms.

Theorem 1 below gives lower bounds on the computa-
tional power of the C2-CSM by showing that it is at least
as powerful as models that verify the parallel computation
thesis.

Theorem 1 ([133,135])
NSPACE(S(n)) � C2-CSM-TIME(O(S2(n)))

In particular, polynomial TIME C2-CSMs accept the
PSPACE languages. PSPACE is the class of problems solv-
able by Turing machines that use polynomial space, which
includes the famous class NP, and so NP-complete prob-
lems can be solved byC2-CSMs in polynomial TIME.How-
ever, any C2-CSM algorithm that we could presently write
to solve PSPACE or NP problems would require exponen-
tial SPACE.

Theorem 1 is established by giving a C2-CSM algo-
rithm that efficiently generates, and squares, the transi-
tion matrix of a S(n) D ˝(log n) space bounded Tur-
ing machine. This transition matrix represents all possi-
ble computations of the Turing machine and is of size
O(2S ) � O(2S ). The matrix squaring part was already
given as an example (Lemma 1), and the remainder of
the algorithm is given in [133]. The algorithm uses SPACE
that is cubic in one of the matrix dimensions. In particu-
lar the algorithm uses cubic SPATIALRES, O(23S ), and all
other space-like resources are constant. This theorem im-
proves upon the time overhead of a previous, but similar,
result [131,135] that was established via C2-CSM simula-
tion of the vector machines [102,103] of Pratt, Rabin, and
Stockmeyer.

From the resource usage point of view, it is interesting
to see that the older of these two algorithms uses GRID,
DYRANGE, and SPATIALRES that are eachO(2S ), while the
newer algorithm shows that if we allow more SPATIALRES
we can in fact use only constant GRID and DYRANGE. It
would be interesting to find other such resource trade-offs
within the model.

Since NP is contained in PSPACE, Theorem 1 and the
corresponding earlier results in [131,135], show that this
optical model solvesNP-complete problems in polynomial
TIME. As described in Sect. “Optical Models of Compu-
tation”, this has also been shown experimentally, for ex-
ample Shaked et al. [110] have recently given a polyno-
mial time, exponential space, optical algorithm to solve the
NP-complete travelling salesperson problem. Their optical
setup can be implemented on the CSM.

The other of the two inclusions that are necessary in
order to verify the parallel computation thesis have also
been shown: C2-CSMs computing in TIME T(n) are no
more powerful than TO(1)(n) space bounded deterministic
Turing machines. More precisely, we have:
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Theorem 2 ([131,132])
C2-CSM-TIME(T(n)) � DSPACE(O(T2(n)))

This result gives an upper bound on the power of C2-CSMs
and was established via C2-CSM simulation by logspace
uniform circuits of size and depth polynomial in SPACE
and TIME respectively [132].

Via the proofs of Theorems 1 and 2 we get another
(stronger) result: C2-CSMs that simultaneously use poly-
nomial SPACE and polylogarithmic TIME solve exactly
those problems in the class NC.

Corollary 1
C2-CSM-SPACE;TIME(nO(1); logO(1) n) D NC

Problems in NC highlight the power of parallelism, as
these problems can be solved exponentially faster on
a polynomial amount of parallel resources than on poly-
nomial time sequential machines. As further work in this
area one could try to find alternate characterizations of NC
in terms of the C2-CSM. In particular, one could try to find
further interesting trade-offs between the various space-
like resources of the model. In the real world this would
correspond to computing over various different CSM re-
sources. Also, it might be interesting for optical algorithm
designers to try to design optical algorithms for NC prob-
lems in an effort to find problems that are well suited to op-
tical solutions. See [137] for details on this argument, and
also fpr other CSM characterisations of complexity classes
and an implementation of a fast optical search algorithm.

Future Directions

As already noted, optical computing is an inherently
multidisciplinary subject whose study routinely involves
a spectrum of expertise that threads optical physics, ma-
terials science, optical engineering, electrical engineering,
computer architecture, computer programming, and com-
puter theory. From the point of view of each of these fields
there are various directions for future work. Also, it is gen-
erally accepted that if optical computers become main-
stream, it will be through a symbiotic relationship with
their extremely flexible digital electronic counterparts. At
the confluence of computing and communication there is
room for optical techniques such as for the routing of sig-
nals in long-haul networks via all-optical packet switching
in a single channel configuration. So it seems that whether
or not optical computers will be adopted in a widespread
manner is both a technological and economic issue.

From the algorithmic point of view there is plenty of
scope for future work. There are a number of questions
related to trade-offs between resources and we believe the
CSM gives a good framework to answer such questions.

For example can we give useful parallel algorithms that
exploit CSM resources such as PHASERES while at the
same time using small SPATIALRES and GRID? In a sim-
ilar vein, one can explore the computing power of restric-
tions and generalizations of the CSM with the goal of find-
ing new algorithms and characterizations of complexity
classes. This has immediate applications in finding new
and efficient implementations of optical solutions to com-
putational problems.
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99. Păun G (2002) Membrane computing: an introduction.

Springer, Heidelberg
100. Pe’er A,WangD, LohmannAW, FriesemAA (1999) Optical cor-

relation with totally incoherent light. Opt Lett 24(21):1469–
1471

101. Pittman TB, Fitch MJ, Jacobs BC, Franson JD (2003) Experi-
mental controlled-NOT logic gate for single photons in the
coincidence basis. Phys Rev A 68:032316–3



6406 O Optical Computing

102. Pratt VR, Stockmeyer LJ (1976) A characterisation of the
power of vector machines. J Comput Syst Sci 12:198–221

103. Pratt VR, Rabin MO, Stockmeyer LJ (1974) A characterisation
of the power of vector machines. In: Proc 6th annual ACM
symposiumon theory of computing. ACM,NewYork, pp 122–
134

104. Psaltis D, Farhat NH (1985) Optical information processing
based on an associative-memory model of neural nets with
thresholding and feedback. Opt Lett 10(2):98–100

105. Pu A, Denkewalter RF, Psaltis D (1997) Real-time vehicle nav-
igation using a holographic memory. Opt Eng 36(10):2737–
2746

106. Reif J, Tygar D, Yoshida A (1990) The computability and com-
plexity of optical beam tracing. In: 31st Annual IEEE Sympo-
sium on Foundations of Computer Science (FOCS). IEEE, St.
Louis, pp 106–114

107. Reif JH, Tyagi A (1997) Efficient parallel algorithms for optical
computing with the discrete Fourier transform (DFT) primi-
tive. Appl Opt 36(29):7327–7340

108. Rhodes WT (1981) Acousto-optic signal processing: convolu-
tion and correlation. Proc IEEE 69(1):65–79

109. SawchukAA, Strand TC (1984) Digital optical computing. Proc
IEEE 72(7):758–779

110. ShakedNT, SimonG, Tabib T,Mesika S, Dolev S, Rosen J (2006)
Optical processor for solving the traveling salesman problem
(TSP). In: Javidi B, Psaltis D, CaulfieldHJ (eds) Proc SPIE, Optical
Information Systems IV, vol 63110G. SPIE, Bellingham

111. ShakedNT,Messika S, Dolev S, Rosen J (2007) Optical solution
for bounded NP-complete problems. Appl Opt 46(5):711–
724

112. Shor P (1994) Algorithms for quantum computation: Discrete
logarithms ande factoring. In: Proceedings 35th Annual Sym-
posium on Foundations Computer Science. ACM, New York,
pp 124–134

113. Sosík P (2003) The computational power of cell division in
P systems: Beating down parallel computers? Nat Comput
2(3):287–298

114. Sosík P, Rodríguez–Patón A (2007) Membrane computing
and complexity theory: A characterization of PSPACE. J Com-
put Syst Sci 73(1):137–152

115. Stirk CW, Athale RA (1988) Sorting with optical compare-and-
exchange modules. Appl Opt 27(9):1721–1726

116. Stone RV (1994) Optoelectronic processor is programmable
and flexible. Laser Focus World 30(8):77–79

117. Stone RV, Zeise FF, Guilfoyle PS (1991) DOC II 32-bit digital
optical computer: optoelectronic hardware and software. In:
Optical Enhancements to Computing Technology, Proc SPIE,
vol 1563. SPIE, Bellingham, pp 267–278

118. Stroke GW, Halioua M, Thon F, Willasch DH (1974) Image
improvement in high-resolution electron microscopy using
holographic image deconvolution. Optik 41(3):319–343

119. Sullivan DL (1972) Alignment of rotational prisms. Appl Opt
11(9):2028–2032

120. Tromp J, van Emde Boas P (1993) Associative storage mod-
ification machines. In: Ambos–Spies K, Homer S, Schöning U
(eds) Complexity theory: current research. CambridgeUniver-
sity Press, pp 291–313

121. Turin GL (1960) An introduction to matched filters. IRE Trans
Inf Theory 6(3):311–329

122. Upatnieks J (1983) Portable real-time coherent correlator.
Appl Opt 22(18):2798–2803

123. VanderLugt A (1964) Signal detection by complex spatial fil-
tering. IEEE Trans Inf Theory 10(2):139–145

124. VanderLugt A (1974) Coherent optical processing. Proc IEEE
62(10):1300–1319

125. VanderLugt A (1992) Optical Signal Processing. Wiley, New
York

126. van Emde Boas P (1990) Machine models and simulations. In:
van Leeuwen J (ed) Handbook of Theoretical Computer Sci-
ence, vol A. Elsevier, Amsterdam, chap 1

127. van Leeuwen J, Wiedermann J (1987) Array processing ma-
chines. BIT 27:25–43

128. Wang CH, Jenkins BK (1990) Subtracting incoherent optical
neuron model – Analysis, experiment and applications. Appl
Opt 29(14):2171–2186

129. Wang PY, Saffman M (1999) Selecting optical patterns with
spatial phase modulation. Opt Lett 24(16):1118–1120

130. Weaver CS, Goodman JW (1966) A technique for optically
convolving two functions. Appl Opt 5(7):1248–1249

131. Woods D (2005) Computational complexity of an optical
model of computation. PhD thesis, National University of Ire-
land, Maynooth

132. Woods D (2005) Upper bounds on the computational power
of an optical model of computation. In: Deng X, Du D (eds)
16th International Symposium on Algorithms and Compu-
tation (ISAAC 2005). LNCS, vol 3827. Springer, Heidelberg,
pp 777–788

133. Woods D (2006) Optical computing and computational com-
plexity. In: Fifth International Conference on Unconventional
Computation (UC’06). LNCS, vol 4135. Springer, pp 27–40

134. Woods D, Gibson JP (2005) Complexity of continuous space
machine operations. In: Cooper SB, Löewe B, Torenvliet L
(eds) New Computational Paradigms, First Conference on
Computability in Europe (CiE 2005). LNCS, vol 3526. Springer,
Amsterdam, pp 540–551

135. Woods D, Gibson JP (2005) Lower bounds on the computa-
tional power of an optical model of computation. In: Calude
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Glossary

Combinatorial optimization The search for an optimal
configuration in terms of a cost function on a discrete
set of allowed configurations.

Ground state The configuration of a model for a physi-
cal system of many interacting degrees of freedom de-
scribed by a Hamiltonian or energy function that has
the lowest energy. Also dented as the global minimum
of the energy of the system.

Disordered system A physical system with frozen in or
quenched inhomogeneities, usually modeled by an en-
ergy function containing parameters that are random
numbers obeying in prescribed probability distribu-
tion.

Universal properties Properties that do not depend on
microscopic details of a physical system, like the criti-
cal exponents at a continuous phase transition or frac-
tal dimensions.

Network flows A function defined on the edges of a graph
that obeys mass balance constraints at each node.
A number of polynomial optimization problems rel-
evant for disordered systems can be formulated as net-
work flow models.

Definition of the Subject

Optimization problems in statistical physics occur when-
ever the ground state of a classical model for a complex
condensed matter system has to be determined, which is
necessary for understanding its low temperature proper-

ties. In some cases calculating the ground state is an easy
task as for instance for the paradigmatic model for a fer-
romagnet: The configuration of all magnetic moments or
spins with the lowest energy is the one, where all spins
point in the same direction. But usually the situation is
much more complex and the problem of calculating the
state with the lowest energy is highly non-trivial. This oc-
curs typically in systems with quenched disorder and/or
frustration, which means that their Hamiltonian or energy
function consists of competing terms that cannot be satis-
fied simultaneously. Powerful algorithms from computer
science have been devised to find the optimum of complex
cost-functions and in some cases this can even be achieved
in polynomial time. In recent years many of these algo-
rithms could be successfully applied to physically relevant
model systems: to polymers in random media, interface
problems in random ferromagnets, magnetic flux-lines in
disordered environments, spin glasses, and many more.

Introduction

Solid materialswhich contain a substantial degree of quen-
ched disorder, so called disordered systems, have been
an experimental and a theoretical challenge for physicists
for many decades. The different thermodynamic phases
emerging in random magnets, the aging properties and
memory effects of spin glasses, the disorder induced con-
ductor-to-insulator transition in electronic or bosonic sys-
tems, the collective behavior of magnetic flux lines in
amorphous high temperature superconductors, and the
roughening transition of a disordered charge density wave
systems are only a few examples for these fascinating phe-
nomena that occur due to the presence of quenched disor-
der.

Analytic studies of models for these systems are usually
based on perturbation theories valid for weak disorder, on
phenomenological scaling pictures or on mean-field ap-
proximations. Therefore the demand for efficient numer-
ical techniques that allow the investigation of the model
Hamiltonians of disordered systems has always been high.
Three facts make life difficult here: 1) The regime, where
disorder effects are most clearly seen, are at low temper-
atures – and are even best visible at zero temperature;
2) the presence of disorder slows the dynamics of theses
systems down, they become glassy, such that for instance
conventional Monte-Carlo or molecular dynamics simula-
tions encounter enormous equilibration problems; 3) any
numerical computation of disordered systems has to in-
corporate an extensive disorder average.

In recent years more and more model systems with
quenched disorder were found that can be investigated nu-
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merically 1) at zero temperature, 2) without equilibration
problems, 3) extremely fast, in polynomial time (for re-
views see [1,2,3]). This is indeed progress, which became
possible by the application of exact combinatorial opti-
mization algorithms developed by mathematicians and
computer scientists over the last few decades. This gift is
not for free: first a mapping of the problem of finding
the exact ground state of the model Hamiltonian under
consideration onto a standard combinatorial optimiza-
tion problem has to be found. If one is lucky, this prob-
lem falls into the class of P-problems, for which polyno-
mial algorithms exist. If not, the intellectual challenge for
the theoretical physicist remains to reformulate the model
Hamiltonian in such a way that its universality class is not
changed but a mapping on a P-problem becomes feasible.

An optimization problem can be described mathemat-
ically in the following way: let � D (�1; : : : ; �n) be a vec-
tor with n elements which can take values from a domain
Xn : �i 2 X. The domain X can be either discrete, for in-
stance X D f0; 1g or X D Z the set of all integers (in which
case it is an integer optimization problem) or X can be
continuous, for instance X D R the real numbers. More-
over, letH be a real valued function, the cost function or
objective, or in physics usually the Hamiltonian or the en-
ergy of the system. Theminimization problem is then:

Find � 2 Xn; which minimizesH !

Amaximization problem is defined in an analogousway. It
is sufficient to consider only minimization problems, since
maximizing a function H is equivalent to minimizing�H.
Minimization problems in which the set X is countable
are called combinatorial [4,5,6]. Optimization methods for
real valued variables are treated mainly in mathematical
literature and in books on numerical methods, see e. g. [8].

Constraints, must hold for the solution, may be ex-
pressed by additional equations or inequalities. An arbi-
trary value of � , which fulfills all constraints, is called fea-
sible. Usually constraints can be expressed more conve-
niently without giving equations or inequalities. A famous
example is the Traveling Salesman Problem (TSP) [7].

The TSP has attracted the interest of physicist several
times. For an introduction, see [9]. The model is briefly
presented here. Consider n cities distributed randomly in
a plane. Without loss of generality the plane is considered
to be the unit square. The minimization task is to find the
shortest round-tour through all cities which visits each city
only once. The tour stops at the city where it started. The
problem is described by

X D f1; 2; : : : ; ng (1)

H(�) D
nX

iD1

d(�i ; �iC1) (2)

where d(�˛ ; �ˇ ) is the distance between cities �˛ and �ˇ
and �nC1 � �1. The constraint that every city is visited
only once can be realized by constraining the vector � to
be a permutation of the sequence [1; 2; : : : ; n].

The optimum order of the cities for a TSP depends on
their exact positions, i. e. on the random values of the dis-
tance matrix d. It is a feature of all problems we will en-
counter here that they are characterized by various ran-
dom parameters. Each random realization of the param-
eters is called an instance of the problem. In general, if
we have a collection of optimization problems of the same
(general) type, we will call each single problem an instance
of the general problem.

Because the values of the random parameters are fixed
for each instance of the TSP, one speaks of frozen or
quenched disorder. To obtain information about the gen-
eral structure of a problem one has to average measurable
quantities, like the length of the shortest tour for the TSP,
over the disorder.

In this article we give an overview of methods how to
solve these problems, i. e. how to find the optimum. Inter-
estingly, there is no single way to achieve this. For some
problems it is very easy while for others it is rather hard,
this refers to the time you or a computer will need at least
to solve the problem, it does not say anything about the
elaborateness of the algorithms which are applied. Addi-
tionally, within the class of hard or within the class of easy
problems, there is no universal method. Usually, even for
each kind of problem there are many different ways to
obtain an optimum. Once a problem becomes large, i. e.
when the number of variables n is large, it is impossible to
find a minimum by hand. Then computers are used to ob-
tain a solution. Only the rapid development in the field of
computer science during the last two decades has pushed
forward the application of optimization methods to many
problems from science and real life.

We will review some of the most fruitful applications
of polynomial algorithms from the realm of combinatorial
optimization to various problems in the statistical physics
of disordered systems. The next section presents the ap-
plication of Dijkstra’s algorithm for finding shortest paths
in weighted networks to the model of a non-directed poly-
mer in a disordered environment with isotropical correla-
tions. Then, in the 4th and 5th section, we discuss mini-
mum cost flow problems on weighted graphs and its solu-
tion via the successive shortest path algorithm and apply
it to the entanglement transition of elastic lines in a disor-
dered environment and to the loop percolation transition
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in a vortex glass model. In the 6th section we focus on the
minimum cut-maximumflow problem and discuss among
its many applications the roughening transition of elastic
media in a disordered environment. The 7th section is de-
voted to the random field Ising model and how its ground
states can be computed with maximum-flow-minimum-
cut techniques. The spin glass problem is presented in
the 8th section with a mapping onto minimum weighted
matching in two dimensions and a brief outline of branch
and cut methods for the higher dimensional case. The 9th
section is devoted to finite temperature properties of the
random bond Potts model and how its free energy can be
computed in the limit of infinite Potts states. An outlook
in the 10th section closes this chapter.

Polymers in a Disordered Environment

Awell studied model of a single elastic line [10], like an in-
dividual polymer or a single magnetic flux line in a type-II
superconductor, in a disordered environment is the fol-
lowing: If one excludes overhangs (and by this also self-
overlaps) of the elastic lines one can parametrize its config-
uration by the longitudinal coordinate z. The line configu-
ration can then be described by the transverse coordinate
r(z) as a function of z. The presence of disorder is usu-
ally modeled by a random potential energy V(r; z) and
the ground state configuration of the line is highly non-
trivial due to the competition between the elastic energy,
that tends to straighten the line, and the random energy,
that tries to bend the line into positions of favorable en-
ergy:

Hsingle-line DHelasticCHrandom

D

Z H

0
dz

(
�

2

�
dr
dz

�2
C V[r(z); z]

)

; (3)

whereH is the longitudinal length (not the proper length)
of the line. The random potential energy is a Gaussian
variable with prescribed mean and correlations hhV[r; z]
V[r0; z0]ii D g(R � R0), where R D (r; z) and hh� � � ii de-
notes the average over the disorder.

A lattice version of this continuum model is the di-
rected polymer model: The lines correspond to directed
paths on a hyper-cubic lattice that start at a specific lattice
site, say (0; 0; : : : ; 0) and proceed only in the (1; 1; : : : ; 1)
direction along the bonds. The energy contribution for
a path passing bond i of the lattice is a positive random
variable ei and the total energy of a path P is simply

H lattice
single-line D

X

i2P
ei D

X

i

eini ; (4)

where ni D 1 if the path passes bond i (i. e. i 2 P) and
ni D 0 otherwise.

One is interested in isotropically correlated disorder
and consider the problem on a non-directed (square) lat-
tice (i. e. paths can pass any bond in both directions) in
order not too exclude overhangs right from the beginning.
In case of uncorrelated disorder overhangs were shown to
be irrelevant [12], but for isotropically correlated disorder
this is not clear. The latter is defined to decay algebraically
with the spatial distance of the bonds

hhei � ejii D jRi � Rjj
2˛�1 ; (5)

where Ri spatial position of bond i and ˛ is the correla-
tion exponent: Note that one expects short-range corre-
lations like hhei � ejii / exp(�jRi � Rjj/
) with a finite
correlation length 
, to be irrelevant and only long-range
correlations like (5) to change the universality class of the
system. Increasing ˛ imply stronger correlations, uncorre-
lated disorder corresponds to ˛ ! �1. The kind of cor-
related disorder described by (5) can be realized by gen-
erating correlated random numbers are generated using
a well-established numerical procedure [11].

Exact ground states of the Hamiltonian (4) or optimal
paths are calculated using Dijkstra’s algorithm (note that
all energies ei are positive). This simple polynomial algo-
rithm works as follows: Let V D f1; : : : ; Ld g be the set of
lattice sites and AD f(i; j)ji; j 2 V nearest neighborsg the
set of bonds. The algorithm increases successively a sub-
set S of sites for which the optimal path starting at the
fixed site s are known. Obviously initially S : D fsg. We
denote the energy of the optimal path starting at s and ter-
minating at i with E(i) and since all optimal paths can be
constructed via a predecessor list, we keep track of this list,
too, via an array pred(i), denoting the predecessor site of
site i in a shortest path from s to i:

algorithm Dijkstra
begin

S : D fsg; S : D Vnfsg;
E(s) : D 0; pred(s) : D 0;
while jSj < jVj do
begin

choose (i; j) : E( j) : D mink;mfE(k)
Ce(k;m)jk 2 S;m 2 S; (k;m) 2 Ag;

S : D Snf jg; S : D S [ f jg;
pred( j) : D i;

end
end

In Fig. 1 we show examples of the set fig of lattice sites
that are end-points of optimal paths starting from a fixed
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Optimization Problems and Algorithms from Computer Science,
Figure 1
Example for the growth front of the non-directed polymer for
uncorrelated disorder (a and b) and correlated disorder (c and d;
˛ D 0:4). Theblackpixels indicate the lattice sites of the (square)
lattice are connected via optimal paths to the offspring (center of
the top line) with energy less than a given value (from [13])

initial site and having a total energy E(i) less than a given
value Emax. For uncorrelated disorder the surface of this
set is roughly a semi-circle, whereas for strongly correlated
disorder the surface becomes topologically more compli-
cated.

The universal properties of the optimal paths are typi-
cally described the scaling of two characteristic quantities:
The average transverse fluctuations hhr2ii and the average
energy fluctuations hhE2ii. Both are expected to grow al-
gebraically with the the longitudinal distance H between
starting point and end point of the paths:

hhr2ii / H� and

hhE2ii / H! ; (6)

where � is called the roughness exponent and ! the en-
ergy fluctuation exponent. For uncorrelated disorder (˛!
�1) one knows � D 2/3 and ! D 1/3. By computing the
optimal paths for several thousands of samples for a given
disorder correlation exponent ˛ and for a given longitu-
dinal distances H and fitting the resulting data for trans-
verse and energy fluctuations to the expected power laws
we can extract the exponents � and ! (for details see [13]).
The resulting estimates in 2d show that the correlations are
relevant for ˛ > 0 and the roughness exponent increases
linearly for ˛ > 0 from its value for uncorrelated disorder
� D 2/3. Although the number of overhangs in the opti-
mal paths we computed in the non-directed case increased
with ˛ (i. e. increasing correlations) the fraction of bonds
contributing to overhangs scaled to zero for all values of ˛
we considered. Hence overhangs appear to be irrelevant
also in the presence of correlated disorder.

Many Repulsive Elastic Lines in RandomMedia

When one puts interacting elastic lines together into a fi-
nite system with a given density of lines they will show in-
teresting collective behavior. Examples are the entangle-
ment of magnetic flux lines in high-Tc superconductors
in the mixed phase [14] or the entanglement of polymers
in materials like rubber [15]. The degree of entanglement
of the lines usually manifests itself in various measurable
properties like stiffness or shear modulus in the case of
polymers and in transport or dynamical properties for
magnetic flux lines in superconductors. A theoretical de-
scription of these line systems can be based on the single-
line Hamiltonian (3) plus an appropriate line interaction
term:

Hmany-lines D

NX

iD1

H (i)
single-line

C
X

i< j

Z L

0
dz
Z L

0
dz0 Vint[Ri (z) � R j(z0)] ; (7)

where Ri (z) D (ri (z); z) is the spatial position of the in-
finitesimal line segment dz of the ith line. If the interac-
tions Vint[Ri (z) � R j(z0)] are short ranged (i. e. in case of
flux lines the screening length small compared to the aver-
age line distance) or just hard core repulsive, and the ran-
dom, ı-correlated disorder potential Vr [ri(z); z] in (3) is
strong compared to the elastic energy (/ �) this contin-
uum model reduces to a lattice model reminiscent of the
single-line lattice model (4):

H lattice
many-lines D

X

i

eini ; (8)

where ni D 1 if a line passes bond i and ni D 0 otherwise
and the positive random variable ei is the energy cost for
a line segment to occupy bond i. The hard core constraint
is thus enforced on the bonds but for the sake of an eas-
ier formal description we allow the lines to touch in iso-
lated points, the lattice sites. The lines live on the bonds of
a simple cubic lattice with a lateral width L and a longitu-
dinal height H(L � L � H sites) with free boundary con-
ditions in all directions. Each line starts and ends at an ar-
bitrary position on the bottom respective top planes. The
number N of lines threading the sample is fixed by a pre-
scribed density � D N/L2. For a single line N D 1, one re-
covers the non-directed polymer model (4). The random
bond energies are uniformly distributed over the interval
[0; 1].

Note that the allowed configurations of the bond vari-
ables ni are only those that can be identified with lines
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threading the samples (or loops inside the sample, which,
however, cost energy and therefore do not occur in the
ground state), which means that the number of occupied
bonds connected to a lattice site that lies neither on the top
nor on the bottom plane has always to be even. If we con-
nect all sites on the top to an extra site, called the source,
an all sites on the bottom to another extra site, called the
target, than the latter statement remains true also for the
top an bottom plane. We can now say that N lines start
at the source node and terminate at the target node, or,
in network flow jargon: The feasible configurations of the
variables ni constitute a flow with zero excess on all lattice
sites and an excess CN and �N for the source and target
node, respectively.

Thus the determination of the ground state configu-
ration of the N-line problem with the Hamiltonian (8) is
aminimum-cost-flow-problem, which can be solvedwith
a successive shortest path algorithm [1,2,3]. In essence one
starts with the zero flow ni D 0, corresponding to zero
lines in the system, and sends successively one unit of flow
from the source to the target, corresponding to adding one
line after the other to the system. This has to happen with
the minimal energy, i. e. along optimal paths, which are
calculated using Dijkstra’s algorithm that we encountered
already in the single line problem discussed in the last sec-
tion. However, when trying to add a line to a system with
a number, sayM, of lines already present, the existing line
configuration sometimesmust be changed tominimize the
total energy for M C 1 line solution. That becomes feasi-
ble by allowing flow to be sent backwards on already occu-
pied bonds. By this operation one gains energy (whereas
occupying an empty bond i always costs energy ei � 0),

Optimization Problems and Algorithms from Computer Science, Figure 2
Left: Ground state configuration of a N-line system with N D 9 defined by (8). The entry/exit points are fixed in a regular 3� 3 array
for better visibility. Right: Definition of the winding angle of two flux lines. Right part, top: A configuration of three lines that are
entangled. Right part, bottom: The projection of the line configuration on the basal plane, defining a connected cluster

which means one has to operate on a network that has to
be adapted to the existing flow configuration and has neg-
ative energies on all occupied bonds. Unfortunately Di-
jkstra’s algorithm works only for positive bond energies,
and one has either to use a slower (label-correcting) algo-
rithm to find the optimal paths in a graph with negative
edge costs [3] or one has to use the concept of node po-
tentials, by which one can make all energies in the adapted
network non-negative without changing the actual short-
est paths. This procedure is described in full detail in [3].

The resulting line configuration is then analyzed. One
computes the winding angle of all line pairs as indicated
in Fig. 2 (c.f. [16]). For each z-coordinate the vector con-
necting the two lines is projected onto that basal plane (left
part of Fig. 2). z D 0 gives the reference line with respect to
which the consecutive vectors for increasing z-coordinate
have an angle �(z). If the two lines intersect one neglects
the intersection point and interpolate between the last and
the next point in such a way that the global winding an-
gle is minimized. One defines two lines to be entangled
when �(z) > 2� . This choice is one that measures entan-
glement from the topological perspective [17], and comes
from the requirement that an entangled pair of lines can
not be separated by a suitable linear transformation in the
basal plane (i. e. the lines almost always would cut each
other, if one were shifted). The precise definition of en-
tanglement is not of major relevance, and the one used is
useful since it is the computationally easiest.

Sets or bundles of pairwise entangled lines are formed
so that a line belongs to a bundle if it is entangled at least
with one other line in the set. The topological multi-line-
entanglement could be characterized by other measures
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Optimization Problems and Algorithms from Computer Science, Figure 3
Line configurations for different heightsH (from left to right:H D 64, 96, 128), the lateral size L D 20, the line density is� D 0:3. Only
the largest line bundles are shown, indicated by a varying gray scale. Black denotes the largest cluster, which eventually percolates

as well; the universal properties of the transition will not
depend on these. These line bundles are spaghetti-like –
i. e. topologically complicated and knotted sets of one-
dimensional objects. To study the size distribution of these
objects one projects these bundles on the basal plane, as in-
dicated in Fig. 2, where a bundle projects onto a connected
cluster. The probability for two lines to be entangled in-
creases with increasing system height. Consequently one
would expect that the bundle size increases with H, and
therefore also their projections, the clusters. This scenario
is exemplified in Fig. 3, for the largest height the largest
cluster spans from one side of the system to the other, i. e.
it percolates.

Hence, for a given line density � one expect that for
system heights larger than a critical value Hc an system
spanning large entangled bundle occurs, containing an in-
finite number of lines in the limit L!1. One calls this
an entanglement transition occurring at a finite system
heightHc. In the projection plane this appears like a perco-
lation transition and in [18] it was shown that this transi-
tion is in the same universality class as conventional bond
percolation.

Vortex Glasses and Loop Percolation

Another application of the successive shortest path algo-
rithm for minimum-cost-flow-problems is finding the
ground state of the Hamiltonian

H D
X

i

(ni � bi)2

with the constraint 8k :
X

l n.n. of k

n(k l ) D 0 ;
(9)

where the integer variables ni live on the bonds i of a d-di-
mensional hyper-cubic lattice and bi 2 [�2�; 2�] are real

valued quenched random variables with � � 0 setting the
strength of the disorder. The constraint

P
l n.n. of k n(k l )

D 0means that at all lattice sites k the incoming flow has to
balance the outgoing flow, i. e. the flow fnig is divergence-
less. The physical motivation of studying models these
kind of models is the following:

In 2d the Hamiltonian (9) occurs for instance in the
context of the solid-on-solid (SOS) model on a disordered
substrate [19]. The SOS representation of a 2d surface is
defined by integer height variables uk for each lattice site k
of a square lattice. The disordered substrate is modeled via
random offsets dk 2 [0; 1] for each lattice site, such that
the total height at lattice site k is hk D uk C dk . The the
total energy of the surface is

HSOS D
X

(k l )

(hk � hl )2 D
X

˜(k l )

�
n ˜(k l ) � b ˜(k l )


2 (10)

where the first sum runs over all nearest neighbor pairs (kl)
of the square lattice and the second sum runs over all
bonds ˜(kl) of the dual lattice (being a square lattice, too),
which connect the centers of the elementary plaquettes
of the original lattice. A dual bond ˜(kl) therefore crosses
perpendicularly a bond (kl) connecting neighbors k and l
on the original lattice.We define n ˜(k l ) D nk � nl and d ˜(k l )
D dl � dk if l is either the right or the upper neighbor of k
(i. e. for k D (x; y) either l D (x C 1; y) or l D (x; y C 1)
and n ˜(k l ) D nl � nk and d ˜(k l ) D dk � dl if l is either the
left or the lower neighbor of k (i. e. for k D (x; y) either
l D (x � 1; y) or l D (x; y � 1). In this way the sum over
all four dual bond variables attached to one site of the dual
lattice corresponds to the sum of original height variables
around an elementary plaquettes in the original lattice:
(n(x;y) � n(x;yC1))C(n(x;yC1) � n(xC1;yC1))C(n(xC1;yC1)
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�n(xC1;y))C(n(xC1;y) � n(x;y)) D 0, which implies that
the flow fn ˜(k l )g is divergence free as inferred in (9).

In 3d the Hamiltonian (9) is the strong screening limit
of the vortex glass model for disordered superconduc-
tors [20,21]

HVG D
X

i; j

(ni � bi )G�(ri � r j)(nj � bj) ; (11)

where the integer vortex variables ni live on the bonds
of a simple cubic lattice and have to fulfill the constraint
in (9) since they represent magnetic vortex lines that are
divergence free. The real valued quenched random vari-
ables bi 2 [�2�; 2�] are derived from the lattice curl of
a random vector potential (� � 0 being the strength of
the disorder). The 3d vector ri denotes the spatial po-
sitions of bond i in the lattice and the sum runs over
all bond pairs of the lattice (not only nearest neighbors).
The lattice propagator G�(r) has the asymptotic form
G�(r) / exp(�jrj/
)/jrj, where 
 is the screening length.
In the strong screening limit 
! 0 only the on-site repul-

Optimization Problems and Algorithms from Computer Science, Figure 4
Examples of ground state configurations of the Hamiltonian (9) for varying disorder strengths� (for particular disorder realizations).
Top: 2d, L D 50, the critical disorder strength is �c � 0:46; Bottom: 3d, L D 16, the critical disorder strength is �c � 0:31. The occu-
pied bonds (ni ¤ 0) are marked black, the percolating loop is marked by light gray (red)

sion survives [20] and gets

H�!0
VG D

X

i

(ni � bi )2 (12)

which is the Hamiltonian (9) in 3d that we intend to dis-
cuss here.

The ground state of (9) can again be computed with-
in polynomial time by a successive shortest path algo-
rithm [3]. As for theN-line problem one starts with a con-
figuration fnig that optimizes the Hamiltonian in (9) but
does not, in general, fulfill the mass balance constraint
given in (9). In the N-line problem that was simply the
zero-flow ni D 0, which does not fulfill the requirement
that the source and the target have excess CN and �N ,
respectively. Here we start with ni the closest integer to
the real number bi for each bond i. Since this solution vi-
olates the mass-balance constraint one successively sends
flow from nodes that have an excess flow to nodes that
have a deficit along optimal paths that are again found us-
ing node potentials (to make all costs non-negative) and
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Dijkstra’s algorithm. The details of this algorithm can be
found in [1,2,3].

Figure 4 shows three typical ground state configura-
tions for different strength of the disorder � in 2d and
in 3d. For small � only small isolated loops occur, whereas
for larger � one finds loops that extend through the whole
system, they percolate. A finite size scaling study of the un-
derlying percolation transition [22] yields a novel univer-
sality class with numerically estimated critical exponents
that differ significantly from those for conventional bond-
or site-percolation [22].

Interfaces and Elastic Manifolds

A system of strongly interacting (classical) particles or
other objects, like magnetic flux lines in a type-II su-
perconductor (as we discussed in Sect. “Many Repulsive
Elastic Lines in Random Media” and for which the start-
ing Hamiltonian would given by (7)), or a charge den-
sity wave system in a solid, will order at low tempera-
tures into a regular arrangement a lattice (crystal lattice
or flux line lattice). Fluctuations either induced by ther-
mal noise (temperature) or by disorder (impurities, pin-
ning centers) induce deviations of the individual particles
from their equilibrium positions. As long as these fluctua-
tions are not too strong an expansion of the potential en-
ergy around these equilibrium configuration might be ap-
propriate. An expansion up to 2nd order is called the elas-
tic description or elastic approximation, which in a coarse
grained form (where the individual particles that undergo

Optimization Problems and Algorithms from Computer Science, Figure 5
Left: Sketch of a 2d (RBIM)with antiperiodic boundary conditions. Broken lines representweak bonds, full lines strong bonds, the spin
configuration with the lowest energy defines an interface, as indicated, and corresponds to the minimum cut in the corresponding
network flow problem. Right:An optimal interface in the 111-directionof a 3d RBIM corresponding to the ground state configuration
of a 2d elastic mediumwith scalar displacement field (from [23])

displacements from their equilibrium positions do not oc-
cur any more and are replaced by a continuum field �(r)
reads then

Hmanifold DHelastic CHrandom

D

Z
ddr

n�
2
jr�(r)j2 C V(�(r); r)

o
:
(13)

The random potential energy is a delta-correlated Gauss-
ian variable with mean zero, hhV(�; r)V (� 0; r0)ii D
D2ı(� � � 0)ı(r � r0). The integration extends over the
whole space that parameterizes the manifold, for instance
d D 1 for an elastic line in a random potential, d D 2 for
an interface or a surface in a disordered environment etc.
Note that for d D 1 one recovers the single line Hamilto-
nian (3). The many-line Hamiltonian (7) also allows such
an elastic description in the limit, in which the interactions
are strong and the the random potential is weak compared
to the elastic energy. In this limit the lines will only de-
viate moderately from a regular, translationally invariant
configuration (the Abrikosov flux line lattice). This case is
called an elastic periodic medium and one has to modify
the '-part of the disorder correlator such that the Hamil-
tonian has the correct translational symmetry [26].

Elastic Manifold

The typical example for an elastic manifold in a disor-
dered environment are domain walls in the d C 1 dimen-
sional random bond ferromagnet H D �

P
hi ji Ji j�i� j

(Ji j � 0 ; random) in which we fix all spins in the
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lower (upper) plane, i. e. all �i with i D (x11; : : : ; xd ; y)
and y D 1 (y D H), to be �i D C1 (�1), c.f. Fig. 5.
First one maps it onto a flow problem in a capacitated
network. One introduces two extra sites, a source node s,
which is connected to all spins of the hyperplane y D 1
with bonds Js;(x1;:::;xd ;yD1) D J1, and a sink node t,
which is connected to all spins of the hyperplane
y D H with bonds Js;(x1;:::;xd ;yDH) D J1. One chooses
J1 D 2

P
(i j) Ji j , i. e. strong enough that the interface can-

not pass through a bond involving one of the two ex-
tra sites. Now we enforce the aforementioned bound-
ary conditions for the spins in the upper and the lower
plane by simply fixing �s D C1 and �t D �1. The graph
underlying the capacitated network one has to con-
sider is now defined by the set of vertices (or nodes)
N D f1; : : : ;H � Ldg [ fs; tg and the set of edges (or arcs)
connecting them AD f(i; j)ji; j 2 N; Ji j > 0g.

The capacities ui j of the arcs (i; j) is given by
the bond strength Ji j. For any spin configuration ff D
(�1; : : : ; �N ) one defines S Dfi 2 Nj�i D C1g and S D
fi 2 Nj�i D �1g D NnS. Obviously �s 2 S and �t 2 S.
The knowledge of S is sufficient to determine the
energy of any spin configuration via H(S) D �CC
2
P

(i; j)2(S;S) Ji j where (S; S) D f(i; j)ji 2 S; j 2 Sg. The
constant C D

P
(i; j)2A Ji j is irrelevant, i. e. independent

of S. Note that (S; S) is the set of edges (or arcs) connect-
ing Swith S, this means it cutsN in two disjoint sets. Since
s 2 S and t 2 S, this is a so called s-t-cut-set, abbreviated
[S; S]. Thus the problem of finding the ground state con-
figuration of an interface in the random bond ferromagnet
can be reformulated as aminimum cut problem

minS�N fH0(S)g D min[S;S]
X

(i; j)2(S;S)

Ji j : (14)

in the above defined capacitated network (withH0 D (HC
C)/2). It does not come as a surprise that this minimumcut
is identical with the interface between the (�i D C1)-do-
main and the (�i D �1)-domain that has the lowest en-
ergy. Actually any s-t-cut-set defines such an interface,
some of them might consist of many components, which
is of course energetically unfavorable.

A flow in the network G is a set of nonnegative num-
bers xi j subject to a capacity constraint and a mass balance
constraint for each arc

0 � xi j � ui j

and
X

f jj(i; j)2Ag

xi j �
X

f jj( j;i)2Ag

x ji D

8
<

:

�v for i D s
Cv for i D t
0 else :

(15)

This means that at each node everything that goes in has to
go out, too, with the only exception being the source and
the sink. What actually flows from s to t is v, the value of
the flow. Themaximum flow problem for the capacitated
network G is simply to find the flow x that has the maxi-
mum value v under the constraint (15).

Let x be a flow, v its value and [S; S] an s-t-cut.
Then, by adding the mass balances for all nodes in S
one has v D

P
(i; j)2(S;S) xi j �

P
(i; j)2(S;S) x ji and

since xi j � ui j and x ji � 0 the following inequality
holds: v �

P
(i; j)2(S;S) ui j D u[S; S]. Thus the value of

any flow x is less or equal to the capacity of any cut in the
network. If one discovers a flow xwhose value equals to the
capacity of some cut [S; S], then x is a maximum flow and
the cut is a minimum cut. The following implementation
of the augmenting path algorithm constructs a flow whose
value is equal to the capacity of a s-t-cut it defines simul-
taneously. Thus it will solve the maximum flow problem
(and, of course, the minimum cut problem).

Given a flow x, the residual capacity ri j of any arc
(i; j) 2 A is the maximum additional flow that can be sent
from node i to node j using the arcs (i, j) and (j, i). The
residual capacity has two components: 1) ui j � xi j , the
unused capacity of arc (i, j), 2) x j i the current flow on
arc ( j; i), which one can cancel to increase the flow from
node i to j ri j D ui j � xi j C x ji . The residual network
G(x) with respect to the flow x consists of the arcs with
positive residual capacities. An augmenting path is a di-
rected path from the node s to the node t in the residual
network. The capacity of an augmenting path is the mini-
mum residual capacity of any arc in this path.

Obviously, whenever there is an augmenting path in
the residual network G(x) the flow x is not optimal. This
motivates the following generic augmenting path algo-
rithm:

algorithm Ford–Fulkerson
begin

Initially set xi j : D 0; x ji : D 0 for all (i; j) 2 A;
do

construct residual network R with capacities ri j ;
if there is an augmenting path from s to t in G0 then
begin

Let rmin the minimum capacity of r along this path;
Increase the flow in N along the path

by a value of rmin;
end

until no such path from s to t in G0 is found;
end

This algorithm is polynomial in the number of lattice sites
if the distribution of capacities is discrete (binary for in-
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stance). In the general case it has to be improved and there
are indeed more efficient algorithms to solve this problem
in polynomial time. One of them is the push/relabel algo-
rithm introduced by Goldberg and Tarjan [24]. It deter-
mines the maximal flow by successively improving a “pre-
flow”. A preflow is an edge function f (e) that obeys the
range constraint 0 � f (e) � w(e), but the conservation
constraint at each node is relaxed: the sum of the f (e)
into or out of a node can be nonzero at internal (phys-
ical) nodes. The amount of violation of conservation at
each node v give “excesses” e(v). The basic operations of
the algorithm, push and relabel, are used to rearrange these
excesses. When the preflow can no longer be improved, it
can, if desired, be converted to amaximal flow, proving the
correctness of the algorithm. For details see [24,25]. It can
be applied in the way sketched above to compute univer-
sal geometrical properties of elastic manifolds in 2 and 3
dimensions [23].

Periodic Medium

The presence of a periodic background potential, like
a crystal potential, has a smoothening effect on the elastic
manifold and tends to lock it into one of its minima. The
competition between the random potential, that roughens
the manifold, and such a periodic potential might lead to
a roughening transition [27,28]. In 2d this is actually not
the case [29], but in 3d there is as we will see. We consider
a lattice version of the Hamiltonian

H DHmanifoldC Hperiodic

with Hperiodic D

Z
ddr Vperiodic(�(r)) ; (16)

where Vperiodic(�) D � cos � represents the periodic po-
tential.

We introduce a discrete solid-on-solid (SOS) type in-
terface model for the elastic manifold whose continuum
Hamiltonian is given in Eq. (16). Locally the EM remains
flat in one of periodic potential minima at � D 2�h with
integer h. Due to fluctuations, some regions might shift
to a different minimum with another value of h to cre-
ate a step (or domain wall) separating domains. To min-
imize the cost of the elastic and periodic potential energy
in Eq. (16), the domain-wall width must be finite, say �o .
Therefore, if one neglects fluctuations in length scales less
than �o , the continuous displacement field �(r) can be
replaced by the integer height variable fhxg representing
a (3C 1)d SOS interface on a simple cubic lattice with sites
x 2 f1; : : : ; Lg3. The lattice constant is of order �o and set
to unity. The energy of the interface is given by the Hamil-

tonian

H D
X

hx;yi

J(hx;x);(hy;y)jhx � hyj �
X

x
VR (hx; x) ; (17)

where the first sum is over nearest neighbor site pairs. Af-
ter the coarse graining, the step energy J > 0 as well as the
random pinning potential energy VR becomes a quenched
random variable distributed independently and randomly.
Note a periodic elastic medium has the same Hamilto-
nian as in Eq. (17) with random but periodic J and VR
in h with periodicity p [30]. In this sense, the elastic mani-
fold emerges as in the limit p!1 of the periodic elastic
medium.

To find the ground state, one maps the 3D SOS
model onto a ferromagnetic random bond Ising model in
(3C 1)d hyper-cubic lattice with anti-periodic boundary
conditions in the extra dimension [23] (for the 3 space di-
rection one uses periodic boundary conditions instead).
The anti-periodic boundary conditions force a domain
wall into the ground state configuration of the (3C 1)d
ferromagnet. Note that bubbles are not present in the
ground state. A domain wall may contain an overhang
which is unphysical in the interface interpretation. For-
tunately, one can forbid overhangs in the Ising model
representation using a technique described in [23]. If the
longitudinal and transversal bond strengths are assigned
with J/2 and VR /2 occurring in Eq. (17), respectively, this
domain wall of the ferromagnet becomes equivalent to the
ground state configuration of (17) for the interface with
the same energy. The domain wall with the lowest en-
ergy is then determined exactly by using again the max-
flow/min-cost algorithm.

In elastic media described by (17) the tendency of
the periodic potential to lock the displacements competes
with the roughening effect of the disorder. Analytically
a roughening transition was predicted in [28] and the crit-
ical exponents could be numerically estimated in three di-
mensions [30] with the mapping and algorithm described
above.

Random Field IsingModel

The random field Ising model (RFIM, for a review
see [31,32]) is defined

H D �
X

(i j)

Ji j�i� j �
X

i

hi�i (18)

with �i D ˙1 Ising spins, ferromagnetic bonds Ji j � 0
(random or uniform), (ij) nearest neighbor pairs on a d-di-
mensional lattice and at each site i a random field hi 2 R
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that can be positive and negative. The first term prefers
a ferromagnetic order, which means it tries to align all
spins. The random field, however, tends to align the spins
with the field which points in random directions depend-
ing on whether it is positive or negative. This is the source
of competition in this model.

Let us suppose for the moment uniform interactions
Ji j D J and a symmetric distribution of the random fields
with mean zero and variance hr . It is established by now
that in 3d (and higher dimensions) the RFIM shows fer-
romagnetic long range order at low temperatures, pro-
vided hr is small enough. In 1d and 2d there is no or-
dered phase at any finite temperature. Thus in 3d one
has a paramagnetic/ferromagnetic phase transition along
a line hc (T) in the hr-T-diagram.

The renormalization group picture says that the na-
ture of the transition is the same all along the line hc(T),
with the exception being the pure fixed point at hr D 0
and Tc � 4:51 J. The RG flow is dominated by a zero tem-
perature fixed point at hc (T D 0). As a consequence, the
critical exponents determining the critical behavior of the
RFIM should be all identical along the phase transition
line, in particular identical to those one obtains at zero
temperature by varying hr alone. Thus to study the uni-
versal properties of the phase transition in the RFIM one
needs to calculate its ground state.

This optimization task is again equivalent to a maxi-
mum flow problem [33,34], as in the interface model dis-
cussed in the last section. Historically the RFIM was the
first physical model that has been investigated with a max-
imum flow algorithm [36]. However, here the minimum-
cut is not a geometric object within the original system.

To map the ground state problem for the RFIM onto
a max-flow-min-cut problem one proceeds in the same
way as in the interface problem: One adds to extra nodes s
and t and attaches spins with fixed values there (see Fig. 6):

�s D C1 and �t D �1 (19)

One connects all sites with positive random field to the
node s and all sites with negative random field to t:

Jsi D
�

hi if hi � 0
0 if hi < 0

Ji t D
�
jhi j if hi < 0
0 if hi � 0 (20)

The a network is constructed with the set of nodes
N D f1; � � � ; Ld g [ fs; tg and the set of (forward and back-
ward) arcs AD f(i; j)ji; j 2 N; Ji j > 0g. Each of them
has a capacity ui j D Ji j . The energy or cost function can
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Figure 6
Representation of the ground state problem for the RFIM as
an RBIM domain wall or minimum-cut problem. The physical
spins are the five nodes in the single row in the figure, while
the fixed external spins are sC and s�. The physical RFIM cou-
pling J D 1:0. A spin with hi > 0 (hi < 0) is connected by an
auxiliary coupling of strength hi (�hi) to sC (s�). The weights
of each bond are indicated: the random fields are, from left
to right, h D �1:5;C4:0;�2:3;C1:2; and 0:15. In the ground
state, the interfacial energy between up-spin and down-spin do-
mains is minimized, i. e., the spins are partitioned into two sets
with minimal total cost for the bonds connecting the two sets.
The dashed curve indicates the minimal weight cut. The white
(dark) nodes indicate up (down) spins in the ground state con-
figuration

the be written as

E D �
X

(i; j)2A

Ji j�i� j (21)

or, by denoting the set S D fi 2 N j Si D C1g and S D
NnS

E(S) D �C C 2
X

(i; j)2(S;S)

Ji j (22)

with C D
P

(i; j)2A Ji j . The problem is reduced to the
problem of finding a minimum s-t-cut as in (14). The
difference to the interface problem is that now the extra
bonds connecting the two special nodes s and t with the
original lattice do not have infinite capacity: they can lie
in the cut, namely whenever it is more favorable not to
break a ferromagnetic bond but to disalign a spin with its
local random field. In the extended graph the s-t-cut again
forms connected interface, however, in the original lattice
(without the bonds leading to and from the extra nodes)
the resulting structure is generally disconnected, a multi-
component interface. Each single component surrounds
a connected region in the original lattice containing spins,
which all point in the same direction. In other words, they
form ferromagnetically ordered domains separated by do-
main walls given by the subset of the s-t-cut that lies in the
original lattice.
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In passing we note that diluted Ising antiferromagnets
in a homogeneous external field (DAFF) map straightfor-
wardly onto a RFIM if the underlying lattice is bipartite.
The 3d DAFF on a simple cubic lattice is defined by

H D C
X

(i j)

Ji j"i" j�i� j �
X

i

hi"i�i (23)

where �i D ˙1, Ji j � 0, (ij) are nearest neighbor pairs on
a simple cubic lattice, and "i 2 f0; 1g with "i D 1 with
probability c, representing the concentration of spins. Be-
cause of the plus sign in front of the first term in (23) all
interactions are antiferromagnetic, the model represents
a diluted antiferromagnet, for which many experimental
realizations exist (e. g. FecZn1�c F2). Now that neighboring
spins tend to point in opposite directions due to their an-
tiferromagnetic interaction a uniform field competes with
this ordering tendency by trying to align them all. On a bi-
partite lattice in zero external field the ground state would
be antiferromagnetic, which means that one can define
two bipartite sublattices A and B. One defines new spin
and field variables via

� 0i D

�
C�i for i 2 A
��i for i 2 B

h0i D
�
C"i hi for i 2 A
�"i hi for i 2 B :

Since � 0i�
0
j D ��i� j for all nearest neighbor pairs (ij) one

can write (23) as

H D �
X

(i j)

J0i j�
0
i�
0
j �

X

i

h0i�
0
i (24)

with J0i j D Ji j"i" j . This is again a RFIM and ground states
can be computed with the max-flow technique.

The main focus of the application of the max-flow-
min-cut algorithm to the RFIM is the phase transition in
the three-dimensional model occurring at a critical dis-
order strength hc at zero temperature, which separates
a paramagnetic phase for large disorder strength from
a ferromagnetic phase. The maximum flow algorithm has
first been used by Ogielski [36] to calculate the critical ex-
ponents of the RFIM via the finite size scaling. More accu-
rate estimates were obtained more recently by Middleton
and Fisher [35], where also an detailed discussion of the
problems and conflicting results about the RFIM univer-
sality class is provided. For Gaussian random fields (with
variance h2) they find for the finite size scaling of magne-
tization m D [Si ]av and specific heat c D N�1dE/dT and

m � L�ˇ /� ;

c � L˛/� ; (25)

with the magnetization exponent x D ˇ/� D 0:012˙
0:004 the correlation length exponent � D 1:37˙ 0:09,
and the specific heat exponent ˛ D �0:07˙ 0:17. Note
that the magnetization exponent is very close to zero,
which means that the transition is hard to discriminate
from a first order transition. Also the specific heat expo-
nents is close to zero and slightly negative, implying a lack
of divergence of the specific heat at the transition.

The Spin Glass Problem

Spin glasses are the prototypes of (disordered) frustrated
systems (see [37]). In the models discussed up to now,
the frustration was caused by two separate terms of dif-
ferent physical origin (interactions and external fields or
boundary conditions). Spin glasses are magnetic systems
in which the magnetic moments interact ferro- or anti-
ferromagnetically in a random way, as in the following
Edwards–Anderson Hamiltonian for a short ranged Ising
spin glass (SG)

H D �
X

(i j)

Ji j�i� j ; (26)

where �i D ˙1, (ij) are nearest neighbor interactions on
a d-dimensional lattice and the interaction strengths Ji j
2 R are unrestricted in sign. In analogy to Eq. (14) one
shows that the problem of finding the ground state is again
equivalent to finding a minimal cut [S; S] in a network

minff fH0(ff)g D min[S;S]
X

(i; j)2(S;S)

Ji j ; (27)

again H0 D (H C C)/2 with C D
P

(i j) Ji j . However, now
the capacities ui j D Ji j of the underlying network are not
non-negative any more, therefore it is not a minimum-cut
problem and thus it is also not equivalent to a maximum
flow problem, which we know how to handle efficiently.

It turns out that the spin glass problem ismuch harder
than the questions we have discussed so far. In general
(i. e. in any dimension larger than two and also for 2d
in the presence of an external field) the problem of find-
ing the SG ground state is NP-complete [42], which
means in essence that no polynomial algorithm for it is
known (and also that chances to find one in the future
are marginal). Nevertheless, some extremely efficient al-
gorithms for it have been developed [38,39], which have
a non-polynomial bound for their worst case running-
time but which terminate (i. e. find the optimal solution)
after a reasonable computing time for pretty respectable
system sizes.
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Two Dimensions, Planar Graph

First we discuss the only non-trivial case that can be
solved with a polynomial algorithm: the two-dimensional
Ising SG on a planar graph. This problem can be shown
to be equivalent to finding a minimum weight perfect
matching, which can be solved in polynomial time. We do
not treat matching problems and the algorithms to solve
them in this lecture (see [4,40,41]), however, we would
like to present the idea [42]. To be concrete let us con-
sider a square lattice with free boundary conditions. Given
a spin configuration ff (which is equivalent to �ff) we say
that an edge (or arc) (i, j) is satisfied if Ji j�i� j > 0 and
it is unsatisfied if Ji j�i� j < 0. Furthermore we say a pla-
quette (i. e. a unit cell of the square lattice) is frustrated
if it is surrounded by an odd number of negative bonds
(i. e. Ji j � J jk � Jk l � Jl i < 0 with i, j, k and l the four cor-
ners of the plaquette)). There is a one-to-one correspon-
dence between equivalent spin configurations (ff and �ff)
and sets of unsatisfied edges with the property that on each
frustrated (unfrustrated) plaquette there is an odd (even)
number of unsatisfied edges. See Fig. 7 for illustration.

Note that

H(ff) D �C C 2
X

unsatisfied edges

jJi jj : (28)

which means that one has to minimize the sum over the
weights of unsatisfied edges. A set of unsatisfied edges will
be constituted by a set of paths (in the dual lattice) from
one frustrated plaquette to another and a set of closed cir-
cles (see Fig. 7). Obviously the latter always increase the
energy so that we can neglect them. The problem of find-
ing the ground state is therefore equivalent to finding the
minimum possible sum of the weights of these paths be-
tween the frustrated plaquettes. This means that we have
to match the black dots in the Fig. 7 with one another in
an optimal way. One can map this problem on aminimum
weight perfect matching problem (a perfect matching of
a graph G D (N;A) is a set M � A such that each node
has only has only one edge of M adjacent to it). This can
be solved in polynomial time (see [42] for further details).

Note that for binary couplings, i. e. Ji j D ˙J, where
Ji j D CJ with probability p the weight of a matching is
simply proportional to the sum of the lengths of the var-
ious paths connecting the centers of the frustrated pla-
quettes, which simplifies the actual implementation of the
algorithm. In [43] the 2d ˙J spin glass and the site dis-
ordered SG has been studied extensively with this algo-
rithm. The site disordered spin glass is defined as fol-
lows: occupy the sites of a square lattice randomly with A
(with concentration c) and B (with concentration 1 � c)

Optimization Problems and Algorithms from Computer Science,
Figure 7
Two-dimensional Ising spin glass with˙-J couplings: Thin lines,
are positive interactions, thick lines are negative interactions,%
means �i D C1,.means �i D �1, shaded faces are frustrated
plaquettes, broken lines cross unsatisfied edges

atoms. Now define the interactions Ji j between neighbor-
ing atoms: Ji j D �J if on both sites are A-atoms and Ji j
otherwise.

The main application of this algorithm is directed to-
wards studying domain walls in spin glasses since they
provide informations on the low temperature behavior
and the stability of the ground state with respect to thermal
fluctuations. Domain walls can be induced by applying
two different boundary conditions to the system (usually
periodic and anti-periodic), their energy is simply the dif-
ference between the energies of the ground states with the
two different boundary conditions. The domain wall en-
ergy of the two-dimensional spin glass model with Gaus-
sian couplings scales like

�E � L� ; (29)

where the stiffness exponent is � D �0:282 (see [44] for
a survey). The negativity of this exponent indicates the ab-
sence of stable spin glass phase at any non-vanishing tem-
perature in the 2d spin glass model. Recently also the frac-
tal properties of the domain walls in 2d spin glasses with
Gaussian couplings became important: They have a frac-
tal dimension of d f D 1:27(1) and it was argued [45] that
they might be a realization of a stochastic Loewner evolu-
tion (see [46] for a review) realized in disordered systems.

Three Dimensions, Non-planar Graphs

As we mentioned, in any other case except the planar lat-
tice situation discussed above the spin glass problem is
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NP-hard. In what follows we would like to sketch the
idea of an efficient but non-polynomial algorithm [39]. To
avoid confusion with the minimum cut problem we dis-
cussed in connection with maximum flows one calls the
problem (27) a max-cut problem (since finding the mini-
mum of H is equivalent to finding the maximum of �H).

Let us consider the vector space RA . For each cut [S; S]
define�(S;S) 2 RA, the incidence vector of the cut, by�(S;S)e
D 1 for each edge e D (i; j) 2 (S; S) and �(S;S)e D 0 other-
wise. Thus there is a one-to-one correspondence between
cuts in G and their f0; 1g-incidence vectors in RA . The
cut-polytope PC (G) of G is the convex hull of all incidence
vectors of cuts inG : PC (G) D convf�(S;S) 2 RA j S � Ag.
Then the max-cut problem can be written as a linear pro-
gram

max fuTx j x 2 PC (G)g (30)

since the vertices of PC (G) are cuts ofG and vice versa. Lin-
ear programs usually consist of a linear cost function uTx
that has to be maximized under the constraint of vari-
ous inequalities defining a polytope in Rn (i. e. the con-
vex hull of finite subsets of Rn) and can be solved for ex-
ample by the simplex method, which proceeds from cor-
ner to corner of that polytope to find the maximum (see
e. g. [40,41,48]). The crucial problem in the present case is
that it isNP-hard to write down all inequalities that rep-
resent the cut polytope PC (G).

It turns out that also partial systems are useful, and this
is the essential idea for an efficient algorithm to solve the
general spin glass problem as well as the traveling sales-
man problem or other so called mixed integer problems
(i. e. linear programs where some of the variables x are
only allowed to take on some integer values, like 0 and 1
in our case) [7,47]. One chooses a system of linear in-
equalities L whose solution set P(L) contains PC (G) and
for which PC (G) D convex hull fx 2 P(L)jx integerg. In
the present case these are 0 � x � 1, which is trivial, and
the so called cycle inequalities, which are based on the ob-
servation that all cycles inG have to intersect a cut an even
number of times. The most remarkable feature of this set L
of inequalities is the following:

The separation problem for a set of inequalities L con-
sists in either proving that a vector x satisfies all inequal-
ities of this class or to find an inequality that is violated
by x. A linear program can be solved in polynomial time
if and only if the separation problem is solvable in poly-
nomial time [49]. The separation problem for the cycle in-
equalities can be solved in polynomial time by the cutting
plane algorithmwhich, starting from some small initial set
of inequalities, generates iteratively new inequalities until
the optimal solution for the actual subset of inequalities is

feasible. Note that one does not solve this linear program
by the simplex method since the cycle inequalities are still
too numerous for this to work efficiently.

Due to the insufficient knowledge of the inequali-
ties that are necessary to describe PC (G) completely, one
may end up with a non-integral solution x�. In this case
one branches on some fractional variable xe (i. e. a vari-
able with x�e /2 f0; 1g), creating two subproblems in one of
which xe is set to 0 and in the other xe is set to 1. Then one
applies the cutting plane algorithm recursively for both
subproblems, which is the origin of the name branch-and-
cut. Note that in principle this algorithm is not restricted
to any dimension, boundary conditions, or to the fieldless
case. However, there are realizations of it that run fast (e. g.
in 2d) and others that run slow (e. g. in 3d) and it is ongo-
ing research to improve on the latter, for an overview over
the current status see [47].

Potts Free Energy and Submodular Functions

The problem addressed in this chapter is not a low tem-
perature problem but concerns the computation of the free
energy of a Potts model (see [50] for a review) at any tem-
perature, including some phase transition temperatures.
To transform the problem of computing the free energy
into an optimization problem (i. e. find a minimum in a fi-
nite set), one needs to take some limit. Usually this is a zero
temperature limit as it was for all applications discussed so
far in this article. Here this will be the limit of an infinite
number of states.

Consider the q-state Potts model on a d-dimensional
hyper-cubic lattice with periodic boundary conditions de-
fined by the Hamiltonian:

H D �
X

hi ji

Ji jı(�i ; � j) ; (31)

where �i are q-state Potts variables (�i 2 f1; : : : ; qg lo-
cated at lattice sites i, the sum goes over all nearest neigh-
bor pairs hi ji of the lattice, and Ji j > 0 are ferromag-
netic couplings (not that ı(�; � 0) is the Kronecker-delta,
which means ı(�; � 0) D 1 for � D � 0 and ı(�; � 0) D 0 for
� ¤ � 0). The case q D 2 corresponds to the Ising model.
In the random bond Potts model, which is of interest
here, the couplings Ji j are random variables. In d � 2 di-
mensions the Potts model has phase transition at some
critical temperature T from a paramagnetic to a ferro-
magnetic phase. Thermodynamic properties of the q-state
Potts model are computed via its partition function

Z D
X

f
g

exp

0

@
X

i j

�ˇJi jı(�i ; � j)

1

A : (32)
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The first sum runs over all possible spin configuration, i. e.
it involves qN terms, whereN is the number of spins in the
system and ˇ D 1/T is the inverse temperature.

In the so-called random cluster representation [51] the
partition sum can be written as a sum over all subsets
U � E of the set of edges (or bonds)

Z D
X

f
g

Y

i j

exp
�
�ˇJi jı(�i ; � j)




D
X

f
g

Y

i j

�
1C vi jı(�i ; � j)




where vi j D exp(ˇKi j) � 1. Note that the Kronecker-delta
can only take on the values zero and one by which it is pos-
sible to identify exp(Jı) D 1C ı(exp(J)� 1) D 1C vı.
Again one can regard the lattice as a graph G D (V ; E),
where the sites and the bonds of the lattice are the ver-
tices V and the edges E of the graph. Then a careful book-
keeping of the terms in the development of the above ex-
pression leads to:

Z D
X

G0�G

qc(G
0)
Y

e2G0
ve ; (33)

where G0 denotes any subgraph of G, i. e. a graph, possi-
bly not connected (but all vertices are kept), where some
edges of G have been deleted (there are 2m subgraphs
wherem is the number of edges of G). c(G0) is the number
of connected components of the subgraphG0. For example
for the empty subgraph G0 D ; the number of connected
components is the number of sites, while for G0 D G it is
one. The product in (33) is over all the edges in G0 with
the convention that the product over an empty set is one.
If the parameter ˇ is small (i. e. high temperature) then
the parameters vi j are small and, summing in (33), only
the subgraphs with few edges provides an approximation
to the partition function: this is a high temperature devel-
opment. Note also the way the parameter q appears in (33):
it can be extended to non integer values, relating the Potts
model to other problems (percolation, etc . . . ) [58].

Following [52] one can map the computation of the
partition function Z of any ferromagnetic Potts model in
the limit q!1 onto an optimization problem by intro-
ducing another parametrization of the couplings with new
variables we defined by

ve D qwe :

Inserting this expression in (33) one gets Z D
P

G0�G
qc(G0)C

P
e2G0 we , and defining f (G) D c(G)C

P
e2G we :

Z D
X

G0�G

q f (G0) :

In the limit q!1 only the subgraphs G? maximiz-
ing f (G) will contribute, and computing the partition
function of the Potts model in the infinite number of
states limit amounts to finding the subgraphs G0 of the
graph G maximizing the function f , i. e. minimizing the
function [52]:

fP(G0) D �

 

c(G0)C
X

e2G0
we

!

: (34)

It turns out that this function has a property which allows
to minimize it very efficiently: it is a submodular function.

Submodular Functions

The concept of a submodular function in discrete opti-
mization appears to be in several respects analogous to that
of a convex function in continuous optimization. In many
combinatorial theorems and problems, submodularity is
involved, in one form or another, and submodularity often
plays an essential role in a proof or an algorithm. More-
over, analogous to the fast methods for convex function
minimization, it turns out that submodular functions can
also be minimized fast, i. e. in polynomial time.

Submodularity is a special property of set functions,
which are defined as follows: Let V be a finite set and
2V D fX j X � Vg be the set of all the subsets of V .
A function f : 2V ! R is called a set function.

Now a set function f is submodular if for all subsets
A � V and B � V :

f (A)C f (B) � f (A\ B)C f (A[ B) : (35)

It is simple to show that a function f is submodular if
and only if for any subsets S � R � V and for any x 2 V :

f (S [ fxg) � f (S) � f (R [ fxg) � f (R) : (36)

This means intuitively that adding an element to a “small”
ensemble S (since S � R) has more effect than adding to
a “large” ensemble R.

The function (34) fP(A) D �(c(A)C w(A)) is sub-
modular, because the function �c(A) is submodular (and
the function w(A) is modular: Take two sets of edges
A � B and an edge e. Inspecting the three possible cases:
e 2 A, e … A and e 2 B, e … A and e … B one sees that
c(A[ feg) � c(A) � c(B [ feg) � c(B), which is the re-
verse of (36), so that the function�c is a submodular func-
tion. Note that c(E0) with E0 � E counts the number of
connected components of the graph G0 that contains all
vertices V of the complete graph but only the edges in E0.
Thus adding an edge will never increase the number of
components.
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On the other hand it is straightforward to see that the
function w(G) D

P
e2G we verifiesw(A[C)Cw(A\C) D

w(A)C w(C). It is a so-called modular function. Conse-
quently the function (34) fP is a submodular function. In
summary we are looking for the sets of edges minimizing
the submodular function fP for which a strongly polyno-
mial algorithm has been recently discovered.

In passing we note that we encountered other exam-
ples of submodular functions already in the preceding sec-
tions, namely the function that defines the costs of cuts in
a graph with positive edge weights, which occurs the in-
terface problem and the random field Ising model in the
last sections: Take a graph G D (V ; E) and define C to be
a function of the subsets of the V and C(U � V) is the
number of edges having exactly one end in U. This func-
tion can be generalized to the case where the edges are di-
rected and weighted, i. e. each edge carries an arrow and
a positive number. The function C(U � V) is then the
sum of the weight of the edges having the beginning vertex
in U and the ending vertex not in U. This kind of function
is generally called a “cut” and is submodular.

Minimization of Submodular Function

The minimization of any submodular function can be
done in polynomial time. This was first published in ref-
erence [54] in 1981. In this paper the authors utilize the
so-called ellipsoid method. However this method is not
a combinatorial one and is far from being efficient. In
that respect this result was not quite satisfactory at least
for the practical applications. Eighteen years later, Iwata–
Fleischer–Fujishige [55], and independently Schrijver [56]
discovered a combinatorial method which is fully satis-
factory from the theoretical, as well as from the practical,
point of view.

The general method uses a mathematical program-
ming formulation. The problem is algebraically expressed
as a linear program, i. e. a set of variables yS associated to
each subset S � V is introduced, these variables are sub-
jected to constraints and a linear function F of these vari-
ables is to be minimized. The constraints include a set of
linear equations and the condition that each of the yS is
zero or one. This last condition is in general extremely dif-
ficult to realize. However, it turns out that a theorem due
to Edmonds [57] indicates this condition can be simply
dropped, and that automatically the set of values yS which
minimize F will all be zero or one! Actually only one vari-
able yS? D 1 will be non zero and it is precisely associated
to the optimal set. Combined with the dual version of this
linear program, it provides a characterization of the opti-
mal set.

The general algorithmmentioned above can be applied
to minimize (34), however, due to the specific form of the
function to minimize, a more suitable method does exist.
For this a property that is true for any submodular func-
tion is useful. To emphasize that the function f to mini-
mize is defined on all the subsets of a set E we will label f
with the index E as fE . Let us now consider a subset F � E;
one can define a set function on F by fF (A) D fE (A) for
any A � F . If the function fE is submodular then its re-
striction fF is also submodular. We have the following
property:

Let F � E and e 2 E, if AF is an optimal set of the set
function fF defined on F, then there will be an optimal set
AF[feg of the function fF[feg defined on F [ feg such that
AF � AF[feg.

To make the notation simpler we denote the function
fF[feg on F [ feg by f1. Let A be an optimal set of fF on F
and B an optimal set of f1 on F [ feg. One has

f1(A[ B) � f1(A)C f1(B) � f1(A\ B) (37)

since f1 is submodular. But f1(A) D fF(A) and
f1(A\ B) D fF (A\ B) since both A and A\ B are in A.
Since A is an optimal set one has fF(A) � fF (A\ B) and
consequently f1(A) � f1(A\ B) � 0. Inserting this last in-
equality into (37) one finds that f1(A[ B) � f1(B) which
proves that A[ B is one of the optimal sets (Q.E.D.).

This property has an important consequence. Indeed
let us suppose that the optimal set has been found for
a subset F of E. Then all the elements of E which have
been selected as belonging to the optimal set of F will still
belong to one optimal set of all the sets G � F . In other
words, let us find the optimal set for fe0; e1g where e0 and
e1 are arbitrary elements of E; then if we find that any of
these two elements belongs to the optimal set, it will belong
to one optimal set for F � E! Such an algorithm which
makes a definitive choice at each step is called a greedy al-
gorithm.

Based on this observation an efficient algorithm for the
minimization of (34) was developed in [59], see also [60].

Results

The algorithm based on the ideas mentioned before and
presented in detail in [59,60], was applied to various two
dimensional and three dimensional lattices. A realization
of the disorder is chosen accordingly to a probability dis-
tribution. In practice all the weights w(e) on the edge e
are rational numbers with a common integer denomina-
tor q. In other words, we choose an integer p(e) for each
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edge and set w(e) D p(e)/q. To work only with integers
one maximizes the product qf :

q f (A) D qC(A)C
X

e2A

p(e) :

It is clear that if q is small compare to all the p(e), then
all the weights w(e) will be large and the optimal set will
be the set of all edges. On the contrary if q is large all the
weights will be small and the optimal set will be empty.
These two situations are easy to handle. Between this two
limits the optimal set grows, and for a precise value qc of q,
which depends on the lattice, the optimal set percolates.
This value corresponds to a phase transition. Depending
on the lattice under consideration and on the distribution
of the random variables p(e) this transition can be first or
second order.

In Fig. 8, one optimal set is shown for a lattice where
each edge carries a weight 1/6 or 5/6 with probability one
half (i. e. it is a critical point). The edges from the optimal
set belonging to the percolation cluster are shown in black,
while the others are shown in gray. The percolation clus-
ter, which is the largest connected component in the op-
timal subgraph G0 � G is fractal with a fractal dimension
d f D 1:809 that is related to the critical exponent x D ˇ/�

Optimization Problems and Algorithms from Computer Science,
Figure 8
A 512� 512 lattice. The edges of the optimal set belonging to
the percolating cluster are shown in black, and the edges of
the optimal set not belonging to the optimal set are in gray
(from [60])

for the magnetization of the random bond q!1 Potts
model (31) in two dimensions via x D 2 � d f D 0:191.
Surprisingly this agrees within the error bars with themag-
netization exponent x D (3 �

p
5)/4 of the random trans-

verse Ising chain [62], which is a one-dimensional quan-
tum spin model. A discussion of this observation and de-
tails of the computations can be found in [61].

Future Directions

We have reviewed several applications of polynomial op-
timization algorithms from computer science to disor-
dered systems in statistical physics. They were used exten-
sively in the recent years to compute numerically universal
properties like critical exponents, domain wall exponents
and geometrical features like roughness and stiffness with
much higher precision than with Monte-Carlo methods,
which suffer notoriously from equilibration problems.
A number of important issues, which were controver-
sially debated within different analytical could be clari-
fied, numerically, in this way – as for instance the nature
of the low temperature phase of the superrough phase in
the two-dimensional Bragg glass [19,63], the absence of
a stable glass phase in the strongly screened vortex glass
model [21] and the issue of many states in various two-
dimensional glassy models [64]. Other questions still re-
main to be answered, as for example the phenomenon
of an apparent non-universality in the three-dimensional
random field Ising model [65].

NP-hard problems occurring in the statistical physics
of disordered systems, still remain a challenge: Examples
are the computation of ground states of spin glass mod-
els on non-planar graphs, like the three-dimensional spin
glass or the random field Potts model for three or more
Potts states [66]. Stochastic optimization techniques like
hysteretic optimization [67] or extremal optimization [68]
have reached a high level of sophistication but naturally
suffer from the lack of a proof of optimality of the result-
ing solution. Progress in the development of exact and ef-
ficient algorithm that can handle sufficiently large system
sizes to perform a reliable finite size scaling analysis is be-
ing made [47] and highly rewarding.

The cross-fertilization between computer science and
statistical physics is also fruitful in the other direction:
Phase transitions that occur in some combinatorial op-
timization problems like the satisfiability problem (SAT)
were studied intensively in recent years by physicists and
remarkable progress has been achieved in understanding
it and inventing efficient algorithms. These developments
were not covered in this article, excellent introductions
can be found in [69].
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Glossary

Reference frame A reference frame can be determined
by a set of solid bodies, through which we can de-
fine a three dimensional geometric figure, for exam-
ple a triedron (three non planar axes starting from
a point). The surface of the Earth can be used to de-
fine a reference system. A moving car can be also used
to define a reference frame, different from the first one.

Inertial frame An inertial frame is a special class of refer-
ence frames, in which the basic laws of motion (New-
ton’s laws) are valid. According to Galileos’ Principle
of Relativity, any frame of reference moving uniformly
(with constant velocity without rotation) with respect
to an inertial frame is also an inertial frame. A frame
of reference which is rotating with respect to an iner-
tial frame is not inertial. The criterion for a frame to
be inertial is Newton’s first law to be valid. This means
that in an inertial frame a free body is either at rest or
moves in a straight line with constant velocity. The best
approximation in nature of an inertial frame is that
frame which is defined by a triedron whose origin is
at the center of mass of our Solar System and its three
axes are in three fixed directions in space, defined by
three distant stars.

Degrees of freedom The number of independent vari-
ables that are needed to determine the position of a dy-
namical system is called the number of degrees of free-
dom. For example, a particle moving freely in space has
three degrees of freedom, since its position is deter-
mined by its three Cartesian coordinates (x1; x2; x3),
which are independent.

Phase space Consider a space whose coordinates deter-
mine exactly the state of the system. This space is called
the state space or the phase space of the system. Each
point of the phase space determines uniquely the initial

conditions of the motion. The evolution of the system
in the phase space is represented by a smooth curve,
which is called the phase curve. The phase curves do
not intersect, otherwise the point of intersection would
correspond to two different solutions. The set of all
phase curves is called the phase diagram and gives im-
portant information of the stable and unstable regions
of the phase space. For gravitational systems, the phase
space is the space of coordinates and velocities of all the
bodies. Usually, instead of the velocities, the moments
are used in the definition of the phase space. In a grav-
itational system with n degrees of freedom, the phase
space has 2n dimensions. For example, a body moving
in the plane under the action of a force, has two degrees
of freedom (coordinates x, y) and its phase space is the
four-dimensional space x, y, px D mẋ, py D mẏ.

Orbit An orbit of a body, or a set of bodies, considered
as point masses, is the path that the bodies describe in
a reference frame. The orbit of the same body or set of
bodies is different in different frames of reference.

Periodic orbit A periodic orbit is the orbit of one or more
bodies that repeats itself after a certain time, which is
called the period of the periodic orbit. The periodicity
property is closely related to the frame of reference to
which the motion is referred to. For example, an orbit
may be periodic in a rotating frame, but not in the in-
ertial frame. In this latter case, for two or more bodies,
it is the relative configuration that is repeated in the
inertial frame.

Poincaré map The Poincaré map is a method by which
we transform the continuous flow of a dynamical sys-
tem in its n-dimensional phase space, into a discrete
map in a reduced phase space. The map is obtained
by taking the intersections of the continuous flow
in the original phase space with a surface of section,
defined properly. This surface of section is (n � 1)-
dimensional, in general, or (n � 2)-dimensional if an
integral of motion exists, which is the energy inte-
gral in gravitational systems. These will be explained
in detail in Sects. “The Poincaré Map,” “Poincaré Map
in Hamiltonian Systems.” A periodic orbit appears as
a fixed point on the Poincaré surface of section. The
Poincaré map is very useful in the study of ordered
and chaotic motion in a dynamical system, especially
in systems with few degrees of freedom.

Stability The notion of stability refers to the behavior of
the orbits in the vicinity of a periodic orbit. If a slight
change in the initial conditions results to a new orbit,
called the perturbed orbit, which deviates much from
the periodic orbit, then the periodic orbit is called un-
stable. In the gravitational systems that we will study,
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this deviation is exponential. If on the other hand, the
perturbed orbit stays close to the periodic orbit, the pe-
riodic orbit is called stable. But there are different as-
pects of stability. For example, if the perturbed orbit,
considered as a geometrical figure, is close to the pe-
riodic orbit, then the periodic orbit is called orbitally
stable. However, in this latter case it may happen that
two bodies, one on the periodic orbit and one on the
perturbed orbit, which start very close to each other,
may deviate much as each one moves on its own or-
bit, although the geometric figures of the two orbits are
close to each other. In this aspect, the orbit is consid-
ered as unstable. A Keplerian elliptic orbit, in the two-
body problem, belongs to this latter category. A differ-
ent type of stability is the asymptotic stability. In this
case any perturbed orbit, not only stays in the vicinity
of the periodic orbit, but tends asymptotically to the
periodic orbit. In gravitational systems asymptotic sta-
bility does not appear, unless there exists a dissipation
to the system.

Ordered and chaotic motion The notion of chaoticity is
related to the deviation of a perturbed orbit from
a given orbit. It may happen that the perturbed orbit
does not deviate much as time goes on. In this case we
say that we are in an ordered region. The prediction of
the evolution of the system in this case is possible. In
some cases however, the perturbed orbit deviates ex-
ponentially from the original orbit. Prediction is not
possible for a long time. In this latter case we are in
a chaotic region. In general, both ordered and chaotic
regions exist in the same dynamical system.

Definition of the Subject

By the term orbital dynamicswemean the study of the mo-
tion of one ormore bodies.Motion is one of the first things
that a human being noticed, since the very early stages
of human life. Apart from the motion of himself, walking
around, he also realized that everything around him is not
still, but changes position, being it a wild animal, a dry leaf
drifting in the wind, the motion of clouds in the sky, or the
change of the position of the celestial bodies, most notably
of the Sun and the Moon.

Evidently, motion is one of the most important aspects
in everyday life. By the term motion we mean the change
of the position of one or more bodies in space, with re-
spect to the other bodies in that region. If only one body
existed in the universe, motion could not be defined. This
makes necessary the introduction of an important notion
in physics, the frame of reference. The surface of the Earth,
for example, defines a frame of reference, with respect to

which we determine the position of a body and its mo-
tion, as the body changes position. But a bus moving on
the road is also a frame of reference, different from that
defined by the surface of the Earth, i. e., the road. And it
is a different thing if the bus moves on a straight line with
constant velocity, or makes rapid turns following a diffi-
cult mountain road. Among all possible frames of refer-
ence, the inertial frames of reference have a special status
in the study of motion. It is in these frames that the basic
laws of motion (Newton’s laws) are valid.

If the dimensions of the body can be considered as neg-
ligible, with respect to its surroundings, we can consider
it as a point mass. However, in many cases, the finite di-
mensions of a body cannot be ignored. In this case its mo-
tion cannot be described by the motion that a point de-
scribes, but we have to consider also the rotation of the
body. Whether we consider a body as a point mass or as
a body with finite dimensions, depends on the particular
study. For example the Earth is considered as a point mass
in the study of its motion around the Sun, but as a finite
body when we study the motion of an artificial satellite.
In the present study we restrict ourselves in the motion of
point masses. The path that such a body describes, is called
the orbit of the body.

The motion of the bodies takes place under the action
of forces which follow definite laws. In everyday life, the
dominant force is the gravitational interaction between the
bodies, according to Newton’s law of gravity. Although it
is, by far, the weakest force in nature, it is the main force
that we feel in everyday life, in addition to the electro-
magnetic force, which also manifests itself in macroscopic
phenomena. These forces affect the motion of the bodies
through definite laws, expressed by differential equations,
which are deterministic equations, i. e. to a certain set of
initial conditions there exists one and only one final result,
which in our case is a definite orbit. In classical physics,
these laws areNewton’s laws of motion. They are expressed
by differential equations of the second order, which implies
that the initial conditions that define the motion are the
initial position and the initial velocity. This is the essential
property of Newton’s laws. In classical physics we assume
that it is possible to know exactly, at the same time, the
position and the velocity of a body. In some other world,
where the laws of motion were expressed by differential
equations of the third order, the initial acceleration would
be also necessary to define the motion. Alternatively, if the
laws of motion were expressed as differential equations of
the first order, only the initial position would be enough to
determine the motion.

As we mentioned, the equations of motion are deter-
ministic. This implies that motion would be exactly de-
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fined and that we could predict the motion of one or more
bodies, for example the motion of an asteroid in our So-
lar System, if we knew its initial conditions. This idea pre-
vailed classical physics until the sixties of the 20th century.
But what will happen if we make a small error in the initial
conditions? Does it have a great effect on the final posi-
tion, after a certain time (for example a few million years
for the asteroid), or the final error will be of the same or-
der as the initial error? In the latter case the small error,
due for example to a not very accurate measurement of
the position and the velocity of the asteroid, is not im-
portant. In many cases however, including an asteroid in
certain regions in the asteroid belt close to some mean
motion resonance with Jupiter, the orbit is very sensitive
to a change in the initial conditions. In this latter case,
after a certain time, the orbit which corresponds to the
slightly changed initial conditions, differs very much from
the original orbit, because it deviates exponentially. These
orbits, which are very sensitive to the initial conditions, are
called chaotic orbits. In such a case prediction of the final
position of the body, after a certain time, is not possible,
because a very small error in the initial conditions, beyond
the accuracy of the observations for the initial conditions,
will give a completely different final position, due to the
exponential deviation between the two orbits. As we will
see, all the physical systems are non integrable and conse-
quently they present chaotic behavior, at least for some ini-
tial conditions, and for this reason prediction of the evo-
lution of such a system is not possible, after a certain time
interval. This time interval is different in different systems
and may be two weeks for meteorological systems or some
million years for the motion of an asteroid.

Among all possible orbits in a dynamical system, the
periodic orbits play a dominant role in the study of the
evolution of the system, although it is known that they
form a set of measure zero. This is so because, as it will
become clear in the following, the periodic orbits are the
“backbone” of the topology of the phase space, because
their position and their stability character (stable or un-
stable) determine the structure of the phase space. It is
close to the unstable periodic orbits that chaotic motion
appears. A special class of periodic orbits in dynamical sys-
tems that describe the motion in the Solar System are the
resonant periodic orbits, because around the stable reso-
nant orbits islands of stable motion exist and the system
can be trapped in these regions. In addition, since in a sys-
tem there exist more that one resonances, the overlap of
these resonances, as a perturbation increases, will generate
chaotic motion.

In the following we restrict ourselves to the study of
motion under gravitational forces, focusing on our Solar

System and on extrasolar planetary systems, but the theory
is applicable in all cases of motion, under any force field.

Introduction

The Newtonian gravitational force is the dominant force
in the N-Body systems in the universe, as for example in
a planetary system, a planet with its satellites, a multiple
stellar system, or a galaxy.

In many cases, there is only one massive body, whose
gravitational attraction provides the dominant force, as is
the case with a planetary system, where the Sun is the main
attracting body, or a planet surrounded by satellites. In this
case the motion of the small bodies (planets or satellites)
follow Keplerian orbits, perturbed by the gravitational in-
teraction between the small bodies. This is a nearly inte-
grable dynamical system. In these systems resonances ex-
ist between the small bodies in their motion around the
massive body, as will be explained in the following. These
correspond to periodic motion, and this makes clear the
importance of the resonances in the dynamical properties
of a nearly integrable system.

The simplest model of a gravitational system is a sys-
tem of two bodies moving in Keplerian orbits around their
common center of mass. This is an integrable system. In
such systems all motion is ordered and chaos never ap-
pears. We consider now a hierarchy of models, starting
from the above mentioned integrable system and adding
more bodies to the system. We have different models,
which are used to study particular systems. All these sys-
tems are not integrable, although they are nearly inte-
grable. In these latter systems both ordered and chaotic re-
gions appear, as we will see in the following. We consider
two basic models:

The restricted three-body problem: Two bodies of fi-
nite masses, called primaries, revolve around their com-
mon center of mass in circular or elliptic orbits and a third
body with negligiblemass moves under their gravitational
attraction, but does not affect the orbits of the two pri-
maries. In most astronomical applications the second pri-
mary has a small mass compared to the first primary (the
Sun), and consequently the motion of the third, massless,
body is a perturbed Keplerian orbit. This is a model for the
study of an asteroid (Jupiter being the second primary) or
a trans-Neptunian object (Neptune being the second pri-
mary).

The general planetary three-body problem: Three bod-
ies with finite masses moving under their gravitational
attraction. This is a model for a triple stellar system. In
many astronomical applications one of the three bodies
has a large mass and the other two bodies have small,
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but not negligible masses. This is a model for an extraso-
lar planetary system, or a system of two satellites moving
around amajor planet. In the latter two cases the two small
bodies move in perturbed Keplerian orbits.

The long term evolution of the system depends on the
topology of its phase space and the existence of ordered
or chaotic regions. The topology of the phase space is de-
termined by the position and the stability character of the
periodic orbits of the system (fixed points on a Poincaré
map on a surface of section). Islands of stable motion exist
around the stable periodic orbits. Chaotic motion appears
at the unstable periodic orbits. Thismakes clear the impor-
tance of the periodic orbits in the study of the dynamics of
such systems.

We will start with the basic elements of gravitational
systems in general. Then we will focus our attention to the
study of systems of two degrees of freedom, and then ex-
tend the results to three degrees of freedom. The study will
be for a general dynamical system, with particular empha-
sis on Hamiltonian systems, because the gravitational sys-
tems are Hamiltonian.

Basic Equations and Integrals of Motion

The gravitational force between two bodies,Ni,Nj, is given
by Newton’s law of gravitation

Fi j D �
Gmimj

r2i j
;

whereG is the gravitational constant,mi,mj are themasses
of the bodiesNi andNj and ri j is their distance. The minus
sign indicates attraction. We have 3N degrees of freedom
and the evolution in space is given by the system of differ-
ential equations

mi Ëri D EFi ;

where

EFi D �
NX

jD1

Gmimj(Eri � Er j)
r3i j

D �
@V
@r̄i

;

and

Eri(xi ; yi ; zi ) (i D 1; 2; : : : N)

is the position vector of the bodyNi. The system is conser-
vative, and the potential function is

V(Erm � Ern) D �
X

i j

Gmimj

ri j
: 1 � i < j � N :

The gravitational system of N bodies can be formulated in
Hamiltonian dynamics, and the Hamiltonian function is

H D
X Ep2i

2m
C V ; Epi D mi Ėri :

We have the following integrals of motion:

Ercm D

X

miEri
�

Center of mass

Ep D
X

mi Evi D constant Linear momentum

EL D
X
Eri � mi Evi D constant Angular momentum

E D T C V D constant Energy integral:

The total momentum of the system is equal to Ep D mEvcm,
Evcm being the velocity of the center of mass. We can as-
sume that the total momentum is equal to zero, Ep D 0,
which implies that the center of mass is at rest, Evcm D 0.
Consequently, in the system where the center of mass is at
rest, we have 3N � 3 degrees of freedom. In this latter case
we can take Ercm D 0.

Periodic Orbits in Systems
with Two Degrees of Freedom

Periodic Orbits

The periodic orbits play an important role in understand-
ing the dynamics of a system, because they determine crit-
ically the topology of the phase space. This will become
clear in the following. For this reason it is important to
know the basic families of periodic orbits in a dynami-
cal system, because they are the “backbone” of the phase
space.

Let us consider a dynamical systemwith two degrees of
freedom, defined by the set of two second order differential
equations

ẍ1 D F1(x1; x2; ẋ1; ẋ2) ;
ẍ2 D F2(x1; x2; ẋ1; ẋ2) : (1)

The initial conditions that determine a solution are
(x10; x20; ẋ10; ẋ20) and the corresponding solution has the
form

x1(x10; x20; ẋ10; ẋ20; t) ;
x2(x10; x20; ẋ10; ẋ20; t) :

The solution is periodic, with period T, if

xi(x10; x20; ẋ10; ẋ20; t C T)
D xi(x10; x20; ẋ10; ẋ20; t) ;

for every t.
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Existence of Symmetric Periodic Orbits

We assume that the differential equations (1) are invariant
under the transformation

x1 ! x1 ; x2 ! �x2 ; t ! �t:

This property appears in several models that are of astro-
nomical interest. This means that if x1(t); x2(t) is a solu-
tion, then x1(t);�x2(�t) is also a solution. Note that this
second solution is the symmetric of the first solution with
respect to the x1-axis. Consequently, if an orbit starts from
the x1-axis perpendicularly, ẋ10 D 0, and crosses again the
x1-axis perpendicularly, ẋ1 D 0, the orbit is closed and is
a symmetric periodic orbit with respect to the x1-axis.

The initial conditions of a symmetric periodic orbit are
(x10; x20 D 0; ẋ10 D 0; ẋ20), which means that a symmet-
ric periodic orbit is determined only by the two nonzero
initial conditions x10; ẋ20. From the above we see that the
periodicity conditions are

x2(x10; 0; 0; ẋ20; T/2) D 0 ;
ẋ1(x10; 0; 0; ẋ20; T/2) D 0 ;

which imply that the orbit starts perpendicularly from the
x1-axis (x20 D 0; ẋ10 D 0) and crosses again perpendicu-
larly the x1-axis after a time interval equal to half the pe-
riod T. We remark that the second perpendicular crossing
may take place after several (non perpendicular) crossings
from the x1-axis.

The periodic orbits are not isolated, in general. They
belong to families, along which the period varies. A family
of symmetric periodic orbits is represented by a continu-
ous curve in the space of initial conditions x10; ẋ20. This
curve is called a characteristic curve.

Variational Equations

We study now the behavior of the system in the vicinity
of a specific orbit, by considering perturbed initial con-
ditions, i. e. initial conditions in the vicinity of the initial
conditions of this orbit.

We express the system of differential equations (1) as
a system of four differential equations of the first order,

ẋi D fi(x1; x2; x3; x4) ; (i D 1; : : : 4) (2)

where x3 D ẋ1, x4 D ẋ2. Let xi D xi (x10; x20; x30; x40; t);
(i D 1; : : : 4) be a solution of the system (2), nonperi-
odic in general, corresponding to the initial conditions
x1(0); x2(0); x3(0); x4(0). We consider new initial condi-
tions, in the vicinity of these initial conditions, of the form

xi (0)C �i(0), where �i(0) are small. The new solution can
be expressed in the form

x0i(t) D xi(t)C �i(t) ; (i D 1; : : : 4)

where �(t) is the deviation vector between the initial so-
lution xi(t) and the perturbed solution x0i (t), at the same
time t, �(t) D x0i(t) � xi(t). The behavior of the system in
the vicinity of the solution xi (t) depends on the deviation
vector �(t).

We assume that the initial perturbation �(0) is small,
and consequently, for continuity reasons, the deviation
�(t) should be also small, at least for a finite time inter-
val. For this reason we linearize the system of differential
equations (2), to first order terms in the �i(t), by substi-
tuting the perturbed solution x0i(t) into the system (2) and
keeping only the first order terms in � i. We obtain the sys-
tem of variational equations,

�̇i D

4X

kD1

pik�k ; pik D
�
@ fi
@xk

�

xi (t)
; (i D 1; : : : 4) (3)

which describes the evolution of the system (2) in the
neighborhood of the orbit xi(t), to first order terms in the
deviations. The partial derivatives are computed for the so-
lution xi(t). This is a linear system with time dependent
coefficients.

The general solution of the linear system (3) is ex-
pressed as a linear combination of four linearly indepen-
dent solutions. In particular, let us consider a 4 � 4 ma-
trix�(t) whose columns are four linearly independent so-
lutions corresponding to the initial conditions �(0) D I4,
where I4 is the 4 � 4 unit matrix. This matrix is called fun-
damental matrix of solutions and the general solution of
the variational equations is expressed in the form

�(t) D �(t)�(0) : (4)

A basic property of the matrix�(t) is the Liouville–Jacobi
formula [24,58].

det�(t) D det�(0) exp
Z t

0
trace(P)dt ; (5)

where P is the matrix of the coefficients of the variational
equations (3), with elements pi j. This relation gives the
change in time of the determinant of the matrix �(t),
which describes important properties of the evolution of
the system in phase space, as we shall see in the follow-
ing. Of special importance is the case where trace(P) D 0,
because in this case the determinant of the matrix �(t) is
constant.
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Another important property is that the columns of
the matrix �(t) are the partial derivatives of the solu-
tion xi(x10; x20; x30; x40; t) with respect to the initial con-
ditions: The solution xi(x0; t) satisfies the system (2),

@xi(x0; t)
@t

D fi(x1(x0; t); x2(x0; t); x3(x0; t); x4(x0; t)) ;

(i D 1; : : : 4) :

If we apply to the above equations the operator @/@x j0,
j D 1; : : : 4, we obtain

@

@t

�
@xi
@x j0

�
D
X

k

�
@ fi
@xk

�
@xk
@x j0

; (i D 1; : : : 4) (6)

for each x j0. We note that the system (6) is the system of
variational equations (3) satisfied by the vector (@x1/@x j0;
@x2/@x j0; @x3/@x j0; @x4/@x j0). In addition, we note that
@xi /@x j0 D ıi j for t D 0, which implies that these vectors,
for j D 1; : : : 4, are the four columns of the fundamental
matrix of solutions�(t). This means that the fundamental
matrix of solutions�(t) is the Jacobian of the solution x(t)
with respect to the initial conditions,

�(t) D
@(x1; x2; x3; x4)

@(x10; x20; x30; x40)
: (7)

Linear Stability of a PeriodicOrbit

The variational equations (3) are a system of four linear
differential equations with time dependent coefficients. If
the solution x(t) is T-periodic, then the partial derivatives
are also T-periodic. In this latter case the system of varia-
tional equations is a linear system with periodic coefficients.
The theory related to the study of such systems is the Flo-
quet theory [24] and some elements of it will be presented
in the following sections.

Existence of a Periodic Solution

We shall prove that the derivative ẋi(t) of the periodic so-
lution xi (t) is a solution of the variational equations. In-
deed, the solution xi(t) satisfies the system (2)

ẋi(t) D fi(x1(t); x2(t); x3(t); x4(t)) ; (i D 1; : : : 4)

and if we apply the operator d/dt we obtain

d
dt

(ẋi(t)) D
4X

jD1

�
@ fi
@x j

�

xi (t)
ẋ j(t) :

This is the system of variational equations (3), for the so-
lution �i D ẋi(t). So we come to the conclusion that the
variational equations that correspond to a T-periodic orbit
have always a T-periodic solution, which is the derivative
ẋi(t) of the periodic solution.

Mapping at Integral Multiples of the Period.
The Monodromy Matrix

Let xi (t) be a periodic orbit and x0(t) a perturbed orbit,
which, to a linear approximation, can be expressed in the
form

x0i(t) D xi(t)C �i(t) ;

where �i (t) is the solution of the variational equations.
This latter solution is expressed in the form

�(t) D �(t)�(0) ; (8)

and for t D T ,

�(T) D �(T)�(0) : (9)

From this expression we obtain, by induction,

�(nT) D [�(T)]n�(0) : (10)

Equations (9) and (10) give the deviation, to a linear ap-
proximation, of the perturbed orbit x0(t) from the peri-
odic orbit x(t) after a time interval equal to n times the
period T, due to an initial deviation �(0) D x0(0) � x(0)
at t D 0. In fact Eq. (10) is a mapping of the initial devia-
tion �(0) at integral multiples of the period T (see Fig. 1a).
This is a linear mapping defined by the matrix �(T). It is
clear that the stability of the periodic orbit x(t) depends
on the properties of the mapping (10), i. e. on the eigen-
values of the matrix �(T). The matrix �(T) is called the
monodromy matrix.

Orbital Dynamics, Chaos in, Figure 1
a Mapping at integral multiples of the period. b Orbital sta-
bility: The distance between two points at the same time t,
�(t) D x0(t)� x(t), is not small, but the distance between the
points at two different times, t and t0 , x0(t)� x(t0), remains
bounded

Unit Eigenvalue of the Monodromy Matrix

Existence of an Integral of Motion We shall prove that
if the system of differential equations (2) has an integral of
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motion,

G(x1; x2; x3; x4) D constant ;

the system of variational equations (3) has a unit eigen-
value: Let xi(x0; t) be a T-periodic solution. Since G(x1;
x2; x3; x4) is an integral, we have the relation

G(x1(x0; t); x2(x0; t); x3(x0; t); x4(x0; t))
D G(x10; x20; x30; x40) :

We apply to the above relation the operator @/@x j0, and we
obtain

4X

kD1

�
@G
@xk

�

t

�
@xk
@x j0

�

t
D

�
@G
@x j0

�
:

We set now t D T and taking into account that
�
@G
@xk

�

tDT
D

�
@G
@xk

�

tD0
;

due to the fact that x(t) is periodic, we obtain
�
�� (T) � I



rG D 0 ; (11)

where �� is the transpose of �. From this relation we
obtain that if rG ¤ 0 then �(T)� has a unit eigenvalue.
Thus finally, we come to the conclusion that if the dynami-
cal system has an integral of motion, which is not stationary
along the periodic orbit, the monodromy matrix �(T) has
a unit eigenvalue.

Existence of a Periodic Orbit of the Variational Equa-
tions We shall also prove that if the system of variational
equations has a periodic solution �(t), the monodromy
matrix has a unit eigenvalue: We have �(t C T) D �(t),
for any t and consequently, for t D 0, �(T) D �(0). Due
to this latter relation, Eq. (8) takes the form, for t D T ,
�(0) D �(T)�(0), and finally

(�(T) � I) �(0) D 0 : (12)

Thus we come to the conclusion that if the system of vari-
ational equations has a periodic solution, the monodromy
matrix has a unit eigenvalue.

We have proved above that the system of variational
equations has the T-periodic solution �(t) D ẋi(t), where
ẋi(t) is the periodic solution corresponding to the varia-
tional equations. Thus, the monodromy matrix �(T) has
always a unit eigenvalue. The corresponding eigenvector is
the vector �(0) D ẋi(0), which is the tangent vector to the
periodic orbit, in the phase space.

Vertical Stability of Planar Periodic Orbits

In the previous sections we studied the stability of a planar
periodic orbit with respect to perturbations of the initial
conditions in the plane. We study now the stability with
respect to perturbations of the initial conditions perpen-
dicular to the plane of motion. This type of stability we call
vertical stability and completes the study of the stability of
a planar periodic orbit.

Consider a dynamical system of three degrees of free-
dom,

ẍ1 D f1(x1; x2; x3; ẋ1; ẋ2; ẋ3) ;
ẍ2 D f2(x1; x2; x3; ẋ1; ẋ2; ẋ3) ;
ẍ3 D x3 f3(x1; x2; x3; ẋ1; ẋ2; ẋ3) : (13)

This is the form of the differential equations of many grav-
itational systems, for example of the 3-dimensional re-
stricted three body problem, described in Sect. “Applica-
tion to the Solar System” (see p. 67 in [41]). In this model,
a small body with negligiblemassmoves under the gravita-
tional attraction of two main bodies, which describe Kep-
lerian orbits around their center of mass, under their mu-
tual gravitational attraction. The plane x1 x2 is the plane
of motion of the two main bodies (in the inertial frame)
and the small body moves in the three dimensional space
x1 x2 x3. It is intuitively clear that if the small body starts
from a position in the x1 x2 plane and its velocity is in this
plane, then its motion is restricted in the x1 x2 plane, since
the gravitational attraction from the two main bodies is
in this plane. This physical property of the motion is de-
scribed by the special mathematical form of the equations
of motion (13) (third equation).

It is easy to verify that the Eqs. (13) admit a pla-
nar solution, which we will assume to be periodic: x1(t);
x2(t); x3(t) D 0, corresponding to the initial conditions
x10; x20; x30 D 0; ẋ10; ẋ20; ẋ30 D 0. We consider now
a small perturbation �3; �6 along the x3 axis, x10 C �1,
x20 C �2, x30 D 0C �3, ẋ10 C �4, ẋ20 C �5, ẋ30 D 0C �6,
where �i are small, and we want to study the behav-
ior of the perturbed solution. We define new variables
x4 D ẋ1; x5 D ẋ2; x6 D ẋ3, and a simple calculation shows
that the system of variational equations of the system (13),
for the periodic solution xi(t), breaks into two uncoupled
systems: a system in the planar displacements �1; �2; �4; �5,
corresponding to the variational equations of the planar
motion, and a system in the vertical displacements (along
the x3 axis) �3; �6. This latter system is

�̇3 D �6 ;

�̇6 D f30(t)�3 ;
(14)
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where the function f30(t) is the T-periodic function
f3(x1(t); x2(t); x3 D 0; x4(t); x5(t); x6 D 0), computed for
the planar T-periodic solution xi (t). The system (14) is
the system of variational equations for the displacements
along the x3 axis. The vertical stability depends on the
eigenvalues
5; 
6 of themonodromymatrix�2(T) of this
system.

Hamiltonian Systems

The gravitational systems are Hamiltonian. For this rea-
son, we study in this section the special properties that
a Hamiltonian system has, in addition to the general prop-
erties obtained in the previous sections. We start with sys-
tems with two degrees of freedom.

A Hamiltonian system is defined by the Hamiltonian
function

H(x1; x2; x3; x4) ;

where x1; x2 are the coordinates and x3; x4 the momenta.
The Hamiltonian equations are

ẋ1 D @H/@x3 ; ẋ2 D @H/@x4 ;

ẋ3 D �@H/@x1 ; ẋ4 D �@H/@x2 ;

or

ẋ D �JrH ; (15)

where rH is a column vector with elements @H/@xi and J
the 4 � 4 symplectic matrix

J D
�

0 �I2
CI2 0

�
;

where I2 is the 2 � 2 unit matrix. Note that J�1 D �J .

Variational Equations of Hamiltonian Systems

The variational equations of a Hamiltonian system (15)
have the special form given by

�̇ D �JA� ; (16)

where the elements ai j of the 4 � 4 matrix A are

ai j D
@2H
@xi@x j

: (i; j D 1; : : : 4) (17)

Note that the matrix A is symmetric. The system (16) is
called a linear Hamiltonian system. A complete study of
such systems can be found in [58]. It is easy to see that

it can be expressed in the Hamiltonian form (15) with
Hamiltonian

H D
1
2
��A� D

1
2

4X

i; jD1

ai j�i� j :

From the relations (16), (17) we can verify that the trace
of the matrix of the coefficients of the linear Hamilto-
nian system (16) is equal to zero. Consequently, due to the
general property (5), the determinant of the fundamental
matrix of solutions �(t) is equal to unity (see also [34]),
det�(t) D det�(0) D 1. For t D T we obtain

det�(T) D 1 ;

from which we see that the determinant of the mon-
odromy matrix is equal to one.

Using now the results of Sect. “Variational Equations,”
we find that

det�(t) D det
ˇ̌
ˇ
ˇ
@(x1; x2; x3; x4)

@(x10; x20; x30; x40)

ˇ̌
ˇ
ˇ D 1 : (18)

This means that the determinant of the Jacobian of the
flow in phase space is equal to one. Consequently, the vol-
ume in phase space is conserved (Liouville theorem).

The monodromy matrix of a Hamiltonian system is
symplectic (see for example, [20])

�� (T)J�(T) D J ; (19)

where the superscript � means transpose. This is an im-
portant property of the monodromy matrix of a Hamilto-
nian system, which is called the symplectic property. Thus
we come to the conclusion that the monodromy matrix of
a Hamiltonian system is symplectic.

The eigenvalues of a symplectic matrix have some spe-
cial properties. We express the property (19) as

�� (T) D J��1(T)J�1 ;

from which we see that the matrix �� (T) is related to
the matrix ��1(T) by a similarity transformation. Con-
sequently, they have the same set of eigenvalues. Thus
finally, we come to the conclusion that the eigenvalues
of�(T) are in reciprocal pairs. In addition, due to the fact
that the matrix �(T) is real, they are also in complex con-
jugate pairs.

From the above we see that the four eigenvalues

1; 
2; 
3; 
4 of the monodromy matrix have the property


1
2 D 1 ; 
3
4 D 1 :

We note that the variational equations correspond to a pe-
riodic orbit x(t). So, �(t) D ẋ(t) is a periodic solution of
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the variational equations and according to Sect. “Varia-
tional Equations,” one eigenvalue is equal to one, 
1 D 1.
Using now relation 
1
2 D 1, we come to the conclusion
that the monodromy matrix of a Hamiltonian system cor-
responding to a periodic orbit has a double unit eigenvalue,


1 D 1 ; 
2 D 1 :

Stability of Hamiltonian Systems

The stability of the periodic orbit depends on the eigenval-
ues of the monodromymatrix, as we showed in Sect. “Lin-
ear Stability of a Periodic Orbit.” Instability appears if at
least one eigenvalue is outside the unit circle in the com-
plex plane. Since two of the eigenvalues are always equal
to unity, it is the other two eigenvalues, 
3; 
4, that deter-
mine the stability. As we proved, these eigenvalues are re-
ciprocal and also complex conjugate, so they are either on
the unit circle, or on the real axis, one inside the unit circle
and the other outside. If they are real, the orbit is unstable,
because one of them will be larger than + 1 or smaller than
� 1. A special case is 
3 D 
4 D C1 or 
3 D
4 D �1.

A remark is necessary at this point for the double
unit eigenvalue. In Hamiltonian systems, in general, to the
double unit eigenvalue there exists only one eigenvector.
This introduces a secular term in the general solution of
the variational equations. The two linearly independent
solutions corresponding to the double unit eigenvalue are

�1 D f1(t) ;

�2 D f2(t)C t f1(t) ; (20)

where f1(t); f2(t) are T-periodic. This implies that the or-
bit is always unstable, due to the secular term t f1(t). We
will show however that this secular term introduces a time
shift only along the perturbed orbit, and thus we have or-
bital stability, provided that the other two eigenvalues are
on the unit circle: Taking into account that �1(t) D ẋ(t),
where x(t) is the periodic solution corresponding to the
unit eigenvalue, we note that the perturbed orbit has
a term ��2 and the corresponding part of the the solution is
expressed as x0(t) D x(t)C �tẋi (t)C � f2(t) and, to a lin-
ear approximation in �,

x0(t) D x(t C �)C � f2(t C �t) :

Thus, if we define a new time t0 D t C �t, we obtain (see
Fig. 1b)

x0(t) � x(t0) D bounded :

Thus we come to the conclusion that the secular term in-
troduces a phase shift only along the orbit. This means that

the two orbits, x(t) and x0(t), considered as geometrical
curves, are close to each other. In this case we say that we
have orbital stability, provided that the eigenvalues 
3; 
4
are on the unit circle and consequently the corresponding
solution is bounded.

For the other two eigenvalues 
3; 
4 we have the solu-
tions

� Eigenvalues real and positive: �3;4 D f3;4(t) e˙˛t ,
� Eigenvalues real and negative: �3;4 D f3;4(t) e˙˛t

e˙i	 t/T ,
� Eigenvalues complex conjugate on the unit circle �3;4

D f3;4(t) e˙iˇ t ,

where ˛, ˇ are real and the functions f3(t); f4(t) are T-pe-
riodic. The exponent ˛ is called the characteristic expo-
nent. The general solution in the vicinity of the periodic
solution is a linear combination of the above four solu-
tions �1, �2, �3, �4.

The stability criteria can be obtained from the elements
of the monodromy matrix as follows: The eigenvalues are
the roots of the characteristic equation of �(T) and con-
sequently


1 C 
2 C 
3 C 
4 D trace�(T) ;


1
2
3
4 D det�(T) D 1 :

Taking into account that
1 D 
2 D 1 we find that the two
nonzero eigenvalues 
3; 
4 are the roots of the quadratic
equation


2 � K
C 1 D 0 ;

where

K D trace�(T) � 2 :

The stability depends on the value of K , which is called the
stability index. Note that the stability index depends only
on the trace of the monodromy matrix.

Asymptotic stability never appears, because it is not
possible for the eigenvalues 
3, 
4 to be both inside the
unit circle. This is also a consequence of the fact that the
volume in phase space is conserved.

Let us assume that a periodic orbit is stable, which im-
plies that the eigenvalues 
3, 
4 are on the unit circle and
we assume that they are not equal to + 1 or � 1. If a pa-
rameter varies, then the eigenvalues
3, 
4 are restricted to
move on the unit circle, because they must be both inverse,

3 D 1/
4 and complex conjugate. Consequently, the sta-
bility is conserved. However, if 
3, 
4 meet at the points
+ 1 or� 1, then it is possible for them to go outside the unit
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circle and thus generate instability. For this reason the or-
bits with 
3 D 
4 D ˙1 are called critical as far as the sta-
bility is concerned. This is the mechanism by which insta-
bility is generated at the 3:1 resonance in the asteroid belt,
where the eigenvalues 
3, 
4 meet at the point � 1 [13].

Extension to Three or More Degrees of Freedom

All the above results concerning the eigenvalues and the
stability of a periodic orbit, obtained for Hamiltonian sys-
tems with two degrees of freedom, can be easily extended
to three or more degrees of freedom.

In a Hamiltonian systemwith n degrees of freedom the
monodromy matrix is a 2n � 2n symplectic matrix, and
the eigenvalues are in reciprocal pairs (because of the sym-
plectic property), and in complex conjugate pairs (because
the elements of the matrix are real).

There is always a unit pair of eigenvalues, due to the
existence of the energy integral H D h D constant (see
Sect. “Linear Stability of a Periodic Orbit”). For the other
eigenvalues we have the following possibilities:

� Complex conjugate, on the unit circle, e˙i� : STABIL-
ITY.

� Real, on the real axis, in reciprocal pairs (positive or
negative), 
; 1/
: INSTABILITY.

� Complex, inside and outside the unit circle, in recip-
rocal and in complex conjugate pairs, Rei� , Re�i� ,
R�1ei� , R�1e�i� : COMPLEX INSTABILITY.

Note that in three, or more, degrees of freedom we have
a new type of instability, the complex instability, which
cannot appear in systems with two degrees of freedom.

The PoincaréMap

This a very useful method in the study of the evolution of
a dynamical system. By the Poincaré map we transform
the continuous flow in the n-dimensional phase space of
a dynamical system to an equivalent discrete flow (map)
in a phase space of (n � 1)-dimensions (or (n � 2)-dimen-
sions for Hamiltonian flows).

Consider the dynamical system in Rn : ẋ D f (x),
where x; f (x) : vectors inRn and �t(x) is the flow. We
consider the surface of section

˙ � Rn : (n � 1)� dim

and we assume that the flow is transverse: The velocity
vector of the flow is not tangent to this surface (Fig. 2a):
f (x) � n(x) ¤ 0, where n(x) is the normal unit vector to
the surface.

Orbital Dynamics, Chaos in, Figure 2
a The surface of section, b The Poincaré map on a surface of sec-
tion

The Poincaré map is defined as:

q! p(q) ;
p(q) D �� (q) ;

where q is the position on the surface of section at a t D 0
and p(q) is the position on this surface at the next intersec-
tion at t D � , (Fig. 2b).

The following properties apply:

� The vector p(q) defines accurately the state.
� The vector p(q) is a continuous function of q.
� If x̄(t) is a T-periodic orbit, the corresponding Poincaré

map is a fixed point, maybe multiple (it repeats itself
after several intersections) as seen in Fig. 2b (for the
simple case).

PoincaréMap in Hamiltonian Systems

In this case the differential equations of motion are the
canonical equations

q̇ D @H/@p ; ṗ D �@H/@q ; q; p � Rn :

Let us consider the (2n � 2)-dimensional surface of sec-
tion ˙ , defined as

H D h ; f (q; p) D 0 (for example q2 D 0) :

The continuous Hamiltonian flow in the 2n-dimensional
phase space is transformed to an equivalent discrete flow
(map), on a (2n � 2)-dimensional surface of section. In
addition to the general properties of the Poincaré map
mentioned above, we also have the properties:

� The Poinaré map of a Hamiltonian flow is symplectic.
� The stability of the fixed points of the Poincaré map

is the same as the stability of the corresponding peri-
odic orbit. We have the same set of eigenvalues, ex-
cept the double unit eigenvalue which corresponds to



6436 O Orbital Dynamics, Chaos in

the periodic orbit (the phase space now has two di-
mensions less). Note that this double unit eigenvalue
is responsible for the phase shift along the perturbed
orbit, which implies that this shift is eliminated by the
Poincaré map. Thus, in the Poincaré map, the stability
of the fixed point (periodic orbit) means orbital stabil-
ity.

Hamiltonian Systems with Two Degrees of Freedom

The Poincaré map is particularly useful in systems with
two degrees of freedom, where the phase space is four di-
mensional and the Poincaré map is in a two dimensional
phase space. This makes the study very easy because we
present the evolution of the system in a two dimensional
space, where we can have a direct view.

We define the variables xi as x1 D q1, x2 D q2,
x3 D p1, x4 D p2. The energy integral is H(x1; x2;
x3; x4) D constant. We consider the surface of section

H(x1; x2; x3; x4) D h ; x2 D 0 ; with x4 > 0 :

The map is in the space x1 x3. The consecutive points of
the map may lie on a smooth curve, called invariant curve
(ordered motion), or be scattered (chaotic motion).

Let us assume that another first integral of motion ex-
ists, in addition to the energy integral H D h D constant:

G(x1; x2; x3; x4) D c :

Then all the consecutive points of the map lie on smooth
invariant curves: Let (x1; x3) be a point of the map on the
two-dimensional surface of section. We have x2 D 0 and
x4 is expressed in terms of x1; x3, through the energy inte-
gral H D h, as x4 D x4(x1; x2 D 0; x3). The points x1; x3
satisfy also the integral G(x1; x2 D 0; x3; x4 (x1; x2 D 0;
x3)) D c, or

F(x1; x3) D 0 ;

which implies that the consecutive points (x1; x3) of the
map lie on a smooth curve.

The Gravitational Two-Body Problem

The differential equations of the relative motion of two
point massesm1;m2 are given by

Ër D �
GM
r2
Eer ;

where M D m1 C m2. The orbit is a conic section and in
particular, for bounded motion, it is a Keplerian, elliptic

orbit. The two bodies describe in the inertial frame two
similar orbits around their common center of mass, whose
dimensions are inversely proportional to their masses.
This is one of the few integrable problems in nature. Its
importance is that many real systems, as for example the
asteroid problem, or the planetary systems, can be consid-
ered as perturbed two-body problems. For this reason it is
important to know the basic properties of this simple two
body problem and then study the evolution as a perturba-
tion is applied.

The Two-Body Problem in a Rotating Frame

Consider a body, S, with mass m1 and a second body, J,
with massm2, which describe circular orbits around their
common center of mass.We define a rotating frame of ref-
erence xOy, whose x-axis is the line SJ, the origin is at their
center of mass and the xy plane is the orbital plane of the
circular motion of the these two bodies (Fig. 3b).

Our aim is to study the motion of a massless body A in
the rotating frame xOy, under the gravitational attraction
of S and J. We start with a zeromass of the body J,m2 D 0.
In this approximation, the second body J is used only to
define the rotating frame xOy, which rotates with constant
angular velocity n0. Evidently, the motion of the body A is
a Keplerian orbit, presented in the rotating frame.We shall
give latermass to the body J, thus perturbing the Keplerian
orbit of A.

The Hamiltonian function H that describes the unper-
turbed motion of A, in polar coordinates, r, � (in the ro-
tating frame), is

H0 D
p2r
2
C

p2�
2r2
� n0p� �

GM
r
: (21)

The moments are pr D ṙ and p� D r2(�̇ C n0). Note that
the angle � is an ignorable coordinate and consequently,
in addition to the energy integral H0 D h D constant, we
also have the angular momentum integral p� D constant.

The orbit of the body A (in the inertial frame) is a Ke-
plerian orbit, which we assume to be elliptic. In terms of
the elements of the orbit, the Hamiltonian (in the rotating
frame) and the angular momentum are expressed as

H0 D �
GM
2a
� n0p� ; p� D

p
GMa(1 � e2) :

Circular Orbits In the rotating frame there exist circu-
lar orbits of the body A with an arbitrary radius r0, which
correspond to the periodic solution

r D r0 ; pr D 0 ; �̇ D n � n0 ; p� D nr20 ;
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Orbital Dynamics, Chaos in, Figure 3
a The families of circular and of resonant elliptic periodic orbits in the unperturbed problem. The tangent to the elliptic family at
the bifurcation point is parallel to the x-axis. b The rotating frame of the restricted problem. The mass, �, of the second body, J, is
equal to zero in the unperturbed problem, and is used only to define the rotating frame. In this case, the first body, S, is at the origin.
c Two elliptic orbits of the small body, in the inertial frame, for� D 0. One is symmetric, corresponding to! D 00, and the other is
asymmetric, corresponding to an arbitrary value of!

where

n D p�/r20

is the angular velocity of the circular orbit (in the inertial
frame). The following relations also hold:

p2�0
r30
D

GM
r20
!

GM
r30
D n2 :

The period of the circular orbit in the rotating frame is

T D
2�

(n � n0)
:

A circular orbit in xOy is a Keplerian orbit in the iner-
tial frame, with semi major axis a D r0 for any r0. Conse-
quently, a family of circular periodic orbits exists, which ev-
idently is symmetric with respect to the x-axis. The param-
eter along the family is the semi major axis a (the radius),
or the angular velocity (in the inertial frame) n. This fam-
ily is represented by a smooth curve, in the space h � r0,
given by

�
GM
2a
� n0
p
GMa D h ;

obtained from the energy integral for e D 0 (Fig. 3a). Note
that from the energy integral H0 D h we can obtain the
value of ẏ0, which together with x0 define exactly the initial
state, because y0 D 0 and ẋ0 D 0, due to the symmetry of
the orbit with respect to the x-axis.

Elliptic Orbits An elliptic orbit in the inertial frame is
periodic in the rotating frame only if it is resonant:

n
n0
D

p
q
D rational ;

which means that the semi major axis must be given by

(GM)1/2a�3/2

n0
D

p
q
:

Let us consider now a particular resonance p/q, which
means that we keep fixed the semimajor axis ap/q . The or-
bit is resonant periodic for any eccentricity e, so a family of
elliptic periodic orbits exists, with the eccentricity as a pa-
rameter along the family. There is however another pa-
rameter, defining the orientation of the elliptic orbit, which
is the angle ! of the line of apsides with a fixed direction.
In general, an elliptic orbit is not symmetric with respect
to the rotating x-axis, contrary to the circular orbits, which
are symmetric.

In the space h � r0, where r0 D ap/q(1 � e) is the peri-
center distance (r0 D x0), an elliptic family is represented
by a smooth curve (Fig. 3a), given by the energy integral

�
GM
2a
� n0

p
GMa(1 � e2) D h :

The value of a is fixed, equal to the corresponding reso-
nance and the eccentricity is a parameter along the family.
Note that this presentation is not unique: a point on the el-
liptic family represents all the elliptic resonant orbits with
the same eccentricity, but arbitrary orientation !. An el-
liptic periodic orbit in the rotating frame is also periodic
in the inertial frame. The resonant families of periodic or-
bits bifurcate from the family of circular orbits, at those
points corresponding to the resonant values of the radius
a D ap/q .

Note that along the circular family the value of the
semimajor axis varies, and consequently the ratio n/n0
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varies and passes through resonant (rational) values. It is
at these points that we have a bifurcation to an elliptic fam-
ily. Evidently, all the circular and the elliptic orbits are sta-
ble, as they are Keplerian orbits.

In the following we study how the above mentioned
nice picture of the families of periodic orbits change,
when a perturbation is applied, and how instabilities and
chaotic regions appear. We consider two cases: the re-
stricted 3-body problem, both circular and elliptic, and the
planetary problem, including our Solar System and the ex-
trasolar planetary systems. In all these cases the Hamilto-
nian is expressed in the form

H D H0 C �H1 ; (22)

where H0 is the integrable Hamiltonian of the two body
problem.

Application to the Solar System

A Global View of the Families of Periodic Orbits

We consider the Sun and Jupiter revolving around their
common center of mass in circular orbits or in elliptic or-
bits and a third body, with negligible mass, moving under
the gravitational attraction of these two bodies. We make
the approximation that the small body does not affect the
motion of the two main bodies, Sun and Jupiter, which we
will call primaries. This model is the restricted three-body
problem and an extended study is in the books of Szebe-
hely [46] and Roy [44]. This is a non integrable system,
which is a good model to study the motion of a small body
in our Solar System, for example an asteroid, a comet, or
a small body in the Kuiper belt, at the edge of our Solar
System (Jupiter is replaced by Neptune in this latter case).

Let us start with the study of the motion of an aster-
oid in the asteroid belt, a zone of small bodies between the
orbits of Mars and Jupiter. For this reason we define a ro-
tating frame xOy, withO the center of mass of the Sun and
Jupiter and the x-axis along the line Sun–Jupiter (Fig. 3b).
We start our study with the simplest case, considering that
the orbits of the Sun and of Jupiter are circular (circular re-
stricted three body problem). In this case the system xOy
rotates with constant angular velocity n0. We start with
planar motion of the asteroid and then extend the study
to motion in space. Based on this model, we extend our
study by assuming that the orbits of the Sun and Jupiter
are elliptic.

In our study we normalize the units of length, mass
and time by the relations

G D 1 ; (msun D 1 � � ; mJ D �) ; r0 D 1 ;
which implies n0 D 1 ;

whereG is the gravitational constant, r0 is the radius of the
circular orbit of Jupiter around the Sun, and �, the mass
of Jupiter, is considered a small parameter, of the order of
10�3 in our case. The Hamiltonian for the motion of the
small body is of the form (22), with � D �, whereH0 is the
Hamiltonian (21) of the two body problem in the rotating
frame.

Planar Orbits Let us start with the unperturbed prob-
lem, � D 0, for planar motion, which is the two-body
problem in the rotating frame. As we mentioned in the
previous section, there exists a family of circular orbits,
along which the resonance n/n0 varies (n is the mean mo-
tion (angular velocity) of the orbit of the asteroid) and
families of resonant ellipticperiodic orbits, which bifurcate
from the circular family at all the resonant circular orbits
n/n0 D p/q, as shown schematically in Fig. 3a. Evidently,
all the orbits of these families are stable, as they are Kep-
lerian, elliptic, orbits. We study now how all these fami-
lies evolve and where instabilities appear, when � > 0, i.e,
when the gravitational effect of Jupiter in taken into ac-
count. A complete analysis is given in [20].

As wementioned before, there is an infinite set of reso-
nant periodic orbits along the circular unperturbed family.
The continuation of the above mentioned circular fam-
ily from � D 0 to � > 0 and the generation of instabili-
ties depends on the resonances that appear on this fam-
ily. These resonances belong to three topologically dif-
ferent cases, as far as the continuation to � > 0 is con-
cerned. These are the cases (i) n/n0 D (� C 1)/�, (ii) n/n0

D (2� C 1)/(2� � 1), (� D 1; 2; 3; : : : ) and (iii) all other
resonances.

(i) All the circular orbits that are not at the resonance
n/n0 D 2/1; 3/2; : : :, are continued as nearly circular
orbits in the rotating frame. The resonant circular or-
bits n/n0 D 2/1; 3/2; : : :, are not continued as peri-
odic orbits in the rotating frame. At these resonances,
a gap appears and the single unperturbed family of
circular orbits breaks into a set of disconnected fam-
ilies of periodic orbits. From these gaps we have a bi-
furcation of two families of resonant elliptic periodic
orbits (Fig. 4a). The stability of the circular orbits
at � D 0 is preserved, except at the resonances 3/1,
5/3; : : :, as we explain below. The resonant elliptic
families at the 2/1, 3/2; : : : resonances may be sta-
ble or unstable, depending on the phase (perihelion
or aphelion at t D 0) and other factors (for example,
close approaches).

(ii) At the circular orbits at the resonances n/n0 D 3/1;
5/3; : : : the continuation to nearly circular orbits is
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Orbital Dynamics, Chaos in, Figure 4
a The circular family and the bifurcation to resonant elliptic fam-
ilies at the resonances 2/1, 3/2, 4/3; : : : for � D 0:000954786.
The orbits on the elliptic families are symmetric, corresponding
to! D 00 or! D 1800. These are the only orbits that were con-
tinued to �¤ 0. All the other unperturbed orbits, correspond-
ing to any other value of! (see Fig. 3c), did not survive the per-
turbation, as a consequence of the Poincaré–Birkhoff fixed point
theorem. b A closer look at some resonant families, for different
higher order resonances

possible, but the stability is destroyed. A small unsta-
ble region appears at these resonances, on the fam-
ily of circular orbits. At the critical points, at the two
ends of this unstable region, we have a bifurcation of
two families of symmetric resonant elliptic periodic
orbits, which differ in phase. One is stable and the
other is unstable (Fig. 13a).

(iii) In all other resonances on the circular family, for ex-
ample 5/2, 4/1, 7/3, . . . the circular orbits are contin-

ued as nearly circular orbits and in addition the sta-
bility is preserved. At these points we have a bifur-
cation of two families of symmetric resonant elliptic
periodic orbits which differ in phase (see Fig. 4b). In
this case also, one family is stable and the other un-
stable (but the stability may change along a family).

A remark is necessary at this point for the families of el-
liptic periodic orbits for � > 0. The elliptic unperturbed
resonant families, shown in Fig. 3a, are two parametric,
with the eccentricity e and the angle of apsides ! as the
two parameters. The eccentricity increases along the ellip-
tic family, starting from zero values, but to a fixed eccen-
tricity there corresponds an infinity of values of! (Fig. 3c).
What happens to this two-parametric family of unper-
turbed periodic orbits as � > 0? It is proved [20] that, for
a fixed eccentricity, out of the infinite set of periodic or-
bits, for different omegas, only a finite, even, number sur-
vive (usually just two), half stable and half unstable. This is
a consequence of the Poincaré–Birkhoff fixed point theo-
rem (see [1]). This theorem refers to perturbed twist map-
pings: In the unperturbed case there exist resonant invari-
ant curves where all points are fixed points, so that on this
unperturbed invariant curve there exists an infinite num-
ber of fixed points. As soon a a perturbation is applied,
only a finite number of fixed points survive, half of them
stable and half unstable.

Thus, all the elliptic resonant families are monopara-
metric families along which the eccentricity increases,
starting from zero values. In most cases the orbits are
symmetric with respect to the rotating x-axis (! D 0 or
! D �) and the eccentricity can be considered as a param-
eter. Some of these families are stable and others are un-
stable. The stability depends on the phase, i. e. on whether
the asteroid is at perihelion or aphelion when it crosses
the x-axis, but also on other factors as, for example, to
a close encounter with Jupiter. Along a family of resonant
elliptic periodic orbits the resonance is almost constant.
A global picture of the circular and the elliptic families is
shown in Fig. 4a,b.

Three-Dimensional Orbits in the Circular Model We
study now three-dimensional periodic orbits in the model
of the circular restricted problem. These families bifurcate
from the planar families at those points which are criti-
cal with respect to the vertical stability. It is only at these
points that the vertical deviations �3(t) of a perturbed or-
bit, given by the variational equations (14), have a period
equal to the period of the planar periodic orbit. We remark
at this point that along a resonant family of elliptic peri-
odic orbits, the vertical stability index is very close to crit-
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Orbital Dynamics, Chaos in, Figure 5
The two different symmetries in three-dimensional orbits: a Type 1. b Type 2

ical. (It is exactly critical on the unperturbed elliptic fam-
ily). Depending on the particular resonance, such a critical
point may or may not exist.

The three-dimensional periodic orbits are, in general,
symmetric and there exist two types of symmetry. Their
initial conditions are given below and are shown in Fig. 5:

Type 1 : x20 D ẋ10 D ẋ30; x10; x30 ; ẋ20 ¤ 0 :

Type 2 : x20 D x30 D ẋ10 D 0; x10; ẋ20 ; ẋ30 ¤ 0 :

In Fig. 6a we present the two families of 2/1 resonant pla-
nar periodic orbits, corresponding to � D 0:000954786.
The stable family, for ! D 0, corresponds to the case
where the asteroid is at perihelion at t D 0. The other fam-
ily, for ! D � , corresponds to position of asteroid at aphe-
lion at t D 0 and starts as unstable up to the point where
we have a collision with Jupiter. After that point the family
continues, for larger eccentricities, as stable. On the sta-
ble family, corresponding to perihelion at t D 0, there ex-
ist two critical points, at high eccentricities, e D 0:67 and
e D 0:80, as far as the vertical stability is concerned, as
shown in Fig. 6a. From each one of these two points we
have a bifurcation of a family of three-dimensional peri-
odic orbits. One family, starting from e D 0:67, belongs
to type 1 and is stable (Fig. 7a), while the other family,
starting from e D 0:80, belongs to type 2 and is unsta-
ble (Fig. 8a). Typical three-dimensional periodic orbits on
these two families are shown in Fig. 7b and Fig. 8b. Also,
on the stable family in Fig. 6a, there exists a bifurcation
point, at e D 0:73, to two families of periodic orbits of the
elliptic problem (see Fig. 9), as explained in the next para-
graph. Note that the bifurcation points to three dimen-
sional periodic orbits and to the elliptic problem exist only

on the stable family. On the unstable families such bifurca-
tion points do not exist. A remark is necessary at this point:
In the unperturbed case (� D 0) all points on the families
of elliptic periodic orbits are critical as far as the vertical
stability is concerned and also critical as far as the bifur-
cation to the elliptic problem is concerned (period equal
to 2�). The existence or not of such critical points when
� ¤ 0 depends on the particular resonance. In the case we
studied here, only the above critical points appeared. In
other resonances the situation may be quite different.

A similar situation exists for the 3/2 resonance, as
shown in Fig. 6b.

Families in the Elliptic Restricted Problem Families of
resonant periodic orbits in the case where the orbits of the
Sun and Jupiter are elliptic, with eccentricity eJ (elliptic re-
stricted three-body problem) exist, which bifurcate from
the families of the circular model, either the circular fam-
ily or the elliptic families. The bifurcation can take place
only at those points where the period of the periodic orbit
on the families of the circular model is equal to the period
of Jupiter (or a multiple of it). For a fixed value eJ > 0 the
periodic orbits are isolated. We obtain a family by vary-
ing eJ.

Continuation from the Family of Circular Orbits Let us
start from the unperturbed circular family. The period of
a circular orbit (� D 0) is T D 2�/(n � n0) in the rotating
frame and the period of Jupiter is TJ D 2�/n0, where n0

is its mean angular velocity. We have T D TJ/(n/n0 � 1).
At the resonance n/n0 D p/q we have T D TJq/(p � q)
and if this orbit is described p � q times, the period T�

of this orbit is an integral multiple of TJ, T� D qTJ. If
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Orbital Dynamics, Chaos in, Figure 6
a The two elliptic families of resonant periodic orbits at the 2/1
resonance and the bifurcation points to three-dimensional or-
bits, at e D 0:67 and e D 0:80 and also to the elliptic model, at
e D 0:72 on the stable family. b The resonant elliptic periodic
family at the 3/2 resonance and the bifurcation points to three-
dimensional orbits, at e D 0:39 and e D 0:43 and also to the el-
liptic model, at e D 0:46

n/n0 ¤ 2/1; 3/2; : : : the region around this resonant orbit
is continued to� > 0, asmentioned above. On the contin-
ued circular family there exists an orbit which, if described
p � q times, has a period exactly equal to qTJ. This means
that a bifurcation from the circular family � > 0 to a fam-
ily of the elliptic problem can take place close to a reso-
nance. This is the case with the 3/1 resonance (Fig. 13a).

Continuation from the Family of Nearly Elliptic Orbits
Consider a family of n/n0 D p/q resonant elliptic periodic

orbits of the circular planar problem, for � D 0. The pe-
riod all along the family is constant, and according to the
above, if the orbits of the family are described (p � q)
times, the period is T� D qTJ. This family is continued,
when � > 0, to two families of elliptic periodic orbits,
differing in phase. Along each family the eccentricity in-
creases, starting from zero values. For continuity reasons,
the (multiple) period along the continued family is close
to qTJ. If at a certain point, corresponding to a value e of
the eccentricity, it happens to be exactly equal to qTJ, then
a bifurcation to the elliptic problem can take place. Two
families of periodic orbits exist, along which the eccentric-
ity of Jupiter increases. For a fixed eccentricity of Jupiter,
for example eJ D 0:048, only two isolated periodic orbits
exist. The above mentioned two families differ in the ini-
tial phase of Jupiter on its elliptic orbit at t D 0, i. e. if it is
at perihelion or aphelion. In general, one family is stable
and the other is unstable.

The numerical computations have shown that in cer-
tain resonances, for example 2/1, 3/2, 3/1, such bifurcation
points do exist, at quite large values of the eccentricity (see
Fig. 6a,b for the 2/1 and 3/2 resonances and Fig. 13a for the
3/1 resonance). But in other resonances, for example 7/3,
such bifurcation points do not exist. This plays an impor-
tant role on the topology of the phase space close to a par-
ticular resonance, because the existence of a resonant peri-
odic orbit/fixed point of the Poincaré map, determines the
topology of the phase space. The non existence of periodic
orbits in a region implies that the phase space is smooth
and ordered regions exist. A systematic study along these
lines has been made by Tsiganis et al. [47,48,49]. We
present in Fig. 9, as an example, two resonant families of
the elliptic problem, at the 2/1 resonance, one stable and
one unstable. These two orbits bifurcate from the point on
the stable branch of the 2/1 resonant family of the circular
problem, at e D 0:72, as shown in Fig. 6a.

Generation of Chaos at the Unstable Periodic Orbits

Let us consider the simplest model, the circular restricted
three-body problem, and study the topology of the phase
space at the 2/1 and the 3/2 resonances, using as a guide
the families of periodic orbits as presented in Fig. 4a and
Fig. 6a,b. We compute the Poincaré map on the surface of
section y D 0, H D h, for different values of the energy h.
These energy levels can be visualized by considering lines
parallel to the x0 axis in Figs. 4a (or 6a,b) at different val-
ues of h. Note that these lines intersect the circular family
and the resonant families, and these intersections corre-
spond to the fixed points of the Poincaré map. For a better
understanding of the physics, we mark on each map the
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Orbital Dynamics, Chaos in, Figure 7
a The stable family of three-dimensional periodic orbits bifurcating at e D 0:67 b Three-dimensional periodic orbits on the stable
family (type 1)

Orbital Dynamics, Chaos in, Figure 8
a The unstable family of three-dimensional periodic orbits bifurcating at e D 0:80. b Three-dimensional periodic orbits on the un-
stable family (type 2)

Orbital Dynamics, Chaos in, Figure 9
The two families of periodic orbit of the elliptic restricted three-
body problem, bifurcating from the 2/1 resonant family at
e D 0:72. One is stable and the other unstable

value of the eccentricity of the stable resonant fixed point,
instead of the energy h, since along the family the eccen-
tricity increases. In Fig. 10 we present several surfaces of
section, at different energy levels, corresponding to differ-
ent eccentricities, at the resonances 2/1 and 3/2. The fixed
points corresponding to the circular periodic orbit (in the
middle of the diagram) and to the stable and unstable
resonant periodic orbits are clearly seen. The stable fixed
points are surrounded by islands (closed invariant curves)
of orderedmotion, while themapping close to the unstable
fixed points is hyperbolic. Chaotic motion starts at these
unstable points as the eccentricity increases as we move
along the family. The chaotic orbits appear as scattered
points, in contrast to the regular orbits, which are repre-
sented by smooth invariant curves. This phenomenon is
stronger at the 3/2 resonance.
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Orbital Dynamics, Chaos in, Figure 10
The Poincaré map at the 2/1 resonance (upper row) and the 3/2 resonance (lower row) for different energy levels, presented here by
the corresponding eccentricity e of the resonant stable fixed point on the elliptic family. The stable and the unstable fixed points are
clearly seen. The generation of chaotic motion at the unstable fixed points is evident. Note that the chaotic motion starts from the
unstable fixed points

Note that the topology of the phase space, on the
Poincaré map, is critically determined by the position of
the fixed points and their stability character. This is the
reason that the knowledge of the basic families of periodic
orbits is so important for the study of the dynamics of the
system.

Asteroid Motion Close to a Resonance

It is known that in the region between the orbits of Mars
and Jupiter there exists a zone of small bodies, revolving
around the Sun, called asteroid belt. It has been observed
that the distribution of these bodies is not smooth, but
gaps exist at several resonances between the mean motion
of the asteroid and Jupiter, the famous Kirkwood gaps (see
Fig. 12). The explanation of these gaps was an open ques-
tion for many decades, and their existence was explained
by realizing that the motion at the 3/1 resonance (and in
many other resonances) is chaotic and consequently an as-
teroid could not stay in this region for a long time. The
first study was made byWisdom [53,54,55]. The study was
based on the construction of a symplectic mapping model,
by making use of the averaged Hamiltonian of the ellip-
tic restricted three-body problem at the 3/1 resonance. It
was shown that, due to the existence of chaos at this re-
gion, the eccentricity of an asteroid that starts its motion in
a nearly circular orbit undergoes sudden jumps, after a pe-

riod which may be several million years (the semi major
axis remaining almost constant), and thus the orbit of the
asteroid may by Mars or even Earth crossing and thus un-
dergo additional perturbations that will eventually drive it
outside the 3/1 resonance region. Several papers followed
this study, for many resonances in the asteroid belt, which
used mapping models based on an averaged Hamiltonian
at the corresponding resonance [1,15,17,21]. For the dif-
ferent methods used to transform the continuous flow to
a mapping model see [16]. Much work on the asteroid belt
has been alsomade bymaking use of the averagingmethod
or a combination of this method and numerical integra-
tions [22,35,37,38,39].

The variables used in the averaged models are the De-
launay variables, transformed to resonant action angle-
variables (see [41]). For example, for the 3/1 resonance,
for planar motion these variables are
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where �1 D 1 � �, e0 D 0:048, and 
, !, a are the mean
longitude, the longitude of perihelion and the semima-
jor axis of the asteroid and the corresponding primed
quantities refer to Jupiter. The variables used to present
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Orbital Dynamics, Chaos in, Figure 11
a The mapping, in the variables X D e cos(� )� Y D e sin(� ) for the motion of an asteroid at the 3/1 resonance. b The evolution of
the eccentricity. Chaotic jumps of the eccentricity appear, at unpredictable times

Orbital Dynamics, Chaos in, Figure 12
The distribution of the asteroids, obtained from 156929 asteroids, as given by JPL/Caltech in 2007. The Kirkwood gaps at the 3/1,
5/2, 7/3 and 2/1 meanmotion resonances are clearly seen

the mapping are the Poincaré variables X D
p
2S cos(�);

Y D
p
2S sin(�), which are also canonical variables.

In Fig. 11a we present the mapping for an asteroid at
the 3/1 resonance, from a mapping model used by Had-
jidemetriou [15], equivalent to the map used by Wis-
dom [53]. The variables are similar to the Poincaré vari-
ables, but instead of

p
2S we used the eccentricity e (note

that
p
2S is proportional to e, for small values of e). At the

beginning the asteroid moves along the inner “diffused”
circle, with small radius, corresponding to low values of
the eccentricity, but eventually comes close to the chaotic
region which connects the inner circle with an outer cir-
cle, with larger radius, corresponding to larger values of
the eccentricity. So, through this chaotic window we have

a connection between the low eccentricity regions and the
high eccentricity regions. This results to a chaotic jump
between small and large eccentricities, in a chaotic, unpre-
dictable, way. This behavior is called intermittency. This is
clearly shown in Fig. 11b.

At this point we draw the attention to an important
point when we use the averaged Hamiltonian in the dy-
namical study. Since the averaging method is based on se-
ries expansions in a small parameter (in our case it is the
eccentricity), it is not valid for high values of the param-
eter. In the present case, in the study of the asteroid at
the 3/1 resonance, the averaged Hamiltonian used to con-
struct the mapping which gives the evolution of the aster-
oid eccentricity does not contain the high eccentricity res-



Orbital Dynamics, Chaos in O 6445

Orbital Dynamics, Chaos in, Figure 13
a The families of circular and elliptic periodic orbits of the circular model at the 3/1 resonance, and the bifurcation points to the
elliptic model (schematically). S stands for stable and U for unstable. b The evolution of the eccentricity when the high eccentricity
resonances are included in the model. The chaotic jumps are now up to eccentricities equal to 1

onances. This is the case with the evolution of Fig. 11. For
this reason it is important, in constructing the averaged
model, to know the topology of the whole phase space, and
this can be done only if we know all the resonant families
of periodic orbits at the 3/1 resonance (and of course in
all other similar studies in other resonances). A necessary
criterion for the validity of the averaged Hamiltonian is its
fixed points to coincide with the periodic orbits (fixed points
of the Poincaré map) of the original model (the elliptic re-
stricted three-body problem in this case). This shows the
importance of the periodic orbits in orbital dynamics. In
Fig. 13a we show, schematically, for the model of the cir-
cular restricted problem, the family of circular orbits and
the unstable region which appears at the 3/1 resonance on
the circular family, and also the two families of elliptic pe-
riodic orbits that bifurcate from the critical points at the
two ends of this unstable region. One family is stable and
the other is unstable. It is found that on the unstable part
of the circular family there exists a bifurcation point to
two families of 3/1 resonant periodic orbits of the elliptic
model, which start with zero eccentricities. Both of them
are unstable. These are the low eccentricity resonances that
are included in the model of Fig. 11. However, there exists
one more bifurcation point, at the eccentricity e D 0:80
on the stable family of elliptic periodic orbits (of the circu-
lar model), from which two 3/1 resonant periodic orbits of
the elliptic model appear, one stable and the other unsta-
ble, starting with high eccentricities, equal to e D 0:80. For
a full description of the resonant structure of the restricted
three-body problem at the 3/1 resonance see [14,15]. It is
these high eccentricity resonances that are missing from the
model of Fig. 11. If these high eccentricity resonances are
also included in the model, the jumps in the eccentricity

are higher, up to e D 1 and thus the asteroid not only ap-
proaches the inner planets, but may also fall on the Sun.
This evolution is shown in Fig. 13b.

The study of the ordered and chaotic regions in the as-
teroid belt is not the only such study in our Solar System.
A zone of small bodies, similar to the asteroid belt, exists
at the edge of our Solar System, after the orbit of Neptune.
This is the Kuiper belt, whose existence was conjectured
to explain the source of low period comets. Since the last
decade of the 20th century many small bodies were ob-
served in the Kuiper belt and it was realized that ordered
and chaotic regions exist in this region also, similar to
those in the asteroid belt, at several resonances with Nep-
tune. Pluto is one such body in the Kuiper belt, trapped
at the 3/2 resonance with Neptune, together with many
other smaller bodies at the same resonance, called pluti-
nos. A good view of the dynamical structure in the Kuiper
belt is given in [6].

All major planets, Jupiter, Saturn, Uranus, Neptune,
have planetary rings, the most well known being the rings
of Saturn. Although many of the properties of the ring sys-
tems can be understood by a fluid dynamics approach, sev-
eral of their features are explained by resonant dynamics,
as in the case of the asteroid belt or the Kuiper belt. The
fine structure of the rings can be explained by resonances
between the ring particles and small satellites of the planet.
A description of the dynamics of the planetary rings can be
found in Chap. 10 in [41].

The chaotic behavior of the Solar System, as a whole,
is yet another interesting subject, and there are several
numerical works on this problem, notably by Laskar [25,
26,27] and by Wisdom [56]. There are not large scale
chaotic orbits of the planets, although the system is non
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integrable and some chaos is expected. Especially the large
planets do not show any significant change and their orbits
stay, for some billion years, close to their present orbits.
The inner planets, especially Mercury, have shown large
deviations, but due to the chaotic nature of the Solar Sys-
tem and the fact that the numerical integrations are not
with infinite accuracy, these results may not represent the
actual evolution of the Solar System. It seems that the Solar
System is stable and any chaotic motion is in a small scale
and is bounded. Studies on the stability of extrasolar plan-
etary systems have started recently, with many interesting
results, as we explain in the next section.

Another interesting case of chaotic motion in the Solar
System refers to the rotational motion of celestial bodies.
Although the rotation of the planets is regular, there are
small bodies, with irregular shape, that show chaotic rota-
tion. Such a case is the satellite of Saturn, Hyperion, with
approximate dimensions 180 km�140 km�112:5 km. Al-
though its orbit is stable, due to the fact that it is at the 4:3
resonance with the more massive satellite of Saturn, Titan,
its rotation is chaotic [57].

Extrasolar Planetary Systems

Some General Remarks

In the last decade of the 20th century it was discovered
that our Solar System is not the only planetary system in
the universe. Up to the present (May 2008) there are 281
observed extrasolar planetary systems, with 25 of them
having two or more planets. In many planetary systems
with two planets close to each other, the two planets are in
meanmotion resonance. Examples are: HD 82943 [23,33],
GLIESE 876 [31,43], at the 2:1 resonance and 55Cnc at the
3:1 resonance [32]. Some of these systems have large ec-
centricities and are evidently stable.

There are different approaches to the study of the dy-
namical evolution of a planetary system and on the mech-

Orbital Dynamics, Chaos in, Figure 14
a The rotating frame. The planet P1 moves on the x-axis and the planet P2 in the xOy plane. The angle � is an ignorable coordinate.
b The Poincarémap at y2 D 0

anisms that stabilize the system, or generate chaotic mo-
tion and instability: Beaugé and Michtchenko [2], Beaugé
et al. [3,4,5], Ferraz-Mello et al. [8], Gozdjiewski et al. [10],
Malhotra [30], Lee and Peale [29], Lee [28]. In these pa-
pers different methods have been applied, as the averaging
method, direct numerical integrations of orbits, or various
numerical methods which provide indicators for the ex-
ponential growth of nearby orbits. In this way the regions
where stable motion exists have been detected, in the or-
bital elements space.

We present briefly a global view of the structure of the
phase space of a planetary system with two planets, mov-
ing in the plane, as obtained from the set of the families
of periodic orbits. As we have already mentioned before,
the periodic orbits play a dominant role in understanding
the dynamics of a system, because they determine critically
the structure of the phase space. In this way, we can detect
the regions where stable librations could exist. These will
be the regions where a real planetary system could exist
in nature. As we will see, stable regions corresponding to
elliptic orbits of the two planets with relatively large ec-
centricities are associated with mean motion resonances.
An early work on periodic orbits of the planetary type
is by Hadjidemetriou [12], well before the first extrasolar
planetary systems were observed. Many papers followed
on these lines, after the first extrasolar planetary systems
were observed [18,42,51,52]. We remark that stable mo-
tion could also exist far from resonances, if the eccentric-
ities are small. This latter motion is close to a stable peri-
odic orbit of the circular family of periodic orbits. We also
remark that it is possible to have stable motion far from
a periodic orbit, but in this latter case the two planets are
not close to each other, so that their gravitational interac-
tion is not very significant.

It can be proved [11] that families of periodic orbits
in the planar general three body problem exist, in a rotat-
ing frame xOy, whose x-axis is the line S � P1, with origin
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at the center of mass of these two bodies, where S is the
Sun and P1 the inner planet. We assume that the center of
mass of the whole system is at rest with respect to an in-
ertial frame. We have four degrees of freedom, for planar
motion, with generalized variables x1; x2; y2; � (Fig. 14a).
This is a non uniformly rotating frame, and the second
planet P2 moves in the plane xy. It turns out [11] that the
angle � is ignorable, so we have three degrees of freedom
in the rotating frame, with variables x1; x2; y2. In the plan-
etary three body problem (one big body, the star and two
small bodies, the planets) the periodic orbits are similar to
the families of the restricted problem as shown in Fig. 4.
There are two types of periodic orbits:

� Non resonant periodic orbits with nearly circular orbits
of the two planets.

� Resonant periodic orbits with nearly elliptic orbits of
the two planets.

The circular orbits are all symmetric but the elliptic orbits
may be symmetric or asymmetric. There exist families of
elliptic periodic orbits for every mean motion resonance.
Close to a stable periodic orbit there exists a region of sta-
ble librations, and it is at these regions that a planetary sys-
tem could be trapped.

Concerning the continuation of the unperturbed fam-
ily of periodic orbits (m1 D m2 D 0), the situation is sim-
ilar to that explained in the restricted three body problem.
There are three topologically different resonant cases:

� The resonances of the form (n C 1)/n, (2/1; 3/2; : : :)
(Gaps on the circular family).

� The resonances (2nC 1)/(2n � 1), (3/1; 5/3; : : :) (In-
stability on the circular family).

� All other resonances, (5/2; 7/3; 8/3; : : :) (Preservation
of the stability on the circular family).

A global view of the resonant families of elliptic periodic
orbits, for each one of the above resonance types can be
found in [19]. There exist both symmetric and asymmetric
families. The ratio of the planetary masses plays an impor-
tant role on the stability and the existence of asymmetric
families of periodic orbits. The sum of the masses of the
planets also plays an important role on the stability and
the existence of families of resonant periodic orbits. The
stability of a symmetric periodic orbit depends, all other
things being the same (semimajor axes, eccentricities), on
the phase of the two planets, that is on whether the line of
apsides are aligned or antialigned and on the position of
the two planets at perihelion of aphelion at some epoch.
The proper phase generates a phase protection mechanism
so that stable planetary systems exist even for large eccen-
tricities.

The properties of motion close to a periodic orbit are
studied by considering a Poincaré map on the surface of
section y2 D 0, (ẏ2 > 0), H D h D constant (Fig. 14b).
The phase space of the Poincaré map is the four dimen-
sional space x1; ẋ1; x2; ẋ2 (y2 D 0 and ẏ2 is obtained from
H D h; ẏ2 > 0). Close to a stable periodic orbit we have
stable librations and the motion in phase space takes place
on a torus. On the contrary, close to an unstable periodic
orbit we have irregular, chaotic, motion and in many cases
the system disrupts into a binary system (the star and one
planet) and an escaping planet.

The position of some real extrasolar planetary systems
is compared with the above mentioned regions of stable
librations. A detailed analysis of the dynamics of extrasolar
planetary systems based on the families of periodic orbits
is presented in [20].

In the following, we present, as an example, the dy-
namics of a real extrasolar planetary system, Gliese 876, on
the whole phase space, and study the stable configurations
and the regions where chaotic motion appears.

A Real Extrasolar Planetary System: Gliese 876

Studies on the dynamical evolution of a planetary sys-
tem, both theoretical and for real extrasolar planetary sys-
tems, have been made by different methods. One way to
study the problem is to compute many orbits, for a set
of initial conditions and study their behavior for a long
time. A different method is to use the averaging method
in order to obtain an averaged Hamiltonian, thus reduc-
ing the number of degrees of freedom. Analytic and nu-
merical studies can then be made to find the stable regions
in phase space [2,3,4,5] Ferraz-Mello et al., Gozdjiewski et
al. [2], [28,29,30,45]. A systematic study of the orbital dy-
namics in planetary systems can be made by finding all the
basic families of periodic orbits. As we mentioned before,
the position and the stability character of the periodic or-
bits define the topology of the phase space, and in this way
we find all the stable regions, close to the stable periodic
orbits, where a planetary system can be trapped, and we
also find the chaotic regions, close to the unstable periodic
orbits, where planetary system could not exist [19].

The ordered and chaotic regions in an extrasolar plan-
etary system, the factors that affect the stability and the
mechanism of generation of chaos, will be presented here
by an example from a real extrasolar planetary system,
Gliese 876 [31]. This is a planetary system 15.4 light
years far from our solar system. The mass of the sun
in this system is equal to m0 D 0:32 solar masses and
the masses of the planets P1, P2 are m1 sin i D 1:89MJ
and m2 sin i D 0:56MJ, where MJ stands for the mass of
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Orbital Dynamics, Chaos in, Figure 15
The families of periodic orbits at the 2/1 resonance in the space
of the eccentricities. ei > 0 means position at aphelion and
ei < 0 position at perihelion

Orbital Dynamics, Chaos in, Figure 16
a The orbit, corresponding to e1 < 0, e2 < 0. b The Poincarémap: projection on the line x1 ẋ1. Themotion is ordered.b The evolution
of the eccentricities.

Jupiter (i is the inclination of the orbital plane of this sys-
tem with respect to the line of sight from us, and it is
not known). The semimajor axes, the eccentricities and
the periods of the planetary orbits are: a1 D 0:13AU,
a2 D 0:21AU, e1 D 0:27, e2 D 0:10, T1 D 30:1 days and
T2 D 61:02 days. The perihelia of the two planetary orbits
are in the same direction. This is a system very close to the
2/1 resonance, T2/T1 D 2:03, and for this reason we study
all the families of resonant periodic orbits at the 2/1 reso-
nance, for the masses of this system (assuming sin i D 1).

In Fig. 15 we present the families of resonant 2/1 peri-
odic orbits for the masses of Gliese 876, in the space of the
planetary eccentricities e1 e2. We used the convention that
ei > 0 means position of the planet at aphelion and ei < 0
position at perihelion. In this way the space of the eccen-
tricities is divided into four sections, according to the sign
of the eccentricities, as shown in Fig. 15. For e1 < 0, e2 < 0
and e1 > 0, e2 > 0 the perihelia of both planets are in the
same direction, while for e1 > 0, e2 < 0 and e1 < 0, e2 > 0
the perihelia are in opposite directions. We may also note
that due to the 2/1 resonance, the phases where, for the
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same position of P1, the position of P2 is at perihelion or
in aphelion are equivalent, corresponding to t D 0 and to
t D T/2, respectively, where T is the period.

There are two families that start from the region
e1 � 0, e2 � 0. At e1 D e2 D 0 there is a gap, similar to
the gap on the family of circular orbits of the restricted
three body problem, as shown in Fig. 6. The first family
corresponds to e1 < 0, e2 < 0, along which the eccentric-
ities of the two planets increase. In all orbits of this family
the perihelia are in the same direction and at t D 0 both
planets are at perihelia. This family is stable, even for large
values of the orbital eccentricities. Another family exists,
for e1 > 0 and e2 < 0. In this family the perihelia of the
two planets are in opposite directions and at t D 0 the
planet P1 is at aphelion and the planet P2 is at perihe-
lion. This family presents a gap at the region e1 D �0:2,
e2 D 0:4, because the two planets are close to each other

Orbital Dynamics, Chaos in, Figure 17
a The orbit, corresponding to e1 > 0, e2 > 0.b The Poincarémap: projection on the plane x1ẋ1. Themotion is chaotic. c The evolution
of the eccentricities

and the gravitational attraction between them is so strong
(for the givenmasses) that a resonant 2/1 orbit cannot sur-
vive. This part of the family, from zero eccentricities up to
the gap, which corresponds to small eccentricities, is un-
stable. But after this close approach region, the family con-
tinues with large eccentricities, and this part is now stable.

In the space of the eccentricities of Fig. 15 we placed
a planetary system with the same semimajor axes and ec-
centricities as Gliese 876, but with different phases. One
of these positions, for e1 < 0, e2 < 0, is very close to the
stable family. In Figs. 16, 17, and 18 we present the evo-
lution of each of these systems (with the same elements
ai, ei as Gliese 876), by making use of the Poinaré map on
the surface of section defined in Fig. 14b. We note that the
real system (green circle in Fig. 15) is in an ordered region
(Fig. 16), with the eccentricities undergoing quasi periodic
variations, and the projection of the Poincaré map on the
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Orbital Dynamics, Chaos in, Figure 18
The orbit, corresponding to e1 < 0, e2 > 0. a The Poincarémap: projection on the plane x1 x2. There exist points close to the x2 D x1
line, corresponding to close encounters between the two planets. The motion is chaotic. b The evolution of the eccentricities

x1 ẋ1 plane is a nice surface (the same holds for the projec-
tion in all other planes of the four dimensional phase space
of the Poincarémap). All other configurations however are
unstable and present chaotic behavior, although the orbital
elements are the same and only the phase differs. In Fig. 17,
corresponding to e1 > 0, e2 > 0, chaotic behavior devel-
ops after a rather orderedmotion, and the system disrupts.
In Fig. 18, corresponding to e1 < 0, e2 > 0, also chaotic
behavior develops after a long time of rather ordered mo-
tion. From the Poincaré map, which is given in its projec-
tion in the x1 x2 space, we see that the mechanism of gen-
eration of chaos is the close encounters between the two
planets, shown by the several points of intersection close to
the line x2 D x1 (this is a real encounter and not just due to
the projection from the four dimensional space x1 ẋ1 x2ẋ2
to the two dimensional plane x1 x2, because P1 is always
on the x-axis and P2 is also on the x-axis, which implies
y2 D 0, due to the definition of the map (see Fig. 14b)).

From the above we see that the phase of the two planets
(perihelia in the same or in opposite directions, position of
the planet at perihelion or aphelion at t D 0) plays a cru-
cial role on the stability of the system. As we have seen, the
stable regions are close to the stable periodic orbits, and
this makes clear the importance of knowing all the fam-
ilies of periodic orbits. In this way we are in a position
to know in what regions of the orbital elements a plane-
tary system could exist in nature and what are the regions
where a planetary system cannot exist. We note also that
the orbital elements for Gliese 876 that we used in the
above study were revised, as more accurate observations
were taken into account. The new values correspond to
a position almost on the stable family, as we show in Fig. 15
(yellow circle).

Future Directions

The model of the restricted three-body problem has been
studied for almost a century and most of its dynamical as-
pects are now known. This is not so for the general, plane-
tary, three-body problem, where several aspects of the dy-
namics are not yet well studied. One reason is that the
phase space hasmore dimensions than the restricted prob-
lem. Though the motion in the plane is quite well under-
stood, because all the basic resonant and non resonant pe-
riodic orbits (symmetric and asymmetric) are well known,
the three dimensional motion is not completely studied.
The main reason for this is that the observational data for
the extrasolar systems are not yet accurate enough to give
information on three dimensional planetary motion. The
knowledge of the basic three dimensional families will give
a clear picture of the topology of the phase space and of the
regions where a three dimensional planetary system could
be trapped.

Another problem in the study of the extrasolar plan-
etary systems is the explanation of large planetary eccen-
tricities. Evidently, such systems are stable, since they are
observed in nature, and we know from the studies up to
now that such high eccentricity planetary systems can be
stable, provided we have the right phase. But how did these
systems reach their present configuration? It has been pro-
posed that they were generated as low eccentricity systems
and reached the present configuration following a migra-
tion process. A dissipation is needed for such an evolution
and several mechanisms have been proposed. It is possible
that a planetary system can trapped in a stable configura-
tion, possibly with high eccentricities, due to themigration
process. It is the stable periodic orbits that correspond to
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these stable configurations. Some work has been done on
this problem [36], but more work is needed.

An open problem in orbital dynamics is the study of
the early history of our Solar System. This study involves
calculations of the N-body problem. It is believed that the
orbits of the giant planets of our Solar System, from Jupiter
and beyond, migrated due to the planetesimals which were
left after the dispersal of the gas disk, in which the So-
lar System was formed. The idea is that the giant planets
ejected the planetesimals and this resulted to a change of
their orbits. Recent studies by Tsiganis et al. [50], Gomes
et al. [9] and Morbidelli et al. [40] suggest that all outer
planets started in a different configuration than the present
one, with Jupiter slightly further from the Sun than its
present distance, while the rest giant planets were in a dis-
tance less than 15AU from the Sun. This is the so called
Nice model, from the observatory of Nice where this group
works. It is assumed that the planets were surrounded by
a disk of planetesimals, which were ejected by the plan-
ets, and this resulted to a migration of their orbits. The as-
sumption was made that Saturn was initially inside the 2/1
resonance with Jupiter, and as Saturn crossed this reso-
nance, the eccentricity of the planets increased very much
and the planets entered the outer planetesimal disk. This
resulted to a heavy scattering of the planetesimals, which
reached the inner Solar System and are responsible for
the Late Heavy Bombardment on the surface of the Moon,
which created its craters. More work is still to be done on
this problem, including the effect of the giant planets on
the orbits of the inner Solar System.

It has been realized recently that very small nonconser-
vative forces, as the effect from mass loss of the sun, or the
effects from theory of general relativity, must be included
in the study of the past history or the long term evolution
of the solar system, for billions of years. This is important
for the study of the evolution of the inner planets andmost
notably of Mercury. Work has now started on this matter,
and it is expected to give interesting results.
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