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Glossary

BIRCH A scalable clustering solution that first assembles
an in-memory balanced tree of micro-clusters (called
clustering features) containing sufficient statistics for
the data.

CACTUS Clustering algorithm for transactional data
based on the idea of co-occurrence.

CHAMELEON Hierarchical clustering algorithm using
a very fine partitioning of a sparsified connectivity
graph followed by agglomeration phase.

Cluster A subset of the data that consists of similar ob-
jects.

CLIQUE Clustering algorithm for high-dimensional data
that tries to find high density low-dimensional seg-

ments using an inductive process similar to the Apriori
algorithm.

Co-clustering Clustering methodology that along with
grouping points, also groups attributes that have simi-
lar distributions among data points.

Connectivity matrix A matrix of similarities or dissimi-
larities between data points, which gives pairwise con-
nectivity information that is used in agglomerative,
spectral and graph clustering algorithms.

CURE Important scalable hierarchical clustering algo-
rithm that uses a fixed number of points as cluster rep-
resentatives.

DBSCAN Density-based partitioning that utilizes a defi-
nition of density-connectivity and a core point (a point
whose �-neighborhood has sufficiently many points).

Density-based partitioning Clustering algorithm that
tries to identify clusters with dense connected compo-
nents of arbitrary shape.

GRACLUS A super-fast graph clustering algorithm that
optimizes weighted graph cuts.

Graph clustering Clustering of graph nodes; instead of
a concept of distance, a concept of connectivity based
on graph edges is used.

Grid methods Clustering algorithms that find relatively
high populated segments in an underlying attribute
space and then assemble clusters from adjacent seg-
ments.

Hierarchical clustering Represents the data in the form
of a tree dendrogram whose leaves correspond to indi-
vidual points and nodes to clusters of different granu-
larities.

k-means Partitioning relocation clustering algorithm
used in many applications that deals with numerical
data; represents a cluster with its centroid or mean.

k-medoid methods Partitioning relocation algorithm
(e. g. CLARANS) that represents a cluster by one of
its points, called medoid.

Linkage metric Metric used in hierarchical clustering in
conjunction with the Lance-Williams updating for-
mula to compute similarity between two subsets.
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Probabilistic clustering Clustering algorithm that asso-
ciates with each cluster a particular probability distri-
bution whose parameters are fitted by the algorithm.

Spectral clustering Clustering algorithm that uses eigen-
vectors or singular vectors for data or graph clustering.

Definition of the Subject

Data that we find in scientific and business applications
usually does not fit a particular parameterized probability
distribution. In other words, the data is complex. Knowl-
edge discovery starts with exploration of this complex-
ity in order to find inconsistencies, artifacts, errors, etc
in the data. After data is cleaned, it is usually still ex-
tremely complex. Descriptive data mining deals with com-
prehending and reducing this complexity. Clustering is
a premier methodology in descriptive unsupervised data
mining.

Clustering is the division of N data points X D fx1;
x2; : : : ; xNg into k disjoint groups Ci. Each group, called
cluster, is required to consist of points that are similar to
one another and dissimilar to points in other groups:

X D C1
[
� � �
[

Ck
[

Coutliers ;Ci
\

Cj D 0 ; i ¤ j :

A cluster could represent an important subset of the data
such as a galaxy in astronomical data or a segment of cus-
tomers in marketing applications. Clustering is important
as a fundamental technology to reduce data complexity
and to find data patterns in an unsupervised fashion. It
is universally used as a first technology of choice in data
exploration.

Introduction

Classic clustering algorithms have existed for a long time.
Contemporary clustering faces many challenges, such as
(a) sheer size of modern data sets, (b) objects with many
attributes, (c) attributes of different types, and (d) unstruc-
tured data or data of complex structure. These challenges
have led to the emergence of powerful and broadly appli-
cable clustering methods. First, we should ask ourselves:
does a set of axioms exists that would result in a consis-
tent clustering framework? A sobering answer was given
by Jon Kleinberg [49]: under natural assumptions, cluster-
ing cannot be axiomatized. General references on cluster-
ing include [7,25,28,33,39,40,43,44,47,62]. From a statisti-
cal standpoint, clustering relates to a traditional multivari-
ate statistical estimation.

System complexity provides another fruitful way of
looking at clustering. As a result of clustering, data com-

plexity is reduced to a small number of clusters. More
precisely, to transmit data we can transmit (1) k cluster
“prototypes”; (2) each point’s cluster ID and a relatively
short encoding that describes deviation of a point from its
cluster “prototype”. This connection to data compression
in used in image processing (vector quantization [32]).
Other clustering applications include scientific data analy-
sis (astronomy), biochemistry and medicine, information
retrieval and text mining, spatial database applications, se-
quence and heterogeneous data analysis, web applications,
marketing, user segmentation, fraud detection, and many
others.

We use the following notation. Dataset X consists of
data points (objects, instances, cases, etc.) xi D (xi1;
� � � ; xid ), i D 1 : N, in d-dimensional attribute space A,
xi l 2 Al , l D 1 : d. This point-by-attribute data format
conceptually corresponds to a N � d matrix and is used
by the majority of algorithms. A simplest subset in A,
a segment, is a direct Cartesian product of sub-ranges.
Some clustering algorithms indeed use segments as build-
ing blocks for clusters. Data in other formats, such as vari-
able length sequences and heterogeneous data, are not un-
common.

Partitioning RelocationClustering

If you know nothing about clustering, the k-means algo-
rithm is what you should start with andmany people never
go beyond it in their practice.

The name comes from representing each of the k clus-
ters Cj by the mean (or weighted average) cj of its points,
the so-called centroid. While this representation does not
work well with categorical attributes, it makes sense from
a geometric and statistical perspective for numerical at-
tributes. K-Means tries to minimize the objective function
equal to the sum of the squares of L2-norm errors between
the points and the corresponding centroids:

E(C) D
X

jD1:k

X

xi2C j

��xi � c j
��2 :

The above can be thought of as the within-cluster vari-
ance. It turns out that the total data variance can be ex-
pressed as the sum of the within-cluster variance and the
between-cluster variance:

NX

iD1

kxi � ck2

D
X

jD1:k

X

xi2C j

��xi � c j
��2 C

X

jD1:k

n j
��c j � c

��2 ;
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where nj D jCj j. Thus while k-means explicitly tries
to minimize the within-cluster variance, it implicitly
maximizes the between-cluster variance. By examin-
ing the k-means objective carefully, it is easy to show
that k-means is restricted to separating clusters by linear
separators, i. e., by hyperplanes.

Up to a constant, E(C) can be recognized as the neg-
ative of the log-likelihood for a normally distributed mix-
ture model with uniform variance (points in Cj are dis-
tributed as N(c j; 1)). Therefore, the k-means algorithm is
related to a general probabilistic framework. This suggests
generalizations: fit not only means, but variances, or hy-
per-ellipsoidal clusters.

The squared L2-distance has many unique proper-
ties. For example, E(C) equals the sum of pair-wise errors
within all the clusters:

E0(C) D
1
2

X

jD1:k

X

xi ;yi2C j

kxi � yik2 :

Other dissimilarity measures can also be used with
a k-means like algorithm. Given a dissimilarity measure
d(x; y), the representative vector of a cluster can be de-
fined as:

z j D argminz
X

xi2C j

d(xi ; z) :

For the squared L2 distance, zj simply equals themean vec-
tor cj. It turns out that the same result is true, i. e., themean
vector is the representative vector for a much larger class
of dissimilarity measures called Bregman divergences [4].
These divergences are not always symmetric and they do
not obey the triangle inequality but they have many other
desirable properties.

The exact optimum for E(C) cannot be computed, but
two versions of k-means iterative optimization converging
to a local minimum are known. The first version is similar
to the EM algorithm. It makes two-step major iterations:
(1) reassign points to their nearest centroids; (2) recom-
pute centroids of newly assembled groups. Iterations con-
tinue until a stopping criterion is achieved. The result is
independent of data ordering, and straightforward paral-
lelization can be applied:

Initialize centroids ci ; i D 1 : k
Until convergence is achieved do

for each x 2 X ** Step 1: Reassign points
I(x) D argmin fkci � xkg

for each 1 D 1 : k ** Step 2: Recompute centroids
ci D mean fx 2 X : I(x) D ig

The second version, tries to readjust centroids as soon as
reassignment happens. It is not obvious that it is computa-

tionally feasible, but it is: in fact, the computational com-
plexity of both versions is the same. This second version
can actually result in a better optimum, but it depends on
the ordering of points, and is somewhat more difficult to
implement:

Initialize centroids ci ; i D 1 : k
Until convergence is achieved do

for each x 2 X ** Iterate over all points
let x 2 Ci , and let di > 0 denote the change

in E(C) on deleting x from Ci
for each j ¤ i let �dj be the change in E(C)

on adding x to Cj
j D argmax

˚
di � dj

�

if di � dj > 0 reassign x to cluster Cj
and recompute ci and cj

The popularity of the k-means algorithm is well deserved:
it is easily understood, easily implemented, and based on
the firm foundation of analysis of variances. It also has
shortcomings:

� During the reassignment stage a cluster can become
empty or unbalanced

� The computed local optimum may be quantitatively
and qualitatively much worse than the global optimum

� Initialization of centroids is crucial (see [10] for sugges-
tions)

� Choice of k is unclear
� The process is sensitive to outliers
� Algorithm lacks scalability
� Only numerical attributes are covered in a straightfor-

ward manner

K-means is the most popular example of a family of
clustering algorithms called Partitioning Relocation. Algo-
rithms of this family try to reassign points from one po-
tential cluster to another in order to achieve some objec-
tive through iterative optimization. For example, in Prob-
abilistic Clustering the data is represented as a mixture of k
models whose parameters we want to reconstruct. Each
model is expressed as a probability distribution – it turns
out that a rich family of probability distributions, namely,
the exponential family is in one-to-one correspondence
with Bregman divergences [4], that were discussed earlier.
The exponential family includes multivariate Gaussians,
the Poisson, Bernoulli and exponential distributions.

Clusters discovered by probabilistic clustering are con-
veniently interpretable.

We assume that data points are generated (a) by ran-
domly picking a model j (cluster) with probability � j; j D
1 : k, and (b) by drawing a point x from a correspond-
ing distribution. Maximization of log-likelihood log (L),
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where

L D Pr (X jC ) D
Y

iD1:N

X

jD1:k

� j Pr
�
xi
ˇ̌
Cj

;

is achieved through Expectation-Maximization (EM) iter-
ations, similar to used in k-means: (E) recompute mem-
bership probabilities, (M) estimate model parameters
(maximize likelihood). Advantages of this method are:

� Points of complex structure can be handled (heteroge-
neous data, dynamic sequences) by appropriate proba-
bilistic modeling

� Iterations can be stopped and resumed; intermediate
model is available

� Clusters have conceptual meaning
� Number of parameters, in particular k, can be ad-

dressed within the Bayesian framework

An example of probabilistic clustering is the algorithm
AUTOCLASS [15] that covers a broad variety of probabil-
ity distributions. including Bernoulli, Poisson, Gaussian,
and log-normal distributions. Beyond fitting a particular
fixed mixture model, AUTOCLASS extends the search to
different models and different values of k.

Another Partitioning Relocation family, namely
k-medoids methods, represents a cluster by one of its
points called a medoid. This is an easy solution: any at-
tribute type can be handled, no guess on a probability
distributions is required, clusters are subsets of points
close to respective medoids, and the objective function
is defined as the averaged dissimilarity measure between
a point and its medoid.

An example is the CLARANS algorithm (Clustering
Large Applications based upon RANdomized Search) [56]
that deals with spatial databases. In CLARANS a search
over a graphwhose nodes are subsets of kmedoids (points)
is performed. Two nodes are connected by an edge if they
differ by exactly one medoid. CLARANS is extended to
large databases in [26]; this extension relies heavily on data
indexing.

Hierarchical Clustering

Hierarchical clustering combines data points into clusters,
those clusters into larger clusters, and so forth, creating
a hierarchy. A tree representing this hierarchy of clusters
is known as a dendrogram. Individual data points are the
tree leaves. A dendrogram allows the exploration of data at
different levels of granularity. An agglomerative hierarchi-
cal clustering algorithm starts with one-point (singleton)
clusters and recursively merges two or more of the most
similar clusters. A divisive hierarchical clustering starts

with a single cluster containing all data points and recur-
sively splits that cluster into appropriate sub-clusters. The
process may be terminated when a stopping criterion (fre-
quently, the requested number k of clusters) is achieved.
The advantages of hierarchical clustering include flexibil-
ity regarding the level of granularity, ease of handling any
form of similarity or distance, and applicability to any at-
tribute type. On the negative side, hierarchical clustering
faces the difficulty of choosing the right stopping criteria
and most hierarchical algorithms do not revisit (interme-
diate) clusters once they are constructed.

To explore the topic further, consider agglomerative
clustering. An N � N matrix of distances or similarities
between points, called connectivity matrix, is used to find
closest singleton data points to merge together. To merge
or split subsets of points rather than individual points, the
distance between individual points has to be generalized
to the distance between subsets. Such a derived proximity
measure is called a linkage metric. It has a significant im-
pact on hierarchical algorithms, because it reflects a par-
ticular concept of closeness and connectivity. Important in-
ter-cluster linkage metrics include single link, average link,
and complete link. The linkage metric between two subsets
of nodes is computed by applying an aggregator operation
Op to pairs of dissimilarities between nodes in the first sub-
set C1 and nodes in the second subset C2:

d(C1;C2) D Op fd(x; y); x 2 C1; y 2 C2g :

Examples of Op include minimum (single link, algorithm
SLINK [61], Op D min), average (average link, Voorhees’
method [64], Op D Avr), or maximum (complete link, al-
gorithm CLINK [19], Op D max). All these linkage met-
rics can be derived from the Lance–Williams updating for-
mula [51],

d


Ci
[

Cj;Ck

�
D a(i)d(Ci ;Ck )C a( j)d(Cj ;Ck )

C b � d(Ci ;Cj)C c
ˇ
ˇd(Ci ;Ck ) � d(Cj ;Ck)

ˇ
ˇ

with coefficients a; b; c depending on a particular linkage
metric. This formula helps to avoid actual computing of
all pairwise dissimilarities that makes a definition compu-
tationally feasible, see [18].

Numerous connections to graph theory exist. SLINK,
for example, is related to the problem of finding the Eu-
clidean minimal spanning tree [67] and has O(N2) com-
plexity. More importantly, when the N � N connectivity
matrix is sparsified, graph methods directly dealing with
the connectivity graph can be used. In particular, the hi-
erarchical divisive MST (Minimum Spanning Tree) algo-
rithm is based on partitioning the graph [44].
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Knowledge Discovery: Clustering, Figure 1
Agglomeration of clusters of arbitrary shapes. i Algorithm CURE ii Algorithm CHAMELEON

Guha et al. [36] introduced the hierarchical agglomer-
ative clustering algorithm CURE (Clustering Using REp-
resentatives). This algorithm has a number of novel and
important features. CURE is the first hierarchical cluster-
ing algorithm that was designed with a scalability require-
ment in mind. It also takes special steps to handle outliers
and to provide labeling in the assignment stage. In CURE
a cluster is represented by a fixed number, c, of points scat-
tered around it. Selecting representatives scattered around
a cluster allows to cover non-spherical shapes. The dis-
tance between two clusters used in the agglomerative pro-
cess is the minimum of distances between two scattered
representatives and combines ideas of single and aver-
age link closeness. Agglomeration continues until the re-
quested number k of clusters is achieved. CURE employs
one additional trick: the original selected scattered points
are shrunk to the geometric centroid of the cluster by
a user-specified factor ˛. Shrinkage decreases the impact
of outliers; outliers happen to be located further from the
cluster centroid than the other scattered representatives.
CURE is capable of finding clusters of different shapes and
sizes. Figure 1(i) illustrates agglomeration in CURE. Three
clusters, each with three representatives, are shown before
and after the merge and shrinkage. The two closest repre-
sentatives are connected. The algorithm CURE works with
numerical attributes (particularly, low dimensional spatial
data). It is complemented by the algorithm ROCK that
handles categorical attributes.

The hierarchical algorithm CHAMELEON, [45], uses
a sparsified connectivity graph G: edges corresponding to
the K most similar points to any given point are preserved,
and the rest are pruned. CHAMELEON performs both the
steps of partitioning and agglomeration. It first partitions
the data in small tight clusters by using the HMETIS li-
brary. Then it agglomerates these small micro-clusters tak-
ing into account local measures of connectivity and close-
ness. The CHAMELEON algorithm does not depend on
assumptions about the data model, and has been shown
to find clusters of different shapes, densities, and sizes
in two-dimensional space. CHAMELEON has complexity

O(Nm C N log(N)C m2 log(m)), wherem is the number
of micro-clusters built during the first partitioning phase.
Figure 1ii clarifies the difference between CHAMELEON
and CURE – it shows a choice of four clusters (a)–(d)
for a merge. While CURE would merge clusters (a) and
(b), CHAMELEON makes the intuitively better choice of
merging (c) and (d).

Finally, k-way partitions, when available, naturally lead
to divisive hierarchical algorithms. For example, k-means
can be used to first divide the data into k clusters, and
then it can be recursively applied to each of the k-clus-
ters to yield a hierarchical divisive partitioning. The sin-
gular value decomposition (SVD) yields a spectral hier-
archical divisive clustering method for document collec-
tions called PDDP (Principal Direction Divisive Partition-
ing) [9]. PDDP is an algorithm that uses the SVD to re-
peatedly bisect the data into two clusters. In our notation,
point xi is a document, its lth attribute corresponds to
a word (index term), and xil is a measure (e. g. TF-IDF)
of the frequency of term l in document xi. PDDP begins
with the SVD of the matrix

(X � x̄eT) ; where x̄ D
1
N

X

iD1:N

xi ; e D (1; : : : ; 1)T :

PDDP bisects data in Euclidean space by a hyperplane that
passes through the data centroid x̄ and is orthogonal to the
singular vector with the largest singular value.

Spectral Clustering

As mentioned above, the PDDP method uses spectral in-
formation, namely, singular vectors for data clustering. In
general, the methods of spectral clustering use such spec-
tral information for clustering. Spectral clustering can be
viewed as first constructing an N � N connectivity matrix
(explicitly or implicitly) between all data points. As an ex-
ample, the (i; j) entry of the connectivity matrix may be
formed to be e�kxi�x jk

2/2
2
, or (xi � x̄)T(x j � x̄) (as done

implicitly in PDDP). Then the eigenvectors of the connec-
tivity matrix are computed, typically only the leading few.
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From these eigenvectors, the clustering of the data can be
extracted in a myriad of ways, as discussed below.

Although spectral clustering was introduced to the
data mining and machine learning communities re-
cently [55], it has had a long history in graph clustering
problems that arise in a variety of applications described
in Sect. “Graph Clustering”. The connection to graph clus-
tering is not a surprise since the entries of the connectivity
matrix may be viewed as weights of edges between vertices
that correspond to data points.

There are three main computational issues in spectral
clustering. Construction of the connectivity matrix might
take time quadratic in the number of data items, which
might be prohibitive for large-scale applications. The con-
nectivity matrix is large in size if the number of data points
is large, and can often be sparsified, i. e., many of the en-
tries can be thresholded to zero. Computation of the eigen-
vectors of such a large, sparse symmetricmatrix, is done by
typically invoking the Lanczos algorithm [57], which can
again be a computational bottleneck if many eigenvectors
are desired. A PDDP type recursive spectral bisection al-
gorithm is more effective. An important issue in spectral
clustering is to obtain the clusters once the eigenvectors
are computed. If r eigenvectors v1; v2; : : : ; vr of an N � N
connectivity matrix are computed, then the ith compo-
nents v1(i); v2(i); : : : ; vr(i) may be viewed as the reduced
dimensional representation of the ith data point. In this
case, a simple way to obtain clusters from the eigenvectors
is to run k-means on the reduced dimensional representa-
tions of the data points [55]. More complicated methods
for obtaining the clusters can be used that perform bet-
ter [68].

Graph Clustering

Graph clustering, also called graph partitioning, is applica-
ble when the data is presented in the form of a graph, for
example the link structure of the web, or a social network.
The graph clustering problem is to partition or cluster the
nodes of the given graph, such that the connectivity be-
tween partitions is minimized. The most popular measure
of connectivity is the sum of the crossing edges or cut be-
tween the partitions. The edges of the graph have weights
that reflect similarities between the vertices, and the cut is
defined to be the sum of the weights of the crossing edges.
The minimum cut problem is solvable in polynomial time,
however the graph clustering problem has additional (ex-
plicit or implicit) constraints on the sizes of the partitions.
For example, the partitions might be constrained to be
equal in size [48], or a weighted cut objective, such as ra-
tio-cut [14] or normalized-cut [60] might need to be min-

imized. These constraints make the graph clustering prob-
lem NP-hard.

Graph clustering has been employed in many applica-
tions, for example, in circuit layout, partitioning the work-
load among processors for parallel processing, image seg-
mentation, and of course, in the analysis of networks that
arise in data mining. Since the problem is NP-hard, sev-
eral heuristics are employed to try and solve this important
problem. Some of the early successful approaches include
the greedy search heuristic of Kernighan and Lin [48]. An-
other approach to graph clustering is based on the idea of
graph flows. A survey of this research is presented in [52].

It turns out that the graph clustering objective may be
written as a quadratic programming objective with dis-
crete constraints on the variables. However, if the variables
are relaxed to be real-valued, then eigenvectors of a sym-
metric matrix called the Graph Laplacian can be shown
to exactly solve the relaxed quadratic problem. Consider
the adjacency matrix A of an undirected graph which is
defined to be a matrix with entries A(i; j) D 1 if there is
an edge between vertices i and j and zero otherwise. The
Graph Laplacian L equals D � A, where D is a diagonal
matrix whose ith diagonal entry equals the sum of all en-
tries in the ith row of A. Hence the sum of each row of L
is zero, which implies that the vector of all 1’s is an eigen-
vector of L with eigenvalue 0. The eigenvector of L corre-
sponding to the next smallest eigenvalue is often called the
Fiedler vector [29] and since it is orthogonal to the all 1’s
eigenvector, it has positive as well as negative entries. The
graph bi-partition can now be obtained by placing the ver-
tices with positive entries in the Fiedler vector in one par-
tition, while the ones with negative entries are placed in
the other partition. Such spectral methods have a long and
rich history in graph clustering, dating back to the early
1970s [23,29,37], and have been used to optimize various
weighted graph clustering objectives, such as ratio cut in
circuit layout [14] and normalized cut in image segmen-
tation [60]. One of the reasons for the success of spectral
methods is that these methods provide a globally optimal
solution to the relaxed problem, and thus provide a good
global heuristic to solve the actual graph clustering prob-
lem.

Spectral graph clustering can be computationally ex-
pensive, especially when many eigenvectors of a large,
sparse matrix need to be computed in order to directly
give a k-way cut. An alternative class of algorithms is made
up of multilevel graph clustering algorithms, which are at-
tractive, efficient and powerful alternatives. In multilevel
algorithms, the input graph is repeatedly coarsened level
by level until only a small number of nodes remain. An
initial clustering is performed on the coarsened graph, and
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then this clustering is refined as the graph is uncoarsened
level by level. These methods are extremely fast and give
high-quality partitions. However, earlier multilevel meth-
ods, such as Metis [46] and Chaco [41], force clusters to
be of nearly equal size, and are all based on optimizing the
Kernighan-Lin objective [48]. In graph clustering for data
mining problems, there is no reason why clusters should
be of the same size. A recently developed multilevel graph
clustering method, called GRACLUS (GRAph CLUSter-
ing) [22] removes the restriction of equal cluster sizes. In
fact, this multilevel algorithm is able to optimize for sev-
eral weighted spectral clustering objectives, such as ratio
cut and normalized cut, without having to compute any
eigenvectors. GRACLUS exploits a mathematical equiv-
alence between two objectives – the seemingly different
clustering objectives of weighted graph cuts, and weighted
kernel k-means (an enhanced version of k-means) are
shown to be equivalent in [22]. Using this equivalence,
GRACLUS employs the weighted kernel k-means algo-
rithm during the refinement phase to directly optimize
various weighted graph cuts. Furthermore, this multilevel
algorithm does not require any extra memory, which is in
contrast to spectral methods that compute k eigenvectors
for k-way cuts and require O(Nk) storage, where N is the
number of vertices. Thus multilevel algorithms are scal-
able to much larger data sets than standard spectral meth-
ods, and offer a state-of-the-art solution to the graph clus-
tering problem.

Clusters as Dense Connected Components

In this section, a dataset X will be divided (with the ex-
ception of outliers) into dense connected components that
will serve as its natural clusters. But how can the concepts
of density and connectivity be defined for discrete data?
Three approaches to answering this question exist: Den-
sity-Based Partitioning,Density Functions, and GridMeth-
ods.

The first approach, Density-Based Partitioning, pins
these concepts to a particular point x 2 X � A.

Density and connectivity are defined in terms of
a point’s nearest neighbors. A cluster grows in any di-
rection that density leads it to. Therefore, density-based
algorithms are capable of discovering clusters of arbi-
trary shapes and they provide a natural protection against
outliers. Figure 2 illustrates some cluster shapes that
present problems for partitioning relocation clustering
(e. g., k-means), but are handled properly by density-based
algorithms. Finally, density-based algorithms are scalable.

These outstanding properties come along with certain
inconveniences:

Knowledge Discovery: Clustering, Figure 2
Irregular shapes

� A dense cluster consisting of two adjacent areas
with significantly different densities (both higher than
a threshold) is not very informative

� Clusters lack interpretability
� Density-based partitioning primarily works with low-

dimensional spatial data (though generalizations exist).

To explain the last point, note that scalability is achieved
through usage of some sort of data index (such as an
R�-tree). Index construction is a topic of active research.
Classic indices are effective only with low-dimensional
data, since index complexity increases exponentially with
data dimension. An excellent introduction to density-
based methods is contained in [39].

As a representative of its class, consider the algo-
rithm DBSCAN (Density Based Spatial Clustering of Ap-
plications with Noise) [27]. Two input parameters � and
MinPts are used to introduce:

1. An �-neighborhood N�(x) D fy 2 X j dist(x; y) � � g
of the point x,

2. A core object, which is a point with jN�(x)j � MinPts,
3. A notion of a point y density-reachable from a core ob-

ject x (a sequence of core objects between x and y ex-
ists such that each object in the sequence belongs to
an �-neighborhood of its predecessor),

4. A definition of density-connectivity between two
points x and y (they should be density-reachable from
a common core object).

Density-connectivity is an equivalence relation. All the
points reachable from core objects can be factorized into
maximal connected components serving as clusters. The
core points are internal points. The non-core points inside
a cluster represent its boundary. The points not connected
to any core point are declared to be outliers, and are not
covered by any cluster. For low-dimensional spatial data,
the theoretical complexity of DBSCAN is O

�
N log(N)


.

Experiments confirm a slightly super-linear runtime.
Selection of two parameters � and MinPts presents

a problem. Besides, no choice allows the fitting of data that
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has different densities in different localities as frequently
happens. Algorithms OPTICS (Ordering Points To Iden-
tify the Clustering Structure) [3] and DBCLASD (Distri-
bution Based Clustering of Large Spatial Databases) [66]
rectify DBSCAN to address these issues.

The second approaches to definition of density and
connectivity is based on Density Functions and is due
to Hinneburg and Keim [42]. They proposed the algo-
rithm DENCLUE (DENsity-based CLUstEring). In this
approach definitions are no longer pinned to a point
x 2 X, but to a point in the underlying attribute space
x 2 A. Data affects density indirectly through so-called
density functions.

DENCLUE uses a density function

f D(x) D
X

y2D(x)

f (x; y)

that is the superposition of several influence functions,
for example, f (x; y) D �

�
kx � yk /�


(equals to one, if

the distance between x and y is less than or equal to �)
or Gaussian influence functions f (x; y) D exp(�kx �
yk2/�2). This provides a high level of generality: the first
example leads to DBSCAN, and the second to k-means
clustering. Both examples depend on the parameter � .

Restricting the summation to D(x) D fy 2 X : kx �
yk < k�g � X enables a practical implementation. DEN-
CLUE concentrates on local maxima of density function
called density-attractors and uses a gradient hill-climbing
technique to find them. In addition to center-defined clus-
ters, arbitrary-shape clusters are defined as unions of local
shapes along sequences of neighbors whose local densities
are no less than a prescribed threshold.

Applications include high dimensional multimedia
andmolecular biology data.While no clustering algorithm
could have less than O (N) complexity, the runtime of

Knowledge Discovery: Clustering, Figure 3
Algorithm STING

DENCLUE scales with N sub-linearly! The explanation is
that though all the points are fetched, the bulk of the anal-
ysis in the clustering stage involves only points in highly
populated areas.

The third approach, Grid-Based Methods, suggests ex-
ploiting structure of the underlying attribute space A and
partitioning it rather than data X. Data partitioning is in-
duced by a point’s membership in segments resulting from
space partitioning, while space partitioning is based on
grid-characteristics accumulated from input data. One ad-
vantage of this indirect handling (data ! grid-data !
space-partitioning! data-partitioning) is that it is inde-
pendent of the data ordering and it works with numeri-
cal and categorical attributes (actually numerical attributes
are binned).

To limit the amount of computations, multi-rect-
angular segments (direct Cartesian product of individ-
ual attribute sub-ranges) are considered. The elementary
segment whose sides correspond to single-bins is called
a unit. To some extent, the grid-based methodology re-
flects a technical point of view: it contains both partition-
ing and hierarchical algorithms and is used as an inter-
mediate step in many clustering algorithms including the
just described algorithm DENCLUE (that uses grids at its
initial stage), and the important algorithm CLIQUE pre-
sented later.

Few other examples are considered below.
The algorithm BANG [58] summarizes data over the

segments. The segments are stored in a grid-directory in-
corporating different scales. Adjacent segments are con-
sidered neighbors. If a common face has maximum di-
mension they are called nearest neighbors. More gener-
ally, neighbors of degree (dimension of a common face)
between 0 and d � 1 can be defined. The density of a seg-
ment is defined as a ratio between the number of points in
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that segment and its volume. From the grid-directory, a hi-
erarchical clustering (a dendrogram) is calculated directly.

The algorithm STING (STatistical INformation Grid-
based method) [65] works with numerical attributes (spa-
tial data) and is designed to facilitate “region oriented”
queries. STING assembles summary statistics in a hierar-
chical tree of nodes that are grid-cells. Figure 3 illustrates
the proliferation of cells in 2D space and the construction
of the corresponding tree. Each cell has four (default) chil-
dren.

We want to briefly mention two other algorithms that
work with numerical data and are based on certain mathe-
matical ideas. The algorithm WaveCluster [59] supports
a multi-resolution technique. It uses wavelet transforms
and has several salient properties: (1) it can work with rel-
atively high-dimensional data, (2) it successfully handles
outliers, and (3) it has O (N) complexity. The second algo-
rithm, FC (Fractal Clustering) [6], utilizes another math-
ematical concept, Hausdorff Fractal Dimension (HFD). Its
implementation relies on the hierarchy of grids: FC scans
the full data incrementally attempting to add an incom-
ing point to a cluster so as to minimally increase its HFD.
The FC algorithm has its pros: (1) incremental structure,
(2) suspendable nature, (3) ability to discover clusters of ir-
regular shapes, (4)O (N) complexity. Its cons: dependency
on (1) data ordering, (2) on cluster initialization, and (3)
on some input parameters.

Clustering Transactional Data

In this section we consider clustering of categorical data
consisting of transactions, finite sets of elements (items)
from a common item universe. Market basket data is
typical transaction data. Co-occurrence of elements is
the major idea in clustering transactional data. For ex-
ample, one well-known similarity measure between two
transactions is the Jaccard coefficient sim(T1; T2) D
jT1

T
T2j / jT1

S
T2j. Unfortunately, two random transac-

tions rarely have elements in common.
We start with the algorithm CACTUS (Clustering Cat-

egorical Data Using Summaries), [30], that exemplifies
the idea of co-occurrence. Values a; b of two different at-
tributes are strongly connected if the number of transac-
tions containing both a and b is larger than expected un-
der an independence assumption by a user-defined mar-
gin ˛. This definition is extended to subsets A; B of two
different attributes (each value pair a 2 A; b 2 B has to be
strongly connected), to segments (each 2D projection is
strongly connected), and to the similarity of a pair of val-
ues of a single attribute via connectivity to other attributes.
A cluster is defined as themaximal strongly connected seg-

ment (a Cartesian product of attribute subsets) having at
least ˛ times more elements than expected from the seg-
ment under the attribute independence assumption. Only
two scans of data are required by this fast and scalable al-
gorithm.

Han et al. exploited another idea [38] especially rel-
evant when the item universe is large: (1) cluster items
in item subsets Cj (association rules and hyper-graph ma-
chineries are used) and then (2) assign transactions T to
a subset with highest similarity

ˇ̌
T
T

Cj
ˇ̌
/
ˇ̌
Cj
ˇ̌
.

Finally, consider the elegant algorithm STIRR (Sieving
Through Iterated Reinforcement) [34] that deals with co-
occurrence phenomenon for d-dimensional transactional
records, tuples (e. g. tables of car sales with d fields). With
each value (e. g. Honda) of one of d fields (e. g. Manufac-
turer) we associate a node v. Nodes v1 and v2 are close
when many tuples containing them have a lot of co-occur-
ring values (e. g., the highest sale month August). To for-
malize this concept, STIRR introduces a functional anal-
ysis concept of a dynamical system: with each node it
associates a weight wv and a transformation w0 D ˚(w)
over defined weights. This transformation computes w0v as
a sum of some recombination of weights wb correspond-
ing to the other d � 1 values b over all tuples containing v
(the overall weight is then renormalized). A fixed point
w D ˚(w) can be achieved in several iterations. In addi-
tion to the idea of co-occurrence encapsulated in a weight
propagation process, STIRR uses ideas of spectral cluster-
ing to perform the actual partitioning using non-principal
eigenvectors.

Co-clustering

To explain the idea, consider text clustering, where each
document is represented by a bag of its term frequencies
(e. g. TF-IDF). In our usual case-by-attribute representa-
tion such textual data will result in a very large and sparse
rectangular matrix with as many rows as number of docu-
ments and as many columns as number of terms, which is
typically very high. Meanwhile, some terms are very sim-
ilar to each other in the sense that they are used in the
same subsets of documents. It would be handy to group
such words together. Not only would a grouping of terms
reduce dimensionality, but it would also eliminate certain
randomness in preferential usage of a term from the same
group by a particular document. In reality, this process
is no different than merging documents that have similar
term distributions. This is why the described idea is known
as co-clustering.

For now, let us assume that we are dealing with a large
sparse rectangular numerical non-negative data X. One
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approach to co-clustering in text mining is based on mini-
mal cuts partitioning for bipartite graphs using SVD [20].
Another popular approach is based on distributional or in-
formational clustering. After a row normalization (non-
negative elements sum to one), a data point can be viewed
as a probability distribution (e. g. term distribution within
a document). The same is true about every column at-
tribute. Two attributes (two columns in matrix X) with
exactly the same probability distributions are identical for
the purpose of datamining, and so, one can be deleted. At-
tributes having distributions with small Kullback-Leibler
(KL) distance (a common statistical measure to compare
probability distributions) can still be grouped together
without much impact on the information contained in the
data. In addition, a natural derived attribute, the mixed
distribution (a normalized sum of two columns), is now
available to represent the group. This process can be gen-
eralized to more than two attributes. The grouping sim-
plifies the original matrix X into the compressed form X̄.
In fact, our observation about impact on information can
be quantified: information reduction R D I(X)� I(X̄),
where I(X) is the mutual information contained in X[17],
and is exactly equal to a sum of KL distances between orig-
inal attributes assembled into a group and total group dis-
tribution (similarly to the objective function E(C) used be-
fore in Sect. “Partitioning Relocation Clustering”.

Now it is obvious that the intuitive idea of grouping
similar attributes corresponds exactly to a minimization of
information loss resulting in data compression. Moreover,
R is symmetric with respect to columns and rows. So both
dimensions can be gradually agglomerated under control
of a single measure.

The above idea serves as a framework to several
co-clustering developments, such as the SimplifyRelation
algorithm [8] and Information-Theoretic Co-clustering
method [21]. A natural question arises – how should co-
clustering be done when the data matrix cannot be viewed
as a probability distribution, for example, gene expres-
sion data that contains positive as well as negative en-
tries. Recently, the theory and practice of co-clustering
has been significantly advanced by extension to general-
ized distance measures known as Bregman divergences [5].
This advancement follows by using the important notion
of Bregman Information and associating a co-clustering
with a matrix approximation.

Scalability

Scalability challenges to clustering are much more severe
than to predictivemining, with respect to computing time,
to memory, and to the clustering concept itself in case of

high dimensionality. We only reflect on a few of the most
influential ideas without any references to many others.
The first idea is to squash data into some summaries (suffi-
cient statistics) [24] that, in the case of clustering, was first
implemented in the BIRCH algorithm (Balanced Iterative
Reduction and Clustering using Hierarchies) [70]. Many
other developments (e. g. [11,31]) followed in its footsteps.

BIRCH pre-processes data into small tight micro-clus-
ters, called Cluster Features (CF) accumulating zero, first,
and second moments of CF members. CF are viewed as
leaves in a height-balanced tree that resides in memory.
They can later be used to build clusters via the algorithm of
choice, for example hierarchical or k-means. The empha-
sis is shifted to a pre-processing phase of building a high-
quality CF tree that is controlled by some parameters (as
branching factor). When a tree reaches the assigned mem-
ory size, it is rebuilt with somewhat less tight CF. Outliers
are saved in an auxiliary file. The overall complexity of
BIRCH is O(N) and it only takes one or two scans of data
(which is not assumed to reside in memory).

Many algorithms (e. g. CLARANS) use old-fashioned
sampling without rigorous statistical reasoning. Sampling
was advanced to a new level with introduction of Ho-
effding or Chernoff bounds [54]. In a nutshell, indepen-
dently of the distribution for a real-valued random vari-
able Y ; 0 � Y � R, the average of its n independent ob-
servations lies within � of the actual mean
ˇ
ˇ̌
ˇ
ˇ̌Ȳ �

1
n

X

jD1:n

Yj

ˇ
ˇ̌
ˇ
ˇ̌ � �

with probability 1� ı as soon as � D
p
R2ln(1/ı)/2n.

For example, these bounds are used in the clustering
algorithm CURE [36] mentioned previously.

Another challenge is related to a situation when the di-
mensionality d is high.

Clustering in high-dimensional spaces presents two
difficulties:

(1) irrelevant attributes – while in predictive mining they
are easily discarded, irrelevant attributes can render
the clustering task hopeless; their inspection in high
dimension is nothing but easy;

(2) curse of dimensionality – in high-dimensional space,
distance to a furthest point and to a closest point be-
comes on average undistinguishable; this is purely ge-
ometric phenomenon making overall proximity clus-
tering very suspicious.

Some algorithms adapt to high dimensionality better than
others. For example, the algorithm CACTUS adjusts well
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because it defines a cluster only in terms of a cluster’s 2D
projections. However, as a rule of thumb, the performance
of classic clustering algorithms can degrade gradually with
dimension.

A proposed cure against the curse of dimensionality
is subspace clustering. It is exemplified by the algorithm
CLIQUE (Clustering In QUEst) [2]. CLIQUE works with
high-dimensional numerical data and combines many
ideas. It starts with the units (elementary rectangular cells)
in low-dimensional subspaces. Only units whose densi-
ties exceed a threshold � are retained (this is similar to
grid-based clustering). A bottom-up approach of find-
ing such units is applied, starting from units of dimen-
sion one. An inductive step to move from a dimension
q � 1 to a dimension q involves a self-joint over com-
mon q � 2 faces. This is similar to the Apriori-reasoning
in association rules. All the subspaces are sorted by their
coverage and lesser-covered subspaces are pruned. A cut
point between retained and pruned subspaces is selected
based on the Minimum Description Length (MDL) prin-
ciple. A cluster is defined as a maximal set of connected
dense units. Effectively, CLIQUE selects several subspaces,
each representing different perspective. The result is a se-
ries of cluster systems in different subspaces. Unfortu-
nately, the result is not a partition, since the systems over-
lap.

There have been many follow-up improvements to
subspace clustering. On a theoretical side, a more trans-
parent criterion for subspace selection based on the con-
cept of entropy was suggested in [16]. A more advanced
inductive unit generation that, in addition, utilizes adap-
tive grids is used in the algorithm MAFIA (Merging of
Adaptive Finite Intervals) [35]. MAFIA starts with one
data pass to construct adaptive grids in each dimension.
Many (1000) bins are used to compute histograms by read-
ing blocks of data into memory. The bins are then merged
to come up with a smaller number of adaptive variable-
size bins than CLIQUE. The algorithm uses a parameter ˛,
called the cluster dominance factor, to select bins that
are ˛-times more densely populated than average. These
variable-size bins are q D 1 candidate dense units (CDUs).
Then MAFIA proceeds recursively to higher dimensions
(every time a data scan is involved). Unlike CLIQUE,
when constructing a new q-CDU, MAFIA tries two
(q � 1)-CDUs as soon as they share any (not only the first
dimensions) (q � 2)-face. This creates an order of mag-
nitude more candidates. The algorithm PROCLUS (PRO-
jected CLUstering) [1] explores pairs consisting of a data
subset C � X and a subspace in an attribute space A.
A subset-subspace pair is called a projected cluster, if
a projection of C onto the corresponding subspace is

a tight cluster. Unlike with CLIQUE, projected clusters do
not overlap.

Other Aspects of Clustering

Due to limited space, we have only touched on major clus-
tering approaches. Now without any details we want to
present a reader with a brief account of a few other clus-
tering techniques.

The first important direction of thought is assessing
clustering results. Different measures (e. g. Silhouette and
Partition coefficients) are available, but not very useful.
Usually assessment is done based purely on the objectives
of the application. Another important research thread tries
to answer the question of what is the optimal number k of
clusters to build. Different statistical criteria have been de-
veloped such as BIC, AIC, MDL, and others. From the sys-
tem complexity angle, clustering provides simplified data
description. Given k cluster “prototypes” (e. g. centroids),
data can be very roughly described by assigning each data
point its cluster ID. Such very economical date compres-
sion is lossy, but in principle residuals between data points
and their cluster centroids are tightly distributed and so
takes relatively small amount of information to transmit.
The more clusters kwe introduce, the smaller the residuals
will be, in the extreme each point coinciding with cluster
centroid. However, more and more cluster centroids are
needed to be transmitted upfront. So, the optimal k may
be found from such considerations.

In real-world applications customers are rarely inter-
ested in unconstrained solutions. Clusters are frequently
subjected to some problem-specific limitations that make
them suitable for particular business actions. Finding clus-
ters satisfying certain limitations is the subject of active re-
search [40].

Consider, for example, clustering algorithm COD
(Clustering with Obstructed Distance) [63]. The problem
is easily illustrated by Fig. 4, where we show the difference
in constructing three clusters in the absence of any obsta-
cle (left) and in the presence of a river with a bridge (right).

Soft cluster assignments (assigning a point to sev-
eral clusters with some probabilities) make sense if
the k-means objective function is modified to incorporate
“fuzzy errors” (similar to EM)

E0(C) D
X

iD1:N

X

jD1:k

��xi � c j
��2 !2

i j

The probabilities ! are defined based on Gaussian
models. This makes the objective function differentiable
with respect to means and allows application of general
gradient decent methods presented in [53] in a context of
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Knowledge Discovery: Clustering, Figure 4
Clustering with Obstructed Distance (COD) clustering. a No obstacles b River with the bridge

vector quantization. Another soft-assignment leads to so-
called harmonic means [69]. Another iterative approach is
used in Self-Organizing Map (SOM) [50].

Future Directions

Clustering is an important and well-studied problem. As
discussed earlier, many algorithms exist that are applica-
ble in different scenario. However, the theory of clustering
is far from satisfactory. Even a simple and often used algo-
rithm such as k-means does not have a performance guar-
antee. There have been some efforts to modify k-means,
but none of these modified algorithms are simultaneously
efficient and provably optimal. Thus a very important fu-
ture direction of research is to develop a sound theory of
clustering, that includes algorithms that have satisfactory
performance guarantees. There have been a few efforts to
axiomatize clustering, such as [49], however more such ef-
forts are needed.

For the practitioner too, the variety of clustering algo-
rithms is bewildering. An immensely beneficial tool will
be an expert system for clustering. That is, a system that
queries the user about various aspects of the data, the tar-
get application and the target clustering and then suggests
appropriate clustering formulations and algorithms. Ide-
ally, such a system would also provide a justification (rel-
evant features) for the suggested algorithm. Besides an ex-
pert system, high quality public domain software would be
invaluable.
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Glossary

Action-angle variables A particular set of variables (y;
x) D ((y1; : : : ; yd ); (x1; : : : ; xd )), xi (“angles”) defined
modulus 2� , particularly suited to describe the general
behavior of an integrable system.

Fast convergent (Newton) method Super-exponential
algorithms, mimicking Newton’s method of tangents,

used to solve differential problems involving small
divisors.

Hamiltonian dynamics The dynamics generated by
a Hamiltonian system on a symplectic manifold,
i. e., on an even-dimensional manifold endowed with
a symplectic structure.

Hamiltonian system A time reversible, conservative
(without dissipation or expansion) dynamical sys-
tem, which generalizes classical mechanical systems
(solutions of Newton’s equation mi ẍi D fi(x), with
1 � i � d and f D ( f1; : : : ; fd ) a conservative
force field); they are described by the flow of differen-
tial equations (i. e., the time t map associating to an
initial condition, the solution of the initial value prob-
lem at time t) on a symplectic manifold and, locally,
look like the flow associated with the system of differ-
ential equation ṗ D �Hq(p; q), q̇ D Hp(p; q) where
p D (p1; : : : ; pd ), q D (q1; : : : ; qd ).

Integrable Hamiltonian systems A very special class of
Hamiltonian systems, whose orbits are described by
linear flows on the standard d-torus: (y; x)! (y; x C
! t) where (y; x) are action-angle variables and t is
time; the ! i’s are called the “frequencies” of the orbit.

Invariant tori Manifolds diffeomorphic to tori invariant
for the flow of a differential equation (especially of
Hamiltonian differential equations); establishing the
existence of tori invariant for Hamiltonian flows is the
main object of KAM theory.

KAM Acronym from the names of Kolmogorov (An-
drey Nikolaevich Kolmogorov, 1903–1987), Arnold
(Vladimir Igorevich Arnold, 1937) and Moser (Jürgen
K. Moser, 1928–1999), whose results, in the 1950’s and
1960’s, in Hamiltonian dynamics, gave rise to the the-
ory presented in this article.

Nearly-integrable Hamiltonian systems Hamiltonian
systems which are small perturbations of an integrable
system andwhich, in general, exhibit amuch richer dy-
namics than the integrable limit. Nevertheless, KAM
theory asserts that, under suitable assumptions, the
majority (in the measurable sense) of the initial data of
a nearly-integrable system behaves as in the integrable
limit.

Quasi-periodic motions Trajectories (solutions of a sys-
tem of differential equations), which are conjugate to
linear flow on tori.

Small divisors/denominators Arbitrary small combina-
tions of the form ! � k :D

Pd
jD1 !i ki with ! D (!1;

: : : ; !d ) 2 Rd a real vector and k 2 Zd an integer
vector different from zero; these combinations arise in
the denominators of certain expansions appearing in
the perturbation theory of Hamiltonian systems, mak-
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ing (when d > 1) convergent arguments very delicate.
Physically, small divisors are related to “resonances”,
which are a typical feature of conservative systems.

Stability The property of orbits of having certain proper-
ties similar to a reference limit; more specifically, in the
context of KAM theory, stability is normally referred
to as the property of action variables of staying close to
their initial values.

Symplectic structure A mathematical structure (a differ-
entiable, non-degenerate, closed 2-form) apt to de-
scribe, in an abstract setting, the main geometrical fea-
tures of conservative differential equations arising in
mechanics.

Definition of the Subject

KAM theory is a mathematical, quantitative theory which
has as its primary object the persistence, under small
(Hamiltonian) perturbations, of typical trajectories of in-
tegrable Hamiltonian systems. In integrable systems with
bounded motions, the typical trajectory is quasi-peri-
odic, i. e., may be described through the linear flow
x 2 T d ! x C ! t 2 T d where T d denotes the standard
d-dimensional torus (see Sect. “Introduction” below), t is
time, and ! D (!1; : : : ; !d ) 2 Rd is the set of frequencies
of the trajectory (if d D 1, 2�/! is the period of the mo-
tion).

The main motivation for KAM theory is related to
stability questions arising in celestial mechanics which
were addressed by astronomers and mathematicians such
as Kepler, Newton, Lagrange, Liouville, Delaunay, Weier-
strass, and, from a more modern point of view, Poincaré,
Birkhoff, Siegel, . . .

The major breakthrough in this context, was due to
Kolmogorov in 1954, followed by the fundamental work
of Arnold and Moser in the early 1960s, who were able to
overcome the formidable technical problem related to the
appearance, in perturbative formulae, of arbitrarily small
divisors1. Small divisors make the use of classical analyti-
cal tools (such as the standard Implicit Function Theorem,
fixed point theorems, etc.) impossible and could be con-
trolled only through a “fast convergent method” of New-
ton-type2, which allowed, in view of the super-exponential
rate of convergence, counterbalancing the divergences in-
troduced by small divisors.

Actually, the main bulk of KAM theory is a set of tech-
niques based, as mentioned, on fast convergent methods,
and solving various questions in Hamiltonian (or general-
izations of Hamiltonian) dynamics. By now, there are ex-
cellent reviews of KAM theory – especially Sect. 6.3 of [6]
and [60] – which should complement the reading of this

article, whose main objective is not to review but rather
to explain the main fundamental ideas of KAM theory.
To do this, we re-examine, in modern language, the main
ideas introduced, respectively, by the founders of KAM
theory, namely Kolmogorov (in Sect. “Kolmogorov The-
orem”), Arnold (in Sect. “Arnold’s Scheme”) and Moser
(Sect. “The Differentiable Case: Moser’s Theorem”).

In Sect. “Future Directions” we briefly and informally
describe a few developments and applications of KAM the-
ory: this section is by no means exhaustive and is meant
to give a non technical, short introduction to some of the
most important (in our opinion) extensions of the original
contributions; for more detailed and complete reviews we
recommend the above mentioned articles Sect. 6.3 of [6]
and [60].

Appendix A contains a quantitative version of the clas-
sical Implicit Function Theorem.

A set of technical notes (such as notes 17, 18, 19, 21,
24, 26, 29, 30, 31, 34, 39), which the reader not particularly
interested in technical mathematical arguments may skip,
are collected in Appendix B and complete the mathemat-
ical expositions. Appendix B also includes several other
complementary notes, which contain either standard ma-
terial or further references or side comments.

Introduction

In this article we will be concerned withHamiltonian flows
on a symplectic manifold (M; dy ^ dx); for general infor-
mation, see, e. g., [5] or Sect. 1.3 of[6]. Notation, main def-
initions and a few important properties are listed in the
following items.

(a) As symplectic manifold (“phase space”) we shall con-
sider M :D B � T d with d � 2 (the case d D 1 is
trivial for the questions addressed in this article)
where: B is an open, connected, bounded set in Rd ;
T d :D Rd /(2�Zd ) is the standard flat d-dimensional
torus with periods3 2�

(b) dy ^ dx :D
Pd

iD1 dyi ^ dxi , (y 2 B, x 2 T d ) is the
standard symplectic form4

(c) Given a real-analytic (or smooth) function H : M !
R, the Hamiltonian flow governed by H is the one-
parameter family of diffeomorphisms � t

H : M ! M,
which to z 2M associates the solution at time t of the
differential equation5

ż D J2drH(z) ; z(0) D z ; (1)

where ż D dz/dt, J2d is the standard symplectic
(2d � 2d)-matrix

J2d D
�
0 �1d
1d 0

�
;
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1d denotes the unit (d�d)-matrix, 0 denotes a (d�d)
block of zeros, andr denotes gradient; in the symplec-
tic coordinates (y; x) 2 B � T d , equations (1) reads

�
ẏ D �Hx (y; x)
ẋ D Hy(y; x)

;

�
y(0) D y
x(0) D x (2)

Clearly, the flow � t
H is defined until y(t) eventually

reaches the border of B.
Equations (1) and (2) are called the Hamilton’s equa-
tions with Hamiltonian H; usually, the symplectic (or
“conjugate”) variables (y; x) are called action-angle
variables6; the number d (= half of the dimension of
the phase space) is also referred to as “the number of
degrees of freedom7”.
The Hamiltonian H is constant over trajectories
� t
H(z), as it follows immediately by differentiating

t ! H(� t
H(z)). The constant value E D H(� t

H(z)) is
called the energy of the trajectory � t

H(z).
Hamilton equations are left invariant by symplectic (or
“canonical”) change of variables, i. e., by diffeomor-
phisms onMwhich preserve the 2-form dy ^ dx; i. e.,
if � : (y; x) 2M! (�; �) D �(y; x) 2M is a diffeo-
morphism such that d� ^ d� D dy ^ dx, then

� ı � t
H ı �

�1 D � t
Hı��1 : (3)

An equivalent condition for a map � to be symplectic
is that its Jacobian � 0 is a symplectic matrix, i. e.,

� 0
T J2d� 0 D J2d (4)

where J2d is the standard symplectic matrix intro-
duced above and the superscript T denotes matrix
transposition.
By a (generalization of a) theorem of Liouville, the
Hamiltonian flow is symplectic, i. e., the map (y; x)!
(�; �) D � t

H(y; x) is symplectic for any H and any t;
see Corollary 1.8, [6].
A classical way of producing symplectic transforma-
tions is by means of generating functions. For example,
if g(�; x) is a smooth function of 2d variables with

det
@2g
@�@x

¤ 0 ;

then, by the Implicit Function Theorem (IFT; see [36]
or Sect. “A The Classical Implicit Function Theorem”
below), the map � : (y; x)! (�; �) defined implicitly
by the relations

y D
@g
@x
; � D

@g
@�
;

yields a local symplectic diffeomorphism; in such
a case, g is called the generating function of the trans-
formation � . For example, the function � � x is the
generating function of the identity map.
For general information about symplectic changes
of coordinates, generating functions and, in general,
about symplectic structures we refer the reader to [5]
or [6].

(d) A solution z(t) D (y(t); x(t)) of (2) is a maxi-
mal quasi-periodic solution with frequency vector
! D (!1; : : : ; !d ) 2 Rd if ! is a rationally-indepen-
dent vector, i. e.,

9n 2 Zd s:t: ! � n :D
dX

iD1

!i ni D 0

H) n D 0 ; (5)

and if there exist smooth (periodic) functions
v; u : T d ! Rd such that8

(
y(t) D v(! t)
x(t) D ! t C u(! t) :

(6)

(e) Let !, u and v be as in the preceding item and let U
and � denote, respectively, the maps

(
U : � 2 T d ! U(�) :D � C u(�) 2 T d

� : � 2 T d ! �(�) :D (v(�);U(�)) 2M

If U is a smooth diffeomorphism of T d (so that, in
particular9 detU� ¤ 0) then � is an embedding of T d

intoM and the set

T! D T d
! :D �(T d ) (7)

is an embedded d-torus invariant for � t
H and on which

the motion is conjugated to the linear (Kronecker)
flow � ! � C ! t, i. e.,

��1 ı � t
H ı �(�) D � C ! t ; 8� 2 T d : (8)

Furthermore, the invariant torus T! is a graph over
T d and is Lagrangian, i. e., (T! has dimension d and)
the restriction of the symplectic form dy ^ dx on T!
vanishes10.

(f) In KAM theory a major role is played by the nu-
merical properties of the frequencies !. A typical as-
sumption is that ! is a (homogeneously) Diophantine
vector: ! 2 Rd is called Diophantine or (�; �)-Dio-
phantine if, for some constants 0 < � � mini j!i j and
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� � d � 1, it verifies the following inequalities:

j! � nj �
�

jnj�
; 8n 2 Zd n f0g ; (9)

(normally, for integer vectors n, jnj denotes jn1jC� � �C
jnd j, but other normsmaywell be used).We shall refer
to � and � as the Diophantine constants of !. The set
of Diophantine numbers inRd with constants � and �
will be denoted by Dd

�;� ; the union over all � > 0 of
Dd
�;� will be denoted by Dd

� and the union over all
� � d � 1 of Dd

� will be denoted by Dd . Basic facts
about these sets are11: if � < d � 1 then Dd

� D ;; if
� > d � 1 then the Lebesgue measure of Rd nDd

� is
zero; if � D d � 1, the Lebesguemeasure ofDd

� is zero
but its intersection with any open set has the cardinal-
ity ofR.

(g) The tori T! defined in (e) with ! 2 Dd will be called
maximal KAM tori for H.

(h) A Hamiltonian function (�; �) 2M! H(�; �) hav-
ing a maximal KAM torus (or, more generally, a max-
imal invariant torus as in (e) with ! rationally inde-
pendent)T! , can be put into the form12

K(y; x) :D E C ! � y C Q(y; x) ;

with @˛y Q(0; x) D 0; 8˛ 2 Nd ; j˛j � 1 ; (10)

compare, e. g., Sect. 1 of [59]; in the variables (y; x),
the torus T! is simply given by fy D 0g � T d and E is
its (constant) energy. A Hamiltonian in the form (10)
is said to be in Kolmogorov normal form.
If

deth@2yQ(0; �)i ¤ 0 ; (11)

(where the brackets denote an average over T d and
@2y the Hessian with respect to the y-variables) we shall
say that the Kolmogorov normal formK in (10) is non-
degenerate; similarly, we shall say that the KAM torus
T! for H is non-degenerate if H can be put in a non-
degenerate Kolmogorov normal form.

Remark 1

(i) A classical theorem by H. Weyl says that the flow

� 2 T d ! � C ! t 2 T d ; t 2 R

is dense (ergodic) in T d if and only if ! 2 Rd is
rationally independent (compare [6], Theorem 5.4
or Sect. 1.4 of [33]). Thus, trajectories on KAM tori
fill them densely (i. e., pass in any neighborhood of
any point).

(ii) In view of the preceding remark, it is easy to see that
if ! is rationally independent, (y(t); x(t)) in (6) is
a solution of (2) if and only if the functions v and u
satisfy the following quasi-linear system of PDEs on
T d :

(
D!v D �Hx (v(�); � C u(�))
! C D!u D Hy(v(�); � C u(�))

(12)

where D! denotes the directional derivative! � @� DPd
iD1 !i

@
@�i

.
(iii) Probably, the main motivation for studying quasi-pe-

riodic solutions of Hamiltonian systems onRd � T d

comes from perturbation theory of nearly-integrable
Hamiltonian systems: a completely integrable sys-
tem may be described by a Hamiltonian system on
M :D B(y0; r) � T d � Rd � T d with Hamil-
tonian H D K(y) (compare Theorem 5.8, [6]); here
B(y0; r) denotes the open ball fy 2 Rd : jy � y0j < rg
centered at y0 2 Rd . In such a case the Hamiltonian
flow is simply

� t
K(y; x) D

�
y; x C !(y)t


;

!(y) :D Ky(y) :D
@K
@y

(y) : (13)

Thus, if the “frequency map” y 2 B! !(y) is a dif-
feomorphism (which is guaranteed if detKyy(y0) ¤
0, for some y0 2 B and B is small enough), in
view of (f), for almost all initial data, the trajecto-
ries (13) belong to maximal KAM tori fyg � T d with
!(y) 2 Dd .
The main content of (classical) KAM theory, in our
language, is that, if the frequency map ! D Ky of
a (real-analytic) integrable Hamiltonian K(y) is a dif-
feomorphism, KAM tori persist under small (smooth
enough) perturbations of K ; compare Remark 7–(iv)
below.
The study of the dynamics generated by the flow of
a one-parameter family of Hamiltonians of the form

K(y)C "P(y; x; ") ; 0 < "
 1 ; (14)

was called by H. Poincaré le problème général de la
dynamique, to which he dedicated a large part of
his monumentalMéthodes Nouvelles de la Mécanique
Céleste [49].

(iv) A big chapter in KAM theory, strongly motivated
by applications to PDEs with Hamiltonian structure
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(such as nonlinear wave equation, Schrödinger equa-
tion, KdV, etc.), is concerned with quasi-periodic
solutions with 1 � n < d frequencies, i. e., solutions
of (2) of the form

(
y(t) D v(! t)
x(t) D U(! t) ;

(15)

where v : T n ! Rd , U : T n ! T d are smooth func-
tions, ! 2 Rn is a rationally independent n-vector.
Also in this case, if the map U is a diffeomorphism
onto its image, the set

T n
! :D f(y; x) 2M :

y D v(�) ; x D U(�) ; � 2 T ng (16)

defines an invariant n-torus on which the flow � t
H

acts by the linear translation � ! � C ! t. Such tori
are normally referred to as lower dimensional tori.
Even though this article will be mainly focused on
“classical KAM theory” and on maximal KAM tori,
we will briefly discuss lower dimensional tori in Sect.
“Future Directions”.

Kolmogorov Theorem

In the 1954 International Congress of Mathematicians,
in Amsterdam, A.N. Kolmogorov announced the follow-
ing fundamental (for the terminology, see (f), (g) and (h)
above).

Theorem 1 (Kolmogorov [35]) Consider a one-param-
eter family of real-analytic Hamiltonian functions on
M :D B(0; r) � T d given by

H :D K C "P (" 2 R) ; (17)

where: (i) K is a non-degenerate Kolmogorov normal
form (10)–(11); (ii)! 2 Dd is Diophantine. Then, there ex-
ists "0 > 0 and for any j"j � "0 a real-analytic symplectic
transformation �� : M� :D B(0; r�) � T d !M, for some
0 < r� < r, putting H in non-degenerate Kolmogorov nor-
mal form, H ı �� D K�, with K� :D E�C! � y0C Q�(y0;
x0). Furthermore13, k��� idkC1(M�), jE� � Ej, and kQ��
QkC1(M�) are small with ".

Remark 2

(i) From Theorem 1 it follows that the torus

T!;" :D ��(0;T d )

is a maximal non-degenerate KAM torus for H and
theH-flow on T!;" is analytically conjugated (by ��)

to the translation x0 ! x0 C ! t with the same fre-
quency vector of T!;0 :D f0g � T d , while the energy
of T!;", namely E�, is in general different from the
energy E of T!;0. The idea of keeping the frequency
fixed is a key idea introduced by Kolmogorov and its
importance will be made clear in the analysis of the
proof.

(ii) In fact, the dependence upon " is analytic and there-
fore the torus T!;" is an analytic deformation of the
unperturbed torus T!;0 (which is invariant for K);
see Remark 7–(iii) below.

(iii) Actually, Kolmogorov not only stated the above re-
sult but gave also a precise outline of its proof, which
is based on a fast convergent “Newton” scheme, as we
shall see below; compare also [17].

The map �� is obtained as

�� D lim
j!1

�1 ı � � � ı � j ;

where the � j’s are ("-dependent) symplectic transforma-
tions of M closer and closer to the identity. It is enough
to describe the construction of �1; �2 is then obtained by
replacing H0 :D H with H1 D H ı �1 and so on.

We proceed to analyze the scheme of Kolmogorov’s
proof, which will be divided into three main steps.

Step 1: Kolmogorov Transformation

The map �1 is close to the identity and is generated by

g(y0; x) :D y0 � x C "
�
b � x C s(x)C y0 � a(x)



where s and a are (respectively, scalar and vector-val-
ued) real-analytic functions on T d with zero average and
b 2 Rd : setting

ˇ0 D ˇ0(x) :D bC sx ;
AD A(x) :D ax and
ˇ D ˇ(y0; x) :D ˇ0 C Ay0 ;

(18)

(sx D @x s D (sx1 ; : : : ; sxd ) and ax denotes the matrix
(ax )i j :D @ai

@x j
) �1 is implicitly defined by

(
y D y0 C "ˇ(y0; x) :D y0 C "(ˇ0(x)C A(x)y0)
x0 D x C "a(x) :

(19)

Thus, for " small, x 2 T d ! x C "a(x) 2 T d defines
a diffeomorphism of T d with inverse

x D '(x0) :D x0 C "˛(x0; ") ; (20)
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for a suitable real-analytic function ˛, and �1 is explicitly
given by

�1 : (y0; x0)!

(
y D y0 C "ˇ

�
y0; '(x0)



x D '(x0) :
(21)

Remark 3

(i) Kolmogorov transformation �1 is actually the com-
position of two “elementary” symplectic transforma-
tions: �1 D �

(1)
1 ı �

(2)
1 where �(2)

1 : (y0; x0)! (�; �) is
the symplectic lift of the T d -diffeomorphism given by
x0 D � C "a(�) (i. e., �(2)

1 is the symplectic map gener-
ated by y0 � � C "y0 � a(�)), while �(1)

1 : (�; �)! (y; x)
is the angle-dependent action translation generated by
� � x C "(b � x C s(x)); �(2)

1 acts in the “angle direc-
tion” and will be needed to straighten out the flow up
to orderO("2), while �(1)

1 acts in the “action direction”
and will be needed to keep the frequency of the torus
fixed.

(ii) The inverse of �1 has the form

(y; x)!

(
y0 D M(x)yC c(x)
x0 D �(x)

(22)

with M a (d � d)-invertible matrix and � a diffeo-
morphism of T d (in the present case M D (1d C
"A(x))�1 D 1d C O(") and � D id C "a) and it
is easy to see that the symplectic diffeomorphisms of
the form (22) form a subgroup of the symplectic dif-
feomorphisms, which we shall call the group of Kol-
mogorov transformations.

Determination of Kolmogorov transformation Follow-
ing Kolmogorov, we now try to determine b, s and a so
that the “new Hamiltonian” (better: “the Hamiltonian in
the new symplectic variables”) takes the form

H1 :D H ı �1 D K1 C "
2P1 ; (23)

with K1 in the Kolmogorov normal form

K1 D E1C ! � y0C Q1(y0; x0) ; Q1 D O(jy0j2) : (24)

To proceed we insert y D y0 C "ˇ(y0; x) into H and, af-
ter some elementary algebra and using Taylor formula, we
find14

H(y0 C "ˇ; x) D E C ! � y0 C Q(y0; x)

C "Q0(y0; x)C "F 0(y0; x)C "2P0(y0; x) (25)

where, defining

8
ˆ̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂
ˆ̂̂
ˆ̂̂
:

Q(1) :D Qy(y0; x) � (ax y0)

Q(2) :D [Qy(y0; x) � Qyy(0; x)y0] � ˇ0

D

Z 1

0
(1 � t)Qyyy (ty0; x)y0 � y0 � ˇ0dt

Q(3) :D P(y0; x)� P(0; x) � Py(0; x)y0

D

Z 1

0
(1 � t)Pyy (ty0; x)y0 � y0dt

P(1) :D
1
"2
[Q(y0 C "ˇ; x)� Q(y0; x)

� "Qy(y0; x) � ˇ]

D

Z 1

0
(1 � t)Qyy(y0 C t"ˇ; x)ˇ � ˇdt

P(2) :D
1
"
[P(y0 C "ˇ; x)� P(y0; x)]

D

Z 1

0
Py(y0 C t"ˇ; x) � ˇdt ;

(26)

(recall that Qy(0; x) D 0) and denoting the !-directional
derivative

D! :D
dX

jD1

! j
@

@x j

one sees that Q0 D Q0(y0; x), F 0 D F 0(y0; x) and P0 D
P0(y0; x) are given by, respectively

8
ˆ̂
ˆ̂̂
<

ˆ̂̂
ˆ̂:

Q0(y0; x) :D Q(1) C Q(2) C Q(3) D O(jy0j2)

F 0(y0; x) :D ! � bC D! sC P(0; x)
C
˚
D!aC Qyy (0; x)ˇ0 C Py(0; x)

�
� y0

P0 :D P(1) C P(2) ;

(27)

where D!a is the vector function with kth entry
Pd

jD1 ! j
@ak
@x j

; D!a � y0 D ! � (ax y0) D
Pd

j;kD1 ! j
@ak
@x j

y0k ;
recall, also, thatQ D O(jyj2) so thatQy D O(y) andQ0 D
O(jy0j2).

Notice that, as an intermediate step, we are consider-
ing H as a function of mixed variables y0 and x (and this
causes no problem, as it will be clear along the proof).

Thus, recalling that x is related to x0 by the (y0-inde-
pendent) diffeomorphism x D x0 C "˛(x0; ") in (21), we
see that in order to achieve relations (23)–(24), we have to
determine b, s and a so that

F 0(y0; x) D const : (28)
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Remark 4

(i) F 0 is a first degree polynomial in y0 so that (28) is
equivalent to

(
! � bC D! sC P(0; x) D const ;
D!aC Qyy(0; x)ˇ0 C Py (0; x) D 0 :

(29)

Indeed, the second equation is necessary to keep the
torus frequency fixed and equal to ! (which, as we
shall see in more detail later, is a key ingredient in-
troduced by Kolmogorov).

(ii) In solving (28) or (29), we shall encounter differential
equations of the form

D!u D f ; (30)

for some given function f real-analytic on T d . Taking
the average over T d shows that h f i D 0, and we see
that (30) can be solved only if f has vanishing mean
value

h f i D f0 D 0 ;

in such a case, expanding in Fourier series15, one sees
that (30) is equivalent to

X

n2Zd

n¤0

i! � nunein�x D
X

n2Zd

n¤0

fnein�x ; (31)

so that the solutions of (30) are given by

u D u0 C
X

n2Zd

n¤0

fn
i! � n

ein�x ; (32)

for an arbitrary u0. Recall that for a continuous func-
tionf over T d to be analytic it is necessary and suf-
ficient that its Fourier coefficients f n decay expo-
nentially fast in n, i. e., that there exist positive con-
stantsM and � such that

j fnj � Me��jnj ; 8n : (33)

Now, since ! 2 Dd
�;� one has that (for n ¤ 0)

1
j! � nj

�
jnj�

�
(34)

and one sees that if f is analytic so is u in (32) (al-
though the decay constants of u will be different from
those of f ; see below)
Summarizing, if f is real-analytic on T d and has van-
ishing mean value f 0, then there exists a unique real-

analytic solution of (30) with vanishing mean value,
which is given by

D�1! f :D
X

n2Zd

n¤0

fn
i! � n

ein�x ; (35)

all other solutions of (30) are obtained by adding an
arbitrary constant to D�1! f as in (32) with u0 arbitrary.

Taking the average of the first relation in (29), we may the
determine the value of the constant denoted const, namely,

const D ! � bC P0(0) :D ! � bC hP(0; �)i : (36)

Thus, by (ii) of Remark 4, we see see that

s D �D�1! (P(0; x) � P0(0)) D �
X

n2Zd

n¤0

Pn(0)
i! � n

ein�x ; (37)

where Pn(0) denote the Fourier coefficients of x !

P(0; x); indeed s is determined only up to a constant by
the relation in (29) but we select the zero-average solution.
Thus, s has been completely determined.

To solve the second (vector) equation in (29) we first
have to require that the left hand side (l.h.s.) has vanishing
mean value, i. e., recalling that ˇ0 D bC sx (see (18)), we
must have

hQyy (0; �)ibC hQyy (0; �)sxi C hPy (0; �)i D 0 : (38)

In view of (11) this relation is equivalent to

b D �hQyy (0; �)i�1
�
hQyy (0; �)sx i C hPy(0; �)i


; (39)

which uniquely determines b. Thus ˇ0 is completely de-
termined and the l.h.s. of the second equation in (29) has
average zero; thus its unique zero-average solution (again
zero-average of a is required as a normalization condition)
is given by

a D �D�1!
�
Qyy (0; x)ˇ0 C Py(0; x)


: (40)

Finally, if '(x0) D x0 C "˛(x0; ") is the inverse diffeomor-
phism of x ! x C "a(x) (compare (20)), then, by Taylor’s
formula,

Q(y0; '(x0)) D Q(y0; x0)C "
Z 1

0
Qx (y0; x0C "˛t) �˛dt :

In conclusion, we have
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Proposition 1 If �1 is defined in (19)–(18) with s, b and a
given in (37), (39) and (40) respectively, then (23) holds with
8
ˆ̂̂
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
ˆ̂̂
:

E1 :D E C "eE
eE :D ! � bC P0(0)

Q1(y0; x0) :D Q(y0; x0)C "eQ(y0; x0)

eQ :D
Z 1

0
Qx (y0; x0 C t"˛) � ˛dt C Q0(y0; '(x0))

P1(y0; x0) :D P0(y0; '(x0))
(41)

with Q0 and P0 defined in (26), (27) and ' in (20).

Remark 5 The main technical problem is now transpar-
ent: because of the appearance of the small divisors ! � n
(which may become arbitrarily small), the solution D�1! f
is less regular than f so that the approximation scheme
cannot work on a fixed function space. To overcome this
fundamental problem – which even Poincaré was un-
able to solve notwithstanding his enormous efforts (see,
e. g., [49]) – three ingredients are necessary:

(i) To set up a Newton scheme: this step has just been
performed and it has been summarized in the above
Proposition 1; such schemes have the following fea-
tures: they are “quadratic” and, furthermore, after
one step one has reproduced the initial situation (i. e.,
the form ofH1 in (23) has the same properties ofH0).
It is important to notice that the new perturbation
"2P1 is proportional to the square "; thus, if one could
iterate j times, at the jth step, would find

Hj D Hj�1 ı � j D Kj C "
2 j Pj : (42)

The appearance of the exponential of the exponen-
tial of " justifies the term “super-convergence” used,
sometimes, in connection with Newton schemes.

(ii) One needs to introduce a scale of Banach function
spaces fB� : � > 0g with the property that B�0 � B�
when � < � 0: the generating functions � j will belong
to B� j for a suitable decreasing sequence � j;

(iii) One needs to control the small divisors at each step
and this is granted by Kolmogorov’s idea of keeping
the frequency fixed in the normal form so that one
can systematically use the Diophantine estimate (9).

Kolmogorov in his paper very neatly explained steps (i)
and (iii) but did not provide the details for step (ii); in this
regard he added: “Only the use of condition (9) for proving
the convergence of the recursions, � j , to the analytic limit
for the recursion �� is somewhat more subtle”. In the next
paragraph we shall introduce classical Banach spaces and
discuss the needed straightforward estimates.

Step 2: Estimates

For � � 1, we denote by B� the space of function
f : B(0; �) � T d ! R analytic on

W� :D D(0; �) � T d
� ; (43)

where

D(0; �) :D fy 2 Cd : jyj < �g and

T d
� :D fx 2 Cd : jImx jj < �g/(2�Zd )

(44)

with finite sup-norm

k f k� :D sup
D(0;�)�T d

�

j f j ; (45)

(in other words,T d
�
denotes the complex points xwith real

parts Rex j defined modulus 2� and imaginary part Imx j
with absolute value less than �).

The following properties are elementary:

(P1) B� equipped with the k � k� norm is a Banach space;
(P2) B�0 � B� when � < � 0 and k f k� � k f k�0 for any

f 2 B�0 ;
(P3) if f 2 B� , and fn(y) denotes the n-Fourier coeffi-

cient of the periodic function x ! f (y; x), then

j fn(y)j � k f k�e�jnj� ; 8n 2 Zd ; 8y 2 D(0; �) :
(46)

Another elementary property, which together with (P3)
may found in any book of complex variables (e. g., [1]),
is the following “Cauchy estimate” (which is based on
Cauchy’s integral formula):

(P4) let f 2 B� and let p 2 N then there exists a con-
stant Bp D Bp(d) � 1 such that, for any multi-in-
dex (˛; ˇ) 2 Nd �Nd with j˛j C jˇj � p (as above
for integer vectors ˛, j˛j D

P
j j˛ jj) and for any

0 � � 0 < � one has

k@˛y @
ˇ
x f k�0 � Bpk f k�(� � � 0)�(j˛jCjˇ j) : (47)

Finally, we shall need estimates on D�1! f , i. e., on solutions
of (30):

(P5) Assume that x ! f (x) 2 B� has a zero average (all
above definitions may be easily adapted to functions
depending only on x); assume that ! 2 Dd

�;� (re-
call Sect. “Introduction”, point (f)), and let p 2 N .
Then, there exist constants B̄p D B̄p(d; �) � 1 and
kp D kp(d; �) � 1 such that, for any multi-index
ˇ 2 Nd with jˇj � p and for any 0 � � 0 < � one has

k@ˇx D
�1
! f k�0 � B̄p

k f k�
�

(� � � 0)�kp : (48)
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Remark 6

(i) A proof of (48) is easily obtained observing that
by (35) and (46), calling ı :D � � � 0, one has

k@ˇx D
�1
! f k�0 �

X

n2Zd

n¤0

jnjjˇ jj fnj
j! � nj

e�
0jnj

� k f k�
X

n2Zd

n¤0

jnjjˇ jC�

�
e�ıjnj

D
k f k�
�

ı�(jˇ jC�Cd)

�
X

n2Zd

n¤0

[ıjnj]jˇ jC� e�ıjnjıd

� const
k f k�
�

(� � � 0)�(jˇ jC�Cd) ;

where the last estimate comes from approximating
the sum with the Riemann integral
Z

Rd
jyjjˇ jC� e�jyjdy :

More surprising (and much more subtle) is that (48)
holds with kp D jˇj C � ; such an estimate has been
obtained by Rüssmann [54,55]. For other explicit es-
timates see, e. g., [11] or [12].

(ii) If jˇj > 0 it is not necessary to assume that h f i D 0.
(iii) Other norms may be used (and, sometimes, are

more useful); for example, rather popular are Fourier
norms

k f k0� :D
X

n2Zd

j fnje�jnj ; (49)

see, e. g., [13] and references therein.

By the hypotheses of Theorem 1 it follows that there ex-
ist 0 < � � 1, � > 0 and � � d � 1 such that H 2 B� and
! 2 Dd

�;� . Denote

T :D hQyy(0; �)i�1 ; M :D kPk� : (50)

and let C > 1 be a constant such that16

jEj; j!j; kQk� ; kTk < C (51)

(i. e., each term on the l.h.s. is bounded by the r.h.s.); fi-
nally, fix

0 < ı < � and define �̄ :D � �
2
3
ı ; � 0 :D � � ı : (52)

The parameter � 0 will be the size of the domain of an-
alyticity of the new symplectic variables (y0; x0), domain
on which we shall bound the Hamiltonian H1 D H ı �1,
while �̄ is an intermediate domain where we shall bound
various functions of y0 and x.

By (P4) and (P5), it follows that there exist constants
c̄ D c̄(d; �; �) > 1, �̄ 2 ZC and �̄ D �̄(d; �) > 1 such
that17
8
ˆ̂<

ˆ̂
:

ksxk�̄ ; jbj; jeEj; kak�̄ ; kaxk�̄ ; kˇ0k�̄ ; kˇk�̄ ;

kQ0k�̄ ; k@
2
y0Q
0(0; �)k0 � c̄C�̄ı��̄M D: L̄ ;

kP0k�̄ � c̄C�̄ı��̄M2 D L̄M :

(53)

The estimate in the first line of (53) allows us to con-
struct, for " small enough, the symplectic transformation
�1, whose main properties are collected in the following

Lemma 1 If j"j � "0 and "0 satisfies

"0L̄ �
ı

3
; (54)

then the map  "(x) :D x C "a(x) has an analytic inverse
'(x0) D x0 C "˛(x0; ") such that, for all j"j < "0,

k˛k�0 � L̄ and ' D idC "˛ : T d
�0
! T d

�̄
: (55)

Furthermore, for any (y0; x) 2 W�̄ , jy
0 C "ˇ(y0; x)j < � , so

that

�1 D
�
y0 C "ˇ(y0; '(x0)); '(x0)


: W�0 ! W� ; and

k�1 � idk�0 � j"jL̄ ;
(56)

finally, the matrix 1d C "ax is, for any x 2 T d
�̄
, invertible

with inverse 1d C "S(x; ") satisfying

kSk�̄ �
kaxk�̄

1 � j"jkaxk�̄
<

3
2
L̄ ; (57)

so that �1 defines a symplectic diffeomorphism.

The simple proof18 of this statement is based upon stan-
dard tools inmathematical analysis such as the contraction
mapping theorem or the inversion of close-to-identity ma-
trices by Neumann series (see, e. g., [36]).

From the Lemma and the definition of P1 in (41), it
follows immediately that

kP1k�0 � L̄ : (58)

Next, by the same technique used to derive (53), one can
easily check that

keQk�0 ; 2C2k@2y0
eQ(0; �)k0 � cC�ı��M D L ; (59)
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for suitable constants c � c̄, �̄ � �, �̄ � � (the factor 2C2

has been introduced for later convenience; notice also that
L � L̄). But, then, if

"0L :D "0cC�ı��M �
ı

3
; (60)

there follows that19 keTk � L; this bound, together
with (53), (59), (56), and (58), shows that

(
jẼj; keQk�0 ; keTk; k�1 � idk�0 � L
kP1k�0 � LM ;

(61)

provided (60) holds (notice that (60) implies (54)).
One step of the iteration has been concluded and the

needed estimates obtained. The idea is to iterate the con-
struction infinitely many times, as we proceed to describe.

Step 3: Iteration and Convergence

In order to iterate Kolmogorov’s construction, analyzed in
Step 2, so as to construct a sequence of symplectic trans-
formations

� j : W� jC1 ! W� j ; (62)

closer and closer to the identity, and such that (42) hold,
the first thing to do is to choose the sequence � j: this se-
quence must be convergent, so that ı j D � j � � jC1 has to
go to zero rather quickly. Inverse powers of ıj (which, at
the jth step will play the role of ı in the previous para-
graph) appear in the smallness conditions (see, e. g., (54)):
this “divergence” will, however, be beaten by the super-fast
decay of "2 j .

Fix 0 < �� < � (�� will be the domain of analyticity of
�� and K� in Theorem 1 and, for j � 0, let

8
<̂

:̂

�0 :D �

ı0 :D
� � ��

2

8
ˆ̂<

ˆ̂:

ı j :D
ı0

2 j

� jC1 :D � j � ı j D �� C
ı0

2 j

(63)

and observe that � j # ��. With this choice20, Kol-
mogorov’s algorithm can be iterated infinitely many times,
provided "0 is small enough. To be more precise, let c, �
and � be as in (59), and define

C :D 2max
˚
jEj; j!j; kQk� ; kTk; 1

�
: (64)

Smallness Assumption: Assume that j"j � "0 and that "0
satisfies

"0DBkPk� � 1

where D :D 3cı�(�C1)
0 C� ; B :D 2�C1 ; (65)

notice that the constant C in (64) satisfies (51) and
that (65) implies (54). Then the following claim holds.
ClaimC:Under condition (65) one can iteratively construct
a sequence of Kolmogorov symplectic maps � j as in (62) so
that (42) holds in such a way that "2 j Pj , ˚ j :D �1 ı �2 ı

� � � ı � j , Ej, Kj, Qj converge uniformly on W�� to, respec-
tively, 0, ��, E�, K�, Q�, which are real-analytic on W��

and H ı �� D K� D E�C! � yCQ� with Q� D O(jyj2).
Furthermore, the following estimates hold for any j"j � "0
and for any i � 0:

j"j2
i
Mi :D j"j2

i
kPik�i �

(j"jDBM)2i

DBiC1 ; (66)

k�� � idk�� ; jE � E�j; kQ � Q�k�� ; kT � T�k
� j"jDBM ; (67)

where T� :D h@2yQ�(0; �)i�1, showing that K� is non-de-
generate.

Remark 7

(i) From Claim C Kolmogorov Theorem 1 follows at
once. In fact we have proven the following quan-
titative statement: Let ! 2 Dd

�;� with � � d � 1
and 0 < � < 1; let Q and P be real-analytic on
W� D Dd (0; �) � T d

�
for some 0 < � � 1 and let

0 < � < 1; let T and C be as in, respectively, (50)
and (64). There exist c� D c�(d; �; �; �) > 1 and pos-
itive integers � D �(d; �), � such that if

j"j � "� :D
�


c�kPk�C�
(68)

then one can construct a near-to-identity Kolmogor-
ov transformation (Remark 3–(ii)) �� : W�� ! W�

such that the thesis of Theorem 1 holds together with
the estimates

k�� � idk�� ; jE � E�j; kQ � Q�k�� ;

kT � T�k �
j"j

"�
D j"jc�kPk�C���
 : (69)

(The correspondence with the above constants being:
�� D �� , ı0 D �(1 � �)/2, � D � C 1, D D 3c(2/(1�
�))�C1C�, c� D 3c(4/(1 � �))�C1).

(ii) From Cauchy estimates and (67), it follows that
k�� � idkC p and kQ � Q�kC p are small for any p
(small in j"j but not uniformly in21 p).

(iii) All estimates are uniform in ", therefore, fromWeier-
strass theorem (compare note 18) it follows that ��
and K� are analytic in " in the complex ball of radius
"0.
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Power series expansions in " were very popular in the
nineteenth and twentieth centuries22, however con-
vergence of the formal "-power series of quasi-peri-
odic solutions was proved for the first time only in the
1960s thanks to KAM theory [45]. Some of this mat-
ter is briefly discussed in Sect. “Future Directions” be-
low.

(iv) The Nearly-Integrable Case In [35] it is pointed out
that Kolmogorov’s Theorem easily yields the exis-
tence of many KAM tori for nearly-integrable sys-
tems (14) for j"j small enough, provided K is non-
degenerate in the sense that

detKyy(y0) ¤ 0 : (70)

In fact, without loss of generality we may assume
that ! :D H00 is a diffeomorphism on B(y0; 2r) and
detKyy(y) ¤ 0 for all y 2 B(y0; 2r). Furthermore,
letting B D B(y0; r), fixing � > d � 1 and denoting
by `d the Lebesgue measure on Rd , from the remark
in note 11 and from the fact that ! is a diffeomor-
phism, there follows that there exists a constant c#
depending only on d, � and r such that

`d (!(B)nDd
�;� ); `d (fy 2 B : !(y) … Dd

�;�g) < c#� :
(71)

Now, let B�;� :D fy 2 B : !(y) 2 Dd
�;� g (which,

by (71) has Lebesgue measure `d (B�;� ) � `d (B) �
c#�), then for any ȳ 2 B�;� we can make the trivial
symplectic change of variables y ! ȳ C y, x ! x so
that K can be written as in (10) with

E :D K(ȳ) ; ! :D Ky(ȳ) ;
Q(y; x) D Q(y) :D K(y) � K(ȳ)� Ky(ȳ) � y ;

(where, for ease of notation, we did not change names
to the new symplectic variables) and P(ȳ C y; x) re-
placing (with a slight abuse of notation) P(y; x). By
Taylor’s formula, Q D O(jyj2) and, furthermore
(since Q(y; x) D Q(y), h@2yQ(0; x)i D Qyy(0) D
Kyy(ȳ), which is invertible according to out hypothe-
ses. Thus K is Kolmogorov non-degenerate and The-
orem 1 can be applied yielding, for j"j < "0, a KAM
torus T!;", with ! D Ky(ȳ), for each ȳ 2 B�;� . No-
tice that the measure of initial phase points, which,
perturbed, give rise to KAM tori, has a small comple-
mentary bounded by c#� (see (71)).

(v) In the nearly-integrable setting described in the pre-
ceding point, the union of KAM tori is usually called
the Kolmogorov set. It is not difficult to check that

the dependence upon ȳ of the Kolmogorov transfor-
mation �� is Lipschitz23, implying that the measure
of the complementary of Kolmogorov set itself is also
bounded by ĉ#� with a constant ĉ# depending only
on d, � and r.
Indeed, the estimate on the measure of the Kol-
mogorov set can be mademore quantitative (i. e., one
can see how such an estimate depends upon " as
"! 0). In fact, revisiting the estimates discussed in
Step 2 above one sees easily that the constant c de-
fined in (53) has the form24

c D ĉ��4 : (72)

where ĉ D ĉ(d; �) depends only on d and � (here the
Diophantine constant � is assumed, without loss of
generality, to be smaller than one). Thus the small-
ness condition (65) reads "0��4D̄ � 1 with some
constant D̄ independent of �: such condition is sat-
isfied by choosing � D (D̄"0)1/4 and since ĉ#� was an
upper bound on the complementary of Kolmogorov
set, we see that the set of phase points which do not
lie on KAM tori may be bounded by a constant times
4
p
"0. Actually, it turns that this bound is not optimal,

as we shall see in the next section: see Remark 10.
(vi) The proof of claim C follows easily by induction on

the number j of the iterative steps25.

Arnold’s Scheme

The first detailed proof of Kolmogorov Theorem, in the
context of nearly-integrable Hamiltonian systems (com-
pare Remark 1–(iii)), was given by V.I. Arnold in 1963.

Theorem 2 (Arnold [2]) Consider a one-parameter fam-
ily of nearly-integrable Hamiltonians

H(y; x; ") :D K(y)C "P(y; x) (" 2 R) (73)

with K and P real-analytic on M :D B(y0; r) � T d (en-
dowed with the standard symplectic form dy ^ dx) satis-
fying

Ky(y0) D ! 2 Dd
�;� ; detKyy(y0) ¤ 0 : (74)

Then, if " is small enough, there exists a real-analytic em-
bedding

� : � 2 T d !M (75)

close to the trivial embedding (y0; id), such that the d-torus

T!;" :D �


T d
�

(76)
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is invariant for H and

� t
H ı �(�) D �(� C ! t) ; (77)

showing that such a torus is a non-degenerate KAM torus
for H.

Remark 8

(i) The above Theorem is a corollary of Kolmogorov
Theorem 1 as discussed in Remark 7–(iv).

(ii) Arnold’s proof of the above Theorem is not based
upon Kolmogorov’s scheme and is rather different in
spirit – although still based on a Newton method –
and introduces several interesting technical ideas.

(iii) Indeed, the iteration scheme of Arnold is more classi-
cal and, from the algebraic point of view, easier than
Kolmogorov’s, but the estimates involved are some-
what more delicate and introduce a logarithmic cor-
rection, so that, in fact, the smallness parameter will
be

� :D j"j(log j"j�1)� (78)

(for some constant � D �(d; �) � 1) rather than j"j
as in Kolmogorov’s scheme; see, also, Remark 9–(iii)
and (iv) below.

Arnold’s Scheme

Without loss of generality, one may assume that K and P
have analytic and bounded extension to Wr;�(y0) :D
D(y0; r) � T d

�
for some � > 0, where, as above, D(y0; r)

denotes the complex ball of center y0 and radius r. We re-
mark that, in what follows, the analyticity domains of ac-
tions and angles play a different role

The Hamiltonian H in (73) admits, for " D 0 the
(KAM) invariant torus T!;0 D fy0g � T d on which the
K-flow is given by x ! x C ! t. Arnold’s basic idea is to
find a symplectic transformation

�1 : W1 :D D(y1; r1)�T d
�1
! W0 :D D(y0; r)�T d

�
; (79)

so thatW1 � W0 and
(
H1 :D H ı �1 D K1 C "

2P1 ; K1 D K1(y) ;

@yK1(y1) D ! ; det @2yK1(y1) ¤ 0
(80)

(with abuse of notation we denote here the new symplectic
variables with the same name of the original variables; as
above, dependence on " will, often, not be explicitly indi-
cated). In this way the initial set up is reconstructed and,

for " small enough, one can iterate the scheme so as to
build a sequence of symplectic transformations

� j : Wj :D D(y j; r j) � T d
� j
! Wj�1 (81)

so that
(
Hj :D Hj�1 ı � j D Kj C "

2 j Pj ; Kj D Kj(y) ;

@yK j(y j) D ! ; det @2yK j(y j) ¤ 0 :
(82)

Arnold’s transformations, as in Kolmogorov’s case, are
closer and closer to the identity, and the limit

�(�) :D lim
j!1

˚ j(y j ; �) ;

˚ j :D �1 ı � � � ı � j : Wj ! W0 ;
(83)

defines a real-analytic embedding of T d into the phase
space B(y0; r) � T d , which is close to the trivial embed-
ding (y0; id); furthermore, the torus

T!;" :D �(T d ) D lim
j!1

˚ j(y j;T d ) (84)

is invariant for H and (77) holds as announced in Theo-
rem 2. Relation (77) follows from the following argument.
The radius rj will turn out to tend to 0 but in amuch slower
way than "2 j Pj . This fact, together with the rapid conver-
gence of the symplectic transformation ˚ j in (83) implies

� t
H ı �(�) D lim

j!1
� t
H
�
˚ j(y j ; �)



D lim
j!1

˚ j ı �
t
H j
(y j ; �)

D lim
j!1

˚ j(y j; � C ! t)

D �(� C ! t) (85)

where: the first equality is just smooth dependence upon
initial data of the flow � t

H together with (83); the sec-
ond equality is (3); the third equality is due to the fact
that (see (82)) � t

H j
(y j ; �) D � t

K j
(y j; �) C O("2 jkPjk) D

(y j ; �C! t)CO("2
j
kPjk) andO("2

j
kPjk) goes very rapidly

to zero; the fourth equality is again (83).

Arnold’s Transformation

Let us look for a near-to-the-identity transformation �1 so
that the first line of (80) holds; this transformation will be
determined by a generating function of the form

y0 � x C "g(y0; x) ;

(
y D y0 C "gx (y0; x)
x0 D x C "gy0(y0; x) :

(86)
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Inserting y D y0 C "gx (y0; x) into H, one finds

H(y0 C "gx ; x) D K(y0)

C "
�
Ky(y0) � gx C P(y0; x)

�
C "2



P(1) C P(2)

�
(87)

with (compare (26))

P(1) :D
1
"2
[K(y0 C "gx ) � K(y0) � "Ky(y0) � gx ]

D

Z 1

0
(1 � t)Kyy(y0 C t"gx ; x) gx � gxdt

P(2) :D
1
"
[P(y0 C "gx ; x) � P(y0; x)]

D

Z 1

0
Py (y0 C t"gx ; x) � gxdt :

(88)

Remark 9

(i) The (naive) idea is to try determine g so that

Ky(y0) � gx C P(y0; x) D function of y0 only; (89)

however, such a relation is impossible to achieve.
First of all, by taking the x-average of both sides
of (89) one sees that the “function of y0 only” has to
be the mean of P(y0; �), i. e., the zero-Fourier coeffi-
cient P0(y0), so that the formal solution of (89), is (by
Fourier expansion)

8
ˆ̂<

ˆ̂
:

g D
X

n¤0

�Pn(y0)
iKy(y0) � n

ein�x ;

Ky(y0) � gx C P(y0; x) D P0(y0) :

(90)

But, (at difference with Kolmogorov’s scheme) the
frequency Ky(y0) is a function of the action y0

and since, by the Inverse Function Theorem (Ap-
pendix “A The Classical Implicit Function Theo-
rem”), y ! Ky(y) is a local diffeomorphism, it fol-
lows that, in any neighborhood of y0, there are
points y such that Ky(y) � n D 0 for some26 n 2 Zd .
Thus, in any neighborhood of y0, some divisors
in (90) will actually vanish and, therefore, an analytic
solution g cannot exist27.

(ii) On the other hand, since Ky(y0) is rationally inde-
pendent, it is clearly possible (simply by continuity)
to control a finite number of divisors in a suitable
neighborhood of y0, more precisely, for any N 2 N
one can find r̄ > 0 such that

Ky(y) � n ¤ 0 ;
8y 2 D(y0; r̄) ; 80 < jnj � N ; (91)

the important quantitative aspects will be shortly dis-
cussed below.

(iii) Relation (89) is also one of the main “identity” in Av-
eraging Theory and is related to the so-called Hamil-
ton–Jacobi equation. Arnold’s proof makes such
a theory rigorous and shows how a Newton method
can be built upon it in order to establish the exis-
tence of invariant tori. In a sense, Arnold’s approach
is more classical than Kolmogorov’s.

(iv) When (for a given y and n) it occurs that Ky(y)�n D 0
one speaks of an (exact) resonance. As mentioned at
the end of point (i), in the general case, resonances are
dense. This represents the main problem in Hamilto-
nian perturbation theory and is a typical feature of
conservative systems. For generalities on Averaging
Theory, Hamilton–Jacobi equation, resonances etc.
see, e. g., [5] or Sects. 6.1 and 6.2 of [6].

The key (simple!) idea of Arnold is to split the perturbation
into two terms

P D P̂ C P̌ where

8
ˆ̂̂
<

ˆ̂̂
:

P̂ :D
X

jnj�N

Pn(y)ein�x

P̌ :D
X

jnj>N

Pn(y)ein�x
(92)

choosing N so that

P̌ D O(") (93)

(this is possible because of the fast decay of the Fourier
coefficients of P; compare (33)). Then, for " ¤ 0, (87) can
be rewritten as follows

H(y0 C "gx ; x) D K(y0)C "
�
Ky(y0) � gx C P̂(y0; x)

�

C "2


P(1) C P(2) C P(3)

�
(94)

with P(1) and P(2) as in (88) and

P(3)(y0; x) :D
1
"
P̌(y0; x) : (95)

Thus, letting28

g D
X

0<jnj�N

�Pn(y0)
iKy(y0) � n

ein�x ; (96)

one gets

H(y0 C "gx ; x) D K1(y0)C "2P0(y0; x) (97)

where

K1(y0) :D K(y0)C "P0(y0) ;

P0(y0; x) :D P(1) C P(2) C P(3) :
(98)
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Now, by the IFT (Appendix “A The Classical Implicit
Function Theorem”), for " small enough, the map x !
x C gy0 (y0; x) can be inverted with a real-analytic map of
the form

'(y0; x0; ") :D x0 C "˛(y0; x0; ") (99)

so that Arnold’s symplectic transformation is given by

�1 : (y0; x0)!

8
<̂

:̂

y D y0 C "gx
�
y0; '(y0; x0; ")



x D '(y0; x0; ")
D x0 C "˛(y0; x0; ; ")

(100)

(compare (21)). To finish the construction, observe that,
from the IFT (see Appendix “A The Classical Implicit
Function Theorem” and the quantitative discussion be-
low) it follows that there exists a (unique) point y1 2
B(y0; r̄) so that the second line of (80) holds, provided "
is small enough.

In conclusion, the analogue of Proposition 1 holds, de-
scribing Arnold’s scheme:

Proposition 2 If �1 is defined in (100) with g given in (96)
(with N so that (93) holds) and ' given in (99), then (80)
holds with K1 as in (98) and P1(y0; x0) :D P0(y0; '(y0; x0))
with P0 defined in (98), (95) and (88).

Estimates and Convergence

If f is a real-analytic function with analytic extension to
Wr;� , we denote, for any r0 � r and � 0 � � ,

k f kr0;�0 :D sup
Wr0;�0 (y0)

j f (y; x)j ; (101)

furthermore, we define

T :D Kyy(y0)�1 ; M :D kPkr;� ; (102)

and assume (without loss of generality)

� < 1 ; r < 1 ; � � 1 ;
maxf1; kKykr ; kKyykr ; kTkg < C ; (103)

for a suitable constant C (which, as above, will not change
during the iteration).

We begin by discussing how N and r̄ depend
upon ". From the exponential decay of the Fourier coef-
ficients (33), it follows that, choosing

N :D 5ı�1 ; where  :D log j"j�1 ; (104)

then

kP̌kr;�� ı2 � j"jM (105)

provided

j"j � const ı (106)

for a suitable29 const D const(d).
The second key inequality concerns the control of the

small divisors Ky(y0) � n appearing in the definition of g
(see (96)), in a neighborhood D(y0; r̄) of y0: this will de-
termine the size of r̄.

Recalling that Ky(y0) D ! 2 Dd
�;� , by Taylor’s for-

mula and (9), one finds, for any 0 < jnj � N and any
y0 2 D(y0; r̄),

jKy(y0) � nj D
ˇ̌
! � nC

�
Ky(y0) � Ky(y0)


� n
ˇ̌

� j! � nj
�
1 �
kKyykr

j! � nj
jnjr̄

�

�
�

jnj�

�
1 �

C
�
jnj�C1 r̄

�

�
�

jnj�

�
1 �

C
�
N�C1r̄

�

�
1
2
�

jnj�
; (107)

provided r̄ � r satisfies also

r̄ �
�

2CN�C1
(104)
D

�

2 � 5�C1C(ı�1)�C1 : (108)

Equation (107) allows us to easily control Arnold’s gener-
ating function g. For example:

kgxkr̄;�� ı2 D sup
D(y0;r̄)�T d

�� ı2

ˇ̌
ˇ̌
ˇ
ˇ

X

0<jnj�N

nPn(y0)
Ky(y0) � n

ein�x

ˇ̌
ˇ̌
ˇ
ˇ

�
X

0<jnj�N

supD(y0;r) jPn(y
0)j

jKy(y0) � nj
jnje(��

ı
2 )jnj

�
X

n2Zd

M
2jnj�C1

�
e�

ı
2 jnj

� const
M
�
ı�(�C1Cd) ;

(109)

where “const” denotes a constant depending on d and �
only; compare also Remark 6–(i).

Let us now discuss, from a quantitative point of view,
how to choose the new “center” of the action variables y1,
which is determined by the requirements in (80). Assum-
ing that

r̄ �
r
2

(110)
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(allowing the use of Cauchy estimates for y-derivatives
of K or P in D(y0; r̄)), it is not difficult to see that the
quantitative IFT of Appendix “A The Classical Implicit
Function Theorem” implies that there exists a unique
y1 2 D(y0; r̄) such that (80) holds and, furthermore

jy1 � y0j � 4CMr�1j"j ; (111)

and

@2yK1(y1) :D Kyy(y1)C "@2yP0(y1)

D: T�1(1d C A)
(112)

with a matrix A satisfying

kAk � 10C3Mj"j �
1
2

(113)

provided30

8
<

:
8C2 r̄

r
� 1 ;

8CMr̄�2j"j � 1
(114)

Equation (113) shows that @2yK(y1) is invertible (Neu-
mann series) and that31

@2yK1(y1)�1 D T C "eT ; keTk � 20C3M : (115)

Finally, notice that the second conditions in (114)
and (111) imply that jy1 � y0j < r̄/2 so that

D(y1; r̄/2) � D(y0; r̄) : (116)

Now, all the estimating tools are set up and, writing

K1 :D K C "eK D K C "P0(y0) ;
y1 :D y0 C " ỹ ;

(117)

one can easily prove (along the lines that led to (53)) the
following estimates, where as in Sect. “Kolmogorov Theo-
rem”, �̄ :D � � 2

3ı and r̄ is as above:

8
ˆ̂̂
<

ˆ̂̂
:

kgxkr̄;�̄
r

; kgykr̄;�̄ ; keKykr̄ ; keKyyk; j ỹj; keTk

� c��2C�ı���M D: L ;

kP0kr̄;�̄ � c��2C�ı���M2 D LM ;

(118)

where c D c(d; �) > 1, � 2 ZC, � and � are positive
integers depending on d and � . Now, by32 Lemma 1
and (118), one has that map x ! x C "gy(y0; x) has,

for any y0 2 Dr̄(y0), an analytic inverse ' D x0 C
"˛(x0; y0; ") D: '(y0; x0) on T d

�̄� ı3
provided (54), with L̄

replaced by L in (118), holds, in which case (55) holds (for
any j"j � "0 and any y0 2 Dr(y0)). Furthermore, under
the above hypothesis, it follows that33

8
<̂

:̂

�1 :D
�
y0 C "gx (y0; '(y0; x0)); '(y0; x0)


:

Wr̄/2;��ı (y1)! Wr;�(y0)
k�1 � idkr̄/2;��ı � j"jL :

(119)

Finally, letting P1(y0; x0) :D P0(y0; '(y0; x0)) one sees that
P1 is real-analytic on Wr̄/2;�̄�ı (y1) and bounded on that
domain by

kP1kr̄/2;��ı � LM : (120)

In order to iterate the above construction, we fix 0 < �� <
� and set

C :D 2maxf1; kKykr ; kKyykr ; kTkg ;
� :D 3C ;

ı0 :D
(� � 1)(� � ��)

�
;

(121)

� j and ıj as in (63) but with ı0 as in (121); we also define,
for any j � 0,

 j :D 2 j D log "�2
j

0 ;

r j :D
�

4 � 5�C1C(ı�1j  j)�C1 ; (122)

(this part is adapted from Step 3 in Sect. “Kolmogorov
Theorem”; see, in particular, (103)).With such choices it is
not difficult to check that the iterative construction may be
carried out infinitely many times yielding, as a byproduct,
Theorem 2 with � real-analytic on T d

��
, provided j"j � "0

with "0 satisfying34

8
ˆ̂̂
<

ˆ̂̂
:

"0 � e�ˇ with ˇ :D
ı0

5


 �
Cr

� 1
�C1

"0DBkPk� � 1 with D :D 3c��2ı�(�C1)
0 C� ;

B :D ��C1(log "�10 )� :
(123)

Remark 10 Notice that the power of ��1 (the inverse of
the Diophantine constant) in the second smallness condi-
tion in (123) is two, which implies (compare Remark 7–
(v)) that the measure of the complement of the Kol-
mogorov set may be bounded by a constant times

p
"0.

This bound is optimal as the trivial example (y21C y22)/2C



Kolmogorov–Arnold–Moser (KAM) Theory K 5079

" cos(x1) shows: the Hamiltonian is integrable and the
phase portrait shows that the separatrices of the pendu-
lum y21/2C " cos x1 bound a region of area

p
j"j with no

KAM tori (as the librational curves within such region are
not graphs over the angles).

The Differentiable Case: Moser’s Theorem

J.K. Moser, in 1962, proved a perturbation (KAM) Theo-
rem, in the framework of area-preserving twist mappings
of an annulus35 [0; 1] � S1, for integrable analytic systems
perturbed by a Ck perturbation, [42] and [43]. Moser’s
original setup corresponded to the Hamiltonian case with
d D 2 and the required smoothness was Ck with k D 333.
Later, this number was brought down to 5 by H. Rüss-
mann, [53].

Moser’s original approach, similarly to the approach
that led J. Nash to prove its theorem on the smooth embed-
ding problem of compact Riemannian manifolds [48], is
based on a smoothing technique (via convolutions), which
re-introduces at each step of the Newton iteration a certain
number of derivatives which one loses in the inversion of
the small divisor operator.

The technique, which we shall describe here, is again
due to Moser [46] but is rather different from the original
one and is based on a quantitative analytic KAM Theorem
(in the style of statement in Remark 7–(i) above) in con-
junction with a characterization of differentiable functions
in terms of functions, which are real-analytic on smaller
and smaller complex strips; see [44] and, for an abstract
functional approach, [65], [66]. By the way, this approach,
suitably refined, leads to optimal differentiability assump-
tions (i. e., the Hamiltonian may be assumed to be C` with
` > 2d); see, [50] and the beautiful exposition [59], which
inspires the presentation reported here.

Let us consider a Hamiltonian H D K C "P (as
in (17)) with K a real-analytic Kolmogorov normal form
as in (10) with ! 2 Dd

�;� andQ real-analytic; P is assumed
to be a C`(Rd ;T d ) function with ` D `(d; �) to be speci-
fied later36.

Remark 11 The analytic KAM theorem, we shall refer
to is the quantitative Kolmogorov Theorem as stated in
Remark 7–(i) above, with (69) strengthened by includ-
ing in the left hand side of (69) also37 k@(�� � id)k��
and k@(Q � Q�)k�� (where “@” denotes, here, “Jacobian”
with regard to (y; x) for (�� � id) and “gradient” for
(Q � Q�)).

The analytic characterization of differentiable functions,
suitable for our purposes, is explained in the following two
lemmata38

Lemma 2 (Jackson, Moser, Zehnder) Let f 2 Cl (Rd )
with l > 0. Then, for any � > 0 there exists a real-analytic
function f : Xd

�
:D fx 2 Cd : jImx jj < �g ! C such that

8
ˆ̂̂
<

ˆ̂̂
:

sup
Xd
�

j f� j � ck f kC0 ;

sup
Xd
�0

j f� � f�0 j � ck f kC l �
l ; 8 0 < � 0 < � ;

(124)

where c D c(d; l) is a suitable constant; if f is periodic in
some variable xj, so is f� .

Lemma 3 (Bernstein, Moser) Let l 2 RCnZ and
� j :D 1/2 j . Let f0 D 0 and let, for any j � 1, f j be real
analytic functions on Xd

j :D fx 2 Cd : jImx jj < 2� jg such
that

sup
Xd

j

j f j � f j�1j � A2� j l (125)

for some constant A. Then, f j tends uniformly on Rd to
a function f 2 Cl (Rd ) such that, for a suitable constant
C D C(d; l) > 0,

k f kC l (Rd ) � CA : (126)

Finally, if the f i’s are periodic in some variable xj then so
is f .

Now, denote by X� D Xd
�
� T d � C2d and define (com-

pare Lemma 2)

P j :D P� j ; � j :D
1
2 j
: (127)

Claim M: If j"j is small enough and if ` > � C 1, then
there exists a sequence of Kolmogorov symplectic transfor-
mations f˚ jg j�0, j"j-close to the identity, and a sequence of
Kolmogorov normal forms Kj such that

Hj ı ˚ j D KjC1 on W� jC1 (128)

where

Hj :D K C "P j

˚0 D �0 and ˚ j :D ˚ j�1 ı � j ; ( j � 1)
� j : W� jC1 ! W˛� j ; ˚ j�1 : W˛� j ! X� j ;

j � 1 and ˛ :D
1
p
2
;

sup
x2T d

� jC1

j˚ j(0; x) � ˚ j�1(0; x)j � constj"j2�(`�
) j :

(129)
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The proof of Claim M follows easily by induction39

from Kolmogorov’s Theorem (compare Remark 11) and
Lemma 2.

From Claim M and Lemma 3 (applied to f (x) D
˚ j(0; x)�˚0(0; x) and l D `� � , which may be assumed
not integer) it then follows that ˚ j(0; x) converges in the
C1 norm to a C1 function � : T d ! Rd � T d , which is
"-close to the identity, and, because of (128),

�(x C ! t) D lim˚ j(0; x C ! t)
D lim� t

H ı ˚ j(0; x) D � t
H ı �(x) (130)

showing that �(T d ) is a C1 KAM torus for H (note that
the map � is close to the trivial embedding x ! (y; x)).

Future Directions

In this section we review in a schematic and informal way
some of the most important developments, applications
and possible future directions of KAM theory. For exhaus-
tive surveys we refer to [9], Sect. 6.3 of [6] or [60].

1. Structure of the Kolmogorov set and Whitney smooth-
ness
The Kolmogorov set (i. e., the union of KAM tori), in
nearly-integrable systems, tends to fill up (in measure)
the whole phase space as the strength of the pertur-
bation goes to zero (compare Remark 7–(v) and Re-
mark 10). A natural question is: what is the global ge-
ometry of KAM tori?
It turns out that KAM tori smoothly interpolate in
the following sense. For " small enough, there ex-
ists a C1 symplectic diffeomorphism �� of the phase
spaceM D B � T d of the nearly-integrable, non-degen-
erate Hamiltonians H D K(y)C "P(y; x) and a Can-
tor set C� � B such that, for each y0 2 C�, the set
��1� (fy0g � T d ) is a KAM torus for H}; in other words,
the Kolmogorov set is a smooth, symplectic deforma-
tion of the fiber bundle C� � T d . Still another way of
describing this result is that there exists a smooth func-
tion K� : B! R such that (K C "P) ı �� and K� agree,
together with their derivatives, on C� � T d : we may,
thus, say that, in general, nearly-integrable Hamilto-
nian systems are integrable on Cantor sets of relative
big measure.
Functions defined on closed sets which admitCk exten-
sions are called Whitney smooth; compare [64], where
H. Whitney gives a sufficient condition, based on Tay-
lor uniform approximations, for a function to be Whit-
ney Ck.
The proof of the above result – given, independently,
in [50] and [19] in, respectively, the differentiable and

the analytic case – follows easily from the following
lemma40:

Lemma 4 Let C � Rd a closed set and let f f jg, f0 D 0, be
a sequence of functions analytic on Wj :D [y2CD(y; r j).
Assume that

P
j�1 supWj

j f j � f j�1jr�kj <1. Then, f j
converges uniformly to a function f , which is Ck in the sense
of Whitney on C.

Actually, the dependence upon the angles x0 of �� is
analytic and it is only the dependence upon y0 2 C�
which is Whitney smooth (“anisotropic differentiabil-
ity”, compare Sect. 2 in [50]).
For more information and a systematic use of Whitney
differentiability, see [9].

2. Power series expansions
KAM tori T!;" D �"(T d ) of nearly-integrable Hamil-
tonians correspond to quasi-periodic trajectories
z(t; �; ") D �"(� C ! t) D � t

H(z(0; �; ")); compare
items (d) and (e) of Sect. “Introduction” and Remark 2–
(i) above.While the actual existence of such quasi-peri-
odic motions was proven, for the first time, only thanks
to KAM theory, the formal existence, in terms of for-
mal "-power series41 was well known in the nineteenth
century to mathematicians and astronomers (such as
Newcombe, Lindstedt and, especially, Poincaré; com-
pare [49], vol. II). Indeed, formal power solutions of
nearly-integrable Hamiltonian equations are not diffi-
cult to construct (see, e. g., Sect. 7.1 of [12]) but direct
proofs of the convergence of the series, i. e., proofs not
based on Moser’s “indirect” argument recalled in Re-
mark 7–(iii) but, rather, based upon direct estimates on
the kth "-expansion coefficient, are quite difficult and
were carried out only in the late eighties by H. Elias-
son [27]. The difficulty is due to the fact that, in order
to prove the convergence of the Taylor–Fourier expan-
sion of such series, one has to recognize compensations
among huge terms with different signs42. After Elias-
son’s breakthrough based upon a semi-direct method
(compare the “Postscript 1996” at p. 33 of [27]), fully
direct proofs were published in 1994 in [30] and [18].

3. Non-degeneracy assumptions
Kolmogorov’s non-degeneracy assumption (70) can be
generalized in various ways. First of all, Arnold pointed
out in [2] that the condition

det
�
Kyy Ky
Ky 0

�
¤ 0 ; (131)

(this is a (d C 1) � (d C 1) symmetric matrix where
last column and last row are given by the (d C 1)-vec-
tor (Ky ; 0)) which is independent from condition (70),
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is also sufficient to construct KAM tori. Indeed, (131)
may be used to construct iso-energetic KAM tori, i. e.,
tori on a fixed energy level43 E.
More recently, Rüssmann [57] (see, also, [58]), using
results of Diophantine approximations on manifolds
due to Pyartly [52], formulated the following condition
(the “Rüssmann non-degeneracy condition”), which is
essentially necessary and sufficient for the existence of
a positive measure set of KAM tori in nearly-integrable
Hamiltonian systems: the image !(B) � Rd of the un-
perturbed frequency map y ! !(y) :D Ky(y) does not
lie in any hyperplane passing through the origin. We
simply add that one of the prices that one has to pay to
obtain these beautiful general results is that one cannot
fix the frequency ahead of time.
For a thorough discussion of this topic, see Sect. 2 of
[60].

4. Some physical applications
We now mention a short (and non-exhaustive) list of
important physical application of KAM theory. For
more information, see Sect. 6.3.9 of [6] and references
therein.
4.1. Perturbation of classical integrable systems

As mentioned above (Remark 1–(iii)), one of the
main original motivations of KAM theory is the
perturbation theory for nearly-integrable Hamilto-
nian systems. Among the most famous classical in-
tegrable systems we recall: one-degree-of freedom
systems; Keplerian two-body problem, geodesic
motion on ellipsoids; rotations of a heavy rigid
body with a fixed point (for special values of the pa-
rameters: Euler’s, Lagrange’s, Kovalevskaya’s and
Goryachev–Chaplygin’s cases); Calogero–Moser’s
system of particles; see, Sect. 5 of [6] and [47].
A first step, in order to apply KAM theory to such
classical systems, is to explicitly construct action-
angle variables and to determine their analyticity
properties, which is in itself a technically non-triv-
ial problem. A second problem which arises, espe-
cially in Celestial Mechanics, is that the integrable
(transformed) Hamiltonian governing the system
may be highly degenerate (proper degeneracies –
see Sect. 6.3.3, B of [6]), as is the important case
of the planetary n-body problem. Indeed, the first
complete proof of the existence of a positive mea-
sure set of invariant tori44 for the planetary (nC 1)
problem (one body with mass 1 and n bodies with
masses smaller than ") has been published only in
2004 [29]. For recent reviews on this topic, see [16].

4.2. Topological trapping in low dimensions
The general 2-degree-of-freedom nearly-integrable

Hamiltonian exhibits a kind of particularly strong
stability: the phase space is 4-dimensional and the
energy levels are 3-dimensional; thus KAM tori
(which are two-dimensional and which are guar-
anteed, under condition (131), by the iso-energetic
KAM theorem) separate the energy levels and or-
bits lying between two KAM tori will remain for-
ever trapped in the invariant region. In particular
the evolution of the action variables stays forever
close to the initial position (“total stability”).
This observation is originally due to Arnold [2];
for recent applications to the stability of three-
body problems in celestial mechanics see [13] and
item 4.4 below.
In higher dimension this topological trapping is
no longer available, and in principle nearby any
point in phase space it may pass an orbit whose ac-
tion variables undergo a displacement of order one
(“Arnold’s diffusion”). A rigorous complete proof
of this conjecture is still missing45.

4.3. Spectral Theory of Schrödinger operators
KAM methods have been applied also very suc-
cessfully to the spectral analysis of the one-dimen-
sional Schrödinger (or “Sturm–Liouville”) opera-
tor on the real line R

L :D �
d2

dt2
C v(t) ; t 2 R : (132)

If the “potential” v is bounded then there exists
a unique self-adjoint operator on the real Hilbert
space L2(R) (the space of Lebesgue square-inte-
grable functions on R) which extends L above on
C2
0 (the space of twice differentiable functions with

compact support). The problem is then to study the
spectrum �(L) of L; for generalities, see [23].
If v is periodic, then �(L) is a continuous band
spectrum, as it follows immediately from Floquet
theory [23]. Much more complicated is the situa-
tion for quasi-periodic potentials v(t) :D V(! t) D
V (!1t; : : : ; !n t), where V is a (say) real-analytic
function on T n , since small-divisor problems ap-
pear and the spectrum can be nowhere dense. For
a beautiful classical exposition, see [47], where,
in particular, interesting connections with me-
chanics are discussed46; for deep developments of
generalization of Floquet theory to quasi-periodic
Schrödinger operators (“reducibility”), see [26]
and [7].

4.4. Physical stability estimates and break-down thresh-
olds
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KAM Theory is perturbative and works if the pa-
rameter " measuring the strength of the perturba-
tion is small enough. It is therefore a fundamental
question: how small " has to be in order for KAM
results to hold. The first concrete applications were
extremely discouraging: in 1966, the French as-
tronomer M. Hénon [32] pointed out that Moser’s
theorem applied to the restricted three-body prob-
lem (i. e., the motion of an asteroid under the gravi-
tational influence of two unperturbed primary bod-
ies revolving on a given Keplerian ellipse) yields
existence of invariant tori if the mass ratio of the
primaries is less than47 10�52. Since then, much
progress has been made and very recently, in [13],
it has been shown via a computer-assisted proof48,
that, for a restricted-three body model of a sub-
system of the Solar system (namely, Sun, Jupiter
and Asteroid Victoria), KAM tori exist for the “ac-
tual” physical values (in that model the Jupiter/Sun
mass ratio is about 10�3) and, in this mathemati-
cal model – thanks to the trapping mechanism de-
scribed in item 4.2 above – they trap the actual mo-
tion of the subsystem.
From a more theoretical point of view, we no-
tice that, (compare Remark 2–(ii)) KAM tori (with
a fixed Diophantine frequency) are analytic in "; on
the other hand, it is known, at least in lower di-
mensional settings (such as twist maps), that above
a certain critical value KAM tori (curves) cannot
exist ([39]). Therefore, there must exist a critical
value "c(!) (“breakdown threshold”) such that, for
0 � " < "c!, the KAM torus (curve) T!;" exists,
while for " > "c(!) does not. The mathematical
mechanism for the breakdown of KAM tori is far
from being understood; for a brief review and ref-
erences on this topic, see, e. g., Sect. 1.4 in [13].

5. Lower dimensional tori
In this item we consider (very) briefly, the existence of
quasi-periodic solutions with a number of frequencies
smaller than the number of degrees of freedom49. Such
solutions span lower dimensional (non Lagrangian)
tori. Certainly, this is one of the most important top-
ics in modern KAM theory, not only in view of ap-
plications to classical problems, but especially in view
of extensions to infinite dimensional systems, namely
PDEs (Partial Differential Equations) with a Hamilto-
nian structure; see, item 6 below. For a recent, exhaus-
tive review on lower dimensional tori (in finite dimen-
sions), we refer the reader to [60].
In 1965 V.K. Melnikov [41] stated a precise result con-
cerning the persistence of stable (or “elliptic”) lower

dimensional tori; the hypotheses of such results are,
now, commonly referred to as “Melnikov conditions”.
However, a proof of Melnikov’s statement was given
only later by Moser [45] for the case n D d � 1 and,
in the general case, by H. Eliasson in [25] and, inde-
pendently, by S.B. Kuksin [37]. The unstable (“partially
hyperbolic”) case (i. e., the case for which the lower di-
mensional tori are linearly unstable and lie in the in-
tersection of stable and unstable Lagrangianmanifolds)
is simpler and a complete perturbation theory was al-
ready given in [45], [31] and [66] (roughly speaking,
the normal frequencies to the torus do not resonate
with the inner (or “proper”) frequencies associatedwith
quasi-periodic motion). Since then, Melnikov condi-
tions have been significantly weakened and much tech-
nical progress has beenmade; see [60], Sects. 5, 6 and 7,
and references therein.
To illustrate a typical situation, let us consider a Hamil-
tonian system with d D nC m degrees of freedom,
governed by a Hamiltonian function of the form

H(y; x; v; u; �) D K(y; v; u; �)C"P(y; x; v; u; �); (133)

where (y; x) 2 T n �Rn , (v; u) 2 R2m are pairs of
standard symplectic coordinates and � is a real pa-
rameter running over a compact set ˘ � Rn of posi-
tive Lebesgue measure50; K is a Hamiltonian admitting
the n-torus

T n
0 (�) :D fy D 0g �T n � fv D u D 0g ; � 2 ˘ ;

as invariant linearly stable invariant torus and is as-
sumed to be in the normal form:

K D E(�)C!(�) � yC
1
2

mX

jD1

˝ j(�)(u2j C v2j ) : (134)

The � t
K flow decouples in the linear flow

x 2 T n ! x C !(�)t times the motion of m (decou-
pled) harmonic oscillators with characteristic frequen-
cies ˝ j(�) (sometimes referred to as normal frequen-
cies). Melnikov’s conditions (in the form proposed
in [51]) reads as follows: assume that ! is a Lipschitz
homeomorphism; let˘k;l denote the “resonant param-
eter set” f� 2 ˘ : !(�) � k C˝ � (�) D 0g and assume

(
˝i (�) > 0 ; ˝i(�) ¤ ˝ j(�) ; 8� 2 ˘ ;8i ¤ j
meas ˘k;l D 0 ; 8k 2 Znnf0g ; 8l 2 Zm : jl j � 2 :

(135)

Under these assumptions and if j"j is small enough, there
exists a (Cantor) subset of parameters˘� � ˘ of posi-



Kolmogorov–Arnold–Moser (KAM) Theory K 5083

tive Lebesgue measure such that, to each � 2 ˘�, there
corresponds a n-dimensional, linearly stable H-invari-
ant torus T n

" (�) on which the H flow is analytically
conjugated to x ! x C !�(�)t where !� is a Lipschitz
homeomorphism of ˘� assuming Diophantine values
and close to !.
This formulation has been borrowed from [51], to
which we refer for the proof; for the differentiable ana-
log, see [22].

Remark 12 The small-divisor problems arising in the per-
turbation theory of the above lower dimensional tori are of
the form

! � k � l �˝ ; jl j � 2 ; jkj C jl j ¤ 0 ; (136)

where one has to regard the normal frequency ˝ as func-
tions of the inner frequencies ! and, at first sight, one
has – in J. Moser words – a lack-of-parameter problem.
To overcome this intrinsic difficulty, one has to give up
full control of the inner frequencies and construct, itera-
tively, n-dimensional sets (corresponding to smaller and
smaller sets of �-parameters) on which the small divisors
are controlled; for more motivations and informal expla-
nations on lower dimensional small divisor problems, see,
Sects. 5, 6 and 7 of [60].

6. Infinite dimensional systems
As mentioned above, the most important recent devel-
opments of KAM theory, besides the full applications to
classical n-body problems mentioned above, is the suc-
cessful extension to infinite dimensional settings, so as
to deal with certain classes of partial differential equa-
tions carrying a Hamiltonian structure. As a typical ex-
ample, we mention the non-linear wave equation of the
form

utt � uxx C V(x)u D f (u) ;

f (u) D O(u2) ; 0 < x < 1 ; t 2 R : (137)

These extensions allowed, in the pioneering paper [63],
establishing the existence of small-amplitude quasi-pe-
riodic solutions for (137), subject to Dirichlet or Neu-
mann boundary conditions (on a finite interval for odd
and analytic nonlinearities f ); the technically more dif-
ficult periodic boundary condition case was considered
later; compare [38] and references therein.
A technical discussion of these topics goes far beyond
the scope of the present article and, for different equa-
tions, techniques and details, we refer the reader to the
review article [38].

A The Classical Implicit Function Theorem

Here we discuss the classical Implicit Function Theorem
for complex functions from a quantitative point of view.
The following Theorem is a simple consequence of the
Contraction Lemma, which asserts that a contraction ˚
on a closed, non-empty metric space51 X has a unique
fixed point, which is obtained as lim j!1 ˚

j(u0) for any52

u0 2 X. As above, Dn(y0; r) denotes the ball inCn of cen-
ter y0 and radius r.

Theorem 3 (Implicit Function Theorem) Let

F : (y; x) 2 Dn(y0; r) � Dm(x0; s) � CnCm

! F(y; x) 2 Cn

be continuous with continuous Jacobian matrix Fy; assume
that Fy(y0; x0) is invertible and denote by T its inverse; as-
sume also that

sup
D(y0;r)�D(x0;s)

k1n � TFy(y; x)k �
1
2
;

sup
D(x0;s)

jF(y0; x)j �
r

2kTk
:

(138)

Then, all solutions (y; x) 2 D(y0; r)�D(x0; s) of F(y; x) D
0 are given by the graph of a unique continuous function
g : D(x0; s)! D(y0; r) satisfying, in particular,

sup
D(x0;s)

jgj � 2kTk sup
D(x0;s)

jF(y0; �)j : (139)

Proof Let X D C(Dm (x0; s);Dn(y0; r)) be the closed ball
of continuous function from Dm(x0; s) to Dn(y0; r) with
respect to the sup-norm k � k (X is a non-empty met-
ric space with distance d(u; v) :D ku � vk) and de-
note ˚(y; x) :D y � TF(y; x). Then, u ! ˚(u) :D
˚(u; �) maps C(Dm (x0; s)) into C(Cm ) and, since @y˚ D
1n � TFy(y; x), from the first relation in (138), it fol-
lows that u ! ˚(u) is a contraction. Furthermore, for any
u 2 C(Dm(x0; s);Dn(y0; r)),

j˚(u) � y0j � j˚(u) �˚(y0)j C j˚(y0) � y0j

�
1
2
ku � y0k C kTkkF(y0; x)k

�
1
2
r C kTk

r
2kTk

D r ;

showing that ˚ : X ! X. Thus, by the Contraction
Lemma, there exists a unique g 2 X such that ˚(g) D g,
which is equivalent to F(g; x) D 0 8x. If F(y1; x1) D 0
for some (y1; x1) 2 D(y0; r) � D(x0; s), it follows that
jy1� g(x1)j D j˚(y1; x1)�˚(g(x1); x1)j � ˛jy1� g(x1)j,
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which implies that y1 D g(x1) and that all solutions of
F D 0 in D(y0; r) � D(x0; s) coincide with the graph
og g. Finally, (139) follows by observing that kg � y0k D
k˚(g) � y0k � k˚(g) � ˚(y0)k C k˚(y0) � y0k �
1
2kg � y0k C kTkkF(y0; �)k, finishing the proof. �

Additions:

(i) If F is periodic in x or/and real on reals, then (by
uniqueness) so is g;

(ii) If F is analytic, then so is g (Weierstrass Theorem,
since g is attained as uniform limit of analytic func-
tions);

(iii) The factors 1/2 appearing in the right-hand sides
of (138) may be replaced by, respectively, ˛ and ˇ for
any positive ˛ and ˇ such that ˛ C ˇ D 1.

Taking n D m and F(y; x) D f (y)� x for a given
C1(D(y0; r);Cn ) function, one obtains the

Theorem 4 (Inverse Function Theorem) Let f : y 2
Dn(y0; r) ! Cn be a C1 function with invertible Jacobian
fy(y0) and assume that

sup
D(y0;r)

k1n � T fyk �
1
2
; T :D fy(y0)�1 ; (140)

then there exists a unique C1 function g : D(x0; s) !
D(y0; r) with x0 :D f (y0) and s :D r/(2kTk) such that
f ı g(x) D id D g ı f .

Additions analogous to the above also hold in this case.

B ComplementaryNotes
1 Actually, the first instance of a small divisor problem

solved analytically is the linearization of the germs of
analytic functions and is due to C.L. Siegel [61].

2 The well-known Newton’s tangent scheme is an al-
gorithm, which allows us to find roots (zeros) of
a smooth function f in a region where the deriva-
tive f 0 is bounded away from zero. More precisely,
if xn is an “approximate solution” of f (x) D 0, i. e.,
f (xn) :D "n is small, then the next approximation
provided by Newton’s tangent scheme is xnC1 :D
xn � f (xn)/ f 0(xn) [which is the intersection with
x-axis of the tangent to the graph of f passing through
(xn ; f (xn))] and, in view of the definition of "n and
Taylor’s formula, one has that "nC1 :D f (xnC1) D
1
2 f
00(�n)"n2/( f 0(xn)2 (for a suitable �n) so that "nC1 D

O("2n) D O("2n1 ) and, in the iteration, xn will converge
(at a super-exponential rate) to a root x̄ of f . This type
of extremely fast convergence will be typical in the an-
alyzes considered in the present article.

3 The elements of T d are equivalence classes
x D x̄ C 2�Zd with x̄ 2 Rd . If x D x̄ C 2�Zd and
y D ȳ C 2�Zd are elements ofT d , then their distance
d(x; y) is given by minn2Zd jx̄ � ȳ C 2�nj where j � j
denotes the standard euclidean norm in Rn ; a smooth
(analytic) function on T d may be viewed as (“identi-
fied with”) a smooth (analytic) function on Rd with
period 2� in each variable. The torus T d endowed
with the above metric is a real-analytic, compact man-
ifold. For more information, see [62].

4 A symplectic form on an (even dimensional) manifold
is a closed, non-degenerate differential 2-form. The
symplectic form ˛ D dy ^ dx is actually exact sym-
plectic, meaning that ˛ D d(

P
iD1 yidxi). For general

information see [5].
5 For general facts about the theory of ODE (such as Pi-

card theorem, smooth dependence upon initial data,
existence times, . . . ) see, e. g., [23].

6 This terminology is due to that fact the the xj are
“adimensional” angles, while analyzing the physical di-
mensions of the quantities appearing in Hamilton’s
equations one sees that dim(y) � dim(x) D dimH �
dim(t) so that y has the dimension of an energy (the
Hamiltonian) times the dimension of time, i. e., by def-
inition, the dimension of an action.

7 This terminology is due to the fact that a classical me-
chanical system of d particles of masses mi > 0 and
subject to a potential V(q) with q 2 A � Rd is gov-
erned by a Hamiltonian of the form

Pd
jD1 p

2
j /2mj C

V(q) and d may be interpreted as the (minimal) num-
ber of coordinates necessary to physically describe the
system.

8 To be precise, (6) should be written as y(t) D
v(�T d (! t)), x(t) D �T d (! t C u(�T d (! t))) where
�T d denotes the standard projection of Rd onto T d ,
however we normally omit such a projection.

9 As standard, U� denotes the (d � d) Jacobian matrix
with entries (@Ui )/(@� j) D ıi j C (@ui )/(@� j).

10 For generalities, see [5]; in particular, a Lagrangian
manifold L �M which is a graph over T d admits
a “generating function”, i. e., there exists a smooth
function g : T d ! R such that L D f(y; x) : y D
gx (x), x 2 T dg.

11 Compare [54] and references therein. We remark that,
if B(!0; r) denote the ball in Rd of radius r centered
at !0 and fix � > d � 1, then one can prove that the
Lebesguemeasure of B(y0; r)nDd

�;� can be bounded by
cd�rd�1 for a suitable constant cd depending only on d;
for a simple proof, see, e.g, [21].

12 The sentence “can be put into the form” means “there
exists a symplectic diffeomorphism � : (y; x) 2 M !
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(�; �) 2 M such that H ı � has the form (10)”; for
multi-indices ˛, j˛j D ˛1 C � � � C ˛d and @˛y D
@
˛1
y1 � � � @

˛d
yd ; the vanishing of the derivatives of a func-

tion f (y) up to order k in the origin will also be indi-
cated through the expression f D O(jyjkC1).

13 Notation: If A is an open set and p 2 N , then the
Cp-norm of a function f : x 2 A! f (x) is defined as
k f kC p(A) : supj˛j�p supA j@˛x f j.

14 Notation: If f is a scalar function f y is a d-vec-
tor; f yy the Hessian matrix ( fyi y j ); f yyy the symmet-
ric 3-tensor of third derivatives acting as follows:
fy y y a � b � c :D

Pd
i; j;kD1(@

3 f )/(@yi@y j@yk)aib j ck .
15 Notation: If f is (a regular enough) function over

T d , its Fourier coefficients are defined as fn :DR
T d f (x)e�in�xdx/(2�)d ; where, as usual, i D

p
�1

denotes imaginary unit; for general information about
Fourier series see, e. g., [34].

16 The choice of norms on finite dimensional spaces (Rd ,
Cd , space of matrices, tensors, etc.) is not particularly
relevant for the analysis in this article (since changing
norms will change d-depending constants); however
for matrices, tensors (and, in general, linear operators),
it is convenient to work with the “operator norm”,
i. e., the norm defined as kLk D supu¤0 kLuk/kuk, so
that kLuk � kLkkuk, an estimate, which will be con-
stantly be used; for a general discussion on norms, see,
e. g., [36].

17 As an example, let us work out the first two esti-
mates, i. e., the estimates on ksxk�̄ and jbj: actually
these estimates will be given on a larger intermedi-
ate domain, namely, W��ı/3, allowing to give the re-
maining bounds on the smaller domainW�̄ (recall that
Ws denotes the complex domain D(0; s) � T d

s ). Let
f (x) :D P(0; x)�hP(0; �)i. By definition of k�k� andM,
it follows that k f k� � kP(0; x)k�CkhP(0; �)ik� � 2M.
By (P5) with p D 1 and � 0 D � � ı/3, one gets

ksxk�� ı3 � B̄1
2M
�

3k1ı�k1 ;

which is of the form (53), provided c̄ � (B̄12 � 3k1 )/�
and �̄ � k1. To estimate b, we need to bound first
jQyy(0; x)j and jPy(0; x)j for real x. To do this we can
use Cauchy estimate: by (P4) with p D 2 and, respec-
tively, p D 1, and � 0 D 0, we get

kQyy (0; �)k0 � mB2C��2 � mB2Cı�2 ; and

kPy (0; x)k0 � mB1Mı�1 ;

where m D m(d) � 1 is a constant which depend
on the choice of the norms, (recall also that ı < �).
Putting these bounds together, one gets that jbj can

be bounded by the r.h.s. of (53) provided c̄ �

m(B2 B̄12 � 3k1��1 C B1), � � 2 and �̄ � k1 C 2. The
other bounds in (53) follow easily along the same lines.

18 We sketch here the proof of Lemma 1. The defining
relation  " ı ' D id implies that ˛(x0) D �a(x0 C
"˛(x0)), where ˛(x0) is short for ˛(x0; ") and that equa-
tion is a fixed point equation for the non-linear oper-
ator f : u ! f (u) :D �a(id C "u). To find a fixed
point for this equation one can use a standard contrac-
tion Lemma (see [36]). Let Y denote the closed ball
(with respect to the sup-norm) of continuous func-
tions u : T d

�0
! Cd such that kuk�0 � L̄. By (54),

jIm(x0 C "u(x0))j < � 0 C "0L̄ < � 0 C ı/3 D �̄ , for any
u 2 Y , and any x0 2 T d

�0
; thus, k f (u)k�0;"� � kak�̄ �

L̄ by (53), so that f : Y ! Y ; notice that, in particu-
lar, this means that f sends periodic functions into pe-
riodic functions. Moreover, (54) implies also that f is
a contraction: if u; v 2 Y , then, by the mean value the-
orem, j f (u)� f (v)j � L̄j"jju�vj (with a suitable choice
of norms), so that, by taking the sup-norm, one has
k f (u) � f (v)k�0 < "0L̄ku � vk�0 < 1

3ku � vk�0 show-
ing that f is a contraction. Thus, there exists a unique
˛ 2 Y such that f (˛) D ˛. Furthermore, recalling
that the fixed point is achieved as the uniform limit
limn!1 f n(0) (0 2 Y) and since f (0) D �a is ana-
lytic, so is f n(0) for any n and, hence, by Weierstrass
Theorem on the uniform limit of analytic function
(see [1]), the limit ˛ itself is analytic. In conclusion,
' 2 B�0 and (55) holds.
Next, for (y0; x) 2W�̄ , by (53), one has jy0 C
"ˇ(y0; x)j < �̄ C "0L̄ < �̄ C ı/3 D � so that (56)
holds. Furthermore, since k"axk�̄ < "0L̄ < 1/3
the matrix 1d C "ax is invertible with inverse given
by the “Neumann series” (1d C "ax )�1 D 1d CP1

kD1(�1)
k ("ax )k D: 1dC"S(x; "), so that (57) holds.

The proof is finished.
19 From (59), it follows immediately that h@2y0Q1(0; �)i D
h@2yQ(0; �)iC"h@2y0eQ(0; �)iDT�1(1dC"Th@2y0eQ(0; �)i)
D: T�1(1d C "R) and, in view of (51) and (59),
we see that kRk < L/(2C). Therefore, by (60),
"0kRk < 1/6 < 1/2, implying that (1C"R) is invertible
and (1d C "R)�1 D 1d C

P1
kD1(�1)

k"kRk D: 1C "D
with kDk � kRk/(1 � j"jkRk) < L/C. In conclu-
sion, T1 D (1 C "R)�1T D T C "DT D: T C "eT ,
keTk � kDkC � (L/C)C D L.

20 Actually, there is quite some freedom in choosing the
sequence f� jg provided the convergence is not too fast;
for general discussion, see, [56], or, also, [10] and [14].

21 In fact, denoting by B� the real d-ball centered at 0
and of radius ��� for � 2 (0; 1), from Cauchy esti-
mate (47) with � D �� and � 0 D ���, one has k�� �
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idkC p(B��T d ) D supB��T d supj˛jCjˇ j�p j@
˛
y @
ˇ
x (�� �

id)j � supj˛jCjˇ j�p k@
˛
y @
ˇ
x (�� � id)k��� �

Bpk�� � idk��1/(���)
p � constpj"j with constp :D

BpDBM1/(���)p . An identical estimate holds for
kQ� � QkC p(B��T d ).

22 Also very recently "-power series expansions have
been shown to be a very powerful tool; compare [13].

23 A function f : A � Rn ! Rn is Lipschitz on A if there
exists a constant (“Lipschitz constant”) L > 0 such that
j f (x)� f (y)j � Ljx � yj for all x; y 2 A. For a general
discussion on how Lebesgue measure changes under
Lipschitz mappings, see, e. g., [28]. In fact, the depen-
dence of �� on ȳ is much more regular, compare Re-
mark 11.

24 In fact, notice that inverse powers of � appear
through (48) (inversion of the operator D!), therefore
one sees that the terms in the first line of (53) may be
replaced by c̃��2 (in defining a one has to apply the
operator D�1! twice) but then in P(1) (see (26)) there
appears kˇk2, so that the constant c in the second line
of (53) has the form (72); since � < 1, one can replace
in (53) c with ĉ��4 as claimed.

25 Proof of Claim C Let H0 :D H, E0 :D E, Q0 :D Q,
K0 :D K, P0 :D P, �0 :D � and let us assume (induc-
tive hypothesis) that we can iterate the Kolmogorov
transformation j times obtaining j symplectic transfor-
mations �iC1 : W�iC1 ! W�i , for 0 � i � j � 1, and j
Hamiltonians HiC1 D Hi ı �iC1 D Ki C "

2i Pi real-
analytic on W�i such that

j!j; jEi j; kQik�i ; kTik < C ;

j"j2
i
Li :D j"j2

i
cC�ı��0 2� iMi �

ıi

3
;

8 0 � i � j � 1 :

(*)

By (), Kolmogorov iteration (Step 2) can be ap-
plied to Hi and therefore all the bounds de-
scribed in paragraph Step 2 hold (having re-
placed H; E; : : : ; �; ı;H0; E0; : : : ; � 0 with, respectively,
Hi ; Ei ; : : : ; �i ; ıi ;HiC1; EiC1; : : : ; �iC1); in particular
(see (61)) one has, for 0 � i � j � 1 (and for any
j"j � "0),
8
ˆ̂
ˆ̂̂
<

ˆ̂̂
ˆ̂:

jEiC1j � jEi j C j"j
2i Li ;

kQiC1k�iC1 � kQik�i C j"j
2i Li ;

k�iC1 � idk�iC1 � j"j
2i Li

MiC1 � MiLi

(C.1)

Observe that the definition of D, B and LI ,
j"j2

j L j(3Cı�1j ) D: DBjj"j2
jM j , so that Li < DBiMi ,

thus by the second line in (C:1), for any 0 � i � j� 1,
j"j2

iC1MiC1 < DBi(Mi j"j
2i )2, which iterated,

yields (66) for 0 � i � j. Next, we show that, thanks
to (65), () holds also for i D j (and this means that
Kolmogorov’s step can be iterated an infinite num-
ber of times). In fact, by () and the definition of C
in (64): jEjj � jEjC

P j�1
iD0 "

2i
0 Li � jEjC

1
3
P

i�0 ıi <

jEjC 1
6
P

i�1 2
�i < jEjC1 < C. The bounds for kQik

and kTik are proven in an identical manner. Now,
by (66)iD j and (65), j"j2 j L j(3ı�1j ) D DBjj"j2

jM j �

DBj(DB"0M)2 j /(DBjC1) � 1/B < 1, which implies
the second inequality in () with i D j; the proof of
the induction is finished and one can construct an
infinite sequence of Kolmogorov transformations sat-
isfying (), (C:1) and (66) for all i � 0. To check (67),
we observe that j"j2i Li D ı0/(3 � 2i)DBi j"j2

i Mi �

(1/2iC1)(j"jDBM)2i � (j"jDBM/2)iC1 and thereforeP
i�0 j"j

2i Li �
P

i�1(j"jDBM/2)i � j"jDBM. Thus,
kQ � Q�k�� �

P
i�0 kQ̃ik�i � j"j

2i Li � j"jDBM;
and analogously for jE � E�j and kT � T�k. To esti-
mate k��� idk�� , observe that k˚i � idk�i � k˚i�1 ı

�i � �ik�i C k�i � idk�i � k˚i�1 � idk�i�1 C j"j
2i Li ,

which iterated yields k˚i � idk�i �
Pi

kD0 j"j
2k Lk �

j"jDBM: taking the limit over i completes the proof
of (67) and the proof of Claim C.

26 In fact, observe: (i) given any integer vector 0 ¤ n 2
Zd with d � 2, one can find 0 ¤ m 2 Zd such n �
m D 0; (ii) the set ftn : t > 0 and n 2 Zdg is dense
inRd ; (iii) if U is a neighborhood of y0, then Ky(U) is
a neighborhood of ! D Ky(y0). Thus, by (ii) and (iii),
in Ky(U) there are infinitely many points of the form
tn with t > 0 and n 2 Zd to which correspond points
y(t; n) 2 U such that Ky(y(t; n)) D tn and for any
of such points one can find, by (i), m 2 Z such that
m � n D 0, whence Ky(y(t; n)) � m D tn � m D 0.

27 This fact was well known to Poincaré, who based on
the above argument his non-existence proof of in-
tegral of motions in the general situation; compare
Sect. 7.1.1, [6].

28 Compare (90) but observe, that, since P̂ is a trigono-
metric polynomial, in view of Remark 9–(ii), g in (96)
defines a real-analytic function on D(y0; r̄) � T d

�0
with

a suitable r̄ D r̄(") and � 0 < � . Clearly it is impor-
tant to see explicitly how the various quantities depend
upon "; this is shortly discussed after Proposition 2.

29 In fact: kP̌kr;��ı/2 � M
P
jnj>N e�jnjı/2 � Me�(ı/4)N

P
jnj>N e�jnjı/4 � Me�(ı/4)N

P
jnj>0 e

�jnjı/4 �

constMe�(ı/4)Nı�d � j"jM if (106) holds and N is
taken as in (104).
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30 Apply the IFT of Appendix “A The Classical Im-
plicit Function Theorem” to F(y; �) :D Ky(y) C
�@yP0(y) � Ky(y0) defined on Dd (y0; r̄) � D1(0; j"j):
using the mean value theorem, Cauchy estimates
and (114), k1d � TFyk � k1d � TKyyk C

j"jk@2yP0k � kTkkKyyykr̄ C kTkj"jk@2yP0k �

C22r̄/r C Cj"j4/r2M � 1
4 C

1
8 < 1

2 ; also: 2kTk
kF(y0; �k D 2kTkj�j@yP0(y0)k < 2Cj"jM2/r �
2CMr̄�1j"j < 1

4 r̄ (where last inequality is due
to (114)), showing that conditions (138) are fulfilled.
Equation (111) comes from (139) and (113) follows
easily by repeating the above estimates.

31 Recall note 18 and notice that (1d C A)�1 D 1d C D
with kDk � kAk/(1 � kAk) � 2kAk � 20C3Mj"j,
where last two inequalities are due to (113).

32 Lemma 1 can be immediately extended to the y0-de-
pendent case (which appear as a dummy parameter)
as far as the estimates are uniform in y0 (which is the
case).

33 By (118) and (54), j"jkgxkr̄;�̄ � j"jrL � r/2 so that,
by (116), if y0 2 Dr̄/2(y1), then y0C"gx (y0; '(y0; x0)) 2
Dr(y0).

34 The first requirement in (123) is equivalent to require
that r0 � r, which implies that if r̄ is defined as the r.h.s.
of (108), then r̄ � r/2 as required in (110). Next, the
first requirement in (114) at the ( jC 1)th step of the
iteration translates into 16C2r jC1/r j � 1, which is sat-
isfied, since, by definition, r jC1/r j D (1/(2� ))�C1 �

(1/(2� ))2 D 1/(36C2) < 1/(16C2). The second con-
dition in (114), which at the ( j C 1)th step, reads
2CMjr�2jC1j"j

2 j is implied by j"j2 j L j � ı j/(3C) (cor-
responding to (54)), which, in turn, is easily controlled
along the lines explained in note 25.

35 An area-preserving twist mappings of an annulus AD
[0; 1] � S1, (S1 D T 1), is a symplectic diffeomor-
phism f D ( f1; f2) : (y; x) 2 A! f (y; x) 2 A, leaving
invariant the boundary circles of A and satisfying the
twist condition @y f2 > 0 (i. e., f twists clockwise radial
segments). The theory of area preserving maps, which
was started by Poincaré (who introduced such maps
as section of the dynamics of Hamiltonian systems
with two degrees of freedom), is, in a sense, the sim-
plest nontrivial Hamiltonian context. After Poincaré
the theory of area-preserving maps became, in itself,
a very rich and interesting field of Dynamical Systems
leading to very deep and important results due to Her-
man, Yoccoz, Aubry, Mather, etc; for generalities and
references, see, e. g., [33].

36 It is not necessary to assume that K is real-analytic, but
it simplify a little bit the exposition. In our case, we
shall see that ` is related to the number � in (66). We

recall the definition of Hölder norms: If ` D `0 C �

with `0 2 ZC and � 2 (0; 1), then k f kC` :D k f kC` C
supj˛jD`0 sup0<jx�yj<1 j@

˛ f (x)� @˛ f (y)j/jx � yj�;
C`(Rd ) denotes the Banach space of functions with
finite C` norm.

37 To obtain these new estimates, one can, first replace �
by
p
� and then use the remark in the note 21 with

p D 1; clearly the constant � has to be increased by one
unit with respect to the constant � appearing in (69).

38 For general references and discussions about Lemma 2
and 3, see, [44] and [65]; an elementary detailed proof
can be found, also, in [15].

39 Proof of Claim M The first step of the induction
consists in constructing ˚0 D �0: this follows from
Kolmogorov’s Theorem (i. e., Remark 7–(i) and Re-
mark 11) with � D �1 D 1/2 (assume, for simplic-
ity, that Q is analytic onW1 and note that j"jkP0k�1 �
j"jkPkC0 by the first inequality in (124)). Now, assume
that (128) and (129) holds together with Ci < 4C
and k@(˚i � id)k˛�iC1 < (

p
2 � 1) for 0 � i �

j (C0 D C and Ci are as in (64) for, respectively,
K0 :D K and Ki). To determine � jC1, observe that,
by (128), one hasHjC1ı˚ jC1 D (KjC1C"PjC1)ı� jC1
where Pj :D (P jC1 � P j) ı ˚ j , which is real-an-
alytic on W˛� jC1 ; thus we may apply Kolmogorov’s
Theorem to KjC1 C "PjC1 with � D ˛� jC1 and
� D ˛; in fact, by the second inequality in (124),
kPjC1k˛� jC1 � kP

j�1 � P jkX jC1 � ckPkC`�
`
jC1 and

the smallness condition (66) becomes j"jD�`�
jC1 (with
D :D c�ckPkC` (4C)

b2
/2), which is clearly satisfied
for j"j < D�1. Thus, � jC1 has been determined and
(notice that ˛2� jC1 D � jC1/2 D � jC2) k� jC1�idk� jC2 ,
@(k� jC1 � id)k� jC2 � j"jD� jC1. Let us now check the
domain constraint ˚ j : W˛� jC1 ! X� jC1 . By the in-
ductive assumptions and the real-analyticity of˚ j, one
has that, for z 2 W˛� jC1 , jIm˚ j(z)j D jIm(˚ j(z) �
˚ j(Rez))j � j˚ j(z) �˚ j(Rez)j � k@˚ jk˛� jC1 jImzj �
(1C k@(˚i � id)k˛�iC1 )˛� jC1 <

p
2˛� jC1 D � jC1 so

that ˚ j : W˛� jC1 ! X� jC1 . The remaining inductive
assumptions in (129) with j replaced by j C 1 are eas-
ily checked by arguments similar to those used in the
induction proof of Claim C above.

40 See, e. g., the Proposition at page 58 of [14] with g j D
f j � f j�1. In fact, the lemma applies to the Hamiltoni-
ansHj and to the symplectic map � j in (82) in Arnold’s
scheme with Wj in (81) and taking C D C� :D fy0 D
lim j!1 y j(!) : ! 2 B\K�1y (Dd

�;� )g and y j(!) :D y j
is as in (82).

41 A formal "-power series quasi-periodic trajectory, with
rationally-independent frequency !, for a nearly-in-
tegrable Hamiltonian H(y; x; ") :D K(y) C "P(y; x)
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is, by definition, a sequence of functions fzkg :D
(fvkg; fukg), real-analytic on T d and such that
D!zk D J2d�k(rH(

Pk�1
jD0"

j z j)) where �k(�) :D
1
k!@

k
" (�)j"D0; compare Remark 1–(ii) above.

42 In fact, Poincaré was not at all convinced of the con-
vergence of such series: see chapter XIII, no 149, en-
titled “Divergence des séries de M. Lindstedt”, of his
book [49].

43 Equation (70) guarantees that the map from y in the
(d � 1)-dimensional manifold fK D Eg to the (d �
1)-dimensional real projective space f!1 : !2 : � � � :
!dg � RP d�1 (where !i D Kyi ) is a diffeomorphism.
For a detailed proof of the “iso-energetic KAM Theo-
rem”, see, e. g., [24].

44 Actually, it is not known if such tori are KAM tori in
the sense of the definitions given above!

45 The first example of a nearly-integrable system (with
two parameters) exhibiting Arnold’s diffusion(in a cer-
tain region of phase space) was given by Arnold in [4];
a theory for “a priori unstable systems” (i. e., the case
in which the integrable system carries also a partially
hyperbolic structure) has been worked out in [20] and
in recent years a lot of literature has been devoted to
study the “a priori unstable” case and to to try to at-
tack the general problem (see, e. g., Sect. 6.3.4 of [6] for
a discussion and further references). We mention that
J. Mather has recently announced a complete proof of
the conjecture in a general case [40].

46 Here, we mention briefly a different and very elemen-
tary connection with classical mechanics. To study the
spectrum �(L) (L as above with a quasi-periodic po-
tential V (!1t; : : : ; !n t)) one looks at the equation q̈ D
(V (! t) � )q, which is the q-flow of the Hamiltonian
� t
H H D H(p; q; I; ';) :D p2/2 C [ � V (')]q2/2

where (p; q) 2 R2 and (I; ') 2 Rn � T n w.r.t. the
standard form dp^ dqC dI ^ d' and  is regarded as
a parameter. Notice that '̇ D ! so that ' D '0 C ! t
and that the (p; q) decouples from the I-flow, which is,
then, trivially determined one the (p; q) flow is known.
Now, the action-angle variables(J; �) for the harmonic
oscillator p2/2 C q2/2 are given by J D r2/

p
 and

(r; �) are polar coordinates in the (p;
p
q)-plane; in

such variables, H takes the form H D ! � I C
p
J �

V (')/
p
 sin2 � . Now, if, for example V is small, this

Hamiltonian is seen to be a perturbation of (nC 1)
harmonic oscillator with frequencies (!;

p
) and it

is remarkable that one can provide a KAM scheme,
which preserves the linear-in-action structure of this
Hamiltonian and selects the (Cantor) set of values of
the frequency ˛ D

p
 for which the KAM scheme can

be carried out so as to conjugateH to a Hamiltonian of

the form ! � I C ˛J, proving the existence of (general-
ized) quasi-periodic eigen-functions. For more details
along these lines, see [14].

47 The value 10�52 is about the proton-Sun mass ra-
tio: the mass of the Sun is about 1:991 � 1030 kg, while
the mass of a proton is about 1:672 � 10�21 kg, so that
(mass of a proton)/(mass of the Sun)' 8:4 � 10�52.

48 “Computer-assisted proofs” are mathematical proofs,
which use the computers to give rigorous upper and
lower bounds on chains of long calculations by means
of so-called “interval arithmetic”; see, e. g., Appendix C
of [13] and references therein.

49 Simple examples of such orbits are equilibria and pe-
riodic orbits: in such cases there are no small-divi-
sor problems and existence was already established by
Poincaré by means of the standard Implicit Function
Theorem; see [49], Volume I, chapter III.

50 Typically, � may indicate an initial datum y0 and y
the distance from such point or (equivalently, if the
system is non-degenerate in the classical Kolmogorov
sense) � ! !(�) might be simply the identity, which
amounts to consider the unperturbed frequencies as
parameter; the approach followed here is that in [51],
where, most interestingly,m is allowed to be1.

51 I. e., a map˚ : X ! X for which 90 < ˛ < 1 such that
d(˚(u); ˚(v)) � ˛d(u; v), 8u; v 2 X, d(�; �) denoting
the metric on X; for generalities on metric spaces, see,
e. g., [36].

52 ˚ j D ˚ ı � � � ı ˚ j-times. In fact, let uj :D ˚ j(u0)
and notice that, for each j � 1 d(ujC1; uj) �
˛d(uj ; uj�1) � ˛ jd(u1; u0) D: ˛ jˇ, so that, for each
j; h � 1, d(ujCh ; uj) �

Ph�1
iD0 d(ujCiC1; ujCi ) �Ph�1

iD0 ˛
jCiˇ � ˛ jˇ/(1 � ˛), showing that fujg is

a Cauchy sequence. Uniqueness is obvious.
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Glossary

Analytical method for solving an equation The method
for obtaining the exact solutions of an equation.

Solitons The special solitary waves which retain their
original shapes and speeds after collision and exhibit
only a small overall phase shift.

" ˙1
t the time
(x; y) Cartesian coordinates of a point
@�1x an indefinite integrate operator

R
dx.

Definition of the Subject

This paper presents the analytical methods for obtaining
the exact solutions of the Korteweg–de Vries Equation
(KdV equation).

The KdV equation and its exact solutions can describe
and explain many physical problems. In addition, it is
a typical, relatively simple and classical equation among
the many nonlinear equations in physics. Much of the
literature of nonlinear equation theory customarily uses
solving soliton solutions of the KdV equation as an exam-
ple to introduce the nonlinear theory, method and char-
acter of soliton solutions. During the last five decades, the
construction of exact solution for a wide class of nonlinear
equations has been an exciting and extremely active area
of research. This includes the most famous nonlinear ex-
ample of the KdV equation.

In the family of the KdV equations, a well known KdV
equation is expressed in its simplest form as [1,2,3,4]:

ut(x; t)C ˛u(x; t)ux (x; t)C ˇuxxx (x; t) D 0 : (1)
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where the coefficient of the nonlinear term ˛ and the coef-
ficient of the dispersive term ˇ are independent of x and t.

The KdV equation was derived in 1885 by the two sci-
entists, Korteweg and de Vries [1], to describe long wave
propagation on shallow water. Its importance comes from
its many applications in weakly nonlinear and weakly dis-
persive physical systems and its interesting mathematical
properties. It can be considered as a paradigm in non-
linear science. The equation is so powerful it has been
used to simulate the red spots on Jupiter. Moreover, it de-
scribes non-linear waves in rotating fluids [5], the giant
ocean waves known as Tsunami, and other aspects of soli-
tary waves in plasma. The giant internal waves in the in-
terior of the ocean arising from temperature differences
which may destroy marine vessels can be also described by
the powerful KdV equation. It possesses infinitely many
generalized symmetries and infinitely many integrals of
motion [6], and can be viewed as a completely integrable
Hamiltonian system and solved by the inverse scattering
transform. It also provides resources for studying integra-
bility of nonlinear differential (and difference) equations,
serving as a typical model of integrable equations. More
remarkable is that various physically important solutions
to the KdV equation can be presented explicitly in a simple
way, among which are solitons, rational solutions, posi-
tons and negatons.

The KdV equation has been widely investigated and
developed continually in recent decades. Several gener-
alizations of the KdV equation have found applications
in many areas, including quantum field theory, plasma
physics, solid-state physics, liquid-gas bubble mixtures,
and anharmonic crystals. For instance, the classical gen-
eralized Korteweg–de Vries equation (gKdV) has the fol-
lowing form [7,8,9]

ut(x; t)C ˛up(x; t)ux (x; t)C ˇuxxx (x; t) D 0 : (2)

where the coefficient of the nonlinear term ˛ and the coef-
ficient of the dispersive term ˇ are independent of x and t.

The more generalized form of the KdV equation is de-
fined by parameters (l ; p) as follows [10,11,12,13,14]

ut(x; t) D ul�2(x; t)ux (x; t)C ˛[2up(x; t)uxxx (x; t)

C 4pup�1(x; t)ux (x; t)uxx (x; t)

C p(p � 1)up�2(x; t)u3x (x; t)] : (3)

Propagation of weakly nonlinear long waves in an in-
homogeneous waveguide is governed by a variable-coeffi-
cient KdV equation of the form [15]

ut(x; t)C 6u(x; t)ux (x; t)C B(t)uxxx (x; t) D 0 : (4)

where u(x; t) is the wave amplitude, t the propagation co-
ordinate, x the temporal variable and B(t) is the local dis-
persion coefficient.

The applicability of the variable-coefficient KdV equa-
tion (4) arises in many areas of physics as, for exam-
ple, the description of the propagation of gravity-capillary
and interfacial-capillary waves, internal waves and Rossby
waves [15]. In order to study the propagation of weakly
nonlinear, weakly dispersive waves in the inhomogeneous
media, Eq. (4) is rewritten as follows [16]

ut(x; t)C6A(t)u(x; t)ux (x; t)CB(t)uxxx (x; t) D 0 : (5)

which includes a variable nonlinearity coefficient A(t).
In studying long waves, tides, solitary waves, and

related phenomena, one is led to an equation of the
form [17]

ut(x; t)C (mC 1)(mC 2)um(x; t)ux (x; t)
C uxxx (x; t) D f (x; t) : (6)

where f (x; t) is a given function and m D 1; 2; : : :, with
u(x; t); ux (x; t), uxx (x; t)! 0 as jxj ! C1. This equa-
tion is referred to as a generalized Korteweg–de Vries
equation in [15].

The extended Korteweg–de Vries (eKdV) equa-
tion [18]

ut(x; t)C ˛u(x; t)ux (x; t)C ˇu2(x; t)ux (x; t)
C ıuxxx (x; t) D 0 : (7)

incorporates both quadratic and cubic nonlinearities, and
serves as a useful model in the propagation of long waves
in physical oceanography.

A system of two coupled Korteweg–de Vries equations
in [4] is given by the following equation:

ui t(x; t)C
X

h;k

Ahk
i uh(x; t)ukx (x; t)

C
X

k

Ak
i ukxxx (x; t) D 0 ; i; k; h D 1; 2 : (8)

The (2C 1)-dimensional KdV equation is presented by
the following equation [19]:

8
<̂

:̂

ut(x; y; t) � 3v(x; y; t)ux (x; y; t)
�3vx (x; y; t)u(x; y; t)C uxxx (x; y; t) D 0 ;

ux (x; y; t) � vy(x; y; t) D 0 :
(9)
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Another (2C 1)-dimensional KdV equation in [20] is
written the following form

ut(x; y; t) � 4u(x; y; t)uy (x; y; t)

� 4ux (x; y; t)@�1x uy (x; y; t) � uxx y (x; y; t) D 0 :
(10)

where @�1x is an indefinite integrate operator
R
dx, possess-

ing some interesting coherent structures.
In addition, the complex coupled KdV equation in [49]

is written the following form
8
<̂

:̂

ut(x; t) D 1
2 [uxxx (x; t) � 6u(x; t)ux (x; t)]

C3(j v(x; t) j2)x ;
vt(x; t) D �vxxx (x; t)C 3u(x; t)vx (x; t) :

(11)

Introduction

It is well known that nonlinear complex physical phe-
nomena are related to nonlinear partial differential equa-
tions (NLPDEs), which are involved in many fields from
physics to biology, chemistry, mechanics, etc. The in-
vestigation of exact solutions of NLPDEs as mathemati-
cal models of phenomena can help one to better under-
stand a variety of phenomena. In the past several decades,
many analytical methods for obtaining exact solutions of
NLPDEs have been presented, such as the inverse scat-
tering method, Hirota’s bilinear method [21], the Bäck-
lund transformation [22], the Painleve expansion [23], the
tanh function method [24], the sine-cosine method [25],
the homogenous balance method [26], the homotopy
perturbation method [27], the variational method [28],
asymptotic methods [29], non-perturbative methods [30],
the exp-function method [31], the Adomian Pade ap-
proximation [32], the Jacobi elliptic function expansion
method [33], the F-expansion method [34], the Weier-
strass semi-rational expansionmethod [35], the unified ra-
tional expansion method [36], the algebraic method [37,
50,51], the auxiliary equation method [38], and so on.

In recent years, based on the ideas of unification meth-
ods, algorithm realization and mechanization for solving
NLPDEs, we have improved and presented some analyt-
ical methods for obtaining exact solutions of NLPDEs,
such as the generalized hyperbolic function – the Bäcklund
transformation method [39], the method for constructing
higher order and higher dimension Bäcklund transforma-
tion [40], the generalized hyperbolic function – the Ric-
cati method [40], the generalized F-expansionmethod [41,
42], the extended generalized algebraic method [43,44],
the Exp-Bäcklund method [45,46], the Exp-N soliton-like
method [47,48], the extended sine-cosine method [52],

and so on. The present article is motivated by the desire
to introduce and make use of our works published in [39,
40,41,42,43,44,45,46,47,48] to construct more general ex-
act solutions, which contain not only the results obtained
by using the methods [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,
16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,
35,36,37,38,49,50,51] and Ablowitz and Clarkson 1991,
Dodd et al. 1984, Drazin and Johnson 1989, Fan 2004, Guo
1996, Liu and Liu 2000 Miura 1976, and Miurs 1978, but
also a series of new and more general exact solutions. For
illustration, we apply our analytical methods above to the
different types of the KdV equations, and successfully ob-
tain many new and more general exact solutions.

The remainder of this article is organized as fol-
lows. In Sect. “The Generalized Hyperbolic Function–
Bäcklund Transformation Method and Its Application in
the (2 + 1)-Dimensional KdV Equation”, in order to con-
struct the unification solutions of the hyperbolic function
solution and exponential function solution of NLPDEs,
we first find a new theory of generalized hyperbolic
functions which includes two new definitions of gener-
alized hyperbolic functions and generalized hyperbolic
function transformations and their properties. Then we
present a new higher order and higher dimension Bäck-
lund transformation method and a new generalized hy-
perbolic function – Bäcklund transformation method.
The validity of the methods are tested by their appli-
cation in the (2C 1)-dimensional KdV equation (9). In
Sect. “The Generalized F-expansion Method and Its Ap-
plication in Another (2 + 1)-Dimensional KdV Equation”,
we present a new and more general formal transforma-
tion and a new generalized F-expansion method and apply
them to another (2C 1)-dimensional KdV equation (10).
In Sect. “The Generalized Algebra Method and Its Ap-
plication in (1 + 1)-Dimensional Generalized Variable –
Coefficient KdV Equation”, in order to develop the alge-
braic method [50,51] for constructing the traveling wave
solutions of NLPDEs, we first present two new and gen-
eral transformations, two new theorems and their proofs,
by using Maple, and a new mechanization method to
find the exact solutions of a first-order nonlinear ordi-
nary differential equations with any degree. The validity
of the method is tested by its application in the first-order
nonlinear ordinary differential equation with six degrees.
Next, we present a new and more general transformation
and a new generalized algebra method and apply them to
the (1C 1)-dimensional generalized variable – coefficient
KdV equation (5). In Sect. “A New Exp-N Solitary-like
Method and Its Application in the (1 + 1)-Dimensional
Generalized KdV Equation”, in order to develop the Exp-
function method [31], we present two new generic trans-
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formations, a new Exp-N solitary-like method, and its al-
gorithm. In addition, we apply our methods to construct
new exact solutions of the (1C 1)-dimensional classical
generalized KdV (gKdV) equation (2); In Sect. “The the
Exp-Bäcklund Transformation Method and Its Applica-
tion in (1 + 1)-Dimensional KdV Equation”, a new Exp-
Bäcklund transformation method and its algorithm is pre-
sented to findmore exact solutions of NLPDEs.We choose
the (1C 1)-dimensional KdV equation (1) to illustrate the
effectiveness and convenience of our algorithm. As a re-
sult, we obtain more general exact solutions including
non-traveling wave solutions and travelingwave solutions.
In addition, the long-term behavior of the non-traveling
wave solutions and traveling wave solutions are illustrated
by some Figures. In Sect. “Future Directions”, future di-
rections for Solving NLPDEs are given.

The GeneralizedHyperbolic Function–Bäcklund
TransformationMethod and Its Application
in the (2+ 1)-Dimensional KdV Equation

In this section, in order to construct the unification so-
lutions of the hyperbolic function solution and the expo-
nential function solution of NLPDEs, we establish a new
theory of generalized hyperbolic functions, which includes
two new definitions of generalized hyperbolic functions
and generalized hyperbolic function transformations and
their properties that we first presented in [39,40]. Then we
present a new higher order and higher dimension Bäck-
lund transformation method and a new generalized hyper-
bolic function-Bäcklund transformation method that we
first presented in [39,40]. With the aid of symbolic com-
putation, we choose the (2C 1)-dimensional Korteweg–
de Vries equations to illustrate the validity and advantages
of the methods. As a result, many new and more general
exact non-traveling waves are obtained.

The Definition and Properties
of Generalized Hyperbolic Functions

In [39], we first defined the following new functions which
named generalized hyperbolic functions and studied the
properties of these functions for constructing new exact
solutions of NLPDEs.

Definition 1 Suppose that � is an independent variable,
p; q and k are constants.

The generalized hyperbolic sine function is

sinhpqk(�) D
pek� � qe�k�

2
(12)

generalized hyperbolic cosine function is

coshpqk(�) D
pek� C qe�k�

2
(13)

generalized hyperbolic tangent function is

tanhpqk(�) D
pek� � qe�k�

pek� C qe�k�
(14)

generalized hyperbolic cotangent function is

cothpqk(�) D
pek� C qe�k�

pek� � qe�k�
(15)

generalized hyperbolic secant function is

sechpqk(�) D
2

pek� C qe�k�
(16)

generalized hyperbolic cosecant function is

cschpqk(�) D
2

pek� � qe�k�
(17)

the above six kinds of functions are said generalized hy-
perbolic functions.

Thus we can prove the following theory of generalized hy-
perbolic functions on the basis of Definition 1.

Theorem 1 The generalized hyperbolic functions satisfy
the following relations:

cosh2pqk(�) � sinh2pqk(�) D pq ; (18)

1 � tanh2pqk(�) D pq � sech2pqk(�) ; (19)

1 � coth2pqk(�) D �pq � csch
2
pqk(�) ; (20)

sechpqk(�) D
1

coshpqk(�)
; (21)

cschpqk(�) D
1

sinhpqk(�)
; (22)

tanhpqk(�) D
sinhpqk(�)
coshpqk(�)

; (23)

cothpqk(�) D
coshpqk(�)
sinhpqk(�)

; (24)

tanhpqk(�) D
1

cothpqk(�)
; (25)

sinhpqk(��) D � sinhqpk(�) ; (26)

coshpqk(��) D coshqpk(�) ; (27)
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tanhpqk(��) D � tanhqpk(�) ; (28)

cothpqk(��) D � cothqpk(�) ; (29)

sechpqk(��) D sechqpk(�) ; (30)

cschpqk(��) D � cschqpk(�) ; (31)

sinh11k(� � �) D
1
pq

[sinhqpk(�) � coshpqk(�)

� coshpqk(�) � sinhqpk(�)] ; (32)

sinhp2q2k(� C �) D sinhqpk(�) � coshpqk(�)

C coshpqk(�) � sinhqpk(�) ; (33)

coshp2q2k(� C �) D coshqpk(�) � coshpqk(�)

C sinhpqk(�) � sinhqpk(�) ; (34)

cosh11k(� � �) D
1
pq

[coshqpk(�) � coshpqk(�)

� sinhpqk(�) � sinhqpk(�)] ; (35)

sinhq2 p2k(2�) D 2 sinhpqk(�) � coshpqk(�) ; (36)

coshp2q2k(2�) D sinh2qpk(�)C cosh2qpk(�) : (37)

tanhqpk (�)C tanhqpk(�)
1 � tanhqpk(�) tanhqpk(�)

D
sinhp2q2k(� C �)

p � q � cosh11k(� � �)
;

(38)

tanhqpk(�)� tanhqpk(�)
1C tanhqpk(�) tanhqpk(�)

D
p � q � sinh11k(� � �)
coshp2q2k(� C �)

: (39)

For simplicity, only a sample of these are proved here.

Proof By (18) and (21), we obtain

1 � tanh2pqk(�) D 1 �
sinh2pqk(�)

cosh2pqk(�)

D
cosh2pqk(�) � sinh2pqk(�)

cosh2pqk(�)

D
pq

cosh2pqk(�)
D pq � sech2pqk(�) :

Similarly, we can prove other conclusions in Theorem 1.�
Theorem 2 The derivative formulae of generalized hyper-
bolic functions are as follows:

d(sinhpqk(�))
d�

D k � coshpqk(�) ; (40)

d(coshpqk(�))
d�

D k � sinhpqk(�) ; (41)

d(tanhpqk(�))
d�

D kpq � sech2pqk(�) ; (42)

d(cothpqk(�))
d�

D �kpq � csch2pqk(�) ; (43)

d(sechpqk(�))
d�

D �k � sechpqk(�) � tanhpqk(�) ; (44)

d(cschpqk(�))
d�

D �k � cschpqk(�) � cothpqk(�) : (45)

Proof According to (40) and (41), we can get

d(tanhpqk(�))
d�

D

� sinhpqk(�)
coshpqk(�)

�0

D
(sinhpqk(�))0 coshpqk(�)� sinhpqk(�)(coshpqk(�))0

coshpqk2(�)

D

k � coshpqk(�) � coshpqk(�)� sinhpqk(�)
�(k � sinhpqk(�))

cosh2pqk(�)

D kpq � sech2pqk(�) :

�

Similarly, we can prove other differential coefficient for-
mulae in Theorem 2.

Remark 1 We see that when p D 1; q D 1; k D 1 in (12)–
(17), new generalized hyperbolic functions sinhpqk(�);
coshpqk(�); tanhpqk(�); cothpqk(�); sechpqk(�) and
cschpqk(�) degenerate as hyperbolic functions sinh(�);
cosh(�); tanh(�); coth(�); sech(�) and csch(�), respec-
tively. In addition, when p D 0 or q D 0 in (12)–(17),
sinhpqk(�); coshpqk(�); sechpqk(�); cschpqk(�), tanhpqk
(�) and cothpqk(�) degenerate as exponential functions
1
2 pe

k� ;˙ 1
2 qe
�k� ; 2pe�k� ;˙2qek� and˙1, respectively.

A New Higher Order and Higher Dimension
Bäcklund Transformation Method to Construct
an Auto–Bäcklund Transformation
of the (2 + 1)-Dimensional KdV Equation

In this section, we obtain an auto-Bäcklund transforma-
tion of the following (2C 1)-dimensional KdV equation
bymaking use of themethod for constructing higher order
and higher dimension Bäcklund transformations which
we presented in [39,40] via symbolic computation.
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The (2C 1)-dimensional KdV equations [19] take the
form

8
<̂

:̂

ut(x; y; t) � 3v(x; y; t)ux (x; y; t)
�3vx (x; y; t)u(x; y; t)C uxxx (x; y; t) D 0 ;

ux (x; y; t)� vy(x; y; t) D 0 :

(46)

The auto-Bäcklund transformations of Eqs. (46) have the
following forms:
(
u(x; y; t) D

Pm1
j1D0 uj1 (x; y; t) f j1�m1 (x; y; t) ;

v(x; y; t) D
Pm2

j2D0 v j2 (x; y; t) f
j2�m2 (x; y; t) ;

(47)

where f (x; y; t); uj1 (x; y; t); j1 D 0; 1; 2; : : : ;m1 � 1 and
v j2 (x; y; t); j2 D 0; 1; 2; : : : ;m2 � 1 are all differential
functions to be determined later, and um1 (x; y; t); vm2

(x; y; t) are the trivial seed solutions of Eqs. (46).
By balancing the highest order linear term and non-

linear terms in Eqs. (46), we get m1 D 2 and m2 D 2,
and (47) has the following formal
8
ˆ̂̂
<̂

ˆ̂
ˆ̂:

u(x; y; t) D u0(x; y; t) f�2(x; y; t)
Cu1(x; y; t) f�1(x; y; t)C u2(x; y; t) ;

v(x; y; t) D v0(x; y; t) f�2(x; y; t)
Cv1(x; y; t) f�1(x; y; t)C v2(x; y; t) ;

(48)

We take the trivial seed solutions as

u2 D u2(x; y; t); v2 D v2(x; y; t) : (49)

With the aid of Maple symbolic computation soft-
ware, substituting (48) and (49) into (46), and collecting
all terms with f�i(x; y; t); i D 0; 1; 2; : : :, we obtain
�
� 24u0 f 3x C 12u0v0 fx


f�5 C

�
12u1 f 3x C 36 f 2x fy fx2

C 18v1 f 2x fy C 24 f 3x fx y

f�4 C � � � D 0 ; (50)

�
� 2u0 fx C 2v0 fy


f�3 C

�
u0x � u1 fx C v1 fy � v0y



f�2 C
�
u1x � v1y


f�1 C u2x � v2y D 0 ; (51)

Setting the coefficient of f�5 in (50) and f�3 in (51) to be
zero, we obtain a differential equation

� 24u0 f 3x C 12u0v0 fx D 0 ; (52)

� 2u0 fx C 2v0 fy D 0 ; (53)

which has the solution

u0 D 2 fx fy ; v0 D 2 f 2x : (54)

Setting the coefficients of f�4 in (50) and f�2 in (51)
to be zero, we obtain a differential equation

12u1 f 3x C 36 f 2x fy fx2 C 18v1 f 2x fy C 24 f 3x fx y D 0 ; (55)

u0x � u1 fx C v1 fy � v0y D 0 ; (56)

from which we can get the following expression:

u1 D �2 fyx ; v1 D �2 fxx : (57)

By (48), (49), (54) and (57), we obtain an auto-Bäcklund
transformation of Eqs. (46)

u D �2@yx ln( f (x; y; t))C u2(x; y; t) ;
v D �2@xx ln( f (x; y; t))C v2(x; y; t) ;

(58)

where u2(x; y; t); v2(x; y; t) are the trivial seed solutions of
Eqs. (46), f D f (x; y; t) satisfies the Eqs. (52), (53), (55),
(56) and the following equations

� u0v1x � u1v0x C 2u1v1 fx C 2u2v0 fx � 2/3u0 ft
� 2/3u0 fx3 C 2u1 fx fx2 � 2u0x fx2

C 2u1x f 2x � 2u0x2 fx � v0u1x � v1u0x
C 2v2u0 fx D 0 ;
u0x3 � u1 fx3 � 3u0v2x � 3u1v1x � 3u2v0x
C 3u2v1 fx � 3u1x fx2 � u1 ft � 3v0u2x � 3v1u1x
� 3v2u0x C 3v2u1 fx C u0t � 3u1x2 fx D 0 :

(59)

The Generalized Hyperbolic Function–Bäcklund
Transformation Method and Its Application
in the (2 + 1)-Dimensional KdV Equation

We first give the definition of a generalized hyperbolic
function transformation [40] as follows:

Definition 2 If a transformation includes the generalized
hyperbolic functions, then the transformation is defined to
be a generalized hyperbolic function transformation.

In this section, we will use the generalized hyperbolic func-
tion–Bäcklund transformation method to seek new exact
solutions of Eqs. (46). We take f (x; y; t) in (48), (49), (54),
(57) and (59) as being of a new formwhich is the following
generalized hyperbolic function transformation

f (x; y; t) D H(t)

C

nX

iD1

Ki (t) � Fi(�i(x; y; t)) � Gi (�i(x; y; t)) ; (60)

where Fi(�i) and Gi (�i ) may take any two general-
ized hyperbolic functions among sinhpqk(�); coshpqk(�);
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tanhpqk(�); cothpqk(�); sechpqk(�)and cschpqk(�). And
then (60) has twenty–one types of general forms. For ex-
ample

f (x; y; t) D H(t)C
nX

iD1

Ki(t) � sechp1i q1i k1i (�i (x; y; t))

� tanhp2i q2i k2i (�i (x; y; t)) ; (61)

f (x; y; t) D H(t)C
nX

iD1

Ki(t)�csch2pi q i k i (�i(x; y; t)); (62)

We see that when p D 1; q D 1; k D 1 in (12)–(12), new
generalized hyperbolic function sinhpqk(�); coshpqk(�);
tanhpqk(�); cothpqk(�); sechpqk(�) and cschpqk(�) degen-
erate as hyperbolic functions sinh(�); cosh(�); tanh(�);
coth(�); sech(�) and csch(�) respectively. Therefore (3.49)
includes twenty-one types of hyperbolic function forms.
For example

f (x; y; t) D H(t)C
nX

iD1

Ki(t) � sinh(�i (x; y; t))

� sech(�i (x; y; t)) ; (63)

and thirty-six types of the omnibus forms of generalized
hyperbolic functions and hyperbolic functions. For exam-
ple

f (x; y; t) D H(t)C
nX

iD1

Ki(t) � sech(�i(x; y; t))

� cschp2i q2i k2i (�i (x; y; t)) ; (64)

In addition, when p D 0 or q D 0 in (12)–(17), sinhpqk(�);
coshpqk(�); sechpqk(�); cschpqk(�); tanhpqk(�) and
cothpqk(�) degenerate as exponential functions 1

2 pe
k� ;

˙ 1
2 qe
�k� ; 2pe�k� ;˙2qek� and˙1 respectively.

For example, we take Fi(�i (x; y; t)) D tanhp1i q1i k1i
(�i);Gi (�i (x; y; t)) D sinhp2i q2i k2i (�i). Then (60) has the
new form

f (x; y; t) D H(t)C
nX

iD1

Ki(t) tanhp1q1k1 (�i)

sechp2q2k2(�i ) ; (65)

where �i D ˛i(t)xCˇi(t)yCri (t); �i D �i (t)xC�i(t)yC
li(t); (i D 1; 2; : : : ; n), and H(t);Ki (t); ˛i (t), ˇi(t); ri (t);
�i (t); �i (t) and li(t) are the functions of t, p1i ; q1i ; k1i ;
p2i ; q2i ; k2i are the constants, and

Pn
iD1 K

2
i (t) ¤ 0(i D

0; 1; 2; : : : ; n).

We take the initial solution of Eqs. (46) as u2(x; y; t) D
u2(t), and v2(x; y; t) D v2(t) in (58) for convenience. So
based on the Bäcklund transformation (58), the general-
ized hyperbolic function transformation (65), and

d2(tanhpqk(�))
d�2

D �2k2pq �sech2pqk(�) �tanhpqk(�); (66)

d2(sechpqk(�))
d�2

D k2 �sechpqk(�)�(2 tanh2pqk(�)�1); (67)

we can get the following new multi-soliton-like solution
which we call a generalized hyperbolic function solution
of Eq. (46):

u D

2
Pn

iD1 p1q1k1k2Ki (t)�i(t)˛i (t) tanhp2q2k2 (�i )
sech2p1q1k1 (�i ) sechp2q2k2 (�i )

H(t)C
Pn

iD1 Ki(t) tanhp1q1k1 (�i) sechp2q2k2 (�i )

C

2
Pn

iD1 k
2
2Ki(t)�i (t)�i(t) tanhp1q1k1 (�i )

sechp2q2k2 (�i )(1 � 2 tanh2p2q2k2(�i ))
H(t)C

Pn
iD1 Ki (t) tanhp1q1k1(�i ) sechp2q2k2 (�i)

C

2
Pn

iD1 p1q1k1k2Ki(t)ˇi (t)�i (t) sech2p1q1k1 (�i)
tanhp2q2k2 (�i ) sechp2q2k2(�i )

H(t)C
Pn

iD1 Ki(t) tanhp1q1k1 (�i) sechp2q2k2 (�i )

2
Pn

iD1 Ki(t)(p1q1k1ˇi(t) sech2p1q1k1 (�i) � k2�i(t)
tanhp1q1k1 (�i ) tanhp2q2k2 (�i )) sechp2q2k2 (�i )

H(t)C
Pn

iD1 Ki (t) tanhp1q1k1(�i ) sechp2q2k2 (�i)
Pn

iD1 Ki(t)(p1q1k1˛i(t) sech2p1q1k1 (�i) � k2�i (t)
tanhp1q1k1 (�i ) tanhp2q2k2(�i )) sechp2q2k2 (�i )

H(t)C
Pn

iD1 Ki(t) tanhp1q1k1 (�i) sechp2q2k2 (�i )

C u2 ; (68)

v D

Pn
iD1 4p1q1k1˛i(t)Ki (t) sech2p1q1k1 (�i)
sechp2q2k2 (�i )(k1˛i (t) tanhp1q1k1 (�i)

Ck2�i (t) tanhp2q2k2 (�i ))
H(t)C

Pn
iD1 Ki(t) tanhp1q1k1 (�i ) sechp2q2k2(�i )

C

2
Pn

iD1 Ki (t)k22(�i (t))2 tanhp1q1k1 (�i )
sechp2q2k2 (�i )(1 � 2 tanh2p2q2k2(�i ))

H(t)C
Pn

iD1 Ki (t) tanhp1q1k1(�i ) sechp2q2k2 (�i)
�Pn

iD1 Ki(t) sechp2q2k2 (�i )(p1q1k1˛i (t) sech
2
p1q1k1

(�i )� k2�i (t) tanhp1q1k1 (�i) tanhp2q2k2 (�i ))
2

�
H(t)C

Pn
iD1 Ki(t) tanhp1q1k1 (�i) sechp2q2k2 (�i )

2

C v2 ; (69)
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where �i D ˛i (t)xCˇi(t)yCri (t); �i D �i (t)xC�i(t)yC
li(t).

For example, when we take n D 2;H;Ki ; pi ; qi ; ki ;
˛i ; ˇi and ri ; i D 1; 2 are all constants, then (65) becomes

f (x; y; t) D H C K1 tanhp1q1k1 (˛1x C ˇ1y C r1)
� sechp1q1k1 (˛1x C ˇ1y C r1)C K2 tanhp2q2k2

� (˛2x C ˇ2y C r2) sechp2q2k2(˛2x C ˇ2y C r2) ;
(70)

With the help of symbolic computation, substituting (70)
and u2(x; y; t) D u2(t); v2(x; y; t) D v2(t) into (52), (53),
(55), (56) and (59), we can get H;Ki ; pi ; qi ; ki ; ˛i ; ˇi and
ri ; i D 1; 2 respectively as follows:

Case 1

u2 D C1 ;

v2 D
C1(ˇ22˛12 C ˇ12˛22 C ˇ1˛2ˇ2˛1)

3ˇ1ˇ2(ˇ1˛2 C ˇ2˛1)
;

p1 D p1 ; p2 D p2 ; q1 D 0 ; q2 D 0 ;

k2 D "
p
ˇ1ˇ2(ˇ1˛2 C ˇ2˛1)C1(2ˇ1˛2 C ˇ2˛1)

ˇ1ˇ2(ˇ1˛2 C ˇ2˛1)˛2
or

k2 D "
p
ˇ1ˇ2(ˇ1˛2 C ˇ2˛1)C1(2ˇ1˛2 C ˇ2˛1)

ˇ1ˇ2(ˇ1˛2 C ˇ2˛1)˛2
;

k1 D "
p
ˇ1ˇ2(ˇ1˛2 C ˇ2˛1)C1(ˇ1˛2 C 2ˇ2˛1)

(ˇ1ˇ22˛1 C ˇ12ˇ2˛2)˛1
;

H D H ; ˛1 D ˛1 ; ˛2 D ˛2 ;

ˇ1 D ˇ1 ; ˇ2 D ˇ2 ; �1 D �1 ; �2 D �2 ;

K1 D K1 ; K2 D K2 :

(71)

Case 2

p2 D p2 ; u2 D C1 ;

v2 D
C1(ˇ22˛12 C ˇ12˛22 C ˇ1˛2ˇ2˛1)

3ˇ1ˇ2(ˇ1˛2 C ˇ2˛1)
;

p1 D p1 ; q1 D 0 ;

k1 D "
p
ˇ1ˇ2(ˇ1˛2 C ˇ2˛1)C1(ˇ1˛2 C 2ˇ2˛1)

(ˇ1ˇ22˛1 C ˇ12ˇ2˛2)˛1
;

q2 D q2 ; k2 D 0 ; H D H ; ˛1 D ˛1 ; ˛2 D ˛2 ;

ˇ1 D ˇ1 ; ˇ2 D ˇ2 ; �1 D �1 ; �2 D �2 ;

K1 D K1 ; K2 D K2 :

(72)

Case 3

p2 D 0 ; u2 D C1 ;

v2 D
C1(ˇ22˛12 C ˇ12˛22 C ˇ1˛2ˇ2˛1)

3ˇ1ˇ2(ˇ1˛2 C ˇ2˛1)
;

p1 D p1 ; q1 D 0 ; K1 D K1 ; K2 D K2 ;

k1 D "
p
ˇ1ˇ2(ˇ1˛2 C ˇ2˛1)C1(ˇ1˛2 C 2ˇ2˛1)

(ˇ1ˇ22˛1 C ˇ12ˇ2˛2)˛1
;

q2 D q2 ; k2 D 0 ; H D H ; ˛1 D ˛1 ; ˛2 D ˛2 ;
ˇ1 D ˇ1 ; ˇ2 D ˇ2 ; �1 D �1 ; �2 D �2 :

(73)

Case 4

k2 D "
p
ˇ1ˇ2(ˇ1˛2 C ˇ2˛1)C1(2ˇ1˛2 C ˇ2˛1)

ˇ1ˇ2(ˇ1˛2 C ˇ2˛1)˛2
or

k2 D �"
p
ˇ1ˇ2(ˇ1˛2 C ˇ2˛1)C1(2ˇ1˛2 C ˇ2˛1)

ˇ1ˇ2(ˇ1˛2 C ˇ2˛1)˛2
;

p2 D 0 ; u2 D C1 ;

v2 D
C1(ˇ22˛12 C ˇ12˛22 C ˇ1˛2ˇ2˛1)

3ˇ1ˇ2(ˇ1˛2 C ˇ2˛1)
;

p1 D p1 ; q1 D 0 ;

k1 D "
p
ˇ1ˇ2(ˇ1˛2 C ˇ2˛1)C1(ˇ1˛2 C 2ˇ2˛1)

(ˇ1ˇ22˛1 C ˇ12ˇ2˛2)˛1
;

q2 D q2 ; H D H ; ˛1 D ˛1 ; ˛2 D ˛2 ;
ˇ1 D ˇ1 ; ˇ2 D ˇ2 ; �1 D �1 ; �2 D �2 ;

K1 D K1 ; K2 D K2 :

(74)

Case 5

k2 D "
p
ˇ1ˇ2(ˇ1˛2 C ˇ2˛1)C1(2ˇ1˛2 C ˇ2˛1)

ˇ1ˇ2(ˇ1˛2 C ˇ2˛1)˛2
or

k2 D �"
p
ˇ1ˇ2(ˇ1˛2 C ˇ2˛1)C1(2ˇ1˛2 C ˇ2˛1)

ˇ1ˇ2(ˇ1˛2 C ˇ2˛1)˛2
;

v2 D
C1(ˇ22˛12 C ˇ12˛22 C ˇ1˛2ˇ2˛1)

3ˇ1ˇ2(ˇ1˛2 C ˇ2˛1)
;

k1 D �"
p
ˇ1ˇ2(ˇ1˛2 C ˇ2˛1)C1(ˇ1˛2 C 2ˇ2˛1)

(ˇ1ˇ22˛1 C ˇ12ˇ2˛2)˛1
;

H D H ; ˛1 D ˛1 ; ˛2 D ˛2 ;
ˇ1 D ˇ1 ; ˇ2 D ˇ2 ; �1 D �1 ; �2 D �2 ;

q2 D 0 ; p1 D 0 ; q1 D q1 ;
u2 D C1 ; p2 D p2 ;
K1 D K1 ; K2 D K2 :

(75)
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Case 6
p1 D 0 ; k2 D k2 ; k1 D k1 ; v2 D v2 ;
u2 D C1 ; p2 D p2 ; q1 D 0 ; q2 D q2 ;
H D H ; ˛1 D ˛1 ; ˛2 D ˛2 ;
ˇ1 D ˇ1 ; ˇ2 D ˇ2 ; �1 D �1 ; �2 D �2 ;

K1 D K1 ; K2 D K2 :

(76)

Case 7

p2 D 0 ; q2 D 0 ; p1 D 0 ; q1 D q1 ; v2 D C1 ;

k2 D "
p
3C1

˛2
or k2 D �"

p
3C1

˛2
; k1 D "

p
3C1

˛1
;

u2 D 0 ; H D H ; ˛1 D ˛1 ; ˛2 D ˛2 ;

ˇ1 D ˇ1 ; ˇ2 D ˇ2 ; �1 D �1 ; �2 D �2 ;

K1 D K1 ; K2 D K2 : (77)

Case 8

v2 D C2 ; p2 D 0 ; k1 D "
p
3ˇ1(C2ˇ1 C C1˛1)

ˇ1˛1
or

k1 D �"
p
3ˇ1(C2ˇ1 C C1˛1)

ˇ1˛1
; q1 D q1 ; u2 D C1 ;

k2 D "
p
3ˇ2(C2ˇ2 C C1˛2)

ˇ2˛2
; q2 D 0 ; p1 D 0 ;

H D H ; ˛1 D ˛1 ; ˛2 D ˛2 ;
ˇ1 D ˇ1 ; ˇ2 D ˇ2 ; �1 D �1 ; �2 D �2 ;

K1 D K1 ; K2 D K2 : (78)

Case 9
v2 D C2 ; p2 D 0 ; p1 D 0 ; q1 D q1 ;

k1 D 0 ; k2 D "
p
3ˇ2(C2ˇ2 C C1˛2)

ˇ2˛2
;

u2 D C1 ; q2 D q2 ;
H D H ; ˛1 D ˛1 ; ˛2 D ˛2 ;
ˇ1 D ˇ1 ; ˇ2 D ˇ2 ; �1 D �1 ; �2 D �2 ;

K1 D K1 ; K2 D K2 :

(79)

Case 10

v2 D C2 ; p2 D 0 ; k1 D "
p
3ˇ1(C2ˇ1 C C1˛1)

ˇ1˛1
;

p1 D 0 ; q1 D q1 ; k2 D 0 ; u2 D C1 ;

q2 D q2 ; H D H ; ˛1 D ˛1 ; ˛2 D ˛2 ;

ˇ1 D ˇ1 ; ˇ2 D ˇ2 ; �1 D �1 ; �2 D �2 ;

K1 D K1 ; K2 D K2 : (80)

Case 11
p2 D p2 ; q2 D 0 ; p1 D 0 ; q1 D q1 ;

k2 D "
p
3C1

˛2
; v2 D C1 or k2 D �"

p
3C1

˛2
;

v2 D C1 ; k1 D "
p
3C1

˛1
; u2 D 0 ;

H D H ; ˛1 D ˛1 ; ˛2 D ˛2 ;
ˇ1 D ˇ1 ; ˇ2 D ˇ2 ; �1 D �1 ; �2 D �2 ;

K1 D K1 ; K2 D K2:

(81)

Case 12
p2 D p2 ; q2 D 0 ; p1 D 0 ; q1 D q1 ;

k2 D "
p
3C1

˛2
or k2 D �"

p
3C1

˛2
; v2 D C1 ;

k1 D "
p
3C1

˛1
;

u2 D 0 ; K1 D K1 ; K2 D K2 ;

H D H ; ˛1 D ˛1 ; ˛2 D ˛2 ;
ˇ1 D ˇ1 ; ˇ2 D ˇ2 ; �1 D �1 ; �2 D �2 :

(82)

Case 13

v2 D C2 ; p2 D 0 ; k1 D "
p
3ˇ1(C2ˇ1 C C1˛1)

ˇ1˛1
;

q2 D 0 ; p1 D 0 ; q1 D q1 ; k2 D k2 ; u2 D C1 ;

H D H ; ˛1 D ˛1 ; ˛2 D ˛2 ;
ˇ1 D ˇ1 ; ˇ2 D ˇ2 ; �1 D �1 ; �2 D �2 ;

K1 D K1 ; K2 D K2 :

(83)

Case 14

p2 D 0 ; v2 D "
C1˛2

ˇ2
; k1 D k1 ; q2 D 0 ;

p1 D 0 ; q1 D q1 ; k2 D 0 ; u2 D C1 ;

H D H ; ˛1 D ˛1 ; ˛2 D ˛2 ;

ˇ1 D ˇ1 ; ˇ2 D ˇ2 ; �1 D �1 ; �2 D �2 ;

K1 D K1 ; K2 D K2 :

(84)

Case 15

v2 D C2 ; p2 D 0 ; k2 D "
p
3ˇ2(C2ˇ2 C C1˛2)

ˇ2˛2
;

k1 D k1 ; q2 D 0 ; p1 D 0 ; q1 D q1 ;
u2 D C1 ; H D H ; ˛1 D ˛1 ; ˛2 D ˛2 ;
ˇ1 D ˇ1 ; ˇ2 D ˇ2 ; �1 D �1 ; �2 D �2 ;

K1 D K1 ; K2 D K2 :

(85)
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Case 16

p2 D 0 ; k1 D k1 ; q2 D 0 ; p1 D 0 ;
q1 D q1 ; v2 D v2 ; k2 D k2 ; u2 D C1 ;

H D H ; ˛1 D ˛1 ; ˛2 D ˛2 ;

ˇ1 D ˇ1 ; ˇ2 D ˇ2 ; �1 D �1 ; �2 D �2 ;

K1 D K1 ; K2 D K2 :

(86)

Case 17

p2 D 0 ; v2 D "
C1˛2

ˇ2
or v2 D �"

C1˛2

ˇ2
;

k2 D 0 ; k1 D "
p
�3ˇ2ˇ1C1(ˇ1˛2 � ˇ2˛1)

ˇ2ˇ1˛1
;

q1 D 0 ; p1 D p1 ; u2 D C1 ; q2 D q2 ;
H D H ; ˛1 D ˛1 ; ˛2 D ˛2 ;

ˇ1 D ˇ1 ; ˇ2 D ˇ2 ; �1 D �1 ; �2 D �2 ;

K1 D K1 ; K2 D K2 :

(87)

Case 18

p2 D p2 ; v2 D "
C1˛2

ˇ2
or v2 D �"

C1˛2

ˇ2
;

k2 D 0 ; k1 D
p
�3ˇ2ˇ1C1(ˇ1˛2 � ˇ2˛1)

ˇ2ˇ1˛1
;

q1 D 0 ; p1 D p1 ; u2 D C1 ; q2 D q2 ;
H D H ; ˛1 D ˛1 ; ˛2 D ˛2 ;

ˇ1 D ˇ1 ; ˇ2 D ˇ2 ; �1 D �1 ; �2 D �2 ;

K1 D K1 ; K2 D K2 :

(88)

Case 19

p2 D 0 ; q1 D q1 ; k1 D 0 ; v2 D "
C1˛1

ˇ1
or

v2 D �"
C1˛1

ˇ1
;

k2 D �"
p
3ˇ2ˇ1C1(ˇ1˛2 � ˇ2˛1)

ˇ2ˇ1˛2
; p1 D p1 ;

u2 D C1 ; q2 D q2 ;
H D H ; ˛1 D ˛1 ; ˛2 D ˛2 ;

ˇ1 D ˇ1 ; ˇ2 D ˇ2 ; �1 D �1 ; �2 D �2 ;

K1 D K1 ; K2 D K2 :

(89)

Case 20

p2 D 0 ; v2 D C2 ; k2 D "
p
3ˇ2(C2ˇ2 C C1˛2)

ˇ2˛2

or k2 D �"
p
3ˇ2(C2ˇ2 C C1˛2)

ˇ2˛2
;

k1 D "
p
3ˇ1(C2ˇ1 C C1˛1)

ˇ1˛1
; q2 D 0 ; q1 D 0 ;

p1 D p1 ; u2 D C1 ;

H D H ; ˛1 D ˛1 ; ˛2 D ˛2 ;
ˇ1 D ˇ1 ; ˇ2 D ˇ2 ; �1 D �1 ; �2 D �2 ;

K1 D K1 ; K2 D K2 :

(90)

Case 21

v2 D C1 ; k2 D "
p
3C1

˛2
or k2 D �"

p
3C1

˛2
;

k1 D �"
p
3C1

˛1
; u2 D 0 ; p2 D 0 ; q1 D 0 ;

p1 D p1 ; q2 D q2 ;
H D H ; ˛1 D ˛1 ; ˛2 D ˛2 ;
ˇ1 D ˇ1 ; ˇ2 D ˇ2 ; �1 D �1 ; �2 D �2 ;

K1 D K1 ; K2 D K2 : (91)

Case 22

p2 D 0 ; q1 D q1 ; k2 D "
p
3ˇ2(C2ˇ2 C C1˛2)

ˇ2˛2

or k2 D �"
p
3ˇ2(C2ˇ2 C C1˛2)

ˇ2˛2
;

k1 D "
p
3
p
ˇ1(C2ˇ1 C C1˛1)
ˇ1˛1

; v2 D C2 ;

q2 D 0 ; p1 D p1 ; u2 D C1 ;

H D H ; ˛1 D ˛1 ; ˛2 D ˛2 ;
ˇ1 D ˇ1 ; ˇ2 D ˇ2 ; �1 D �1 ; �2 D �2 ;

K1 D K1 ; K2 D K2 : (92)

Case 23

p2 D 0 ; q1 D q1 ; k2 D "
p
3ˇ2(C2ˇ2 C C1˛2)

ˇ2˛2
;

v2 D C2 ; k1 D 0 ; p1 D p1 ; u2 D C1 ;

q2 D q2 ; H D H ; ˛1 D ˛1 ; ˛2 D ˛2 ;
ˇ1 D ˇ1 ; ˇ2 D ˇ2 ; �1 D �1 ; �2 D �2 ;

K1 D K1 ; K2 D K2 :

(93)
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Case 24

p2 D p2 ; v2 D C1 ; k1 D "
p
3C1

˛1
or

k1 D �"
p
3C1

˛1
; u2 D 0 ; q2 D 0 ; q1 D 0 ;

p1 D p1 ; k2 D �"
p
3C1

˛2
;

H D H ; ˛1 D ˛1 ; ˛2 D ˛2 ;
ˇ1 D ˇ1 ; ˇ2 D ˇ2 ; �1 D �1 ; �2 D �2 ;

K1 D K1 ; K2 D K2 :

(94)

Case 25

p2 D 0 ; k2 D k2 ; k1 D k1 ; v2 D v2 ;
q1 D q1 ; q2 D 0 ; p1 D p1 ; u2 D C1 ;

H D H ; ˛1 D ˛1 ; ˛2 D ˛2 ;
ˇ1 D ˇ1 ; ˇ2 D ˇ2 ; �1 D �1 ; �2 D �2 ;

K1 D K1 ; K2 D K2 :

(95)

We get the following new solution (called generalized
hyperbolic function solution) of Eq. (46):

u1 D 2

K1k1ˇ1(t) sechp1q1k1(�)(1 � 2p1q1
sech2p1q1k1 (�))C K2k2ˇ2(t) sechp2q2k2 (�)

(1 � p2q2(1C p2q2) sech2p2q2k2 (�))

H C K1 tanhp1q1k1 (�) sechp1q1k1 (�)
CK2 tanhp2q2k2 (�) sechp2q2k2 (�)

K1k1˛1(t) sechp1q1k1 (�)(1 � 2p1q1 sech2p1q1k1 (�))
CK2k2˛2(t) sechp2q2k2 (�)(1 � p2q2(1C p2q2)

sech2p2q2k2 (�))

H C K1 tanhp1q1k1(�) sechp1q1k1 (�)
CK2 tanhp2q2k2(�) sechp2q2k2(�)

� 2

k12K1˛1(t)ˇ1(t) tanhp1q1k1 (�) sechp1q1k1(�)
(1 � 6p1q1 sech2p1q1k1 (�))

H C K1 tanhp1q1k1 (�) sechp1q1k1(�)
CK2 tanhp2q2k2 (�) sechp2q2k2 (�)

� 2

k22K2˛2(t)ˇ2(t) tanhp2q2k2 (�) sechp2q2k2 (�)
(1 � 4p2q2(1C p2q2) sech2p2q2k2(�))

H C K1 tanhp1q1k1(�) sechp1q1k1 (�)
CK2 tanhp2q2k2 (�) sechp2q2k2 (�)

C u2;

(96)

v1 D 2

(K1k1˛1(t) sechp1q1k1(�)(1 � 2p1q1
sech2p1q1k1 (�))C K2k2˛2(t) sechp2q2k2 (�)
(1 � p2q2(1C p2q2) sech2p2q2k2 (�)))

2

(H C K1 tanhp1q1k1 (�) sechp1q1k1 (�)
CK2 tanhp2q2k2 (�) sechp2q2k2 (�))

2

� 2

k12K1(˛1(t))2 tanhp1q1k1 (�) sechp1q1k1 (�)
(1 � 6p1q1 sech2p1q1k1 (�))

H C K1 tanhp1q1k1 (�) sechp1q1k1(�)
CK2 tanhp2q2k2 (�) sechp2q2k2 (�)

� 2

K2k22(˛2(t))2 tanhp2q2k2 (�) sechp2q2k2 (�)
(1 � 2p2q2(2C p2q2) sech2p2q2k2(�))

H C K1 tanhp1q1k1(�) sechp1q1k1 (�)
CK2 tanhp2q2k2(�) sechp2q2k2(�)

C v2 ;

(97)

where � D ˛1(t)xCˇ1(t)yCr1(t); � D ˛2(t)xCˇ2(t)yC
r2(t), here H;Ki ; pi ; qi ; ki ; ˛i ; ˇi and ri ; i D 1; 2 sat-
isfy (71)–(95), respectively.

The Generalized F-expansionMethod
and Its Application in Another (2 + 1)-Dimensional
KdV Equation

In the section, we will introduce the main steps of the gen-
eralized F-expansion method for constructing exact solu-
tions of NLPDEs which we first presented in [40,41,42].
Then we will make use of the method to find new exact
solutions of the (2C 1)-dimensional KdV equation.

Summary of the Generalized F-expansion Method

In the following we would like to outline the main steps
of our general method (called the generalized F-expansion
method) in [40,41,42].

Step 1 For a given nonlinear partial differential equa-
tion system with some physical fields ui (t; x1; x2; : : : ; xm),
(i D 1; 2; : : : ; n) in m C 1 independent variables
t; x1; x2; : : : ; xm ,

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
:

F1(u1; : : : ; un ; u1t ; : : : ; unt ; u1x1 ; : : : ; unxm ;
u1tx1 ; : : : ; untxm ; : : :) D 0 ;

F2(u1; : : : ; un ; u1t ; : : : ; unt ; u1x1 ; : : : ; unxm ;
u1tx1 ; : : : ; untxm ; : : :) D 0 ;

: : : : : : : : : : : : ;

Fn(u1; : : : ; un ; u1t ; : : : ; unt ; u1x1 ; : : : ; unxm ;
u1tx1 ; : : : ; untxm ; : : :) D 0 :

(98)
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We first consider the following general formal solutions of
the Eqs. (98)

ui (t; x1; x2; : : : ; xm) D ui (!) ; ! D !(x) ;
(i D 1; 2; : : : ; n) ; (99)

where x D (x1; x2; x3; : : : ; xm; t) and !(x) is a function to
be determined later. For example, when n D 2, we may
take !(x) D p(x2; t)x1 C q(x2; t) for convenience, here
p(x2; t) and q(x2; t) are functions to be determined later.

Step 2 We introduce new and more general formal
transformations of the Eq. (98), if available, in the forms
which we first presented in [42]:
8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂
ˆ̂̂
ˆ̂:

u1(x) D a10(x)C
Pk1

i1D1( f (!(x)))
i1�1



ai1(x)

f (!(x))C bi1 (x)g(!(x))C
c i1 (x)
f (!(x)) C

di1 (x)
g(!(x))

�
;

u2(x) D a20(x)C
Pk2

i2D1( f (!(x)))
i2�1



ai2(x)

f (!(x))C bi2 (x)g(!(x))C
c i2 (x)
f (!(x)) C

di2 (x)
g(!(x))

�
;

: : : : : : : : : : : : ;

un(x) D an0(x)C
Pkn

inD1( f (!(x)))
in�1



ain (x)

f (!(x))C bin (x)g(!(x))C
c in (x)
f (!(x)) C

din (x)
g(!(x))

�
:

(100)

where a2i j(x)Cb2i j (x)C c2i j (x)Cd2i j (x) ¤ 0, a j0 (x); ai j (x);
bi j (x); ci j (x); di j (x)( j D 1; 2; : : : ; n; i j D 1; 2; : : : ; k j)
and !(x) are all functions to be determined later,
k j( j D 1; 2; : : : ; n) is an integer which is determined by
balancing the highest order derivative terms with the non-
linear terms in the given Eqs. (98), and the new variables
f (!) D f (!(x)) and g(!) D g(!(x)) satisfy the following
relations:

8
ˆ̂̂
<̂

ˆ̂
ˆ̂:

f 02(!) D l1 f 4(!)C m1 f 2(!)C n1
g02(!) D l2g4(!)C m2g2(!)C n2
g2(!) D l1 f 2(!)

l2 C m1�m2
3l2

n1 D m1
2�m2

2C3l2n2
3l1

(101)

Step 3 Determine k j( j D 1; 2; : : : ; n) in (100) by balanc-
ing the highest nonlinear terms and the highest-order par-
tial differential terms in the given Eq. (98). If kj is a non-
negative integer, then we first make the transformation
uj(x) D vk j

j (x).

Step 4 Substitute (100) into the Eq. (98) with (101)
and collecting coefficients of polynomials of f (!); g(!);p
l1 f 4(!)C m1 f 2(!)C n1, with the aid of Maple, then

setting each coefficient to zero to get a set of over-deter-
mined partial differential equations with respect to l1; l2;
m1;m2; n1; n2; a j0 (x); ai j (x), bi j (x); ci j (x); di j (x)( j D 1;
2; : : : ; n; i j D 1; 2; : : : ; k j) and !(x).

Step 5 Solving the over-determined partial differen-
tial equations with Maple, we then can determine
a j0 (x); ai j(x); bi j (x); ci j (x); di j (x)( j D 1; 2; : : : ; n; i j D
1; 2; : : : ; k j) and !(x).

Step 6 Selecting the proper value of parameters l1; l2;
m1;m2; n1; n2 to determine the corresponding the so-
lutions of the Jacobi elliptic functions f (!) and g(!)
in (101). The relations between the parameters and their
corresponding Jacobi elliptic functions are known and are
given in the following Table 1.

Remark 2 Relations between values of l1;m1; n1; l2;m2;

n2 and corresponding f (!), g(!) in ODEs (101) are in the
following Table 1.

Step 7 By using the results obtained in the above step,
we can derive a series of generalized solutions, such as dif-
ferent kinds of Jacobi elliptic function solutions in terms
of Remark 2. Finally, substituting a j0 (x); ai j (x); bi j (x);
ci j (x); di j (x)( j D 1; 2; : : : ; n; i j D 1; 2; : : : ; k j) and !(x)
into the generalized solutions with the corresponding so-
lutions of f (!); g(!), we can get the the new exact solu-
tions of the given Eq. (98).

Remark 3 As is known to all, when k ! 1, the Jacobi
elliptic functions can degenerate as hyperbolic functions,
and when k! 0, the Jacobi elliptic functions degenerate
as trigonometric functions. So by this method we can ob-
tain many other new exact solutions to Eq. (98).

Remark 4 The main advantages of the generalized
F-expansion method are simpler, more powerful, and
more convenient than the Jacobi elliptic function expan-
sion method and the F-expansion method. First of all,
with the aid of nonlinear ordinary differential equations
(ODEs) (101), one only needs to calculate the functions
f (!) and g(!) which are the solutions of the ODEs (101),
instead of calculating the Jacobi elliptic functions one by
one. Secondly, the values of the coefficients l1;m1; n1; l2;
m2; n2 of the ODEs (101) can be selected so that the cor-
responding solutions of the coupled functions f (!) and
g(!) are Jacobi elliptic functions in the above Table 1. The
relations between the coefficients and the corresponding
Jacobi elliptic function solutions are known and are given
in Remark 2. Thus, in terms of Remark 2, one can simul-
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Korteweg–de Vries Equation (KdV), Different Analytical Methods for Solving the, Table 1
The ODEs (101) and Jacobi Elliptic Functions Relation between values of li;mi;ni (i D 1;2) and corresponding f (!) and g(!) in
ODEs (101)

l1 m1 n1 l2 m2 n2 f (!) g(!)
k2 �1� k2 1 �k2 2k2 � 1 1� k2 sn(!) cn(!)
k2 �1� k2 1 � 1 2� k2 �1C k2 sn(!) dn(!)
�k2 2k2 � 1 1� k2 � 1 2� k2 k2 � 1 cn(!) dn(!)
1� k2 2k2 � 1 �k2 1� k2 2� k2 1 nc(!) sc(!)
1 2� k2 1� k2 1 2k2 � 1 �k2(1� k2) cs(!) ds(!)
1 �1� k2 k2 1� k2 2k2 � 1 �k2 dc(!) nc(!)
1 �1� k2 k2 1 2� k2 1� k2 ns(!) cs(!)
1 �1� k2 k2 1 2k2 � 1 �k2(1� k2) ns(!) ds(!)
k2 �1� k2 1 �1C k2 2� k2 �1 cd(!) nd(!)
�k2(1� k2) 2k2 � 1 1 �1C k2 2� k2 �1 sd(!) nd(!)
�k2(1� k2) 2k2 � 1 1 k2 �1� k2 1 sd(!) cd(!)
1� k2 2� k2 1 1 �1� k2 k2 sc(!) dc(!)

taneously obtain more periodic wave solutions expressed
by various Jacobi elliptic functions. Thirdly, we present
a new transformations (100) that are more general than
the transformations of the Jacobi elliptic function expan-
sion method and the F-expansion method.

The Generalized F-expansion Method to Find the Exact
Solutions of the (2 + 1)-Dimensional KdV Equation

In this section, we will make use of our method [40,41,42]
and symbolic computation to find new exact solutions of
the (2C 1)-dimension KdV equation.

The (2C 1)-dimension KdV equation in [20] is writ-
ten in the following form

ut(x; y; t) � 4u(x; y; t)uy (x; y; t) � 4ux (x; y; t)@�1x

uy(x; y; t) � uxx y (x; y; t) D 0 : (102)

where @�1x is an indefinite integrate operator
R
dx, possess-

ing some interesting coherent structures.
We discuss the similar solution of (102) in its potential

form (u D vx ),

vx t(x; y; t) � vxxx y (x; y; t) � 4vx (x; y; t)vx y (x; y; t)
� 4vxx (x; y; t)vy(x; y; t) D 0 : (103)

By balancing the highest nonlinear terms and the highest-
order partial derivative terms in (103), we suppose (103)
to have the following formal solution:

v D c0(y; t)C c1(y; t)g(!)C c2(y; t) f (!)

C
c3(y; t)
g(!)

C
c4(y; t)
f (!)

; (104)

where ! D ˛(y; t)x C p(y; t)C q(t); ˛(y; t); p(y; t); q(t);
c0(y; t); c1(y; t); c2(y; t); c3(y; t) and c4(y; t) are all func-
tions to be determined later. And the new variables f (!)
and g(!) satisfy the relation (101).

Substitute (104) into the Eq. (103) with (101).
Collect coefficients of polynomials of f (!); g(!);p
l1 f 4(!)C m1 f 2(!)C n1, with the aid of Maple, then

set each coefficient to zero to get a set of over-determined
partial differential equations with respect to l1; l2;m1;m2;

n1; n2; ˛(y; t); p(y; t); ci (y; t); (i D 0; 1; 2; 3; 4) and q(t)
as follows:

120(˛(y; t))2c4(y; t)c1(y; t)
�
@

@y
˛(y; t)

�
xm1

4m2
2

C 168(˛(y; t))2c4(y; t)l2c3(y; t)
�
@

@y
p(y; t)

�
m1

4m2

C 120(˛(y; t))2c4(y; t)c1(y; t)(
@

@y
p(y; t))m2

2m1
4

C 48(˛(y; t))2c4(y; t)l2c3(y; t)
�
@

@y
˛(y; t)

�
xm1

2m2
3

� 80(˛(y; t))2c4(y; t)c1(y; t)(
@

@y
˛(y; t))xm2

3m1
3

� 72(˛(y; t))2c4(y; t)c1(y; t)
�
@

@y
p(y; t)

�
m1

5m2

C 24(˛(y; t))2c4(y; t)c1(y; t)
�
@

@y
˛(y; t)

�
xm2

5m1

C � � � D 0 ;

23328c2(y; t)(˛(y; t))3 l2 l15
�
@

@y
p(y; t)

�
m2

C 1458c2(y; t)˛(y; t)l2 l15
d
dt

q(t) � 37908c2(y; t)
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(˛(y; t))3 l2 l15
�
@

@y
p(y; t)

�
m1 C 23328c2(y; t)

(˛(y; t))3 l2 l15
�
@

@y
˛(y; t)

�
xm2 C 1458c2(y; t)

˛(y; t)l2 l15
�
@

@t
˛(y; t)

�
x

� 5832(˛(y; t))2
�
@

@y
c0(y; t)

�
l2 l15c2(y; t)

� 37908c2(y; t)(˛(y; t))3 l2 l15
�
@

@y
˛(y; t)

�
xm1

C � � � D 0

� 60(˛(y; t))3c1(y; t)m1
3
�
@

@y
˛(y; t)

�
xm2

3 l1

� 540(˛(y; t))3c1(y; t)l2n2
�
@

@y
p(y; t)

�
m2

4 l1

C 2160(˛(y; t))3c1(y; t)l2n2
�
@

@y
˛(y; t)

�
xm1m2

3 l1

� 3240(˛(y; t))3c1(y; t)l2n2
�
@

@y
˛(y; t)

�
xm1

2m2
2 l1

C 2160(˛(y; t))3c1(y; t)l2n2
�
@

@y
˛(y; t)

�
xm1

3m2 l1

� 1296c3(y; t)(˛(y; t))3 l22n2
�
@

@y
˛(y; t)

�
x l1m2

3

C 180c3(y; t)(˛(y; t))3 l2 l1m1
3
�
@

@y
˛(y; t)

�
xm2

2

C � � � D 0 ;
: : : (105)

Because there are so many over-determined partial differ-
ential equations, only a few of them are shown here for
convenience. With the aid of Maple symbolic computa-
tion software, we solve the over-determined partial dif-
ferential equations, and we get the following solutions of
˛(y; t); p(y; t); q(t); c0(y; t); c1(y; t); c2(y; t); c3(y; t) and
c4(y; t):

Case 1

c4(y; t) D
C1

F1(t)
; p(y; t) D F2(t) ; c3(y; t) D

C2

F1(t)
;

˛(y; t) D F1(t) ; c2(y; t) D
C3

F1(t)
; c1(y; t) D

C4

F1(t)
;

q(t) D
Z

4F1(t)F3(t) �
�
d
dt

F1(t)
�
x

�
d
dt

F2(t)dt C C5 ; c0(y; t) D F3(t)y C F4(t) ;

(106)

where Ci, i D 1; 2; 3; 4; 5 are arbitrary constants and Fi,
i D 1; 2; 3; 4 are all arbitrary functions with respect to
variable t.

Case 2

c2(y; t) D �
48C1 l1

F1(t)(m1 � m2)
;

q(t) D
Z

4F1(t)F3(t) �
�
d
dt

F1(t)
�
x

�
d
dt

F2(t)dt C C4 ;

˛(y; t) D F1(t) ; c1(y; t) D
C3

F1(t)
;

c4(y; t) D
C1

F1(t)
; p(y; t) D F2(t) ;

c3(y; t) D
C2

F1(t)
; c0(y; t) D F3(t)y C F4(t) ; (107)

where Ci, i D 1; 2; 3; 4 are arbitrary constants and Fi,
i D 1; 2; 3; 4 are all arbitrary functions with respect to
variable t.

Case 3

c2(y; t) D �
48C1 l1

F1(t)(m1 � m2)
; c4(y; t) D

C1

F1(t)
;

p(y; t) D F2(t) ; c3(y; t) D
C2

F1(t)
; ˛(y; t) D F1(t) ;

c0(y; t) D F3(t)y C F4(t) ; c1(y; t) D 0 ;

q(t) D
Z

4F1(t)F3(t) �
�

d
dt

F1(t)
�
x

�
d
dt

F2(t)dt C C3 ;

(108)

where Ci, i D 1; 2; 3; 4 are arbitrary constants and Fi,
i D 1; 2; 3; 4 are all arbitrary functions with respect to
variable t.

Case 4
c3(y; t) D c3(y; t) ; c4(y; t) D c4(y; t) ;
q(t) D q(t) ; c0(y; t) D c0(y; t) ;
p(y; t) D p(y; t) ; c1(y; t) D c1(y; t) ;
c2(y; t) D c2(y; t) ; ˛(y; t) D 0 ;

(109)

where C1 is an arbitrary constant and c3(y; t); c4(y; t);
q(t); c0(y; t); p(y; t); c1(y; t); c2(y; t) are all arbitrary
functions with respect to variable y and t.

Select the proper value of parameters l1; l2;m1;m2; n1;
n2 to determine the corresponding Jacobi elliptic func-
tions f (!) and g(!) in (101). The relations between the
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parameters and the corresponding Jacobi elliptic function
are known and given in Table 1, above.

By using the results obtained in the above step, we
can derive a series of generalized solutions, such as dif-
ferent kinds of Jacobi elliptic functions solutions. Finally,
by substituting (106)–(109) into the generalized solutions
with the corresponding solutions of f (!) and g(!), re-
spectively, we can get the the new exact solutions of the
given Eqs. (103).

Type 1 If we select l1 D k2;m1 D �(1 C k2); n1 D 1;
l2 D �k2;m2 D (2k2 � 1); n2 D (1 � k2), corresponding
to (101), we can get f D sn(!); g D cn(!).

Thus we get the following Jacobi elliptic function solu-
tions of the equation (103):

v1(x; y; t) D c0(y; t)C c1(y; t)cn(!)

C c2(y; t)sn(!)C
c3(y; t)
cn(!)

C
c4(y; t)
sn(!)

; (110)

where ! D ˛(y; t)x C p(y; t)C q(t); ˛(y; t); p(y; t); q(t);
c0(y; t); c1(y; t); c2(y; t); c3(y; t) and c4(y; t) satisfy (106)–
(109) respectively.

For example, when we select ˛(y; t); p(y; t); q(t);
c0(y; t); c1(y; t); c2(y; t); c3(y; t) and c4(y; t) to sat-
isfy (106), namely Case 1, we can easily get the following
Jacobi elliptic function solution of Eq. (103):

v2(x; y; t) D F3(t)y C F4(t)C
C4cn(!)
F1(t)

C
C3sn(!)
F1(t)

C
C2

F1(t)cn(!)
C

C1

F1(t)sn(!)
; (111)

where Fi ; i D 1; 2; 3; 4 are arbitrary functions of t;Ci (i D
1; 2; 3; 4; 5) are arbitrary constants, and

! D F1(t)x C F2(t)C
Z

4F1(t)F3(t)

�

�
d
dt

F1(t)
�
x �

d
dt

F2(t)dt C C5 :

When k ! 1; sn(!)! tanh(!); cn(!)! sech(!), so we
get degenerative soliton-like solutions from the solu-
tion (111):

v3(x; y; t) D F3(t)yCF4(t)C
C4 sech(!)

F1(t)
C

C3 tanh(!)
F1(t)

C
C2

F1(t) sech(!)
C

C1

F1(t) tanh(!)
: (112)

When k ! 0; sn(!)! sin(!); cn(!)! cos(!), so we
get the degenerative trigonometric function solutions

from the solution (111):

v4(x; y; t) D F3(t)y C F4(t)C
C4 cos(!)
F1(t)

C
C3 sin(!)
F1(t)

C
C2

F1(t) cos(!)
C

C1

F1(t) sin(!)
: (113)

So from Case 1, we can obtain Jacobi elliptic function solu-
tions, degenerative soliton-like solutions and trigonomet-
ric function solutions of Eq. (103). We can also get many
other solutions if we make use of Case 2–Case 4. There-
fore, through selecting l1 D k2;m1 D �(1C k2); n1 D 1;
l2 D �k2;m2 D (2k2 � 1); n2 D (1 � k2), we can get
families of new exact solutions of Eq. (103).

Type 2 If we select l1 D �k2;m1 D (2k2 � 1); n1 D
1�k2; l2 D �1;m2 D (2�k2); n2 D k2�1, corresponding
to (101), we can get f D cn(!); g D dn(!).

So we get the following Jacobi elliptic function solu-
tions of Eq. (103):

v5(x; y; t) D c0(y; t)C c1(y; t)dn(!)

C c2(y; t)cn(!)C
c3(y; t)
dn(!)

C
c4(y; t)
cn(!)

; (114)

where ! D ˛(y; t)x C p(y; t)C q(t); ˛(y; t); p(y; t); q(t);
c0(y; t); c1(y; t); c2(y; t); c3(y; t) and c4(y; t) satisfy (106)–
(109), respectively.

For example, when we select ˛(y; t); p(y; t); q(t);
c0(y; t); c1(y; t); c2(y; t); c3(y; t) and c4(y; t) to sat-
isfy (107), namely Case 2, we can easily get the following
Jacobi elliptic function solution of Eq. (103):

v6(x; y; t) D F3(t)y C F4(t)C
C3dn(!)
F1(t)

� 48
C1 l1cn(!)

F1(t)(m1 � m2)
C

C2

F1(t)dn(!)
C

C1

F1(t)cn(!)
:

(115)

where Fi(t); i D 1; 2; 3; 4 are arbitrary functions of
t;Ci (i D 1; 2; 3; 4) are arbitrary constants, and

! D F1(t)x C F2(t)C
Z

4F1(t)F3(t) �
�
d
dt

F1(t)
�
x

�
d
dt

F2(t)dt C C4 :

When k ! 1; cn(!)! sech(!); dn(!)! sech(!), so we
get a degenerative soliton-like solution from the solu-
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tion (115):

v7(x; y; t) D F3(t)y C F4(t)C
C3 sech(!)

F1(t)

� 48
C1 l1 sech(!)

F1(t)(m1 � m2)
C

C1 C C2

F1(t) sech(!)
; (116)

When k ! 0; cn(!)! cos(!); dn(!)! 1, so we get the
degenerative trigonometric function solutions from the
solution (115):

v8 D F3(t)y C F4(t)C
C2 C C3

F1(t)

� 48
C1 l1 cos(!)

F1(t)(m1 � m2)
C

C1

F1(t) cos(!)
: (117)

where Fi(t); i D 1; 2; 3; 4 are arbitrary functions of t and
Ci (i D 1; 2; 3; 4) are arbitrary constants.

So from Case 2, we we can get the Jacobi elliptic
function solutions, degenerative soliton-like solutions and
trigonometric function solutions of Eq. (103). We can also
get some other solutions if we make use of other cases.
Therefore, through selecting l1 D �k2;m1 D (2k2 � 1);
n1 D 1� k2; l2 D �1;m2 D (2� k2); n2 D k2� 1, we can
get families of new exact solutions of Eq. (103).

Type 3 If we select l1 D 1;m1 D (2 � k2); n1 D
1 � k2; l2 D 1;m2 D (2k2 � 1); n2 D �k2(1 � k2), corre-
sponding to (101), we can get f D cs(!); g D ds(!).

So we get the following Jacobi elliptic function solu-
tions of Eq. (103):

v9(x; y; t) D c0(y; t)C c1(y; t)ds(!)C c2(y; t)cs(!)

C
c3(y; t)
ds(!)

C
c4(y; t)
cs(!)

; (118)

where ! D ˛(y; t)x C p(y; t)C q(t); ˛(y; t); p(y; t); q(t);
c0(y; t); c1(y; t); c2(y; t); c3(y; t) and c4(y; t) satisfy (106)–
(109), respectively.

For example, when we select ˛(y; t); p(y; t); q(t);
c0(y; t); c1(y; t); c2(y; t); c3(y; t) and c4(y; t) to satisfy
(108), namely Case 3, we can easily get the following Ja-
cobi elliptic function solution of Eq. (103):

v10(x; y; t) D F3(t)y C F4(t) � 48
C1 l1cs(!)

F1(t)(m1 � m2)

C
C2

F1(t)ds(!)
C

C1

F1(t)cs(!)
; (119)

where Fi(t); i D 1; 2; 3; 4 are arbitrary functions of
t;Ci (i D 1; 2; 3; 4) are arbitrary constants, and

! D F1(t)x C F2(t)q(t)

D

Z
4F1(t)F3(t) �

�
d
dt

F1(t)
�
x �

d
dt

F2(t)dt C C3 :

When k ! 1; cs(!) ! sech(!) coth(!); ds(!) !
sech(!) coth(!), so we get a degenerative soliton-like so-
lution from the solution (119):

v11(x; y; t) D F3(t)y C F4(t)

�48
C1 l1 sech(!) coth(!)

F1(t)(m1 � m2)
C

C1 C C2

F1(t) sech(!) coth(!)
:

(120)

When k! 0; cs(!)! cot(!); ds(!)! csc(!), so we get
the triangular function solution from the solution (119):

v12(x; y; t) D F3(t)y C F4(t)

�48
C1 l1 cot(!)

F1(t)(m1 � m2)
C

C2

F1(t) csc(!)
C

C1

F1(t) cot(!)
:

(121)

So from Case 3, we can get Jacobi elliptic function solu-
tions, degenerative soliton-like solutions and trigonomet-
ric function solutions of Eq. (103). We can also get many
other solutions if we make use of other cases. Therefore,
through selecting l1 D 1;m1 D (2 � k2); n1 D 1 � k2;
l2 D 1;m2 D (2k2 � 1); n2 D �k2(1 � k2), we can get
families of new exact solutions of Eq. (103).

Type 4 If we select l1 D 1 � k2;m1 D (2k2 � 1); n1 D
�k2; l2 D (1� k2);m2 D (2� k2); n2 D 1, corresponding
to (101), we can get f D nc(!); g D sc(!).

So we get the following Jacobi elliptic function solu-
tions of Eq. (103):

v13(x; y; t) D c0(y; t)C c1(y; t)sc(!)C c2(y; t)nc(!)

C
c3(y; t)
sc(!)

C
c4(y; t)
nc(!)

; (122)

where ! D ˛(y; t)x C p(y; t)C q(t); ˛(y; t); p(y; t); q(t);
c0(y; t); c1(y; t); c2(y; t); c3(y; t) and c4(y; t) satisfy (106)–
(109), respectively.

So, in the same way, we can get many other Jacobi
elliptic function solutions of Eq. (103). When k ! 1, or
k ! 0, we can also get families of new exact solutions of
Eq. (103).

Type 5 If we select l1 D k2;m1 D �(1 C k2); n1 D 1;
l2 D �1;m2 D (2 � k2); n2 D �(1 � k2), corresponding
to (101), we can get f D sn(!); g D dn(!).

So we get the following Jacobi elliptic function solu-
tions of Eq. (103):

v14(x; y; t) D c0(y; t)C c1(y; t)dn(!)C c2(y; t)sn(!)

C
c3(y; t)
dn(!)

C
c4(y; t)
sn(!)

; (123)
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where ! D ˛(y; t)x C p(y; t)C q(t); ˛(y; t); p(y; t); q(t);
c0(y; t); c1(y; t); c2(y; t); c3(y; t) and c4(y; t) satisfy (106)–
(109), respectively.

So, in the same way, we can get many other Jacobi
elliptic function solutions of Eq. (103). When k! 1, or
k! 0, we can also get families of new exact solutions of
Eq. (103).

Type 6 If we select l1 D 1;m1 D �(1 C k2); n1 D k2;
l2 D 1 � k2;m2 D (2k2 � 1); n2 D �k2, corresponding
to (101), we can get f D dc(!); g D nc(!).

So we get the following Jacobi elliptic function solu-
tions of Eq. (103):

v15(x; y; t)
D c0(y; t)C c1(y; t)nc(!)C c2(y; t)dc(!)

C
c3(y; t)
nc(!)

C
c4(y; t)
dc(!)

; (124)

where ! D ˛(y; t)x C p(y; t)C q(t); ˛(y; t); p(y; t); q(t);
c0(y; t); c1(y; t); c2(y; t); c3(y; t) and c4(y; t) satisfy (106)–
(109), respectively.

So, in the same way, we can get many other Jacobi
elliptic function solutions of Eq. (103). When k! 1, or
k! 0, we can also get families of new exact solutions of
Eq. (103).

Type 7 If we select l1 D 1;m1 D �(1 C k2); n1 D k2;
l2 D 1;m2 D 2� k2; n2 D 1� k2, corresponding to (101),
we can get f D ns(!); g D cs(!).

So we get the following Jacobi elliptic function solu-
tions:

v16(x; y; t)
D c0(y; t)C c1(y; t)cs(!)C c2(y; t)ns(!)

C
c3(y; t)
cs(!)

C
c4(y; t)
ns(!)

; (125)

where ! D ˛(y; t)x C p(y; t)C q(t); ˛(y; t); p(y; t); q(t);
c0(y; t); c1(y; t); c2(y; t); c3(y; t) and c4(y; t) satisfy (106)–
(109), respectively.

So, in the same way, we can get many other Jacobi
elliptic function solutions of Eq. (103). When k! 1, or
k! 0, we can also get families of new exact solutions of
Eq. (103).

Type 8 If we select l1 D 1;m1 D �(1 C k2); n1 D k2;
l2 D 1;m2 D 2k2 � 1; n2 D �k2(1 � k2), corresponding
to (101), we can get f D ns(!); g D ds(!).

So we get the following Jacobi elliptic function solu-
tions:

v17(x; y; t) D c0(y; t)C c1(y; t)ds(!)C c2(y; t)ns(!)

C
c3(y; t)
ds(!)

C
c4(y; t)
ns(!)

; (126)

where ! D ˛(y; t)x C p(y; t)C q(t); ˛(y; t); p(y; t); q(t);
c0(y; t); c1(y; t); c2(y; t); c3(y; t) and c4(y; t) satisfy (106)–
(109), respectively.

So, in the same way, we can get many other Jacobi
elliptic function solutions of Eq. (103). When k! 1, or
k ! 0, we can also get families of new exact solutions of
Eq. (103).

Type 9 If we select l1 D k2;m1 D �(1 C k2); n1 D 1;
l2 D �(1 � k2);m2 D 2 � k2; n2 D �1, corresponding
to (101), we can get f D cd(!); g D nd(!).

So we get the following Jacobi elliptic function solu-
tions of Eq. (103):

v18(x; y; t) D c0(y; t)C c1(y; t)nd(!)C c2(y; t)cd(!)

C
c3(y; t)
nd(!)

C
c4(y; t)
cd(!)

; (127)

where ! D ˛(y; t)x C p(y; t)C q(t); ˛(y; t); p(y; t); q(t);
c0(y; t); c1(y; t); c2(y; t); c3(y; t) and c4(y; t) satisfy (106)–
(109), respectively.

So, in the same way, we can get many other Jacobi
elliptic function solutions of Eq. (103). When k! 1, or
k ! 0, we can also get families of new exact solutions of
Eq. (103).

Type 10 If we select l1 D �k2(1 � k2);m1 D 2k2 � 1;
n1 D 1; l2 D �(1 � k2);m2 D 2 � k2; n2 D �1, corre-
sponding to (101), we can get f D sd(!); g D nd(!).

So we get the following Jacobi elliptic function solu-
tions of Eq. (103):

v19(x; y; t) D c0(y; t)C c1(y; t)nd(!)C c2(y; t)sd(!)

C
c3(y; t)
nd(!)

C
c4(y; t)
sd(!)

; (128)

where ! D ˛(y; t)x C p(y; t) C q(t); ˛(y; t); p(y; t);
q(t); c0(y; t); c1(y; t); c2(y; t); c3(y; t) and c4

�
y; t

satisfy

(106)–(109), respectively.
So, in the same way, we can get many other Jacobi

elliptic function solutions of Eq. (103). When k! 1, or
k ! 0, we can also get families of new exact solutions of
Eq. (103).
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Type 11 If we select l1 D �k2(1 � k2);m1 D 2k2 � 1;
n1 D 1; l2 D k2;m2 D �(1C k2); n2 D 1, corresponding
to (101), we can get f D sd(!); g D cd(!).

So we get the following Jacobi elliptic function solu-
tions of Eq. (103):

v20(x; y; t)
D c0(y; t)C c1(y; t)cd(!)C c2(y; t)sd(!)

C
c3(y; t)
cd(!)

C
c4(y; t)
sd(!)

; (129)

where ! D ˛(y; t)x C p(y; t)C q(t); ˛(y; t); p(y; t); q(t);
c0(y; t); c1(y; t); c2(y; t); c3(y; t) and c4(y; t) satisfy (106)–
(109), respectively.

So, in the same way, we can get many other Jacobi
elliptic function solutions of Eq. (103). When k! 1, or
k ! 0, we can also get families of new exact solutions of
Eqs. (103).

Type 12 If we select l1 D 1 � k2;m1 D 2 � k2; n1 D 1;
l2 D 1;m2 D �(1C k2); n2 D k2, corresponding to (101),
we can get f D sc(!); g D dc(!).

So we get the following Jacobi elliptic function solu-
tions:

v21(x; y; t)
D c0(y; t)C c1(y; t)dc(!)C c2(y; t)sc(!)

C
c3(y; t)
dc(!)

C
c4(y; t)
sc(!)

; (130)

where ! D ˛(y; t)x C p(y; t)C q(t); ˛(y; t); p(y; t); q(t);
c0(y; t); c1(y; t); c2(y; t); c3(y; t) and c4(y; t) satisfy (106)–
(109), respectively.

So, in the same way, we can get many other Jacobi
elliptic function solutions of Eq. (103). When k! 1, or
k ! 0, we can also get families of new exact solutions of
Eq. (103).

Remark 5 From the details above, it is very easy to see
that we have gotten many new exact solutions of the
(2C 1)-dimensional KdV equation (103). The solutions
we get include Jacobi elliptic doubly periodic function so-
lutions, soliton-like solutions and triangular function so-
lutions. These solutions are more general than the solu-
tions which the extended F-expansion method gets, and
they aremore abundant than the solutions in [34]. Besides,
our method is more convenient than the method in [34].
Among the solutions, the arbitrary functions imply that
these solutions have rich local structures. In this paper, we
have provided some figures to describe the character of the
new exact solutions of Eq. (103).

The GeneralizedAlgebraMethod
and Its Application in (1 + 1)-Dimensional
Generalized Variable – Coefficient KdV Equation

In this section, with the aid of the Maple symbolic com-
putation system, we will develop the algebraic meth-
ods [50,51] for constructing the traveling wave solutions
of NLPDEs and present the following new methods and
theorems:

1. A new and general transformation, a new theorem and
its proof by using Maple, are presented in [40].

2. A new mechanization method to find the exact so-
lutions of a first-order nonlinear ordinary differential
equation with any degree. The validity and reliability
of the method are tested by its application to the first-
order nonlinear ordinary differential equation with six
degrees, eight degrees, ten degrees, and twelve degrees
in [40,43,44].

3. A general transformation, a new generalized algebraic
method and their algorithms are suggested based on
a nonlinear ordinary differential equation with any de-
gree. The (1C 1)-Dimensional Generalized Variable –
Coefficient KdV Equations are chosen to illustrate our
algorithm so that more families of new exact solutions
are obtained, which contain both non-traveling and
traveling wave solutions in [40,43,44].

Recently, much research work has been concentrated on
the various extensions and applications of the algebraic
method with computerized symbolic computation [50,51].
The algebraic method can obtain many types of traveling
wave solutions based on a nonlinear ordinary differential
equation with four degrees and the following theorem:

Theorem 3 The following nonlinear ordinary differential
equation with four degrees

d
d�
�(�)

D
p
c0 C c1�(�)C c2�2(�)C c3�3(�)C c4�4(�) ;

ci D constant ; i D 0; 1; 2; 3; 4 (131)

admits many kinds of fundamental solutions, some of which
are listed as follows.

Case 1 If c0 D c1 D c3 D 0, Eq. (131) admits: a bell
shaped solitary wave solution

�(�) D
r
�
c2
c4

sech
�p

c2�

; c2 > 0 ; c4 < 0 ; (132)
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a triangular type solution

�(�) D
r
�
c2
c4
sec

�p
�c2�


; c2 < 0 ; c4 > 0 ; (133)

a rational polynomial type solution

�(�) D �
1
p
c4�

; c2 D 0 ; c4 > 0 : (134)

Case 2 If c0 D d22 /(4c4); c1 D c3 D 0, Eq. (131) admits
a kink shaped solitary wave solution

�(�) D
r
�

c2
2c4

tanh
�r
�
c2
2
�

�
; c2 < 0 ; c4 > 0 ;

(135)

a triangular type solution

�(�) D
r

c2
2c4

tan
�r

c2
2
�

�
; c2 > 0 ; c4 > 0 ; (136)

a rational polynomial type solution

�(�) D �
1
p
c4�

; c2 D 0 ; c4 > 0 : (137)

Case 3 If c1 D c3 D 0, Eq. (131) admits three Jacobian
elliptic functions type solutions

�(�) D

s

�
c2m2

c4(2m2 � 1)
cn
�r

c2
2m2 � 1

�

�
;

c0 D
d22m

2(m2 � 1)
c4(2m2 � 1)2

; c2 > 0 ; (138)

�(�) D

s

�
c2m2

c4(m2 C 1)
sn
�r
�

c2
m2 C 1

�

�
;

c0 D
d22m

2

c4(m2 C 1)2
; c2 < 0 ; (139)

and

�(�) D
r
�

c2
c4(2 � m2)

dn
�r

c2
2 � m2 �

�
;

c0 D
d22(1 � m2)
c4(2 � m2)2

; c2 > 0 : (140)

Case 4 If c0 D c1 D c4 D 0, Eq. (131) admits two bell
shaped solitary wave solutions

�(�) D �
c2
c3

sech2
�p

c2
2
�

�
; c2 > 0 ; (141)

and

�(�) D �
c2
c3

sech2
�p
�c2
2

�

�
; c2 < 0 ; (142)

a rational polynomial type solution

�(�) D
1

c3�2
; c2 D 0 ; (143)

Case 5 If c3 > 0; c4 D 0, Eq. (131) admits a Weiertrass
elliptic functions type solution

�(�) D }
�p

c3
2
�;�

4c1
c3
;�

4c0
c3

�
: (144)

Let’s specifically see how the algebraic method works. For
a given nonlinear differential equation, say, in two vari-
ables x; t

F(u; ut ; ux ; uxx ; uxt ; utt ; : : :) D 0 (145)

where F is a polynomial function with respect to the indi-
cated variables or some function which can be reduced to
a polynomial function by using some transformations.

By using the traveling wave transformation

u D u(�); � D x � t ; (146)

Eq. (145) is reduced to an ordinary differential equation
with constant coefficients

G(U;U 0;U 00;U 000; : : :) D 0 (147)

A transformation was presented by Fan [5] in the form

u(x) D A0 C

nX

iD1

Ai�
i�1(�) ; (148)

with the new variable �(�) satisfying Eq. (131), where
A0;Ai ; dj are constants.

Substituting (148) into (147) along with (131), we can
determine the parameter n in (148). And then by substitut-
ing (148) with the concrete n into (147) and equating the
coefficients of these terms ! i! 0 j(i D 0; 1; 2; : : : ; j D 0; 1),
we obtain a system of algebraic equations with respect
to other parameters A0;Ai ; dj ; . By solving the system,
if available, we may determine these parameters. There-
fore we establish a transformation (147) between (146)
and (148). If we know the solutions of (148), then we can
obtain the solutions of (147) (or (145)) by using (146).
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A New Transformation and a New Theorem

In Yu-Jie Ren’s Ph.D Dissertation of Dalian University of
Technology [40], in order to develop the above algebraic
method, we first presented the following new transforma-
tion (150) and new Theorem 4. Then we proved the theo-
rem by means of the Maple computer algebraic system.

Theorem 4 ([40]) Suppose n and m are any integers,
a first-order nonlinear ordinary differential equation with
any degree in the form of

d
d�
�(�) D "

vuu
tc0 C

rX

iD1

ci � � i(�) ;

ci D consts ; i D 1; 2; : : : ; r : (149)

If we substitute the following new transform into Eq. (149)

�(�) D (g(�))
n
m ; (150)

then Eq. (149) can be transformed into an ordinary differ-
ential equation

�
d
d�

g(�)
�2
D m2n�2

rX

iD0

ci(g(�))2C
n(i�2)

m : (151)

We give the proof of Theorem 4 [40] by using Maple as
follows:

Proof
Step 1 Importing the following Maple program at the

Maple CommandWindow

eq :D diff(phi(xi); xi)2�sum(c[i]phi(xi)i ; i D 0::r);

Eq. (149) is displayed at a computer screen (after im-
plementing the above program) as follows:

eq :D
�

d
d�
�(�)

�2
�

rX

iD0

ci (�(�))i :

Step 2 Importing the following Maple program at the
Maple CommandWindow

eq :D subs(phi(xi) D (g(xi))(n/m); eq) ;

the following result is displayed at the screen (after
running the above program):

eq :D


(g(�))

n
m

�2
n2
�

d
d�

g(�)
�2

m�2(g(�))�2

�

rX

iD0

ci


(g(�))

n
m

�i
:

Step 3 Importing the following Maple program at the
Maple CommandWindow

eq :D simplify(eq) ; eq :D expand(eq) ;
eq :D numer(eq) ;

the following result is displayed at the screen (after
running the above program):

eq :D


(g(�))

n
m

�2
n2
�

d
d�

g(�)
�2

�

rX

iD0

ci


(g(�))

n
m

�i
m2(g(�))2 :

Step 4 Importing the following Maple program at the
Maple CommandWindow

eq :D subs(diff(g(xi); xi) D G(xi); g(xi) D g; eq) ;

eq :D eq  (g(n/m))( � 2) ; eq :D simplify(eq) ;

eq :D n2  G(xi)2 � (sum(c[i]  g((�2  (n � m)/m)

C i  n/m); i D 0::r))  m2 ;
eq :D simplify(eq);

the following result is displayed at the screen (after
running the above program):

eq :D n2(G(�))2 � g�2
n�m
m

rX

iD0

ci


g

n
m

�i
m2

eq :D n2(G(�))2 �
rX

iD0

ci g
�2nC2mCni

m m2 :

Step 5 Importing the following Maple program at the
Maple CommandWindow

eq :D subs(g D g(xi);G(xi) D diff(g(xi); xi); eq) ;

the following result is displayed at the screen (after
running the above program):

eq :D n2
�

d
d�

g(�)
�2
�

rX

iD0

ci (g(�))
�2nC2mCni

m m2 :

(152)

We can reduce Eq. (152) to (151).
�

Remark 6 The above transformation (150), Theorem 4,
and its proof by means of Maple were first presented by us
in Yu-Jie Ren’s Ph.D Dissertation of Dalian University of
Technology [40].
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A New Mechanization Method to Find the Exact
Solutions of a First-Order Nonlinear Ordinary
Differential Equation with any Degree Using Maple
and Its Application

According to Theorem 4 in Subsect. “The the Exp-Bäck-
lund Transformation Method and Its Application in
(1 + 1)-Dimensional KdV Equation”, in [40] we first pre-
sented the following mechanization method to find the
exact solutions of a first-order nonlinear ordinary differ-
ential equation with any degree. The validity and reliabil-
ity of our method are tested by its application to a first-
order nonlinear ordinary differential equation with six de-
grees [40]. Now, we simply describe our mechanization
method as follows:

Step 1 Import the following Maple program at the Maple
CommandWindow

eq :D n2  diff(g(xi); xi)2 � sum(c[i]

g(xi)((�2nC2mCn i)/m); i D 0::r)m2 ;

Eq. (151) is displayed at a computer screen (after im-
plementing the above program) as follows

eq :D n2
�

d
d�

g(�)
�2
�

rX

iD0

ci (g(�))
�2nC2mCni

m m2

Step 2 Import the following Maple programs with some
values of the degree r and parameter (n;m) in new
transform (150) at the Maple CommandWindow. For
example,

eq621 :D subs(r D 6;m D 2; n D 1; eq) ;
eq621 :D simplify(eq621) ;

the following result is displayed at the screen (after
running the above program):

eq621 :D
�

d
d�

g(�)
�2
� 4c0g(�)

� 4c1(g(�))3/2 � 4c2(g(�))2 � 4c3(g(�))5/2

� 4c4(g(�))3 � 4c5(g(�))7/2 � 4c6(g(�))4 :
(153)

Step 3 According to the output results in Step 2, we
choose the coefficients of ci, i D 1; 2; : : : ;m(< n) to be
zero. Then we import their Maple program. For exam-
ple, we import the Maple program as follows:

eq246 :D subs(c[0] D 0; c[1] D 0;
c[3] D 0; c[5] D 0; eq621) ;

the following result is displayed at the screen (after
running the above program):

eq246 :D
�

d
d�

g(�)
�2

� 4c2(g(�))2 � 4c4(g(�))3 � 4c6(g(�))4 : (154)

Step 4 Import the Maple program for solving the output
equation in Step 3. For example, we import the Maple
program for solving the output Eq. (154) as follows:

dsolve(eq246; g(xi));

the following formal solutions of (154) are displayed at
the screen (after running the above program):

g1(�) D 1/2
�c4 �

q
c24 � 4c6c2
c6

; (155)

g2(�) D 1/2
�c4 C

q
c24 � 4c6c2
c6

; (156)

g3(�) D 4


eC1
p
c2
�2

c2


e�
p

c2
��2

0

B
@�4c6c2 C



eC1
p
c2
�4



e�
p

c2
�4 � 2



eC1
p

c2
�2

c4


e�
p

c2
�2 C c24

1

C
A

�1

;

(157)

g4(�) D �4


e�
p

c2
�2

c2


eC1
p

c2
��2

0

B
@4c6c2 �



e�
p

c2
�4



eC1
p

c2
�4 C 2



e�
p

c2
�2

c4


eC1
p

c2
�2 � c24

1

C
A

�1

:

(158)

Import the Maple program for reducing the above so-
lutions of (154). For example, we import the Maple
program for reducing the (157) and (158) as follows:

g3 :D simplify(g3); g4 :D simplify(g4) ;

the following results are displayed at a computer
screen (after running the above program):

g3(�) D 4

e2
p

c2(C1C�)c2
�4c6c2e4�

p
c2 C e4C1

p
c2 � 2e2

p
c2(C1C�)c4 C c24e

4�
p

c2
;

(159)
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g4(�) D 4

e2
p
c2(C1C�)c2

�4c6c2e4C1
p

c2Ce4�
p

c2 � 2e2
p
c2(C1C�)c4Cc42e4C1

p
c2
:

(160)

Step 5 We discuss the above solutions under different
conditions in Step 3.
For example, we discuss the solutions under differ-
ent conditions c24 � 4c6c2 < 0 or c24 � 4c6c2 > 0 or
c24 � 4c6c2 D 0 or c2 < 0 or c2 > 0 or c2 D 0. When

c2 > 0; 4c6c2 � c24 < 0 ; (161)

we may import the following Maple program:

assume(c[2] > 0; (4  c[2]  c[6]� c[4]2) < 0);
eq246 jie :D dsolve(eq246; g(xi));

six solutions of a first-order nonlinear ordinary differ-
ential equation with six degrees under condition (161),
which includes two new solutions, are displayed at
a computer screen (after running the above program).
Here we omit them due to the length of our article.
Importing the following Maple program for reducing
the two new solutions above,

eq246 jie1 :D subs(2  xi  sqrt(c[2])
� 2 C 1  sqrt(c[2]) D eta; eq246 jie1);

eq246 jie2 :D subs(2  xi  sqrt(c[2])
� 2 C 1  sqrt(c[2]) D eta; eq246 jie2);

the following results are displayed at a computer
screen (after running the above program):

(�11(�))2 D

� 2

c2


� c42 C (tanh(�))2c42 � tanh(�)

p
c42 � 4c6c2

p
c42((tanh(�))2 � 1)

�

�
4c6(tanh(�))2c2 � c42


c4

;

(162)

(�12(�))2 D

� 2

c2


� c42 C (tanh(�))2c42 C tanh(�)

p
c42 � 4c6c2

p
c42((tanh(�))2 � 1)

�

(4c6(tanh(�))2c2 � c42)c4
:

(163)

Importing the following Maple program for reduc-
ing (162) and (163):

eq246 jie3 :D subs(sqrt(c[4]2  (tanh(eta)2 � 1))

D I  abs(c[4]  sech(eta));�c[4]C tanh(eta)2  c[4]

D � sech(eta)2  c[4]; eq246 jie3);

eq246 jie4 :D subs(sqrt(c[4]2  (tanh(eta)2 � 1))

D I  abs(c[4]  sech(eta));�c[4]C tanh(eta)2  c[4]

D � sech(eta)2  c[4]; eq246 jie4);

phi[1](xi) :D epsilon  (eq246 jie3)(1/2);

phi[2](xi) :D epsilon  (eq246 jie4)(1/2);

the following results are displayed at a computer
screen (after running the above program):

�1(�) D "

vu
uuu
uut

2c2


c24 sech

2(�)C ijc4

sech(�)j tanh(�)
p
c42 � 4c6c2

�

c4
�
4c6 tanh2(�)c2 � c42

 ;

(164)

�2(�) D "

vuuu
uuu
t

2c2


c42 sech2(�) � ijc4

sech(�)j tanh(�)
p
c42 � 4c6c2

�

c4
�
4c6 tanh2(�)c2 � c42

 :

(165)

where � D 2
p
c2(� � C1).

Step 6 We need to further discuss the results found by
sometimes adding new conditions so that the results
are simpler in form. For example, we can import the
following Maple program for getting rid of the abso-
lute value sign in the above results:

assume(c[4]  sech(eta) < 0);

eq246 jie3 :D 2  c[2]  (c[4]2  sech(eta)2 C I

 tanh(eta)  sqrt(c[4]2 � 4  c[6]  c[2])

 abs(c[4]  sech(eta)))/(4  c[6]  tanh(eta)2

 c[2] � c[4]2)/c[4];

eq246 jie4 :D 2  c[2]  (c[4]2  sech(eta)2 � I

 tanh(eta)sqrt(c[4]2 � 4  c[6]  c[2])  abs(c[4]

sech(eta)))/(4  c[6]  tanh(eta)2

 c[2]� c[4]2)/c[4]; phi[1; 1](xi) :D epsi lon

 (eq246 jie3)(1/2);

phi[1; 2](xi) :D epsi lon  (eq246 jie4)(1/2);
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the following results are displayed at a computer
screen (after running the above program):

�1;1(�) D

"

vuu
t2c2 sech(�)



c4 sech(�) � i tanh(�)

p
c42 � 4c6c2

�

4c6(tanh(�))2c2 � c42
;

(166)

�1;2(�) D

"

vuu
t2c2 sech(�)



c4 sech(�)C i tanh(�)

p
c42 � 4c6c2

�

4c6(tanh(�))2c2 � c42
:

(167)

Importing the following Maple program for reducing
and discussing above results:

assume(c[4]  sech(eta) > 0);

eq246 jie3 :D 2  c[2]  (c[4]2  sech(eta)2 C I

 tanh(eta)  sqrt(c[4]2 � 4  c[6]  c[2])

abs(c[4]  sech(eta)))/(4  c[6]  tanh(eta)2

 c[2]� c[4]2)/c[4];

eq246 jie4 :D 2  c[2]  (c[4]2  sech(eta)2

� I  tanh(eta)  sqrt(c[4]2 � 4  c[6]  c[2])

abs(c[4]  sech(eta)))/(4  c[6]  tanh(eta)2

 c[2]� c[4]2)/c[4];

phi[2; 1](xi) :D epsi lon  (eq246 jie3)(1/2);

phi[2; 2](xi) :D epsi lon  (eq246 jie4)(1/2);

the following results are shown at a computer screen
(after running the above program):

�2;1(�) D

"

vu
ut2c2 sech(�)



c4 sech(�)C i tanh(�)

p
c42 � 4c6c2

�

4c6(tanh(�))2c2 � c42
;

(168)

�2;2(�) D

"

vu
ut2c2 sech(�)



c4 sech(�) � i tanh(�)

p
c42 � 4c6c2

�

4c6(tanh(�))2c2 � c42
:

(169)

By using this method, we obtained some new types of
general solution of a first-order nonlinear ordinary dif-

ferential equation with six degrees and presented the
following theorem in [40,43,44].

Theorem 5 The following nonlinear ordinary differential
equation with six degrees

d�(�)
d�

D "

s
c0 C c1�(�)C c2�2(�)C c3�3(�)
Cc4�4(�)C c5�5(�)C c6�6(�) ;

ci D constant ; i D 0; 1; 2; 3; 4; 5; 6
(170)

admits many kinds of fundamental solutions which depend
on the values and constraints between ci ; i D 0; 1; 2; 3; 4;
5; 6.

Some of the solutions are listed in the following sections.

Case 1. If c0 D c1 D c3 D c5 D 0, Eq. (170) admits the
following constant solutions

�1;2(�) D "

s
�c4 C

p
c42 � 4c6c2
2c6

; (171)

�3;4(�) D "

s
�c4 �

p
c42 � 4c6c2
2c6

; (172)

and the following exponential type solutions

�5;6(�) D 2"

vu
uuu
t

e2
p

c2(�CC1)c2
�4c6c2e4C1

p
c2 C e4�

p
c2

�2e2
p

c2(�CC1)c4 C c42e4C1
p

c2

; (173)

�7;8(�) D 2"

vu
uuu
t

e2
p

c2(�CC1)c2
�4c6c2e4�

p
c2 C e4C1

p
c2

�2e2
p
c2(�CC1)c4 C c42e4�

p
c2

: (174)

When we take different values and constraints of 4c2c6 �
c42, the solutions (5.43) and (5.44) can be written in differ-
ent formats as follows:

Case 1.1. If 4c2c6 � c42 < 0, Eq. (170) admits the follow-
ing tanh-sech hyperbolic type solutions

�1;2(�) D "

vuuu
uut

2c2 sech(�)
h
c4 sech(�)

C"i
p
c42 � 4c6c2 tanh(�)

i

4c6c2 tanh2(�) � c42
; c2 > 0 ;

(175)
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�3;4(�) D "

vu
uuu
ut

2c2 sech(�)
h
c4 sech(�)

�"i
p
c42 � 4c6c2 tanh(�)

i

4c6c2 tanh2(�) � c42
; c2 > 0 ;

(176)

and the following tan-sec triangular type solutions

�5;6(�) D "

vuu
uuu
t

2c2 sec(�)
h
� c4 sec(�)

C"
p
c42 � 4c6c2 tan(�)

i

4c6c2 tan2(�)C c42
; c2 < 0 ;

(177)

�7;8(�) D

"

vu
ut2c2 sec(�)

h
�c4 sec(�) � "

p
c42 � 4c6c2 tan(�)

i

4c6c2 tan2(�)C c42
;

c2 < 0 ; (178)

where � D 2
p
c2(� � C1) and C1 is any constant,

� D 2
p
�c2(� � C1) and C1 is any constant.

Case 1.2. If 4c2c6 � c42 > 0, Eq. (170) admits the follow-
ing sinh-cosh hyperbolic type solutions

�9;10(�) D "

vuu
t2c2

h
c4 C "

p
4c2c6 � c42 sinh(�)

i

4c2c6 sinh2(�) � c42 cosh2(�)
;

c2 > 0 ; (179)

�11;12(�) D "

vu
ut2c2

h
c4 � "

p
4c2c6 � c42 sinh(�)

i

4c2c6 sinh2(�) � c42 cosh2(�)
;

c2 > 0 ; (180)

and the following sin-cos triangular type solutions

�13;14(�) D "

vu
ut2c2

h
�c4 C "i

p
4c2c6 � c42 sin(�)

i

4c6c2 sin2(�)C c42 cos2(�)
;

c2 < 0 (181)

�15;16(�) D "

vu
ut2c2

h
�c4 � "i

p
4c6c2 � c42 sin(�)

i

4c6c2 sin2(�)C 42 cos2(�)
;

c2 < 0 ; (182)

where � D 2
p
c2 (� � C1), � D 2

p
�c2(� � C1) and C1 is

any constant.

Case 1.3. If 4c2c6 � c42 D 0, Eq. (170) admits the fol-
lowing tanh hyperbolic type solutions

�17;18;19;20(�) D "

s
2c2

e�"2
p

c2(��C1) � c4

D "

s
2c2

�
1C " tanh

�p
c2(� � C1)



1 � c4 � "(1C c4) tanh
�p

c2(� � C1)
 ; c2 > 0 ;

(183)

and the following tan triangular type solutions

�21;22;23;24(�) D "

s
2c2

e�"2i
p
�c2(��C1) � c4

D "

s
2c2

�
1C " tan

�
i
p
�c2(� � C1)



1 � c4 � "(1C c4) tan
�
i
p
�c2(� � C1)

 ; c2 < 0

(184)

where C1 is any constant.

Case 2. If c5 D c6 D 0, Eq. (170) admits the solutions in
Theorem 6.1.

Remark 7 By using our mechanization method using
Maple to find the exact solutions of a first-order non-
linear ordinary differential equation with any degree,
we can obtain some new types of general solution of
a first-order nonlinear ordinary differential equation with
r(D 7; 8; 9; 10; 11; 12; : : :) degree [40]. We do not list the
solutions here in order to avoid unnecessary repetition.

Summary of the Generalized Algebra Method

In this section, based on a first-order nonlinear ordinary
differential equation with any degree (149) and its the ex-
act solutions obtained by using ourmechanizationmethod
via Maple, we will develop the algebraic methods [50,51]
for constructing the traveling wave solutions and present
a new generalized algebraicmethod and its algorithms [40,
43,44]. The KdV equation is chosen to illustrate our al-
gorithm so that more families of new exact solutions are
obtained which contain both non-traveling solutions and
traveling wave solutions. We outline the main steps of our
generalized algebraic method as follows:

Step 1. For given nonlinear differential equations, with
some physical fields ui (t; x1; x2; : : : ; xm), (i D 1; 2; : : : ; n)
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in mC 1 independent variables t; x1; x2; : : : ; xm ,

Fj(u1; : : : ; un ; u1;t ; : : : ; un;t ; u1;x1 ; : : : ; un;xm ;
u1;t t; : : : ; un;t t ; u1;tx1 ; : : : un;txm ; : : :) D 0 ;

j D 1; 2; : : : ; n ; (185)

where j D 1; 2; : : : ; n.
By using the following more general transformation,

which we first present here,

ui (t; x1; x2; : : : ; xm) D Ui (�) ;
� D ui (t; x1; x2; : : : ; xm) D Ui (�) ;

� D ˛0(t)C
m�1X

iD1

˛i (xi ; xiC1; : : : ; xm ; t) � ˇi(xi) ;

(186)

where ˛0(t); ˛i (xi ; xiC1; : : : ; xm; t) and ˇi(xi ); i D 1; 2;
: : : ;m� 1 are functions to be determined later. For exam-
ple, when n D 1, we may take

� D ˛0(t)C ˛1(x1t) � ˇ1(x1) ;

where ˛0(t); ˛1(x1t) and ˇ1(x1) are undetermined func-
tions.

Then Eq. (185) is reduced to nonlinear differential
equations

Gj(U1; : : : ;Un ;U 01; : : : ;U
0
n ;U

00
1 ; : : : ;U

00
n ; : : :) D 0 ;

j D 1; 2; : : : ; n ; (187)

whereGj( j D 1; 2; : : : ; n) are all polynomials ofUi (i D 1;
2; : : : ; n), ˛0(t); ˛i (xi ; xiC1; : : : ; xm; t), ˇi (xi); i D 1; 2;
: : : ;m � 1 and their derivatives. If Gk of them is not
a polynomial of Ui (i D 1; 2; : : : ; n), ˛i (xi ; xiC1; : : : ; xm ;
t), ˇi(xi ); i D 1; 2; : : : ;m � 1, ˛0(t) and their deriva-
tives, then we may use new variable vi(�)(i D 1; 2; : : : ;
n) which makes Gk become a polynomial of vi (�)(i D 1;
2; : : : ; n), ˛0(t); ˛i (xi ; xiC1; : : : ; xm; t) and ˇi(xi); i D 1;
2; : : : ;m�1 and their derivatives. Otherwise the following
transformation will fail to seek solutions of Eq. (185).

Step 2. We introduce a new variable �(�) which is a so-
lution of the following ODE

d�(�)
d�

D "

s
c0 C c1�(�)C c2�2(�)C c3�3(�)
Cc4�4(�)C � � � C cr� r(�) ;

r D 0; 1; 2; 3; : : : : (188)

Then the derivatives with respect to the variable � become
the derivatives with respect to the variable � .

Step 3. By using the new variable � , we expand the solu-
tion of Eq. (185) in the form:

Ui D ai;0(X)C
niX

kD1

(ai;k(X)� k(�(X))

C bi;k(X)��k(�(X))) : (189)

where X D (x1; x2; : : : ; xm ; t), � D �(X), ai;0(X);
ai;k(X); bi;k(X)(i D 1; 2; : : : ; n; k D 1; 2; : : : ; ni ) are all
differentiable functions of X to be determined later.

Step 4. In order to determine ni (i D 1; 2; : : : ; n) and r,
we may substitute (188) into (187) and balance the high-
est derivative term with the nonlinear terms in Eq. (187).
By using the derivatives with respect to the variable � , we
can obtain a relation for ni and r, from which the different
possible values of ni and r can be obtained. These values
lead to the series expansions of the solutions for Eq. (185).

Step 5. Substituting (189) into the given Eq. (185) and
collecting coefficients of polynomials of � k ; ��k , and
� i��k

qPr
jD1 c j� j(�), with the aid of Maple, then set-

ting each coefficient to zero, we will get a system of
over-determined partial differential equations with respect
to ai;0(X); ai;k(X); bi;k(X); i D 1; 2; : : :, n; k D 1; 2;
: : : ; ni c j; j D 0; 1; : : : ; r˛0(t); ˛i (xi ; xiC1; : : : ; xm ; t) and
ˇi(xi ); i D 1; 2; : : : ;m � 1.

Step 6. Solving the over-determined partial differen-
tial equations with Maple,then we can determine ai;0(X);
ai;k(X); bi;k(X); i D 1; 2; : : : ; n; k D 1; 2; : : : ; ni )c j ;
j D 0; 1; : : : ; r˛0(t); ˛i (xi ; xiC1; : : : ; xm ; t) and ˇi(xi);
i D 1; 2; : : : ;m � 1 .

Step 7. From the constants ai;0(X); ai;k(X); bi;k(X)(i D
1; 2; : : : ; n; k D 1; 2; : : : ; ni )c j( j D 0; 1; : : : ; r), ˛0(t);
˛i (xi ; xiC1; : : : ; xm ; t) and ˇi(xi ); i D 1; 2; : : : ;m�1 ob-
tained in Step 6 to Eq. (188), we can then obtain all the
possible solutions.

Remark 8 When c5 D c6 D 0 and bi;k D 0, Eq. (170) and
transformation (189) just become the ones used in our
previous method [50,51]. However, if c5 ¤ 0 or c6 ¤ 0,
we may obtain solutions that cannot be found by using
the methods [50,51]. It should be pointed out that there
is no method to find all solutions of nonlinear PDEs. But
our method can be used to find more solutions of non-
linear PDEs, and with the exact solutions obtained by us-
ing our mechanization method via Maple, we will develop
the algebraic methods [50,51] for constructing the travel-
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ing wave solutions and present a new generalized algebraic
method and its algorithms [40,43,44].

Remark 9 By the above description, we find that our
method is more general than the method in [50,51]. We
have improved the method [50,51] in five aspects: First,
we extend the ODE with four degrees (131) into the ODE
with any degree (188) and get its new general solutions
by using our mechanization method via Maple [40,43,44].
Second, we change the solution of Eq. (185) into a more
general solution (189) and get more types of new rational
solutions and irrational solutions. Third, we replace the
traveling wave transformation (146) in [50,51] by a more
general transformation (186). Fourth, we suppose the co-
efficients of the transformation (186) and (189) are unde-
termined functions, but the coefficients of the transforma-
tion (146) in [50,51] are all constants. Fifth, we present
a more general algebra method than the method given
in [50,51], which is called the generalized algebra method,
to find more types of exact solutions of nonlinear differen-
tial equations based upon the solutions of the ODE (188).
This can obtain more general solutions of the NPDEs than
the number obtained by the method in [50,51].

The Generalized Algebra Method
to Find New Non-traveling Waves Solutions
of the (1 + 1)-Dimensional Generalized
Variable-Coefficient KdV Equation

In this section, we will make use of our generalized algebra
method and symbolic computation to find new non-trav-
eling waves solutions and traveling waves solutions of the
following (1C 1) – dimensional Generalized Variable –
Coefficient KdV equation [16].

Propagation of weakly nonlinear long waves in an in-
homogeneous waveguide is governed by a variable – coef-
ficient KdV equation of the form [15]

ut(x; t)C 6u(x; t)ux (x; t)C B(t)uxxx (x; t) D 0 : (190)

where u(x; t) is the wave amplitude, t the propagation co-
ordinate, x the temporal variable and B(t) is the local dis-
persion coefficient.

The applicability of the variable-coefficient KdV equa-
tion (190) arises in many areas of physics as, for example,
for the description of the propagation of gravity-capillary
and interfacial-capillary waves, internal waves and Rossby
waves [15]. In order to study the propagation of weakly
nonlinear, weakly dispersivewaves in inhomogeneousme-
dia, Eq. (190) is rewritten as follows [16]

ut(x; t)C6A(t)u(x; t)ux (x; t)CB(t)uxxx (x; t) D 0: (191)

which now has a variable nonlinearity coefficient A(t).
Here, Eq. (191) is called a (1C 1)-dimensional generalized
variable-coefficient KdV (gvcKdV) equation.

In order to find new non-traveling waves solutions and
traveling waves solutions of the following (1C 1)-dimen-
sional gvcKdV equation (191) by using our generalized
algebra method and symbolic computation, we first take
the following new general transformation, which we first
present here

u(x; t) D u(�) ; � D ˛(x; t)ˇ(t) � r(t) ; (192)

where ˛(x; t); ˇ(t) and r(t) are functions to be determined
later.

By using the new variable � D �(�) which is a solution
of the following ODE

d�(�)
d�

D "

s
c0 C c1�(�)C c2�2(�)C c3�3(�)
Cc4�4(�)C c5�5(�)C c6�6(�) : (193)

we expand the solution of Eq. (191) in the form [40,43]:

u D a0(X)C
nX

iD1

(ai (X)� i(�(X))Cbi (X)��i(�(X))) (194)

where X D (x; t), a0(X); ai(X); bi (X) (i D 1; 2; : : : ; n)
are all differentiable functions of X to be determined later.

Balancing the highest derivative term with the nonlin-
ear terms in Eq. (191) by using the derivatives with re-
spect to the variable � , we can determine the parame-
ter n D 2 in (194). In addition, we take a0(X) D a0(t);
ai (X) D ai(t); bi (X) D bi (t); i D 1; 2 in (194) for sim-
plicity, then substituting them and (192) into (194) along
with n D 2, leads to:

u(x; t) D a0(t)C a1(t)�(�)C a2(t)(�(�))2

C
b1(t)
�(�)

C
b2(t)
(�(�))2

: (195)

where � D ˛(x; t)ˇ(t) � r(t), and ˛(x; t); ˇ(t); r(t); a0(t);
ai (t) and bi (t); i D 1; 2 are all differentiable functions of x
or t to be determined later.

By substituting (195) into the given Eq. (191) along
with (193) and the derivatives of � , and collecting coeffi-
cients of polynomials of �k and ��

qP6
jD1 c j� j(�), with

the aid of Maple, then setting each coefficient to zero,
we will get a system of over-determined partial differen-
tial equations with respect to A(t); B(t); ˛(x; t); ˇ(t); r(t);
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a0(t); ai(t) and bi (t), i D 1; 2 as follows:

21B(t)(ˇ(t))3 � "a1(t)
�
@

@x
˛(x; t)

�3
c4c6 C 18A(t)

� "

�
@

@x
˛(x; t)

�
ˇ(t)a1(t)a2(t)c6 � 3B(t)(ˇ(t))3

� "b1(t)
�
@

@x
˛(x; t)

�3
c62 D 0 ;

12b2(t) � "
�
d
dt

r(t)
�
c2 � 8B(t)(ˇ(t))3

� "b2(t)
�
@

@x
˛(x; t)

�3
c22 � 2b2(t)

� "

�
@

@t
˛(x; t)

�
ˇ(t)c2 � 2B(t)ˇ(t)

� "b2(t)
�
@3

@x3
˛(x; t)

�
c2 � 2b2(t)

� "˛(x; t)
�
d
dt
ˇ(t)

�
c2 � 6A(t)

� "

�
@

@x
˛(x; t)

�
ˇ(t)(b1(t))2c2

� 12A(t) � "
�
@

@x
˛(x; t)

�
ˇ(t)a0(t)b2(t)c2 � 12A(t)

� "

�
@

@x
˛(x; t)

�
ˇ(t)(b2(t))2c4 D 0 ;

b1(t) � "
�
d
dt

r(t)
�
c6 � a1(t) � "

�
d
dt

r(t)
�
c4

C 6A(t) � "
�
@

@x
˛(x; t)

�
ˇ(t)a2(t)b1(t)c4

C a1(t) � "˛(x; t)
�
d
dt
ˇ(t)

�
c4 � b1(t)

� "˛(x; t)
�
d
dt
ˇ(t)

�
c6 C 6A(t)

� "

�
@

@x
˛(x; t)

�
ˇ(t)a0(t)a1(t)c4 � 6A(t)

� "

�
@

@x
˛(x; t)

�
ˇ(t)a0(t)b1(t)c6

� 4B(t)(ˇ(t))3 � "b1(t)
�
@

@x
˛(x; t)

�3
c2c6

C B(t)ˇ(t)� "a1(t)
�
@3

@x3
˛(x; t)

�
c4

C a1(t) � "
�
@

@t
˛(x; t)

�
ˇ(t)c4 � b1(t)

� "

�
@

@t
˛(x; t)

�
ˇ(t)c6 � 6A(t)

� "

�
@

@x
˛(x; t)

�
ˇ(t)a1(t)b2(t)c6 C 7B(t)(ˇ(t))3

� "a1(t)
�
@

@x
˛(x; t)

�3
c2c4 C 18A(t)

� "

�
@

@x
˛(x; t)

�
ˇ(t)a1(t)a2(t)c2 � B(t)ˇ(t)

� "b1(t)
�
@3

@x3
˛(x; t)

�
c6 D 0 ; (196)

: : : : : : : : : : : :

because there are so many over-determined partial differ-
ential equations, only a few of them are shown here for
convenience. Solving the over-determinedpartial differen-
tial equations with Maple, we have the following solutions.

Case 1

A(t) D A(t) ; B(t) D B(t) ; ˛(x; t) D F1(t) ;
ˇ(t) D ˇ(t) ; a2(t) D C1 ; a1(t) D C2 ;

b2(t) D C3 ; a0(t) D C5 ;

r(t) D
Z

F1(t)
d
dt
ˇ(t)C

�
d
dt

F1(t)
�
ˇ(t)dt C C6 ;

b1(t) D C4 ;

(197)

where A(t), B(t), ˇ(t), F1(t) are arbitrary functions of t,
and Ci, i D 1; 2; 3; 4; 5 are arbitrary constants.

Case 2

b1(t) D 0 ; A(t) D A(t) ; B(t) D B(t) ;
˛(x; t) D F1(t) ; ˇ(t) D ˇ(t) ; a2(t) D C1 ;

a0(t) D C4 ; a1(t) D C2 ;

r(t) D
Z

F1(t)
d
dt
ˇ(t)C

�
d
dt

F1(t)
�
ˇ(t)dt C C5 ;

b2(t) D C3 ;

(198)

where A(t), B(t), ˇ(t), F1(t) are arbitrary functions of t,
and Ci, i D 1; 2; 3; 4 are arbitrary constants.

Case 3
ˇ(t) D 0 ; A(t) D A(t) ; B(t) D B(t) ;
a2(t) D C1 ; a1(t) D C2 ; b2(t) D C3 ;

a0(t) D C5 ; b1(t) D C4 ; r(t) D C6 ;

˛(x; t) D ˛(x; t) ;

(199)

where ˛(x; t) are arbitrary functions of x and t, A(t), B(t)
are arbitrary functions of t, and Ci, i D 1; 2; 3; 4; 5 are ar-
bitrary constants.
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Case 4

b2(t) D 0 ; A(t) D A(t) ; B(t) D B(t) ;
˛(x; t) D F1(t) ; ˇ(t) D ˇ(t) ; a2(t) D C1 ;

a0(t) D C4 ; a1(t) D C2 ;

r(t) D
Z

F1(t)
d
dt
ˇ(t)C

�
d
dt

F1(t)
�
ˇ(t)dt C C5 ;

b1(t) D C3 ;

(200)

where A(t), B(t), F1(t), ˇ(t) are arbitrary functions of t,
and Ci, i D 1; 2; 3; 4; 5 are arbitrary constants.

Case 5

b2(t) D 0 ; ˇ(t) D 0 ; A(t) D A(t) ;
B(t) D B(t) ; a2(t) D C1 ; a0(t) D C4 ;

a1(t) D C2 ; r(t) D C5 ; b1(t) D C3 ;

˛(x; t) D ˛(x; t) ;

(201)

where ˛(x; t) are arbitrary functions of x and t, A(t), B(t)
are arbitrary functions of t, and Ci, i D 1; 2; 3; 4; 5 are ar-
bitrary constants.

Case 6

b1(t) D
C2c4
c6

; ˇ(t) D 0 ; b2(t) D 0 ;

A(t) D A(t) ; B(t) D B(t) ; a2(t) D C1 ;

a1(t) D C2 ; r(t) D C4 ; a0(t) D C3 ;

˛(x; t) D ˛(x; t) ;

(202)

where ˛(x; t) are arbitrary functions of x and t, A(t), B(t)
are arbitrary functions of t, and Ci, i D 1; 2; 3; 4 are arbi-
trary constants.

Case 7

B(t) D B(t) ; b1(t) D 0 ; a0(t) D C3 ;

A(t) D 0 ; b2(t) D C2 ; a1(t) D 0 ; a2(t) D 0 ;

˛(x; t) D F1(t)x C F2(t) ; ˇ(t) D
C1

F1(t)
;

r(t) D
Z

C1;


F1(t) d

dt F2(t) �



d
dt F1(t)

�

F2(t)C 4c2B(t)C1
2(F1(t))2

�

(F1(t))2
dt C C4 ;

(203)

where F1(t), B(t) are arbitrary functions of t, and Ci,
i D 1; 2; 3; 4 are arbitrary constants.

Case 8

B(t) D B(t) ; b1(t) D 0 ; ˛(x; t) D F1(t) ;
ˇ(t) D ˇ(t) ; A(t) D 0 ; a1(t) D 0 ;
a2(t) D 0 ;

r(t) D
Z

F1(t)
d
dt
ˇ(t)C

�
d
dt

F1(t)
�
ˇ(t)dt C C3 ;

a0(t) D C2 ; b2(t) D C1 ;

(204)

where A(t), B(t), ˇ(t), F1(t) are arbitrary functions of t,
and Ci, i D 1; 2; 3 are arbitrary constants.

Case 9

A(t) D A(t) ; B(t) D B(t) ; b1(t) D 0 ;
˛(x; t) D F1(t) ; ˇ(t) D ˇ(t) ;
a2(t) D C1 ; a0(t) D C3 ; b2(t) D C2 ;

a1(t) D 0 ;

r(t) D
Z

F1(t)
d
dt
ˇ(t)C

�
d
dt

F1(t)
�
ˇ(t)dt C C4 ;

(205)

where A(t), B(t), ˇ(t), F1(t) are arbitrary functions of t,
and Ci, i D 1; 2; 3; 4 are arbitrary constants.

Case 10

A(t) D A(t) ; B(t) D B(t) ; b1(t) D 0 ;
˛(x; t) D F1(t) ; ˇ(t) D ˇ(t) ;
a2(t) D C1 ; b2(t) D 0 ; a1(t) D 0 ;

r(t) D
Z

F1(t)
d
dt
ˇ(t)C

�
d
dt

F1(t)
�
ˇ(t)dt C C3 ;

a0(t) D C2 ;

(206)

where A(t), B(t), ˇ(t), F1(t) are arbitrary functions of t,
and Ci, i D 1; 2; 3; 4 are arbitrary constants.

Case 11

A(t) D A(t) ; B(t) D B(t) ; b1(t) D 0 ;
a2(t) D C1 ; b2(t) D 0 ; a1(t) D 0 ;
ˇ(t) D 0 ; r(t) D C3 ;

˛(x; t) D ˛(x; t) ; a0(t) D C2 ;

(207)

where ˛(x; t) are arbitrary functions of x and t, A(t), B(t)
are arbitrary functions of t, and Ci, i D 1; 2 are arbitrary
constants. Because there are so many solutions, only a few
of them are shown here for convenience.
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So we get new general forms of solutions of equa-
tions (191):

u(x; t) D a0(t)C a1(t)�(˛(x; t)ˇ(t) � r(t))

C a2(t)(�(˛(x; t)ˇ(t) � r(t)))2

C
b1(t)

�(˛(x; t)ˇ(t) � r(t))
C

b2(t)
(�(˛(x; t)ˇ(t) � r(t)))2

:

(208)

where ˛(x; t), ˇ(t), r(t), a0(t), ai(t), bi (t), i D 1; 2
satisfy (197)–(207) respectively, and the variable
�(˛(x; t)ˇ(t) � r(t)) takes the solutions of the Eq. (193).
For example, wemay take the variable�(˛(x; t)ˇ(t)�r(t))
as follows:

Type 1. If 4c2c6 � c42 < 0, corresponding to Eq. (193),
�(˛(x; t)ˇ(t) � r(t)) is taken, we get the following four
tanh-sech hyperbolic type solutions

�1;2((˛(x; t)ˇ(t) � r(t))) D

"

s
2c2 sech(�)[c4 sech(�)C "i

p
c42 � 4c6c2 tanh(�)]

4c6c2 tanh2(�) � c42
;

c2 > 0 ; (209)

�3;4((˛(x; t)ˇ(t) � r(t))) D

"

s
2c2 sech(�)[c4 sech(�) � "i

p
c42 � 4c6c2 tanh(�)]

4c6c2 tanh2(�) � c42
;

c2 > 0 ; (210)

and the following tan-sec triangular type solutions

�5;6((˛(x; t)ˇ(t) � r(t))) D

"

s
2c2 sec(�)[�c4 sec(�)C "

p
c42 � 4c6c2 tan(�)]

4c6c2 tan2(�)C c42
;

c2 < 0 ; (211)

�7;8((˛(x; t)ˇ(t) � r(t))) D

"

s
2c2 sec(�)[�c4 sec(�) � "

p
c42 � 4c6c2 tan(�)]

4c6c2 tan2(�)C c42
;

c2 < 0 ; (212)

where � D 2
p
c2((˛(x; t)ˇ(t) � r(t)) � C1) and C1 is any

constant, � D 2
p
�c2((˛(x; t)ˇ(t) � r(t)) � C1) and C1 is

any constant.

Type 2. If 4c2c6 � c42 > 0, corresponding to Eq. (193),
�(˛(x; t)ˇ(t) � r(t)) is taken, we get the following four

sinh-cosh hyperbolic type solutions

�9;10((˛(x; t)ˇ(t) � r(t)))

D "

s
2c2[c4 C "

p
4c2c6 � c42 sinh(�)]

4c2c6 sinh2(�) � c42 cosh2(�)
; c2 > 0 ;

(213)

�11;12((˛(x; t)ˇ(t) � r(t)))

D "

s
2c2[c4 � "

p
4c2c6 � c42 sinh(�)]

4c2c6 sinh2(�) � c42 cosh2(�)
; c2 > 0 ;

(214)

and the following sin-cos triangular type solutions

�13;14((˛(x; t)ˇ(t) � r(t)))

D "

s
2c2[�c4 C "i

p
4c2c6 � c42 sin(�)]

4c6c2 sin2(�)C c42 cos2(�)
; c2 < 0

(215)

�15;16((˛(x; t)ˇ(t) � r(t)))

D "

s
2c2[�c4 � "i

p
4c6c2 � c42 sin(�)]

4c6c2 sin2(�)C 42 cos2(�)
; c2 < 0;

(216)

where � D 2
p
c2((˛(x; t)ˇ(t) � r(t)) � C1), � D

2
p
�c2((˛(x; t)ˇ(t) � r(t)) � C1),and C1 is any constant.

Type 3. If 4c2c6 � c42 D 0, corresponding to Eq. (193),
�(˛(x; t)ˇ(t) � r(t)) is taken, we get the following
two sech-tanh hyperbolic type solutions 4c2c6 � c42 D 0,
Eq. (170) admits the following tanh hyperbolic type solu-
tions

�17;18;19;20(˛(x; t)ˇ(t) � r(t)) D

"

s
2c2f1C " tanh[

p
c2(˛(x; t)ˇ(t) � r(t) � C1)]g

1 � c4"(1C c4) tanh[
p
c2(˛(x; t)ˇ(t) � r(t) � C1)]

;

c2 > 0 ; (217)

and the following tan triangular type solutions

�21;22;23;24(˛(x; t)ˇ(t) � r(t)) D

"

vuuu
t

2c2f1C " tan[i
p
�c2(˛(x; t)ˇ(t) � r(t) � C1)]g

1 � c4
�"(1C c4) tan[i

p
�c2(˛(x; t)ˇ(t) � r(t) � C1)]

;

c2 < 0 ; (218)

where C1 is any constant.
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Substituting (209)–(218) and (197)–(207) into (208),
respectively, we get many new irrational solutions and ra-
tional solutions of combined hyperbolic type or triangular
type solutions of Eq. (191).

For example, when we select A(t); B(t); ˛(x; t); ˇ(t);
r(t); a0(t); ai (t) and bi (t); i D 1; 2 to satisfy Case 1, we
can easily get the following irrational solutions of com-
bined hyperbolic type or triangular type solutions of
Eq. (191):

u(x; t) D C5 C C2�(F1(t)ˇ(t) � r(t))

C C1(�(F1(t)ˇ(t) � r(t)))2

C
C4

�(F1(t)ˇ(t) � r(t))
C

C3

(�(F1(t)ˇ(t) � r(t)))2
;

(219)

whereA(t); B(t); ˇ(t); F1(t) are arbitrary functions of t,Ci,
i D 1; 2; 3; 4; 5 are arbitrary constants, and

r(t) D
Z

F1(t)
d
dt
ˇ(t)C

�
d
dt

F1(t)
�
ˇ(t)dt C C6 :

Substituting (209)–(218) into (219), respectively, we get
the following new irrational solutions and rational solu-
tions of combined hyperbolic type or triangular type solu-
tions of Eq. (191).

Case 1. If 4c2c6 � c42 < 0; c2 > 0, corresponding to
(209), (210) and (197), Eq. (191) admits the following four
tanh-sech hyperbolic type solutions

u1;2(x; t) D C5

C
C4

"

r
2c2 sech(�)[c4 sech(�) C"i

p
c24�4c6c2 tanh(�)]

4c6c2 tanh2(�)�c42

C
C3(4c6c2 tanh2(�) � c42)

2c2 sech(�)[c4 sech(�)C "i
p
c42 � 4c6c2 tanh(�)]

C C2"

vu
uuu
t

2c2 sech(�)
[c4 sech(�)C "i

p
c42 � 4c6c2 tanh(�)]

4c6c2 tanh2(�) � c42

C
2c2C1 sech(�)[c4 sech(�)C "i

p
c42 � 4c6c2 tanh(�)]

4c6c2 tanh2(�) � c42
;

(220)

and

u3;4(x; t) D C5

C
C3(4c6c2 tanh2(�) � c42)

2c2 sech(�)[c4 sech(�) � "i
p
c42 � 4c6c2 tanh(�)]

C
C4

"

r
2c2 sech(�)[c4 sech(�)�"i

p
c42�4c6c2 tanh(�)]

4c6c2 tanh2(�)�c42

C C2"

vuu
uut

2c2 sech(�)
[c4 sech(�) � "i

p
c42 � 4c6c2 tanh(�)]

4c6c2 tanh2(�) � c42

C
2c2C1 sech(�)[c4 sech(�) � "i

p
c42 � 4c6c2 tanh(�)]

4c6c2 tanh2(�) � c42
;

(221)

where � D 2
p
c2((˛(x; t)ˇ(t) � r(t)) � C1), A(t); B(t);

ˇ(t); F1(t) are arbitrary functions of t, Ci, i D 1; 2; 3; 4;
5 are arbitrary constants, and

r(t) D
Z

F1(t)
d
dt
ˇ(t)C

�
d
dt

F1(t)
�
ˇ(t)dt C C6 :

Case 2. If 4c2c6 � c42 < 0; c2 < 0, corresponding to
(211), (212) and (197), Eq. (191) admits the following four
tan-sec triangular type solutions

u5;6(x; t) D C5

C
C4

"

r
2c2 sec(�)[�c4 sec(�)C"

p
c42�4c6c2 tan(�)]

4c6c2 tan2(�)Cc42

C
C3(4c6c2 tan2(�)C c42)

2c2 sec(�)[�c4 sec(�)C "
p
c42 � 4c6c2 tan(�)]

C C2"

s
2c2 sec(�)[�c4 sec(�)C "

p
c42 � 4c6c2 tan(�)]

4c6c2 tan2(�)C c42

C
2c2C1 sec(�)[�c4 sec(�)C "

p
c42 � 4c6c2 tan(�)]

4c6c2 tan2(�)C c42
;

(222)

and

u7;8(x; t) D C5

C
C4

"

r
2c2 sec(�)[�c4 sec(�)�"

p
c42�4c6c2 tan(�)]

4c6c2 tan2(�)Cc42
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C
C3(4c6c2 tan2(�)C c42)

2c2 sec(�)[�c4 sec(�) � "
p
c42 � 4c6c2 tan(�)]

C C2"

s
2c2 sec(�)[�c4 sec(�) � "

p
c42 � 4c6c2 tan(�)]

4c6c2 tan2(�)C c42

C
2c2C1 sec(�)[�c4 sec(�)� "

p
c42 � 4c6c2 tan(�)]

4c6c2 tan2(�)C c42
;

(223)

where � D 2
p
�c2((˛(x; t)ˇ(t) � r(t)) � C1) and the rest

of the parameters are the same as with Case 1.

Case 3. If 4c2c6 � c42 > 0; c2 > 0, corresponding to
(213), (214) and (197), Eq. (191) admits the following four
sinh-cosh hyperbolic type solutions

u9;10(x; t)

D C5 C C2"

s
2c2[c4 C "

p
4c2c6 � c42 sinh(�)]

4c2c6 sinh2(�) � c42 cosh2(�)

C
2c2C1[c4 C "

p
4c2c6 � c42 sinh(�)]

4c2c6 sinh2(�) � c42 cosh2(�)

C
C4

"

r
2c2[c4C"

p
4c2c6�c42 sinh(�)]

4c2c6 sinh2(�)�c42 cosh2(�)

C
2c2C3[c4 C "

p
4c2c6 � c42 sinh(�)]

4c2c6 sinh2(�) � c42 cosh2(�)
; (224)

and

u11;12(x; t)

D C5 C C2"

s
2c2[c4 C "

p
4c2c6 � c42 sinh(�)]

4c2c6 sinh2(�) � c42 cosh2(�)

C
2c2C1[c4 C "

p
4c2c6 � c42 sinh(�)]

4c2c6 sinh2(�) � c42 cosh2(�)

C
C4

"

r
2c2[c4C"

p
4c2c6�c42 sinh(�)]

4c2c6 sinh2(�)�c42 cosh2(�)

C
2c2C3[c4 C "

p
4c2c6 � c42 sinh(�)]

4c2c6 sinh2(�) � c42 cosh2(�)
; (225)

where � D 2
p
c2((˛(x; t)ˇ(t) � r(t)) � C1) and the rest of

the parameters are the same as with Case 1.

Case 4. If 4c2c6 � c42 > 0; c2 < 0, corresponding to
(215), (216) and (197), Eq. (191) admits the following four

sin-cos triangular type solutions

u13;14(x; t)

D C5 C
C4

"

r
2c2[�c4C"i

p
4c2c6�c42 sin(�)]

4c6c2 sin2(�)Cc42 cos2(�)

C
C3(4c6c2 sin2(�)C c42 cos2(�))

2c2[�c4 C "i
p
4c2c6 � c42 sin(�)]

C C2"

s
2c2[�c4 C "i

p
4c2c6 � c42 sin(�)]

4c6c2 sin2(�)C c42 cos2(�)

C
2c2C1

h
�c4 C "i

p
4c2c6 � c42 sin(�)

i

4c6c2 sin2(�)C c42 cos2(�)
; (226)

and

u15;16(x; t)

D C5 C
C4

"

r
2c2
h
�c4�"i

p
4c2c6�c42 sin(�)

i

4c6c2 sin2(�)Cc42 cos2(�)

C
C3(4c6c2 sin2(�)C c42 cos2(�))

2c2
h
�c4 � "i

p
4c2c6 � c42 sin(�)

i

C C2"

vuut2c2
h
�c4 � "i

p
4c2c6 � c42 sin(�)

i

4c6c2 sin2(�)C c42 cos2(�)

C
2c2C1

h
�c4 � "i

p
4c2c6 � c42 sin(�)

i

4c6c2 sin2(�)C c42 cos2(�)
; (227)

where � D 2
p
�c2((˛(x; t)ˇ(t) � r(t)) � C1) and the rest

of the parameters are the same as with Case 1.

Case 5. If 4c2c6 � c42 D 0; c2 > 0, corresponding to
(217) and (197), Eq. (191) admits the following four tanh
hyperbolic type solutions

u17;18;19;20(x; t)

D C5 C C2 � "

s
2c2

�
1C " tanh

�
�
2
�

1 � c4 � "(1C c4) tanh
��
2


C
2c2C1

�
1C " tanh

��
2
�

1 � c4 � "(1C c4) tanh
�
�
2


C
C4

�"

r
2c2

�
1C" tanh( �2 )

�

1�c4�"(1Cc4) tanh( �2 )

C
C3
�
1 � c4 � "(1C c4) tanh

��
2
�

2c2
�
1C " tanh

��
2
� ; (228)

where � D 2
p
c2((˛(x; t)ˇ(t) � r(t)) � C1) and the rest of

the parameters are the same as with Case 1.
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Case 6. If 4c2c6 � c42 D 0; c2 < 0, corresponding to
(218) and (197), Eq. (191) admits the following two sec-
tan triangular type solutions

u21;22;23;24(x; t)

D C5 C C2 � "

vu
uut

2c2
h
1C " tan



i�
2

�i

1 � c4 � "(1C c4) tan


i�
2

�

�
2c2C1

h
1C " tan



i�
2

�i

1 � c4 � "(1C c4) tan


i�
2

�

C
C4

�"

s
2c2

h
1C" tan



i�
2

�i

1�c4�"(1Cc4) tan


i�
2

�

�
C3



1 � c4 � "(1C c4) tan



i�
2

��

2c2
h
1C " tan



i�
2

�i ; (229)

where � D 2
p
�c2((˛(x; t)ˇ(t) � r(t)) � C1) and the rest

of the parameters are the same as with Case 1.

Remark 10 Wemay further generalize (194) as follows:

u D a0(X)

C

mX

iD0

P
r i1C���Cr inDi ar i1;:::;rni (X)
Gri1
1i (�1i(X)) : : :G

rni
ni (�ni(X))�P

l i1C���Cl inDi bl i1 ;:::;lni (X)

Gli1
1i (�1i (X)) : : :G

lni
ni (�ni(X))C ci (X)

i�

;

(230)

where
P

l i1C���Cl inDi b
2
l i1 ;:::;lni (X)C c2i (X) ¤ 0, a0(X),

�1i(X); : : :, �ni(X), ari1;:::;rni (X), bli1;:::;lni (X) and ci (X);
i D 0; 1; 2; : : : ;m are all differentiable functions to
be determined later, � is a constant, G1i(�1i (X)); : : :,
Gni (�ni(X)) are all �(�ki(X)) or ��1(�ki(X)) or some
derivatives �( j)(�ki(X)); k D 1; 2; : : : ; n;i D 0; 1; 2; : : : ;
m; j D ˙1;˙2; : : :. We can get many new explicit solu-
tions of Eq. (191).

A New Exp-N Solitary-LikeMethod
and Its Application in the (1 + 1)-Dimensional
Generalized KdV Equation

In this section, in order to develop the Exp-function
method [31], we present two new generic transformations,
a new Exp-N solitary-like method, and its algorithm [40,
47]. In addition, we apply our method to construct new
exact solutions of the (1C 1)-dimensional classical gener-
alized KdV(gKdV) equation.

Summary of the Exp-N Solitary-Like Method

In the following we would like to outline the main steps of
our Exp-N solitary-like method [40,47]:

Step 1. For a given NLEE system with some physical
fields um(t; x1; x2; : : : ; xn�1), (m D 1; 2; : : : ; n) in n inde-
pendent variables t; x1; x2; : : : ; xn�1,

Fm(u1; u2; : : : ; un ; u1;t ; u2;t ; : : : ; un;t ;
u1;x1 ; u2;x1 ; : : : ; un;x1 ; u1;t t ; u2;t t ; : : : ; un;t t ; : : :) D 0;

(m D 1; 2; : : : ; n) : (231)

We introduce a new generic transformation

8
<̂

:̂

um(t; x1; : : : ; xn�1) D um(�1; �2) (m D 1; 2; : : : ; n) ;
� j D p0 j(t)C
Pn�1

iD1 pi j(t; x1; x2; : : : ; xi�1) � qi j(xi) ;
j D 1; 2 ;

(232)

where we let p1 j(t; x0) D p1 j(t), here pi j(t; x1; x2; : : : ;
xi�1); qi j(xi ), j D 1; 2; i D 1; 2; : : : ; n � 1 and p0 j(t)
are functions to be determined later. Then the non-
linear partial differentials of Eq. (231) are reduced to
a nonlinear partial differential equation with respect
to � j; j D 1; 2; pi j(t; x1; x2; : : : ; xi�1); qi j(xi); j D 1; 2;
i D 1; 2; : : : ; n � 1 and p0 j(t).

Step 2. Let X D (t; x1; : : : ; xn�1). Then we introduce
a new transformation in terms of Exp-function rational
formal expansion in the following form based on the idea
of the Exp-function method [41] by the new generic trans-
formation (232).

um(�1; �2) D gm(X)C

Pd
jD�c am j(X)exp( j�1)

Pq
kD�p bmk (X)exp(k�2)

;

(m D 1; 2; : : : ; n) ; (233)

where c; d; p and q are any positive integers, �1; �2; gm(X);
amj(X); j D �c; : : : ; d, and bmk(X); k D �p; : : : ; q;m D
1; 2; : : : ; n are functions to be determined later.

Step 3. We take a numerical value of c; d; p and
q, substitute (233) into the partial differential equa-
tions obtained in Step 1, and then set all coefficients
of exp(k�); k D 0; 1; 2; : : : to zero to get an over-deter-
mined partial differential equation with respect to gm(X);
amj(X); j D �c; : : : ; d, bmk (X); k D �p; : : : ; q; m D 1;
2; : : : ; n, pi j(t; x1; x2; : : : ; xi�1); qi j(xi ); j D 1; 2; i D 1;
2; : : : ; n � 1 and p0 j(t).
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Step 4. Solving the over-determined partial differen-
tial equations in Step 3 by use of Maple, we would
end up with explicit expressions for gm(X); amj(X); j D
�c; : : : ; d, bmk(X); k D �p; : : : ; q; m D 1; 2; : : : ; n,
pi j(t; x1; x2; : : : ; xi�1); qi j(xi ); j D 1; 2; i D 1; 2; : : : ;
n � 1 and p0 j(t).

Step 5. Substituting the results obtained in Step 4
into (232) and (233), we can then obtain new rational so-
lutions of Exp-functions as follows

um(X) D gm(X)C
Pd

jD�c am j(X) exp

j


p01(t)C

Pn�1
iD1 pi1(t; x1; x2; : : : ; xi�1) � qi1(xi )

��

Pq
kD�p bmk (X) exp

k


p02(t)C

Pn�1
iD1 pi2(t; x1; x2; : : : ; xi�1) � qi2(xi )

��
;

(m D 1; 2; : : : ; n) (234)

Step 6. If we again take a numerical value of c; d; p and
q and repeat Step 3, Step 4, and Step 5, then we can obtain
other rational solutions of Exp-functions Eq. (231). Now,
repeat the process. We can obtain a family of new N soli-
tary-like solutions of Eq. (231).

Remark 11 The new transformations (232) and (233) pro-
posed here are more general than the transformation in
the Exp-function method [31]. We have obtained many
families of non-traveling waves solutions and traveling
waves solutions of the (2C 1)-dimensional generalized
KdV–Burgers equation by using the two transformations
in [40,47].

Remark 12 Ourmethods aremore powerful, simpler, and
more convenient than the Exp-function method [31]. The
Exp-function method [31] is used only to obtain a travel-
ing waves solution of lower dimensional NLPDE because
it makes use of the homogeneous balance method. In this
paper we improve the method to be more powerful such
that it can be used to obtain many families of non-travel-
ing waves solutions and travelingwaves solutions of higher
dimensional NLPDEs because we don’t use the homoge-
neous balance method and make use of our transforma-
tions (232) and (233).

The Application of the Exp-N Solitary-Like Method
in the (1 + 1)-Dimensional Generalized KdV Equation

In this section, we will present a new transformation,
and then make use of the transformation and our
method via symbolic computation to find the solutions of

the (1C 1)-dimensional classical generalized Korteweg–
de Vries (gKdV) equation.

The (1C 1)-dimensional gKdV equation has the fol-
lowing form [7,8,9]:

ut(x; t)C ˛up(x; t)ux (x; t)C ˇuxxx (x; t) D 0 ; (235)

where the coefficient of the nonlinear term ˛ and the coef-
ficient of the dispersive term ˇ are independent of x and t.

According to the above steps, to seek traveling wave
solutions of Eq. (235), we present the following new trans-
formation here. When p � 2

u(x; t) D f
2
p (x; t) : (236)

By substituting (236) into Eq. (235), we get the following
equation:

p2 f 2(x; t) ft(x; t)C ˛p2 f 4(x; t) fx (x; t)

C 4ˇ f 3x (x; t)C 6pˇ f (x; t) fx (x; t) fxx (x; t)

� 6pˇ f 3x (x; t)C ˇp
2 fxxx (x; t) f 2(x; t)

� 3ˇp2 f (x; t) fx(x; t) fxx (x; t)C 2ˇp2 f 3x (x; t) D 0 :
(237)

We introduce a new generic transformation [40,47]

f (x; t) D g C
Pm2

iD�m1
kiei(˛1xCˇ1 tC�1)

Pn2
jD�n1 hje j(˛2xCˇ2 tC�2)

; (238)

where m1;m2; n1; n2 are any positive integers, g, ˛1; ˇ1,
˛2; ˇ2; �1; �2, ki ; i D �m1; : : : ;m2, and hj; j D �n1; : : : ;
n2 are all constants to be determined later.

With the aid of Maple, substituting (238) into (237)
and setting � D ˛1x C ˇ1t C �1; � D ˛2x C ˇ2t C �2,
yields the following equation (because the equation is so
long, just part of the equation is shown here for simplifi-
cation)

˛p2

Pm2

iD�m1
kiei�

�4
˛1
Pm2

iD�m1
ki iei�

Pn2
jD�n1 hje j�

� p2

Pn2

jD�n1 hje j�
�4Pm2

iD�m1
kiei�ˇ2

Pn2
jD�n1 hj je j�ˇ p2g2

C ˛1
3Pm2

iD�m1
ki i3ei�


Pn2
jD�n1 hje j�

�5
g2

� ˇ p2
Pm2

iD�m1
kiei�˛23

Pn2
jD�n1 hj j3e j�


Pn2
jD�n1 hje j�

�4
g2

C ˛ p2g4

Pn2

jD�n1 hje j�
�5
˛1
Pm2

iD�m1
ki iei�

C 6ˇ p˛13
Pm2

iD�m1
ki iei�


Pn2
jD�n1 hje j�

�4

Pm2
iD�m1

ki i2ei� g
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C 6ˇ p

Pm2

iD�m1
kiei�

�2
˛2

3Pn2
jD�n1 hj je j�

Pn2
jD�n1 hj j2e j�


Pn2
jD�n1 hje j�

�2
g

� 12ˇ p

Pm2

iD�m1
kiei�

�2
˛2

3

Pn2

jD�n1 hj je j�
�3

g
Pn2

jD�n1 hje j�

C 12ˇ ˛1
Pm2

iD�m1
ki iei�

Pn2
jD�n1 hje j�


Pm2
iD�m1

kiei�
�2
˛2

2

Pn2

jD�n1 hj je j�
�2

� 12ˇ ˛12

Pm2

iD�m1
ki iei�

�2 
Pn2
jD�n1 hje j�

�2

Pm2
iD�m1

kiei�˛2
Pn2

jD�n1 hj je j�

C 4˛ p2g

Pn2

jD�n1 hje j�
�2 
Pm2

iD�m1
kiei�

�3
˛1

Pm2
iD�m1

ki iei�

� 4˛ p2g3

Pn2

jD�n1 hje j�
�3 
Pm2

iD�m1
kiei�

�2
˛2

Pn2
jD�n1 hj je j�

C 6˛ p2g2

Pn2

jD�n1 hje j�
�3 
Pm2

iD�m1
kiei�

�2
˛1

Pm2
iD�m1

ki iei�

� 2 p2

Pn2

jD�n1 hje j�
�3 
Pm2

iD�m1
kiei�

�2
ˇ2

Pn2
jD�n1 hj je j� g

� 3ˇ p2˛13
Pm2

iD�m1
ki iei�


Pn2
jD�n1 hje j�

�4

Pm2
iD�m1

ki i2ei� g

� 4˛ p2g
Pn2

jD�n1 hje j�

Pm2

iD�m1
kiei�

�4

˛2
Pn2

jD�n1 hj je j�

C 2ˇ p2˛13
Pm2

iD�m1
ki i3ei�


Pn2
jD�n1 hje j�

�4

g
Pm2

iD�m1
kiei�

� 6ˇ p2
Pm2

iD�m1
kiei�˛23


Pn2
jD�n1 hj je j�

�3

g2

Pn2

jD�n1 hje j�
�2

C 3ˇ p2

Pm2

iD�m1
kiei�

�3
˛2

3Pn2
jD�n1 hj je j�

Pn2
jD�n1 hj j2e j�

Pn2
jD�n1 hje j�

C 6ˇ p

Pm2

iD�m1
kiei�

�3
˛2

3Pn2
jD�n1 hj je j�

Pn2
jD�n1 hj j2e j�

Pn2
jD�n1 hje j�

C 6ˇ p2˛1
Pm2

iD�m1
ki iei�˛22


Pn2
jD�n1 hj je j�

�2


Pn2
jD�n1 hje j�

�3
g2

� 3ˇ p2˛1
Pm2

iD�m1
ki iei�˛22

Pn2
jD�n1 hj j2e j�


Pn2
jD�n1 hje j�

�4
g2

C 6ˇ p˛13
Pm2

iD�m1
ki iei�


Pn2
jD�n1 hje j�

�3

Pm2
iD�m1

ki i2ei�
Pm2

iD�m1
kiei�

� 6ˇ p˛13

Pm2

iD�m1
ki iei�

�3 
Pn2
jD�n1 hje j�

�3

� 2ˇ p2

Pm2

iD�m1
kiei�

�3
˛2

3

Pn2

jD�n1 hj je j�
�3

� 6ˇ p

Pm2

iD�m1
kiei�

�3
˛2

3

Pn2

jD�n1 hj je j�
�3

C 2ˇ p2˛13

Pm2

iD�m1
ki iei�

�3 
Pn2
jD�n1 hje j�

�3

� 6˛ p2g2

Pn2

jD�n1 hje j�
�2 
Pm2

iD�m1
kiei�

�3

˛2
Pn2

jD�n1 hj je j� C

6ˇ p˛12

Pm2

iD�m1
ki iei�

�2 
Pn2
jD�n1 hje j�

�2

Pm2
iD�m1

kiei�˛2
Pn2

jD�n1 hj je j�

C 9ˇ p2

Pm2

iD�m1
kiei�

�2
˛2

3Pn2
jD�n1 hj je j�

Pn2
jD�n1 hj j2e j�


Pn2
jD�n1 hje j�

�2
g

� 6ˇ p

Pm2

iD�m1
kiei�

�2
˛2
Pn2

jD�n1 hj je j�

˛1
2Pm2

iD�m1
ki i2ei�


Pn2
jD�n1 hje j�

�2

C 6ˇ p2˛12

Pm2

iD�m1
ki iei�

�2 
Pn2
jD�n1 hje j�

�3

˛2
Pn2

jD�n1 hj je j� g

� 6ˇ p˛1
Pm2

iD�m1
ki iei�


Pn2
jD�n1 hje j�

�2


Pm2
iD�m1

kiei�
�2
˛2

2Pn2
jD�n1 hj j2e j�

C 6ˇ p˛1
Pm2

iD�m1
ki iei�

Pn2
jD�n1 hje j�


Pm2
iD�m1

kiei�
�2
˛2

2

Pn2

jD�n1 hj je j�
�2

� 2ˇ p2

Pm2

iD�m1
kiei�

�2
˛2

3Pn2
jD�n1 hj j3e j�


Pn2
jD�n1 hje j�

�3
g

C 4˛ p2g3

Pn2

jD�n1 hje j�
�4Pm2

iD�m1
kiei�

˛1
Pm2

iD�m1
ki iei�

C 2 p2

Pn2

jD�n1 hje j�
�4
ˇ1
Pm2

iD�m1
ki iei�

g
Pm2

iD�m1
kiei�

� 6ˇ p˛1
Pm2

iD�m1
ki iei�


Pn2
jD�n1 hje j�

�3

Pm2
iD�m1

kiei�˛22
Pn2

jD�n1 hj j2e j� g

� 6ˇ p2

Pm2

iD�m1
kiei�

�2
˛2

3

Pn2

jD�n1 hj je j�
�3

g
Pn2

jD�n1 hje j�

� 3ˇ p2˛13
Pm2

iD�m1
ki iei�


Pn2
jD�n1 hje j�

�3

Pm2
iD�m1

ki i2ei�
Pm2

iD�m1
kiei�

� 3ˇ p2˛1
Pm2

iD�m1
ki iei�


Pn2
jD�n1 hje j�

�3

Pm2
iD�m1

kiei�˛22
Pn2

jD�n1 hj j2e j� g

C 24ˇ p˛1
Pm2

iD�m1
ki iei�


Pn2
jD�n1 hje j�

�2

Pm2
iD�m1

kiei�˛22

Pn2

jD�n1 hj je j�
�2

g

� 6ˇ p
Pm2

iD�m1
kiei�˛2

Pn2
jD�n1 hj je j�˛12
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Pm2
iD�m1

ki i2ei�

Pn2

jD�n1 hje j�
�3

g

� 3ˇ p2
Pm2

iD�m1
kiei�˛2

Pn2
jD�n1 hj je j�˛12

Pm2
iD�m1

ki i2ei�

Pn2

jD�n1 hje j�
�3

g

� 3ˇ p2˛12
Pm2

iD�m1
ki i2ei�˛2

Pn2
jD�n1 hj je j�


Pn2
jD�n1 hje j�

�4
g2

� 12ˇ p˛12

Pm2

iD�m1
ki iei�

�2 
Pn2
jD�n1 hje j�

�3

˛2
Pn2

jD�n1 hj je j� g
C 6ˇ p2

Pm2
iD�m1

kiei�˛23
Pn2

jD�n1 hj je j�
Pn2

jD�n1 hj j2e j�

Pn2

jD�n1 hje j�
�3

g2

C p2

Pn2

jD�n1 hje j�
�3
ˇ1
Pm2

iD�m1
ki iei�


Pm2
iD�m1

kiei�
�2

C ˇ p2˛13
Pm2

iD�m1
ki i3ei�


Pn2
jD�n1 hje j�

�3


Pm2
iD�m1

kiei�
�2

� ˇ p2

Pm2

iD�m1
kiei�

�3
˛2

3Pn2
jD�n1 hj j3e j�


Pn2
jD�n1 hj e j�

�2

� 4ˇ

Pm2

iD�m1
kiei�

�3
˛2

3

Pn2

jD�n1 hj je j�
�3

C 4ˇ ˛13

Pm2

iD�m1
ki iei�

�3 
Pn2
jD�n1 hje j�

�3

� p2

Pn2

jD�n1 hje j�
�2 
Pm2

iD�m1
kiei�

�3

ˇ2
Pn2

jD�n1 hj je j�

� ˛ p2

Pm2

iD�m1
kiei�

�5
˛2
Pn2

jD�n1 hj je j� C p2

0

@
n2X

jD�n1

hje j�

1

A

5

ˇ1

m2X

iD�m1

ki iei� g2

� ˛p2g4
0

@
n2X

jD�n1

hje j�

1

A

4
m2X

iD�m1

kiei�˛2
n2X

jD�n1

hj je j�

D 0 : (239)

wherem1;m2; n1; n2 are all any positive integers which we
may take arbitrarily.

For example, we can take n2 D 2;m2 D 2;n1 D 1;
m1 D 1 and substitute them into (239), and then set
all coefficients of exp(k�) and exp( j�); j; k D 0; 1; 2; : : :
to zero to get an over-determined equation with re-
spect to h�1; h0; h1; h2; k0; k1; k2; k�1; ˛1; ˇ1; ˛2; ˇ2 and
g. Solving the over-determined equations by use of
Maple, we obtain the following solutions of h�1;
h0; h1; h2; k0; k1; k2; k�1; ˛1; ˇ1; ˛2; ˇ2 and g:

Case 1.

ˇ2 D �
4ˇ˛23

p2
; h1 D

p2˛k02

8˛22ˇh�1(3pC 2C p2)
;

k�1 D 0 ; g D 0 ; �2 D �2 ; ˛2 D ˛2 ;

k0 D k0 ; ˛1 D ˛1 ; ˇ1 D ˇ1 ; �1 D �1 ;

h�1 D h�1 ; h0 D 0 ; k2 D 0 ; k1 D 0 ;
h2 D 0 ; (240)

where ˛; ˇ; ˛2; �2; ˛2; k0; ˛1; ˇ1; �1 and k0 are any con-
stants.

Case 2.

�2 D �2 ; k0 D k0 ; ˛1 D ˛1 ; ˇ1 D ˇ1 ;

�1 D �1 ; k2 D k2 ; k1 D k1 ; h�1 D 0 ;
ˇ2 D ˇ2 ; ˛2 D ˛2 ; k�1 D k�1 ; h2 D 0 ;

h0 D 0 ; h1 D 0 ; g D g ; (241)

where ˛; ˇ; �2; k0; ˛1; ˇ1; �1; k2; k1; ˇ2; ˛2; k�1 and g are
any constants.

Case 3.

˛2 D �2˛1 ; ˇ2 D �2ˇ1 ; �2 D �2 ; ˛1 D ˛1 ;

ˇ1 D ˇ1 ; �1 D �1 ; h�1 D h�1 ; h0 D 0 ;
k1 D 0 ; h2 D 0 ; k�1 D 0 ; k0 D 0 ;

h1 D 0 ; k2 D k2; g D g ; (242)

where ˛; ˇ; ˛1; ˇ1; �2; ˇ1; �1; h�1; k2 and g are any con-
stants.

Case 4.

�2 D �2 ; ˛2 D ˛2 ; ˛1 D ˛1 ; ˇ1 D ˇ1 ;

�1 D �1 ; h�1 D h�1 ; k2 D 0 ; k1 D 0 ;
k�1 D 0 ; ˇ2 D ˇ2 ; h1 D h1 ; h2 D h2 ;

h0 D h0 ; k0 D 0 ; g D g ; (243)

where �2; ˛2; ˛1; ˇ1; �1; h�1; ˇ2; h1; h2 and g are any con-
stants.

Case 5.

�2 D �2; k0 D k0; ˛1 D ˛1 ; ˇ1 D ˇ1 ;

�1 D �1 ; h�1 D h�1 ; k2 D 0 ; k1 D 0 ;
k�1 D 0 ; h1 D h1 ; h2 D h2 ; h0 D h0 ;

˛2 D 0; ˇ2 D 0 ; g D g ; (244)

where ˛; ˇ; �2; k0; ˛1; ˇ1; �1; h�1; h1; h2; h0 and g are any
constants.
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Case 6.

ˇ2 D �ˇ1 ; ˛2 D �˛1 ; �2 D �2 ; ˛1 D ˛1 ;

ˇ1 D ˇ1 ; �1 D �1 ; h�1 D h�1 ; h0 D 0 ;
k2 D 0 ; h2 D 0 ; k�1 D 0 ; k0 D 0 ;

h1 D 0 ; g D g ; k1 D k1 ; (245)

where ˛; ˇ; ˇ1; ˛1; �2; �1; h�1; g and k1 are any constants.

Case 7.

�2 D �2 ; �1 D �1 ; h�1 D h�1 ; k2 D 0 ;
k1 D 0 ; ˇ2 D ˇ2 ; ˛2 D ˛2 ; k�1 D k�1 ;
ˇ1 D ˇ2 ; h2 D 0 ; h0 D 0 ; h1 D 0 ;

˛1 D ˛2 ; k0 D 0 ; g D g ; (246)

where ˛; ˇ; �2; �1; h�1; ˇ2; ˛2; k�1; ˛1 and g are any con-
stants.

Case 8.

�2 D �2 ; k0 D k0 ; �1 D �1 ; h0 D h0 ;
ˇ1 D 0 ; ˛1 D 0 ; k2 D k2 ; k1 D k1 ;
h�1 D 0 ; ˇ2 D ˇ2 ; ˛2 D ˛2 ; k�1 D k�1 ;

h2 D 0 ; h1 D 0 ; g D g ; (247)

where ˛; ˇ; �2; k0; �1; h0; k2; k1; ˇ2; ˛2; k�1 and g are any
constants.

Case 9.

�2 D �2 ; �1 D �1 ; k2 D 0 ; k1 D 0 ;
˛1 D �˛2 ; ˇ1 D �ˇ2 ; g D 0 ; h1 D h1 ;
h�1 D 0 ; ˇ2 D ˇ2 ; ˛2 D ˛2 ; k�1 D k�1 ;

h2 D 0 ; h0 D 0 ; k0 D 0 ; (248)

where ˛; ˇ; �2; �1; ˛2; ˇ2; h1; ˇ2; ˛2 and k�1 are any con-
stants.

Case 10.

�2 D �2; ˇ1 D ˇ1; �1 D �1 ; k2 D 0 ;
k1 D 0 ; ˛1 D �˛2; h1 D h1; ˇ2 D �ˇ1 ;
h�1 D 0 ; ˛2 D ˛2 ; k�1 D k�1; h2 D 0 ;

h0 D 0; k0 D 0; g D g ; (249)

where ˛; ˇ; �2; ˇ1; �1; ˛2; h1; k�1 and g are any constants.

Case 11.

ˇ1 D
1
2
ˇ2 ; �2 D �2 ; �1 D �1 ; k1 D 0 ;

k�1 D 0 ; h1 D h1 ; ˛2 D 0 ; ˛1 D 0 ;
k2 D k2 ; h�1 D 0 ; ˇ2 D ˇ2 ; h2 D 0 ;

h0 D 0 ; k0 D 0 ; g D g ; (250)

where ˇ1 D 1
2ˇ2; ˛; ˇ; �2; �1; h1; k2; ˇ2 and g are any con-

stants.

Case 12.

ˇ2 D 2ˇ1 ; ˛1 D
1
2
˛2 ; �2 D �2 ; �1 D �1 ;

k1 D 0 ; k�1 D 0 ; h1 D h1 ; ˛2 D ˛2 ;

ˇ1 D ˇ1 ; k2 D k2 ; h�1 D 0 ; h2 D 0 ;
h0 D 0 ; k0 D 0 ; g D g ; (251)

where ˛; ˇ; �2; �1; h1; ˛2; ˇ1; k2 and g are any constants.

Case 13.

ˇ1 D �2ˇ2 ; h1 D 0 ; k2 D 0 ; ˛2 D �1/2˛1 ;
g D 0 ; h2 D h2 ; k�1 D k�1 ; ˛1 D ˛1 ;

�2 D �2 ; �1 D �1 ; k1 D 0 ; h�1 D 0 ;
ˇ2 D ˇ2 ; h0 D 0 ; k0 D 0 ; (252)

where ˛; ˇ; ˇ2; ˛1; h2; �2; �1; ˇ2 and k�1 are any con-
stants.

Case 14.

˛1 D 2˛2 ; ˇ1 D 2ˇ2 ; ˛2 D ˛2 ; h1 D 0 ;
k2 D 0; h2 D h2 ; �2 D �2 ; �1 D �1 ;

k�1 D 0 ; k1 D k1 ; h�1 D 0 ; ˇ2 D ˇ2 ;

h0 D 0 ; k0 D 0 ; g D g ; (253)

where ˛; ˇ; ˛2; ˇ2; h2; �2; �1; k1; ˇ2 and g are any con-
stants.

Case 15.

ˇ1 D �2ˇ2 ; h1 D 0 ; k2 D 0 ; ˛2 D �1/2˛1 ;
g D 0 ; h2 D h2 ; k�1 D k�1 ; ˛1 D ˛1 ;

�2 D �2 ; �1 D �1 ; k1 D 0 ; h�1 D 0 ;
ˇ2 D ˇ2 ; h0 D 0 ; k0 D 0 ; (254)

where ˛; ˇ; ˇ2; ˛1; h2; ˛1; �2; �1; ˇ2 and k�1 are any con-
stants.
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Case 16.

ˇ1 D 2ˇ2 ; h1 D 0 ; k2 D 0 ; h2 D h2 ;
�2 D �2 ; �1 D �1 ; k�1 D 0 ; k1 D k1 ;
˛1 D 2˛2 ; ˛2 D ˛2 ; h�1 D 0 ; ˇ2 D ˇ2 ;

h0 D 0 ; k0 D 0 ; g D g ; (255)

where ˛; ˇ; ˇ2; �2; �1; k1; ˛2; ˇ2 and g are any constants.

Case 17.

˛1 D �2˛2 ; h1 D 0 ; k2 D 0 ; h2 D h2 ;
�2 D �2 ; �1 D �1 ; ˛2 D ˛2 ; ˇ1 D �2ˇ2 ;
k�1 D k�1 ; k1 D 0 ; h�1 D 0 ; ˇ2 D ˇ2 ;

h0 D 0 ; k0 D 0 ; g D g ; (256)

where ˛; ˇ; ˛2; h2; �2; �1; ˇ2; k�1; ˇ2 and g are any con-
stants.

Case 18.

h2 D h2 ; �2 D �2 ; �1 D �1 ; h1 D 0 ;
k�1 D 0 ; ˛2 D ˛2 ; ˛1 D ˛2 ; k2 D k2 ;
ˇ1 D ˇ2 ; k1 D 0 ; h�1 D 0 ; ˇ2 D ˇ2 ;

h0 D 0 ; k0 D 0 ; g D g ; (257)

where ˛; ˇ; h2; �2; �1; ˛2; k2; ˇ2 and g are any constants.

Case 19.

h1 D 0 ; k0 D k0 ; h0 D h0 ; h2 D 0 ;
ˇ1 D 0 ; ˛1 D 0 ; �2 D �2 ; �1 D �1 ;

k1 D k1 ; ˛2 D ˛2 ; k2 D k2 ; k�1 D k�1 ;
h�1 D 0 ; ˇ2 D ˇ2 ; g D g ; (258)

where ˛; ˇ; k0; h0; �2; �1; k1; ˛2; k2; k�1; ˇ2 and g are any
constants.

Substituting (240)–(258) into (236) and (238), respec-
tively, we can obtain the exact solutions of Eq. (235).

u(x; t) D

2/p

vuu
uuu
ut

g C

k0 C 2 coshk1;k�1;1(˛1x C ˇ1t C �1)
Ck2e2(˛1xCˇ1 tC�1)

h0 C 2 coshh1;h�1;1(˛2x C ˇ2t C �2)
Ch2e2(˛2xCˇ2 tC�2)

;

(259)

where coshk1;k�1;1(˛1x C ˇ1t C �1) and coshh1;h�1;1(˛2x
C ˇ2t C �2) are all the generalized hyperbolic cosine

functions, here ki ; hi ; i D 0;˙1; 2;˛ j; ˇ j; � j; j D 1; 2 and
g satisfy (240)–(258), respectively.

For example, if we substitute (240) into (236) and
(238), we obtain the following solutions of Eq. (235).

u1(x; t) D 2/p

vu
ut

k0 C 2 cosh0;0;1(˛1x C ˇ1t C �1)

2 coshh1;h�1;1(˛2x � 4ˇ˛2
3 t

p2 C �2)
;

(260)

where cosh0;0;1(˛1x C ˇ1t C �1) and coshh1;h�1;1(˛2x �
4(ˇ˛23t)/p2C�2) are all the generalized hyperbolic cosine
function, here h1 D (p2˛k02)/(8˛22ˇh�1(3pC 2C p2)),
and ˛; ˇ; ˛2; �2; ˛2; k0; ˛1; ˇ1; �1; k0 are any constants.

Remark 13 When m1;m2; n1; n2 D 1; 2; : : :, we can ob-
tain a family of N solitary-like solutions of Eq. (235).

In summary, we suggest two new generic transforma-
tions, a new Exp–N solitary-like method and its algorithm,
to find new non-traveling waves solutions and traveling
waves solutions of higher dimensional NLPDEs by our
transformations. The suggested method is more power-
ful than the method proposed by Dr. He [31] to seek
more exact solutions of higher dimensional NLPDEs. The
(1C 1)-dimensional generalized KdV equation is chosen
to illustrate our algorithm such that new exact solutions
are found.

The Exp-Bäcklund TransformationMethod and Its
Application in (1+ 1)-Dimensional KdV Equation

In this section, a new method and its algorithm, which
is called Exp-Bäcklund transformation method, is pre-
sented to find more exact solutions of NLPDEs based on
the idea of the Exp-function method [31]. We choose the
(1C 1)-dimensional KdV equations to illustrate the effec-
tiveness and convenience of our algorithm. As a result,
many new solutions are obtained.

Summary of the Exp-Bäcklund Transformation
Method
In the following we would like to outline the main steps of
our method:

Step 1. For a given NLEEs, with ui (t; x1; x2; : : : ; xn�1)
(i D 1; 2; : : : ; n) in n independent variables t; x1; x2; : : : ;
xn�1,

Fj(u1; : : : ; un ; u1;t ; : : : ; un;t ; u1;x1 ; : : : ; un;xn�1 ;
u1;t t; : : : ; un;t t ; u1;tx1 ; : : : un;txn�1 ; : : :) D 0 ; (261)

where j D 1; 2; : : : ; n.
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We obtain an auto-Bäcklund transformation of
Eqs. (261) using our method of constructing auto-
Bäcklund transformation (if it exist)

ui (t; x1; : : : ; xn�1)

D

miX

jD0

ui j(t; x1; : : : ; xn�1) f j�mi (t; x1; : : : ; xn�1) ;

i D 1; 2; : : : ; n : (262)

where ui j(t; x1; : : : ; xn�1); i D 1; 2; : : : ; n; j D 0; 1; 2;
: : : ;mi � 1 are differentiable functions which have al-
ready been obtained. But f (t; x1; : : : ; xn�1) are any differ-
entiable functions, ui;mi ; i D 1; 2; : : : ; n are the seed so-
lutions of Eq. (261), and mi ; i D 1; 2; : : : ; n are positive
integers which have already been obtained.

Step 2. Substituting (262) into Eq. (261), and setting the
coefficients of these terms 1/( f k(t; x; y)); k D 0; 1; 2; : : :
to zero yields a set of over-determined partial differential
equations with respect to f (t; x; y), ui;mi ; i D 1; 2; : : : ; n.

Step 3. We consider the variable in the form

�i D pi0(t)C
n�1X

kD1

pik(t; x1; : : : ; xk�1) � xk ; i D 1; 2

(263)

and make the transformation

f (t; x1; : : : ; xn�1) D f (�1; �2) : (264)

Then we express the f (t; x1; : : : ; xn�1) in (262) and (264)
to be the following forms

f (�1; �2) D
Pd

nD�c anexp(n�1)Pq
mD�p bm exp(m�2)

; (265)

where
Pn�1

kD0 pk ¤ 0, c; d; p and q are any posi-
tive integers, an ; n D �c; : : : ; d, bm ;m D �p; : : : ; q, and
pik ; k D 0; 1; 2; : : : ; n � 1are functions or constants to be
determined later.

Step 4. If we substitute (262)–(265) into the over-deter-
mined partial differential equations in Step 2 and yield
a set of over-determined partial differential equations
with respect to exp(k�i); i D 1; 2; k D 0;˙1;˙2; : : :,
an ; n D �c; : : : ; d, bm ;m D �p; : : : ; q, ui;mi ;i D 1;
2; : : : ; n, and pik ; k D 0; 1; 2; : : : ; n � 1. Then we col-

lect the coefficients of the polynomials with respect to
exp(k�i ); i D 1; 2; k D 0;˙1;˙2; : : : and set each coeffi-
cient to zero, we will get a system of over-determined par-
tial differential of an ; n D �c; : : : ; d, bm ;m D �p; : : : ; q,
and pik ; k D 0; 1; 2; : : : ; n � 1, ui;mi ; i D 1; 2; : : : ; n.

Step 5. We solve the over-determined partial dif-
ferential in Step 4 and obtain an ; n D �c; : : : ; d,
bm ;m D �p; : : : ; q, ui;mi ; i D 1; 2; : : : ; n, and pik ;k D
0; 1; 2; : : : ; n � 1.

Step 6. Substituting the results obtained in Step 5
into (262)–(265), then we can obtain a family of rational
solutions of Exp-functions as follows

ui (t; x1; : : : ; xn�1) D
miX

jD0

ui j(t; x1; : : : ; xn�1)

0

BBB
@

Pd
nD�c anexp(np10(t)

Cn
Pn�1

kD1 p1k(t; x1; : : : ; xk�1) � xk)Pq
mD�p bm exp(mp20(t)

Cm
Pn�1

kD1 p2k(t; x1; : : : ; xk�1) � xk)

1

CCC
A

j�mi

;

i D 1; 2; : : : ; n ; (266)

where c; d; p and q are any positive integers.

The Application of the Exp-Bäcklund Transformation
Method in (1 + 1)-Dimensional KdV Equation

In this section, we will make use of our Exp-Bäcklund
transformation method [40,46] and symbolic computa-
tion to find the exact solutions of the following (1C 1)-di-
mensional KdV equation [1,2,3,4]

ut(x; t)C ˛u(x; t)ux (x; t)C ˇuxxx (x; t) D 0 ; (267)

where the coefficient of the nonlinear term ˛ and the coef-
ficient of the dispersive term ˇ is independent of x and t.

Set the auto-Bäcklund transformation of Eq. (267) to
have the following form:

u(x; t) D
mX

j1D0

uj(x; t) f j�m(x; t) ; (268)

where f (x; t) and uj(x; t); j D 0; 1; 2; : : : ;m � 1 are all
differential functions to be determined later, and um (x; t)
is the trivial seed solution of Eq. (267).

By balancing the highest order linear term and non-
linear terms in Eq. (267), we get m D 2 and (268) has the
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following formal

u(x; t) D u0(x; t) f�2(x; t)Cu1(x; t) f�1(x; t)Cu2(x; t);
(269)

We take the trivial seed solution as

u2 D u2(x; t) : (270)

With the aid of Maple symbolic computation software,
substituting (269) and (270) into (267), and collecting all
terms with f�i(x; t); i D 0; 1; 2; : : :, we obtain

[�2˛u20(x; t) fx (x; t) � 24ˇu0(x; t) f 3(x; t)]
1
f 5

C f�ˇ[�18u0(x; t) fx (x; t) fxx (x; t) � 18u0x (x; t) f 2x (x; t)

C 6u1(x; t) f 3x (x; t)]
C ˛u0(x; t)[u0x (x; t) � u1(x; t) fx (x; t)]

� 2˛u1(x; t)u0(x; t) fx (x; t)g
1
f 4

C f�ˇ[�6u1(x; t) fx (x; t) fxx (x; t)
C 6u0xx (x; t) fx (x; t)C 2u0(x; t) fxxx (x; t)

C 6u0x (x; t) fxx (x; t) � 6u1x (x; t) f 2x (x; t)]
� 2u0(x; t) ft(x; t)C ˛u0(x; t)u1x (x; t)
C ˛u1(x; t)[u0x (x; t) � u1(x; t) fx (x; t)]

� 2˛u2(x; t)u0(x; t) fx (x; t)g
1
f 3

C f�ˇ[�u0xxx (x; t)C 3u1x (x; t) fxx (x; t)
C 3u1xx (x; t) fx (x; t)C u1(x; t) fxxx (x; t)]

C ˛u0(x; t)u2x (x; t)C ˛u1(x; t)u1x (x; t)
C ˛u2(x; t)[u0x (x; t) � u1(x; t) fx (x; t)]

C u0t(x; t) � u1(x; t) ft(x; t)g
1
f 2

C (u1t(x; t)C ˛u1(x; t)u2x (x; t)C ˛u2(x; t)u1x (x; t)

C ˇu1xxx (x; t))
1
f
C u2t(x; t)C ˛u2(x; t)u2x (x; t)

C ˇu2xxx (x; t) D 0 ;
(271)

Setting the coefficient of f�5 in (271) to be zero, we obtain
a differential equation

� 2˛u20(x; t) fx (x; t)� 24ˇu0(x; t) f 3(x; t) D 0 ; (272)

which has solution

u0(x; t) D �
12ˇ
˛

f 2x (x; t) : (273)

Setting the coefficient of f�4in (271) to be zero, we obtain
a differential equation

� ˇ[�18u0(x; t) fx (x; t) fxx (x; t)

� 18u0x (x; t) f 2x (x; t)C 6u1(x; t) f 3x (x; t)]
C ˛u0(x; t)[u0x (x; t) � u1(x; t) fx (x; t)]
� 2˛u1(x; t)u0(x; t) fx (x; t) D 0 ; (274)

we can get the following expressions:

u1(x; t) D
12ˇ
˛

fxx (x; t) : (275)

By (273), (275), (270) and (269), we obtain an auto-
Bäcklund transformation of Eq. (267) as follows

u(x; t) D �
12ˇ
˛

�
fxx (x; t)
f (x; t)

�
f 2x (x; t)
f 2(x; t)

�
Cu2(x; t) (276)

where u2(x; t) is a seed solution of Eq. (267), f (x; t) is any
function that satisfies Eq. (272), Eq. (274), and the follow-
ing equations

� ˇ[�6u1(x; t) fx (x; t) fxx (x; t)C 6u0xx (x; t) fx (x; t)
C 2u0(x; t) fxxx (x; t)C 6u0x (x; t) fxx (x; t)

� 6u1x (x; t) f 2x (x; t)]
� 2u0(x; t) ft(x; t)C ˛u0(x; t)u1x (x; t)
C ˛u1(x; t)[u0x (x; t) � u1(x; t) fx (x; t)]
� 2˛u2(x; t)u0(x; t) fx (x; t) D 0 ;

� ˇ[�u0xxx (x; t)C 3u1x (x; t) fxx (x; t)
C 3u1xx (x; t) fx (x; t)C u1(x; t) fxxx (x; t)]

C ˛u0(x; t)u2x (x; t)C ˛u1(x; t)u1x (x; t)
C ˛u2(x; t)[u0x (x; t) � u1(x; t) fx (x; t)]C u0t(x; t)
� u1(x; t) ft(x; t) D 0 ;

u1t(x; t)C ˛u1(x; t)u2x (x; t)
C ˛u2(x; t)u1x (x; t)C ˇu1xxx (x; t) D 0 :

(277)

We take f (x; t) to be of the following form

f (x; t) D
Pm2

iD�m1
ki(t)ei(p1(t)xCq1(t))

Pn2
jD�n1 hj(t)e j(p2(t)xCq2(t))

; (278)

where n1; n2;m1 and m2 are any positive integers,
pl (t); ql (t); l D 1; 2; ki(t); i D �m1; : : : ;m2 and hj(t);
j D �n1; : : : ; n2 are the coefficients to be determined
later.
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By substituting (278) into the given Eq. (277)
with (273) and (275), and then collecting the co-
efficients of the polynomials of ei(p1(t)xCq1(t)) and
e j(p2(t)xCq2(t)); i; j D 0; 1; 2; : : :, then setting each co-
efficient to zero, we will get a system of over-deter-
mined partial differential equations with respect to ki(t);
i D �m1; : : : ;m2; hj(t); j D �n1; : : : ; n2; pk(t); qk(t);
k D 1; 2 and u2(x; t). We solve the over-determined
partial differential equations and obtain many fam-
ilies of solutions of ki (t);i D �m1; : : : ;m2;hj(t);
j D �n1; : : : ; n2;pk(t); qk (t);k D 1; 2 and u2(x; t). Fi-
nally, substituting them into (276) with (278), we can
obtain the following solutions of Eq. (267)

u D

�

12ˇ


�
Pm2

iD�m1
ki (t)ip1(t)ei�1

Pn2
jD�n1 hj(t)e j�2

C
Pm2

iD�m1
ki (t)ei�1

Pn2
jD�n1 hj(t) jp2(t)e j�2

�2

˛

Pn2

jD�n1 hj(t)e j�2
�2 
Pm2

iD�m1
ki(t)ei�1

�2

�
12ˇp12(t)


Pm2
iD�m1

ki (t)iei�1
�2

˛

Pm2

iD�m1
ki (t)ei�1

�2

C
12ˇp12(t)

Pm2
iD�m1

ki (t)i2ei�1

˛
Pm2

iD�m1
ki (t)ei�1

C
12ˇp22(t)


Pn2
jD�n1 hj(t) je j�2

�2


Pn2
jD�n1 hj(t)e j�2

�2
˛

�
12ˇp22(t)

Pn2
jD�n1 hj(t) j2e j�2

Pn2
jD�n1 hj(t)e j�2˛

C u2(t) ;

(279)

where n1; n2;m1 and m2 are any positive integers, and
�1 D p1(t)x C q1(t) and �2 D p2(t)x C q2(t).

For example, when we take n1 D 1; n2 D 1;m1 D 1
and m2 D 1, substituting (278) into the given Eq. (277)
with (273) and (275), and then collecting the coefficients
of the polynomials of ei(p1(t)xCq1(t)) and e j(p2(t)xCq2(t)); i;
j D 0; 1; 2; : : :, then setting each coefficient to zero, we will
get a system of over-determined partial differential equa-
tions with respect to pl (t); ql (t); l D 1; 2; ki(t); i D �1;
0; 1 and hj(t), j D �1; 0; 1 as follows

� p2(t)k0(t)h41(t)k�1t(t)

� p2(t)k�1(t)h41(t)k0t(t)

C 4ˇp2(t)k0(t)h41(t)p
3
1(t)k�1(t)

C 2p2(t)k�1(t)h31(t)k0(t)h1t(t)

C p2(t)k0(t)h41(t)k�1(t)q1t(t)

C p1(t)k�1(t)h41(t)k0(t)q2t(t)

C 2u2(x; t)˛p1(t)k�1(t)h41(t)p2(t)k0(t)

C 2u2(x; t)˛p22(t)k�1(t)h
4
1(t)k0(t)

C 2p2(t)k�1(t)h41(t)k0(t)q2t(t)

C p1(t)k�1(t)h31(t)k0(t)h1t(t)

� p1(t)k�1(t)h41(t)k0t(t)

C 4ˇp1(t)k�1(t)h41(t)p2
3(t)k0(t)

C 2ˇp42(t)k�1(t)h
4
1(t)k0(t)

C 6ˇp22(t)k0(t)h
4
1(t)p

2
1(t)k�1(t) D 0 ;

p1(t)k1(t)h41(t)k0t(t) � 4ˇp2(t)k0(t)h41(t)p
3
1(t)k1(t)

� 4ˇp1(t)k1(t)h41(t)p
3
2(t)k0(t)

C 2p2(t)k0(t)h41(t)k1(t)q2t(t)C 2ˇp42(t)k1(t)h
4
1(t)k0(t)

C 2u2(x; t)˛p22(t)k0(t)h
4
1(t)k1(t)

� 2u2(x; t)˛p1(t)k1(t)h41(t)p2(t)k0(t)

� p2(t)k1(t)h41(t)k0t(t)C 6ˇp22 (t)k0(t)h41(t)p
2
1k1(t)

C 2p2(t)k0(t)h31(t)k1(t)h1t(t)

� p1(t)k1(t)h31(t)k0(t)h1t(t) � p2(t)k0(t)h41(t)k1(t)q1t(t)

� p2(t)k0(t)h41(t)k1t(t)

� p1(t)k1(t)h41(t)k0(t)q2t(t)4ˇp1(t)k1(t)h
4
�1(t)p

3
2(t)k0(t)

C p2(t)k0(t)h4�1(t)k1t(t)C p2(t)k0(t)h4�1(t)k1(t)q1t(t)

C 2p2(t)k0(t)h4�1(t)k1(t)q2t(t)

C p1(t)k1(t)h4�1(t)k0(t)q2t(t)

C 6ˇp22(t)k0(t)h
4
�1(t)p

2
1(t)k1(t)

C 2u2(x; t)˛p1(t)k1(t)h4�1(t)p2(t)k0(t)

� p1(t)k1(t)h3�1(t)k0(t)h�1t(t)

C 2u2(x; t)˛p22(t)k0(t)h
4
�1(t)k1(t)

� 2p2(t)k0(t)h3�1(t)k1(t)h�1t(t)

C 2ˇp42(t)k1(t)h
4
�1(t)k0(t)

C 4ˇp2(t)k0(t)h4�1(t)p
3
1k1(t)C p1(t)k1(t)h4�1(t)k0t(t)

C p2(t)k1(t)h4�1(t)k0t(t) D 0 ; (280)

: : : : : : : : : : : : : : : : : : : : : : : :

We solve the over-determined partial differential equa-
tions and obtain the following many families of solutions:
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Case 1

u1(x; t) D �
12ˇ(k�1(t))2(p1(t))2(e�p1(t)x�q1(t))2

˛(k�1(t)e�p1(t)x�q1(t) C C1)2

C
12ˇk�1(t)(p1(t))2e�p1(t)x�q1(t)

˛(k�1(t)e�p1(t)x�q1(t) C C1)
C u2(t) ; (281)

where q1(t) D
R d

dt k�1(t)�(p1(t))
3k�1(t)ˇ�p1(t)u2(t)˛k�1(t)

k�1(t) dt
C C3; k�1(t); p1(t) are any functions of t, and ˛; ˇ;Ci ,
i D 1; 3 are any constants.

Case 2

u2(x; t) D �

12ˇ(C1p2(t)C k�1(t)(p2(t) � p1(t))e��1
CC2(p2(t)C p1(t))e�1 )2

˛(k�1(t)e��1 C C1 C C2e�1 )2

C

12ˇ(C1(p2(t))2 C C2(p2(t)C p1(t))2e�1
C(p1(t) � p2(t))2k�1(t)e��1 )

˛(k�1(t)e��1 C C1 C C2e�1 )
;

(282)

where �1 D p1(t)x C q1(t); k�1(t); q1(t); p1(t) are any
functions of t, and ˛; ˇ;Ci , i D 1; 2 are any constants.

Case 3

u3(x; t) D �

12ˇ(k�1(t)(p2(t) � p1(t))e��1
Ck1(t)(p2(t)C p1(t))e�1 C C1p2(t))2

˛(k�1(t)e��1 C C1 C k1(t)e�1 )2

C

12ˇ(C1(p2(t))2 C k1(t)(p2(t)C p1(t))2e�1
C(p1(t) � p2(t))2k�1(t)e��1 )

˛(k�1(t)e��1 C C1 C k1(t)e�1 )
;

(283)

where �1 D p1(t)x C q1(t); k�1(t); k1(t); q1(t); p1(t) are
any functions of t, and ˛; ˇ;C1 are any constants.

Case 4

u4(x; t) D �
12ˇ(p1(t))2(k1(t))2(ep1(t)xCq1(t))2

˛(C1 C k1(t)ep1(t)xCq1(t))2

C
12ˇ(p1(t))2k1(t)ep1(t)xCq1(t)

˛(C1 C k1(t)ep1(t)xCq1(t))
C u2(t) ; (284)

where q1(t) D �
R ˇ (p1(t))3k1(t)Cu2(t)˛p1(t)k1(t)C d

dt k1(t)
k1(t) dtC

C3; k1(t); p1(t) are the functions of t, and ˛; ˇ;Ci , i D 1; 3
are any constants.

Case 5

u5(x; t) D

2C1h0(t)(u2(t)˛ � 6ˇ(p2(t))2)e��2
Cu2(t)˛C2

1e
�2�2 C u2(t)˛(h0(t))2

(C1e��2 C h0(t))2˛
;

(285)

where �2 D p2(t)x C q2(t); h0(t); p2(t); q2(t) are the
functions of t, and ˛; ˇ;C1 are any constants.

Case 6

u6(x; t) D �

2C1h0(t)(6ˇ(p2(t))2 � u2(t)˛)e��2
C2C1h1(t)(24ˇ(p2(t))2 � u2(t)˛)
(C1e��2 C h0(t)C h1(t)e�2 )2˛

�

2h0(t)h1(t)(6ˇ(p2(t))2 � u2(t)˛)e�2
�u2(t)˛((h1(t))2 C C2

1)e
�2�2 � u2(t)˛(h0(t))2

(C1e��2 C h0(t)C h1(t)e�2 )2˛
;

(286)

where �2 D p2(t)x C q2(t); h0(t); h1(t); q1(t); q2(t) are
the functions of t, and ˛; ˇ;C1 are any constants.

Case 7

u7(x; t) D

2h0(t)h1(t)(u2(t)˛ � 6ˇ(p2(t))2)e�2
C2h0(t)h�1(t)(u2(t)˛ � 6ˇ(p2(t))2)e��2

(h�1(t)e��2 C h0(t)C h1(t)e�2 )2˛

C

u2(t)˛((h�1(t))2e�2�2 C (h1(t))2e2�2 )
�48ˇh�1(t)(p2(t))2h1(t)
Cu2(t)˛(2h�1(t)h1(t)C (h0(t))2)
(h�1(t)e��2 C h0(t)C h1(t)e�2 )2˛

; (287)

where �2 D p2(t)x C q2(t); h�1(t); h0(t); h1(t); q1(t);
q2(t) are the functions of t, and ˛; ˇ are any constants.

Case 8

u8(x; t) D

2C1k0(t)(6ˇ(p1(t))2 C u2(t)˛)e��1
Cu2(t)˛C2

1e
�2�1 C u2(t)˛(k0(t))2

˛(C1e��1 C k0(t))2
;

(288)

where �1 D p1(t)x C q1(t); k0(t); q1(t); q2(t) are the
functions of t, and ˛; ˇ;C1 are any constants.

Case 9

u9(x; t) D

u2(t)˛((k0(t))2 C 2C1k1(t))
C48ˇC1(p1(t))2k1(t)C u2(t)˛(k1(t))2e2�1

˛(C1e��1 C k0(t)C k1(t)e�1 )2

C

2k0(t)k1(t)(6ˇ(p1(t))2 C u2(t)˛)e�1
C2C1k0(t)(6ˇ(p1(t))2 C u2(t)˛)e��1
Cu2(t)˛C2

1e
�2�1

˛(C1e��1 C k0(t)C k1(t)e�1 )2
; (289)

where �1 D p1(t)x C q1(t); k0(t); k1(t); q1(t); q2(t) are
the functions of t, and ˛; ˇ;C1 are any constants.
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Case 10

u10(x; t) D �
12ˇ(p1(t))2(k1(t))2(ep1(t)xCq1(t))2

˛(k0(t)C k1(t)ep1(t)xCq1(t))2

C
12ˇ(p1(t))2k1(t)ep1(t)xCq1(t)

˛(k0(t)C k1(t)ep1(t)xCq1(t))
C u2(t) ; (290)

where q1(t) D
R

k0(t) d
dt k1(t)� k1(t) d

dt k0(t)C k0(t)k1(t)
�(p1(t))3ˇ C u2(t)˛p1(t)k1(t)k0(t)

k0(t)k1(t) dt C
C2; k0(t); k1(t); q2(t) are the functions of t, and ˛; ˇ;C2
are any constants.

Case 11

u11(x; t) D

�

12ˇ(k�1(t)(p2(t) � p1(t))e��1
Ck1(t)(p2(t)C p1(t))e�1 C k0(t)p2(t))2

˛(k�1(t)e��1 C k0(t)C k1(t)e�1 )2

C

12ˇ(k0(t)(p2(t))2 C k1(t)(p2(t)C p1(t))2e�1
C(p1(t) � p2(t))2k�1(t)e��1 )

˛(k�1(t)e��1 C k0(t)C k1(t)e�1 )
C u2(t) ; (291)

where �1 D p1(t)x C q1(t); k�1(t); k0(t); k1(t); q1(t);
q2(t) are the functions of t, and ˛; ˇ are any constants.

Case 12

u12(x; t) D �
12ˇ(k�1(t))2(p1(t))2(e�p1(t)x�q1(t))2

˛(k�1(t)e�p1(t)x�q1(t) C k0(t))2

C
12k�1(t)(p1(t))2e�p1(t)x�q1(t)ˇ
˛(k�1(t)e�p1(t)x�q1(t) C k0(t))

C u2(t) ; (292)

where q1(t) D
R

k0(t) d
dt k�1(t)� u2(t)˛p1(t)k�1(t)k0(t)

�k0(t)(p1(t))3k�1(t)ˇ � k�1(t) d
dt k0(t)

k0(t)k�1(t) dt C
C2; k�1(t); k0(t); q2(t) are the functions of t, and ˛; ˇ;C2
are any constants.

Remark 14 From the above application, it is easily seen
that our method is more powerful, more convenient, and
more general than the method presented by He [31].
Firstly, our method is convenient to obtain the exact so-
lutions of higher order and higher dimensional NLEEs be-
cause we do not use the homogeneous balance method to
get the value of c; d; p; q in (265). Secondly, we can ob-
tain more general exact solutions including non-traveling
wave solutions and traveling wave solutions by using our
method. For example, the solution (282) of Eq. (267) is
a more general exact solution including the non-traveling
wave solutions with constant coefficients, the non-travel-
ing wave solutions with variable coefficients, the traveling

wave solutions with constant coefficients, and the traveling
wave solutions with variable coefficients of Eq. (267).

Example 1 The solution (282) of Eq. (267) includes abun-
dant non-traveling wave solutions with variable coeffi-
cients. For example, when we take C1 D 1/2;C2 D 1;
p2(t) D cos(t2); u2(t) D 1/2; p1(t) D tanh2(t); q1(t) D
sin(t4); k�1(t) D cosh(t); k0(t) D cos(t2); ˇ D 2; ˛ D 3,
we can obtain a non-traveling wave solution u2;1(x; t) with
variable coefficients as follows:

u2;1(x; t) D

8 cos2(t2)(2 cosh(t)e��1 C 1C 2e�1 )
C32 tanh2(t) cos(t2)(e�1 � cosh(t)e��1 )
C16 tanh4(t)(cosh(t)e��1 C e�1 )

2 cosh(t)e��1 C 1C 2e�1

� 8

(2 tanh2(t)(e�1 � cosh(t)e��1 )
C cos(t2)(2 cosh(t)e��1 C 1C 2e�1 ))2

(2 cosh(t)e��1 C 1C 2e�1 )2
C 1/2 ;

(293)

where �1 D tanh2(t)x C sin(t4).

Some figures of the long-term behavior of the u2;1(x; t)
from f(x; t)jjxj < 0:1; jtj < 0:1; x 2 R; t 2 Rg to
f(x; t)jjxj < 109; jtj < 109; x 2 R; t 2 Rg are shown
by following Fig. 1 and Fig. 2. From Fig. 1 and Fig. 2, it is
easy to find the global existence, asymptotic behaviors as
t ! C1 and jxj ! C1 and the scattering properties of
the solution u2;1(x; t) of Eq. (267). It is worth noting that
the shape of u2;1(x; t) degenerates gradually from a set of
waves to a set of solitons on a trigonal curve as the jxj and
jtj in the u2;1(x; t) continue to increase.

Example 2 The solution (282) of Eq. (267) includes abun-
dant non-traveling wave solutions with constant coeffi-
cients. For example, when we take k�1(t) D 1/2; ˇ D
2; ˛ D 3; k0(t) D 2;C2 D 1;C1 D 1/2; p1(t) D
1/2; p2(t) D 1/3; u2(t) D 1/2, and q1(t) D sin(t4), we can
obtain a non-traveling wave solution u2;2(x; t) with con-
stant coefficients as follows:

u2;2(x; t) D �
2(e�x/2�sin(t4) � 10ex/2Csin(t4) � 2)2

9(e�x/2�sin(t4) C 1C 2ex/2Csin(t4))2

C
8C 100ex/2Csin(t4) C 2e�x/2�sin(t4)

9e�x/2�sin(t4) C 9C 18ex/2Csin(t4)
C 1/2 : (294)

Some figures of the long-term behavior of the
u2;2(x; t) from f(x; t)jjxj < 0:1; jtj < 0:1; x 2 R; t 2 Rg
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Korteweg–de Vries Equation (KdV), Different Analytical Methods for Solving the, Figure 1
The evolution of a non-traveling wave solution u2;1(x; t) with variable coefficients of Eq. (267) from f(x; t)jjxj < 0:1; jtj < 0:1;
x 2 R; t 2 Rg to f(x; t)jjxj < 15; jtj < 15; x 2 R; t 2 Rg

Korteweg–de Vries Equation (KdV), Different Analytical Methods for Solving the, Figure 2
The evolution of a non-traveling wave solution u2;1(x; t) with variable coefficients of Eq. (267) from f(x; t)jjxj < 35; jtj < 35;
x 2 R; t 2 Rg to f(x; t)jjxj < 109; jtj < 109; x 2 R; t 2 Rg

Korteweg–de Vries Equation (KdV), Different Analytical Methods for Solving the, Figure 3
The evolution of a non-traveling wave solution u2;2(x; t) with constant coefficients of Eq. (267) from f(x; t)jjxj < 0:1; jtj < 0:1;
x 2 R; t 2 Rg to f(x; t)jjxj < 15; jtj < 15; x 2 R; t 2 Rg

Korteweg–de Vries Equation (KdV), Different Analytical Methods for Solving the, Figure 4
The evolution of a non-traveling wave solution u2;2(x; t) with constant coefficients of Eq. (267) from f(x; t)jjxj < 35; jtj < 35;
x 2 R; t 2 Rg to f(x; t)jjxj < 109; jtj < 109; x 2 R; t 2 Rg
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to f(x; t)jjxj < 109; jtj < 109; x 2 R; t 2 Rg are shown by
following Fig. 3 and Fig. 4.

Example 3 The solution (282) of Eq. (267) includes abun-
dant traveling wave solutions with constant coefficients.
For example, when q1(t) D sin(t4) in (294) is replaced
by q1(t) D t/3, we can obtain a traveling wave solution
u2;3(x; t) with constant coefficients of Eq. (267) as follows:

u2;3(x; t) D �
2(e�x/2�t/3 � 10ex/2Ct/3 � 2)2

9(e�x/2�t/3 C 1C 2ex/2Ct/3)2

C
8C 100ex/2Ct/3 C 2e�x/2�t/3

9e�x/2�t/3 C 9C 18ex/2Ct/3 C 1/2 : (295)

Some figures of the long-term behavior of the
u2;3(x; t) from f(x; t)jjxj < 0:1; jtj < 0:1; x 2 R; t 2 Rg
to f(x; t)jjxj < 423; jtj < 423; x 2 R; t 2 Rg are shown
by following Fig. 5 and Fig. 6. It is worth noting that the
shape of the u2;3(x; t) degenerates gradually from a wave
to a row of solitons on a straight line as the jxj and jtj in
u2;3(x; t) continue to increase.

Example 4 The solution (282) of Eq. (267) includes abun-
dant traveling wave solutions with variable coefficients.
For example, when p1(t) D tanh2(t); q1(t) D sin(t4) in
(293) is replaced by p1(t) D 1/2; q1(t) D t/3, we can ob-
tain a traveling wave solution u2;4(x; t) with variable coef-
ficients of Eq. (267) as follows:

u2;4(x; t)

D

1C 12 cosh(t)e�x/2�t/3 C 12ex/2Ct/3

C4exC2t/3 C 72 cosh(t)C 4 cosh2(t)e�x�2t/3

2(2 cosh(t)e�x/2�t/3 C 1C 2ex/2Ct/3)2
:

(296)

Some figures of the long-term behavior of the
u2;4(x; t) from f(x; t)jjxj < 0:1; jtj < 0:1; x 2 R; t 2 Rg
to f(x; t)jjxj < 109; jtj < 109; x 2 R; t 2 Rg are shown
by following Fig. 7 and Fig. 8. From Fig. 7 and Fig. 8,
it is easy to find the global existence, asymptotic be-
haviors as t !C1 and jxj ! C1 and the scattering
properties of the solution u2;4(x; t) of Eq. (267). It is
worth noting that the shape of u2;4(x; t) degenerates
gradually from a trigonal wave to a set of solitons on
a trigonal curve as jxj and jtj in u2;4(x; t) continue to
increase. But the plane has become a scraggly surface
over f(x; t)jjxj < 109; jtj < 109; x 2 R; t 2 Rg, namely,
the u2;4(x; t) appears a mild disorder.

Remark 15 From the above long-term behavior of
the u2;1(x; t); u2;2(x; t); u2;3(x; t); u2;4(x; t), we find eas-
ily that the stabilization of the traveling wave solutions

u2;3(x; t) with constant coefficients is best as t !C1 and
jxj ! C1. In addition, we still discover that the longterm
behavior of a solution, which includes the global exis-
tence, asymptotic behaviors as t !C1 and jxj ! C1,
and the scattering properties of the solution, depends
mainly on the functions that constitute the solution and
the selection of all arbitrary constants and the parame-
ters in the solution. We choose other nonlinear evolution
equations [39,40,45,47] to test and obtain similar results.
Therefore, we devise a new guess as follows.

R-guess The long-term behavior of a solution for
a given NLEEs (261), which includes the global existence,
asymptotic behaviors as t! C1 and jxj ! C1, and
the scattering properties of the solution, depends mainly
on the functions that constitute the solution and the selec-
tion of all arbitrary constants and parameters in the solu-
tion.

Future Directions

In recent years, directly searching for exact solutions of
NLPDEs has become more and more attractive partly
due to the availability of computer symbolic systems like
Maple or mathematica which allow us to perform compli-
cated and tedious algebraic calculation on a computer, as
well as helping us to find new exact solutions of NLPDEs
in mathematical physics. Although many powerful ana-
lytical methods for solving NLPDEs have been presented,
the methods fail to satisfy the developmental needs in
physics, mechanics, chemistry, biology, computer science,
etc. There is much new work to be done on analytical
methods for solving NLPDEs. The main future directions
are as follows:

1. Researching new and uniform analytical methods
based on the ideas of unification methods, algorithm
realization and mechanization for solving NLPDEs (we
have done some new work in Sect. “The General-
ized Hyperbolic Function–Bäcklund Transformation
Method and Its Application in the (2 + 1)-Dimensional
KdV Equation” of this article).

2. Researching mechanization methods and developing
their computer software for showing the long-playing
traveling state of the exact solutions of NLPDEs (we
have done some new work in [40]).

3. Developing and improving existing analytical methods,
computer algebraic systems, and software so that ana-
lytical methods can be actualized with complete mech-
anization by their computer software at a familiar com-
puter (we have done some newwork in [39,40,41,42,43,
44,45,46,47,48]).
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Korteweg–de Vries Equation (KdV), Different Analytical Methods for Solving the, Figure 5
The evolution of a traveling wave solution u2;3(x; t) with constant coefficients of Eq. (267) from f(x; t)jjxj < 0:1; jtj < 0:1; x 2 R;
t 2 Rg to f(x; t)jjxj < 15; jtj < 15; x 2 R; t 2 Rg

Korteweg–de Vries Equation (KdV), Different Analytical Methods for Solving the, Figure 6
The evolution of a traveling wave solution u2;3(x; t) with constant coefficients of Eq. (267) from f(x; t)jjxj < 50; jtj < 50; x 2 R;
t 2 Rg to f(x; t)jjxj < 423; jtj < 423; x 2 R; t 2 Rg

Korteweg–de Vries Equation (KdV), Different Analytical Methods for Solving the, Figure 7
The evolution of a traveling wave solution u2;4(x; t) with variable coefficients of Eq. (267) from f(x; t)jjxj < 0:1; jtj < 0:1; x 2 R;
t 2 Rg to f(x; t)jjxj < 15; jtj < 15; x 2 R; t 2 Rg

Korteweg–de Vries Equation (KdV), Different Analytical Methods for Solving the, Figure 8
The evolution of a traveling wave solution u2;4(x; t) with variable coefficients of Eq. (267) from f(x; t)jjxj < 35; jtj < 35; x 2 R;
t 2 Rg to f(x; t)jjxj < 109; jtj < 109; x 2 R; t 2 Rg
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4. Researching new analytical and numerical complex
methods and their computer software for solving those
NLPDEs that can’t make use of analytical methods.
The complex methods can be actualized with complete
mechanization by their computer software at a familiar
computer (we have done some new work in [40,53]).

5. One can calculate the solutions of NLPDEs as easily as
counting or addition by using a small calculator with
the development of mathematics and computer science
(we have done some new work in [39,40,41,42,43,44,
45,46,47,48,52,53,54] and Ren 2055 and 2007, and Ren
und Sun 2004).
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Glossary

Soliton A soliton is a solitary wave which asymptotically
preserves its shape and velocity upon nonlinear inter-
action with other solitary waves, or more generally,
with another (arbitrary) localized disturbance.

Korteweg–de Vries equation In mathematics, the Korte-
weg-de Vries (KdV) equation is a mathematical model
of waves on shallow water surfaces. It is particularly fa-
mous as the prototypical example of an exactly solvable
model, that is, a nonlinear partial differential equation
whose solutions can be exactly and precisely specified.

Inverse scattering transform The identification of the
KdV equation as an isospectral flow of the Schrödinger
operator enabled Gardner, Greene, Kruskal andMiura
(GGKM) to devise a method of solving the KdV
equation (with ’rapidly decreasing’ boundary condi-
tions), called the inverse scattering or inverse spectral
transform (IST). This is a direct generalization of the
Fourier transform used to solve linear equations and
can be represented by essentially the same scheme.

Hirota bilinear method In 1971, Hirota developed a di-
rect method for finding N-soliton solutions of non-
linear evolution equations, also named Hirota bilinear
method. The key step is to transform the equation into
a bilinear form, from which we can get soliton solu-
tions successively by means of a kind of perturbational
technique.

Definition of the Subject

Among integrable equations is the celebrated KdV equa-
tion, which serves as a model equation governing weakly

nonlinear long waves whose phase speed attains a simple
maximum for waves of infinite length. It motivates us to
explore beauty hidden in nonlinear differential (and dif-
ference) equations. The equation is named for Diederik
Korteweg andGustav de Vries. The remarkable and excep-
tional discovery of the inverse scattering transform is one
of important developments in the field of applied math-
ematics, which comes from the study of the KdV equa-
tion. There are various algebraic and geometric character-
istics that the KdV equation possesses, for example, in-
finitely many symmetries and infinitely many conserved
densities, the Lax representation, bi-Hamiltonian struc-
ture, loop group, and the Darboux-Bäcklund transforma-
tion. More significantly, many physically important so-
lutions to the KdV equation can be presented explicitly
through a simple, specific form, called the Hirota bilinear
form.

Introduction

A nice story about the history and the underlying physi-
cal properties of KdV equation can be found at an Internet
page of the Herriot-Watt University in Edinburgh (Scot-
land). The following text is taken from that page:

Over one hundred and fifty years ago, which conduct-
ing experiments to determine the most efficient design
for canal boats, a young Scottish engineer named John
Scott Russell (1808–1882) made a remarkable scientific
discovery. Here his original text as he described it in Rus-
sell [1]:

I believe I shall best introduce this phenomenon by de-
scribing the circumstances of my own first acquaintance
with it. I was observing the motion of a boat which was
rapidly drawn along a narrow channel by a pair of horses,
when the boat suddenly stopped-not so the mass of water
in the channel which it had put in motion; it accumulated
round the prow of the vessel in a state of violent agita-
tion, then suddenly leaving it behind, rolled forward with
great velocity, assuming the form of a large solitary eleva-
tion, a rounded, smooth and well-defined heap of water,
which continued its course along the channel apparently
without change of form or diminution of speed. I followed
it on horseback, and overtook it still rolling on at a rate of
some eight or nine miles an hour, preserving its original fig-
ure some thirty feet long and a foot to a foot and a half in
height. Its height gradually diminished, and after a chase
of one or two miles I lost it in the windings of the channel.
Such, in the month of August 1834, was my first chance in-
terviewwith that singular and beautiful phenomenon which
I have called the Wave of Translation, a name which it now
very generally bears.
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He followed this observation with a number of experi-
ments during which he determined the shape of a solitary
wave to be that of a sech2() function. He also determined
the relationship of the speed of the wave to its amplitude.
At that time there was no equation describing such water
waves and having such a solution. Thus John Scott Russell
discovered the solution to an as yet unknown equation!

Further investigations were undertaken by Airy,
Stokes, Boussinesq and Rayleigh in an attempt to under-
stand this phenomenon. Boussinesq and Rayleigh inde-
pendently obtained approximate descriptions of the soli-
tary wave; Boussinesq derived a one-dimensional nonlin-
ear evolution equation, which now bears his name, in or-
der to obtain his results.

These investigations provoked much lively discussion
and controversy as to whether the inviscid equations
of water waves would possess such solitary wave solu-
tions. The issue was finally resolved by Korteweg and de
Vries [2]. After performing a Galilean and a variety of scal-
ing transformations, the KdV equation can be written in
simplified form:

ut � 6uux � uxxx D 0 ; (1)

where subscripts denote partial differentiations. In partic-
ular, if we now assume a solution in the form of a traveling
wave u(x; t) D f (x C ct), then Eq. (1) can be integrated:
imposing the boundary conditions at large distances that
u(x; t) tends to 0 sufficiently fast as x �! ˙1, we find
the exact solution

u(x; t) D
c
2
sech2

1
2
p
c(x C ctC ı) ; (2)

where ı is the phase. This clearly represents the solitary
wave observed by John Scott Russell and shows that the
peak amplitude is exactly half the speed. Thus larger soli-
tary waves have greater speeds. This suggests a numeri-
cal experiment: start with two solitary wave solutions, with
centers well separated and the larger to the right. Initially,
with negligible overlap, they will evolve independently as
solitary wave solutions. However, the larger, faster one will
start to overtake the smaller and the non linearity will play
a significant role. For most dispersive evolution equations
these solitary waves would scatter in elastically and lose
’energy’ to radiation. Not so for the KdV equation: after
a fully nonlinear interaction, the solitary waves reemerge,
retaining their identities (same speed and form), suffering
nothing more than a phase shift (modified ı’s, represent-
ing a displacement of their centers). It was after a simi-
lar numerical experiment that Kruskal and Zabusky [3]
coined the name ’soliton’, to reflect the particle-like behav-
ior of the solitary waves under interaction.

It was not until the mid 1960’s when applied scientists
began to use modern digital computers to study nonlin-
ear wave propagation that the soundness of Russell’s early
ideas began to be appreciated. He viewed the solitary wave
as a self-sufficient dynamic entity, a “thing” displaying
many properties of a particle. From the modern perspec-
tive it is used as a constructive element to formulate the
complex dynamical behavior of wave systems throughout
science: from hydrodynamics to nonlinear optics, from
plasmas to shock waves, from tornado’s to the Great Red
Spot of Jupiter, from the elementary particles of matter to
the elementary particles of thought. For a more detailed
and technical account of the solitary wave, see [4,5].

Inverse Scattering Transform for the KdV Equation

Wenow briefly discuss the inverse scattering transform for
the KdV Eq. (1). First consider the Miura map u D �vx �
v2C, which can be viewed as a Riccati equation for v and
thus linearized by the substitution v D  x / , giving

L �  xx C u D  : (3)

This is the time-independent Schrödinger equation with
u(x; t) playing the role of potential and  the energy. It is
important to realize that t is not the time of the time-in-
dependent Schrödinger equation. We think of x as the spa-
tial variable and t as a parameter. Considered as a Sturm–
Liouville eigenvalue problem it is natural to ask how 

and  change with t as u(x; t) evolves from some initial
state according to the KdV equation. GGKM [6,7] discov-
ered the remarkable fact that the (discrete part of the) spec-
trum necessarily remains constant in ’time’ while the cor-
responding wave functions  evolve according to a very
simple linear differential equation.

Today (following Lax [8]) we usually take the opposite
route. We postulate that  evolves through a linear differ-
ential equation:

 t D P : (4)

Eq. (3) and (4) form an overdetermined system, whose in-
tegrability conditions can be written:

Lt D [P; L] D PL � LP : (5)

A consequence of (5) is that all eigenvalues corresponding
to the function u(x; t) remain constant. When P is given
by:

P D �
�
4@3 C 6u@C 3ux


;

(where @ is a differential operator) (6)
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Inverse Scattering Transform

(5) reduces to the KdV Eq. (1). Since, under these condi-
tions, the spectrum of L remains constant, the KdV equa-
tion is referred to as an isospectral flow. Eq. (5) is called the
Lax representation of the KdV equation.

The identification of the KdV equation as an isospec-
tral flow of the Schrödinger operator enabled GGKM to
devise amethod of solving the KdV equation (with ’rapidly
decreasing’ boundary conditions), called the inverse scat-
tering or inverse spectral transform (IST). This is a direct
generalization of the Fourier transform used to solve linear
equations and can be represented by essentially the same
scheme (Fig. 1).

For these boundary conditions, the solutions of (3) are
characterized by their asymptotic properties as x !˙1.
For a given potential function, the continuous and discrete
spectrum are treated separately. Corresponding to the
continuous spectrum ( D �k2) the solutions are asymp-
totically oscillatory, characterized by two coefficients:

 �

�
T(k)e�i kx x ! �1
e�i kx C R(k)ei kx x !C1

(7)

subject to the condition jRj2 C jTj2 D 1. The constants
R(k) and T(k) are respectively called the reflection and
transmission coefficients, from their quantum mechani-
cal interpretation. Under mild conditions on the poten-
tial function, the Schrödinger operator L has only a finite
number of discrete eigenvalues f�2ng. The corresponding
eigenfunctions are square integrable and are the ’bound
states’ of quantum mechanics with asymptotic properties
(for �n > 0):

 n �

�
ecne�nx x ! �1
cne��nx x ! C1 : (8)

The direct scattering transform constructs the quantities
fT(k); R(k); �n ; cng from a given potential function. The
important inversion formula were derived by Gel’fand

and Levitan in 1955 [9]. These enable the potential u
to be constructed out of the spectral or scattering data
S D fR(k); �n ; cng. This is considerably more complicated
than the Inverse Fourier Transform, involving the solution
of a nontrivial integral equation, whose kernel is built out
of the scattering data (see [10,11,12,13] for descriptions of
this).

To solve the KdV equation we first construct the scat-
ting data S(0) from the initial condition u(x; 0). As a con-
sequence of (4) (with an additional constant) with the
given boundary conditions, the scatting data evolves in
a very simple way. Indeed, we can give explicit formula:

R(k; t) D R(k; 0)e8i k
3 t ; cn(t) D cn(0)e�4�

3
n t : (9)

Using the inverse scattering transform on the scattering
data S(t), we obtain the potential u(x; t) and thus the so-
lution to the initial value problem for the KdV equation.

This process cannot be carried out explicitly for arbi-
trary initial data, although, in this case, it gives a great
deal of information about the solution u(x; t). However,
whenever the reflection coefficient is zero, the kernel of
Gel’fand-Levitan integral equation becomes separable and
explicit solutions can be found. It is in this way that the
N-soliton solution is constructed by IST from the initial
condition:

u(x; 0) D N(N C 1)sech2x : (10)

The general formula for the multi-soliton solution is given
by:

u(x; t) D 2(ln detM)xx ; (11)

where M is a matrix built out of the discrete scattering
data.

Exact N-soliton Solutions of the KdV Equation

Besides the IST, there are several analytical methods for
obtaining solutions of the KdV equation, such as Hirota
bilinear method [14,15,16], Bäcklund transformation [17],
Darboux transformation [18], and so on. The existence of
such analytical methods reflects a rich algebraic structure
of the KdV equation. In Hirota’s method, we transform
the equation into a bilinear form, from which we can get
soliton solutions successively bymeans of a kind of pertur-
bational technique. The Bäcklund transformation is also
employed to obtain solutions from a known solution of
the concerned equation. In what follows, we will mainly
discuss the Hirota bilinear method to derive the N-soliton
solutions of the KdV equation.
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It is well known that Hirota developed a direct method
for finding N-soliton solutions of nonlinear evolution
equations. In particular, we shall discuss the KdV bilinear
form

Dx
�
Dt C D3

x

f � f D 0 ; (12)

by the dependent variable transformation

u(x; t) D 2(ln f )xx : (13)

Here the Hirota bilinear operators are defined by

Dm
x D

n
t a�b D (@x�@x0)m(@t�@t0)na(x; t)b(x0; t0)jx0Dx;t0Dt :

(14)

We expand f as power series in a parameter "

f (x; t) D 1C f (1)"C f (2)"2C � � � C f ( j)" j C � � � : (15)

Substituting (15) into (12) and equating coefficients of
powers of " gives the following recursion relations for the
f (n)

" : f (1)xxxx C f (1)x t D 0 ; (16)

"2 : f (2)xxxx C f (2)x t D �
1
2
(DxDt C D4

x ) f
(1) � f (1) ; (17)

"3 : f (3)xxxx C f (3)x t D �
�
DxDt C D4

x

f (1) � f (2) ; (18)

and so on. N-soliton solutions of the KdV equation are
found by assuming that f (1) has the form

f (1) D
NX

jD1

exp(� j); � j D k jx � ! j t C x j0 ; (19)

and k j; ! j and x j0 are constants, provided that the series
(15) truncates.

For N D 1, we take

f (1) D exp(�1);

and by solving (16) we find that

f (n) D 0; for n D 2; 3; : : : :

Therefore we have

f1 D 1C exp(�1); !1 D �k31 ;

and

u(x; t) D
k21
2
sech2

1
2
�
k1x � k31 t C x10


: (20)

For N D 2, the two-soliton solution for the KdV equation
is similarly obtained from

u(x; t) D 2(ln f2)xx ;

where

f2 D 1C exp(�1)C exp(�2)C exp(�1C�2CA12) : (21)

Frequently the N-soliton solutions are obtained as follows

fN D
X

�D0;1

exp

0

@
NX

jD1

� j� j C

NX

1� j<l

� j�l A jl

1

A ; (22)

where the first
P
�D0;1 means a summation over all possi-

ble combinations of � j D 0; 1 and
PN

1� j<l means a sum-
mation over all possible pairs ( j; l) chosen from the set
f1; 2; : : : ;Ng, with the condition that j < l .

Further Properties of the KdV Equation

Conservation Laws

It was this numerical evidence which prompted Kruskal
and his co-workers in Princeton to analytically investigate
the KdV equation. Initially, Miura investigated local con-
servation laws:

@tT C @x F D 0 ; (23)

where T and F are polynomials in u(x, t) and its x-deriva-
tives and where @t and @x denote total derivatives. With
appropriate boundary conditions this leads to a conserved
quantity (constant of the motion). Integrating (23) with
respect to x we get:

@t

Z B

A
T C [F]BA D 0 : (24)

Under periodic (in x) boundary conditions with A� B
an integer multiple of the period or with u(x, t) rapidly
decreasing as x !˙1 and (A; B) D (�1;C1), the
square bracket in (24) vanishes and we have the constant
of motion @t

R B
A Tdx. The quantities T and F are respec-

tively called conserved density and flux. Each T is, in fact,
only determined up to an exact x-derivative, so defines an
equivalence class of conserved densities:

T � T C @x S ; (25)
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since this only adds @t S to F and leaves the value of
R
Tdx

unchanged. For the KdV equation the first three are:

T0 D u ; F0 D �uxx � 3u2;

T1 D
1
2
u2 ; F1 D �uuxx C

1
2
u2x � 2u3 ;

T2 D u3 �
1
2
u2x ; F2 D uxuxxx �

1
2
u2xx

� 3u2uxx C 6uu2x �
9
2
u4 :

(26)

The first of these is just the equation itself. These three
conservation laws have same physical interpretation, so it
was no surprise that they exist. However, Miura discov-
ered several more by direct calculation and was led to the
conjecture that there should be infinitely many.

In order to ascertain whether the KdV equation was
the only such equation with so many conservation laws
Miura investigated equations of the form:

ut D uxxx C 6unux ; (27)

and found that for n D 1 and n D 2 (and only these val-
ues) there existed many conservation laws. With a slight
change in notation the second of these, called the modi-
fied KdV (MKdV) equation, can be written:

vt D vxxx � 6v2vx D
�
vxx � 2v3


x : (28)

The first few conservation laws correspond to conserved
densities and fluxes:

T̃�1 D v ; F̃�1 D �vxxx C 2v3;

T̃0 D v2 ; F̃0 D �2vvxx C v2x C 3v4;

T̃1 D
1
2
�
v2x C v4


; F̃1 D �vxvxxx C

1
2
v2xx

� 2v3vxx C 6v2v2x C 2v6 :
(29)

The Lax Hierarchy

In [8] Lax reformulated GGKM’s discovery [6,7] of the
isospectral nature of the KdV equation in algebraic form:

L � (@2 C u) D  
 t D P � �

�
4@3 C 6u@C 3ux


 

t D 0

9
=

;

) Lt D [P; L] � PL � LP : (30)

This led Lax to an interesting generalization:

L � (@2 C u) D  

 tm D P(m) � @
2mC1 C

2m�1X

iD0

bi@i

t D 0

9
>>>=

>>>;

) Ltm D [P(m); L] : (31)

The integrability condition Ltm D [P(m); L] is explicitly
written as:

utm D (2mC1)ux �2b2m�1x@2mC� � �C (P(m)u�Lb0) :
(32)

Equating coefficients of @i ; i D 0; : : : ; 2m; gives us
2mC 1 equations, from which we deduce the 2m coeffi-
cients b0; : : : ; b2m�1:

b2m�1 D
1
2
(2m C 1)u;

b2m�2 D
1
4
(2m C 1)(2m � 1)ux ; : : :

(33)

together with the isospectral flow:

utm D P(m)u � Lb0 : (34)

Nontrivial flows only exist for odd-order equations, since
the adjoint of the integrability condition implies P� D �P.
There exists an infinite hierarchy of such isospectral flows,
the first three of which are:

ut0 D ux ; (35)

ut1 D
1
4
(uxxx C 6uux ) ; (36)

ut2 D
1
16

(uxxxxxC10uuxxxC20uxuxxC30u2ux ) ; (37)

corresponding respectively to operators:

P(0) D @ ; (38)

P(1)n D @3 C
3
4
(u@C @u) ; (39)

P(2) D @5 C
5
4
(u@3 C @3u)

C
5
16

((3u2 � uxx)@C @(3u2 � uxx )) : (40)

Future Directions

In mathematics, the KdV equation is a mathematical
model of waves on shallow water surfaces. It is particu-
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larly famous as the prototypical example of an exactly solv-
able model, that is, a nonlinear partial differential equa-
tion whose solutions can be exactly and precisely specified.
The solutions in turn are the prototypical examples of soli-
tons; these may be found by means of the inverse scatter-
ing transform. The mathematical theory behind the KdV
equation is rich and interesting, and, in the broad sense, is
a topic of active mathematical research.

The KdV equation has several connections to phys-
ical problems. In addition to being the governing equa-
tion of the string in the Fermi–Pasta–Ulam problem in
the continuum limit, it approximately describes the evo-
lution of long, one-dimensional waves in many physical
settings, including shallow-water waves with weakly non-
linear restoring forces, long internal waves in a density-
stratified ocean, ion-acoustic waves in a plasma, acoustic
waves on a crystal lattice, and more.

The scientists’ interest for analytical solutions of the
KdV equation stems from the fact that in applying numer-
ical methods to nonlinear partial differential equations, the
KdV equation is well suited as a test object, since having an
analytical solution statements can be made on the quality
of the numerical solution in comparing the numerical re-
sult to the exact result. More significantly, the existence of
several analytical methods reflects a rich algebraic struc-
ture of the KdV equation. It is hoped that the study of
the KdV equation could further assist in understanding,
identifying and classifying nonlinear integrable differen-
tial equations and their exact solutions.
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Glossary

Korteweg–de Vries equation The classical nonlinear
equations of interest usually admit for the existence
of a special type of the traveling wave solutions, which
are either solitary waves or solitons.

Modified Korteweg–de Vries This equation is amodified
form of the classical KdV equation in the nonlinear
term.

Soliton This concept can be regarded as solutions of non-
linear partial differential equations.

Exact solution A solution to a problem that contains the
entire physics and mathematics of a problem, as op-
posed to one that is approximate, perturbative, closed,
etc.

Adomian decomposition method, Homotopy analysis
method, Homotopy perturbation method and Varia-
tional iteration method These are some of the semi-an-

alytic/numerical methods for solving ODE or PDE in
literature.

Definition of the Subject

In this study, some semi-analytical/numerical methods are
applied to solve the Korteweg–de Vries (KdV) equation
and the modified Korteweg–de Vries (mKdV) equation,
which are characterized by the solitary wave solutions
of the classical nonlinear equations that lead to solitons.
Here, the classical nonlinear equations of interest usually
admit for the existence of a special type of the traveling
wave solutions which are either solitary waves or solitons.
These approaches are based on the choice of a suitable dif-
ferential operator which may be ordinary or partial, linear
or nonlinear, deterministic or stochastic. It does not re-
quire discretization, and consequently massive computa-
tion.

In this scheme the solution is performed in the form
of a convergent power series with easily computable com-
ponents. This section is particularly concerned with the
Adomian decomposition method (ADM) and the results
obtained are compared to those obtained by the varia-
tional iterationmethod (VIM), homotopy analysis method

(HAM), and homotopy perturbation method (HPM).
Some numerical results of these particular equations are
also obtained for the purpose of numerical comparisons
of those considered approximate methods. The numeri-
cal results demonstrate that the ADM is relatively accurate
and easily implemented.

Introduction

In this part, a certain nonlinear partial differential equa-
tion is introduced which is characterized by the soli-
tary wave solutions of the classical nonlinear equations
that lead to solitons [8,9,11,64,70]. The classical nonlin-
ear equations of interest usually admit for the existence
of a special type of the traveling wave solutions which are
either solitary waves or solitons. In this study, a few so-
lutions arising from the semi-analytical work on the Ko-
rteweg–de Vries (KdV) equation and modified Korteweg–
de Vries (mKdV) equation will be reviewed.

In this work, a brief history of the above mentioned
nonlinear KdV equation is given and how this type of
equation leads to the soliton solutions is then presented
as an introduction to the theory of solitons. This theory is
an important branch of applied mathematics and mathe-
matical physics. In the last decade this topic has become an
active and productive area of research, and applications of
the soliton equations in physical cases have been consid-
ered. These have important applications in fluid mechan-
ics, nonlinear optics, ion plasma, classical and quantum
fields theories, etc.

The best introduction for this study may be the Scot-
tish naval engineer J. Scott Russell’s seminal 1844 report
to the Royal Society. In the time of the eighteen century,
Scott Russell’s report was called “Report on Waves” [57].
Around forty years later, starting from Scott Russell’s ex-
perimental observations in 1934, the theoretical scientific
work of Lord Rayleigh and Joseph Boussinesq around
1870 [56] independently confirmed Russell’s prediction
and derived formula (1) from the equation of motion for
an inviscid incompressible liquid. They also gave the soli-
tary wave profile z D u(x; t) as

u(x; t) D a sech2
�
ˇ(x � Ut)

�
(1)

where ˇ2 D 3a�
˚
4h2(hC a)

�
any a > 0. They drew the

solitary wave profile as in the following
Finally, two Dutch scientists, Korteweg and de Vries,

developed a nonlinear partial differential equation to
model the propagation of shallow water waves applicable
to situation in 1895 [43]. This work was really what Scott
Russell fortuitously witnessed. This famous classical equa-
tion is known simply as the KdV equation. Korteweg and
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Korteweg–de Vries Equation (KdV) and Modified KdV (mKdV),
Semi-analytical Methods for Solving the, Figure 1
A solitary wave

de Vries published a theory of shallow water waves which
reduced Russell’s observations to its essential features. The
nonlinear classical dispersive equation was formulated by
Korteweg and de Vries in the form

@u
@t
C c

@u
@x
C "

@3u
@x3
C � u

@u
@x
D 0 ; (2)

where c; "; � are physical parameters. This equation now
plays a key role in soliton theory.

After setting the theory and applications of the KdV
solitary waves, scientists should know a numerical model
for the such nonlinear equations. This model was con-
structed and published as a Los Alamos Scientific Labo-
ratory Report in 1955 by Fermi, Pasta, and Ulam (FPU).
This was a numerical model of a discrete nonlinear mass–
spring system [13]. The natural question arises of how the
energy would be distributed among all modes in this non-
linear discrete system. The energy would be distributed
uniformly among all modes in accordance with the prin-
ciple of the equipartition of energy stated by Fermi, Pasta
and Ulam. This model follows the form of a coupled non-
linear ordinary differential equation system, where wi is
a function of t, and this system is written as

m
k
d2wi

dt2
D (wiC1 C wi�1 � 2wi)

C ˛
�
(wiC1 � wi)2 � (wi � wi�1)2

�
(3)

wherewi is the displacement of the ithmass from the equi-
librium position, i D 1; 2; : : : ; n, w0 D wn D 0, k is the
linear spring constant and ˛ (> 0) measures the strength
of nonlinearity.

In the late 1960s, Zabusky and Kruskal numerically
studied, and then analytically solved, the KdV equa-
tion [71] from the result of the FPU experiment inspi-
ration. They came to the result that the stable pulse-like
waves could exist in a problem described by the KdV

Korteweg–de Vries Equation (KdV) and Modified KdV (mKdV),
Semi-analytical Methods for Solving the, Figure 2
Development of solitary waves: a initial profile at t D 0, b profile
at t D ��1, and cwave profile at t D (3:6)��1 [13]

equation from their numerical study. A remarkable aspect
of the discovered solitary waves is that they retain their
shapes and speeds after a collision. After the observation
of Zabusky and Kruskal, they called to these waves “soli-
tons”, because the character of the waves had a particle-
like nature. In fact, they considered the initial value prob-
lem for the KdV equation in the form

vt C vvx C ı vxxx D 0 ; (4)

where ı D (h/`)2, ` is a typical horizontal length scale,
with the initial condition

v(x; 0) D cos � x; 0 � x � 2 (5)

and the periodic boundary conditions with period 2, so
that v(x; t) D v(x C 2; t) for all t. Their numerical study
with
p
ı D 0:022 produced a lot of new interesting results,

which are shown as follows.
In 1967, this numerical development was placed on

a settled mathematical basis with C.S. Gardner, J.M.
Greene, M.D. Kruskal and R.M. Miura’s discovery of
the inverse-scattering-transformmethod [14,15]. This way
of calculation was an ingenious method for finding the
exact solution of the KdV equation. Almost simultane-
ously, Miura [51] and Miura et al. [52] formulated an-
other ingenious method to derive an infinite set of con-
servation laws for the KdV equations by introducing
the so-called Miura transformation. Subsequently, Hi-
rota [28,29,30] constructed analytical solutions of the KdV
equation which provide the description of the interaction
among N solitons for any positive integral N.

The soliton concept can be regarded with solutions of
nonlinear partial differential equations. The soliton solu-
tion of a nonlinear equation is usually used as single wave.
If there are several soliton solutions, these solutions are



5146 K Korteweg–de Vries Equation (KdV) and Modified KdV (mKdV), Semi-analytical Methods for Solving the

called “solitons.” On the other hand, if a soliton sepa-
rates infinitely from other soliton, this soliton is a single
wave. Besides, a single wave solution cannot be a sech2

function for equations different from nonlinear equations,
such as the KdV equation. But this solution can be sech or
tan�1 (e˛x ).

At this stage, one could ask what the definition of
a soliton solution is. It is not easy to define the soliton con-
cept. Wazwaz [64] describes solitons as solutions of non-
linear differential equations such that

1. A long and shallow water wave should not lose its per-
manent forms;

2. A long and shallow water wave of the solution is local-
ized, which means that either the solutions decay expo-
nentially to zero such as the solitons admitted by the
KdV equation, or approach a constant at infinity such
as the solitons provided by the SG equation;

3. A long and shallow water wave of the solution can in-
teract with other solitons and still preserve its character.

There is also a more formal definition of this concept, but
these definitions require substantial mathematics [12]. On
the other hand, the phenomena of the solitons use not
quite the same as have stated above three properties in
all expression of the solutions. For example, the concept
referred to as “light bullets” in nonlinear optics are of-
ten called solitons despite losing energy during interac-
tion. This idea can be found at an internet web page of the
Simon Fraser University British Columbia, Canada [50].

Nonlinear phenomena play a crucial role in applied
mathematics and physics. Calculating exact and numerical
solutions, particularly traveling wave solutions, of nonlin-
ear equations in mathematical physics play an important
role in soliton theory [8,70]. It has recently become more
interesting to obtain exact solutions of nonlinear partial
differential equations utilizing symbolical computer pro-
grams (such as Maple, Matlab, and Mathematica) which
facilitate complex and tedious algebraical computations.
It is also important to find exact solutions of nonlinear
partial differential equations. These equations exist be-
cause of the mathematical models of complex physical
phenomenon that arise in engineering, chemistry, biology,
mechanics and physics. Various effective methods have
been developed to understand the mechanisms of these
physical models, to help physicians and engineers and to
ensure knowledge for physical problems and its applica-
tions.

Many explicit exact methods have been introduced in
literature [8,9,11,31,32,33,42,62,64,65,66,67,69,70]. Some
of them are: Bäcklund transformation, Cole–Hopf trans-
formation, Generalized Miura Transformation, Inverse

Scattering method, Darboux transformation, Painleve
method, similarity reduction method, tanh (and its varia-
tions) method, homogeneous balance method, Exp-func-
tion method, sine–cosine method and so on. There are
also many numerical methods implemented for non-
linear equations [16,17,27,34,35,37,38,39,40,54,61]. Some
of them are: finite difference methods, finite elements
method, Sinc–Galerkin method and some approximate or
semi-analytic/numerical methods such as Adomian de-
composition method, variational analysis method, homo-
topy analysis method, homotopy perturbation method
and so on.

An Analysis of the Semi-analyticalMethods
and Their Applications

The recent years have seen a significant development in
the use of various methods to find the numerical and semi-
analytical/numerical solution of a linear or nonlinear, de-
terministic or stochastic ODE or PDE. In this work, we will
only discuss the nonlinear PDE case of the problem.

Before giving the semi-analytical and numerical im-
plementations of the considered methods, may draw some
conclusions from Liao’s book [46] and the recent new pa-
pers [1,7,10] for comparisons of the ADM, HAM, HPM
and VIM. ADM can be applied to solve linear or nonlin-
ear ordinary and partial differential equations, no matter
whether they contain small/large parameters, and thus is
rather general. In some cases, the Adomian decomposition
series converge rapidly. However, this method has some
restrictions, e. g. if you are solving nonlinear equation you
have to sort out Adomian’s polynomials. In the same case,
this needs to take more calculations. Liao [46] pointed out
that “in general, convergence regions of power series are
small, thus acceleration techniques are often needed to en-
large convergence regions. This is mainly due to the fact
that a power series is often not an efficient set of base
functions to approximate a nonlinear problem, but unfor-
tunately ADM does not provide us with freedom to use
different base functions. Like the artificial small parame-
ter method and the d-expansion method, ADM itself also
does not provide us with a convenient way to adjust the
convergence region and the rate of approximation solu-
tions”.

Many authors [1,7,10] made their own studies in
which they gave implementations of equations by using
HAM, HPM, and then found numerical solutions. Their
results show that: (i) Liao’s HAM can produce much better
approximations than the previous solutions for nonlinear
differential equations. (ii) They compared the approxima-
tions of these two methods and they observe that although

http://www.sfu.ca/
http://www.sfu.ca/
http://www.sfu.ca/
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HAM is faster thanHPM (see Figs. 1–6 in [10]), both of the
methods converge to the exact solution quite fast. HAM
and HPM are in some cases similar to each other; e. g.,
the obtained solution function of the equation is shorter if
HPM is used instead of HAM. The corresponding results
converge more rapidly if HAM is used. (iii) The other ad-
vantage of the HAM is that it gives the flexibility to choose
an auxiliary parameter h to adjust and control the con-
vergence and its rate for the solutions series and the de-
fined different functions which originate from the nature
of the considered problems [1]. (iv) If one compares the
approximated numerical solution with the corresponding
exact solution by using HAM and HPM, one can see that
when the small parameter h is increased the error of the
first method is less than the second one.

Chowdhury and co worker [7], show that their ob-
tained numerical results by the 5-term HAM are exactly
the same as the ADM solutions and HPM solutions for the
special case of the auxiliary parameter h D �1 and auxil-
iary function H(x) D 1. Because of this conclusion, they
admitted that the HPM and the ADM is a special case of
HAM.

Adomian Decomposition Method

The aim of the present section is to give an outline and
implementation of the Adomian decomposition method
(ADM) for nonlinear wave equations, and to obtain an-
alytic and approximate solutions which are obtained in
a rapidly convergent series with elegantly computable
components by this method. The approach is based on
the choice of a suitable differential operator which may be
ordinary or partial, linear or nonlinear, deterministic or
stochastic [4,5,6,63,64]. It allows one to obtain a decom-
position series solution of the equation which is calculated
in the form of a convergent power series with easily com-
putable components.

The inhomogeneous problem is quickly solved by ob-
serving the self-canceling “noise” terms, where the sum of
the components vanishes in the limit. Many tests which
model problems from mathematical physics, linear and
nonlinear, are discussed to illustrate the effectiveness and
the performance of the ADM. Adomian and Rach [5] and
Wazwaz [63] have investigated the phenomena of the self-
canceling “noise” terms where the sum of the components
vanishes in the limit. An important observation was made
that the “noise” terms appear for nonhomogenous cases
only. Further, it was formally justified that if terms in u0
are canceled by terms in u1, even though u1 includes fur-
ther terms, then the remaining non-canceled terms in u1
constitute the exact solution of the equation.

ADM is valid for ordinary and partial differential
equations, whether or not they contain small/large pa-
rameters, and thus is rather general. Moreover, the Ado-
mian approximation series converge quickly. However,
this method has some restrictions. Approximates solu-
tions given by ADM often contain polynomials. In gen-
eral, convergence regions of power series are small, thus
acceleration techniques are often needed to enlarge con-
vergence regions. This is mainly due to the fact that power
series is often not an efficient set of base functions to ap-
proximate a nonlinear problem, but unfortunately ADM
does not provide us with freedom to use different base
functions.

An outline of the method will be given here in order
to obtain analytic and approximate solutions by using the
ADM. Considering a generalized KdV equation [41]

ut C ˛ umux C uxxx D 0 ; u(x; 0) D g(x) ; (6)

where ˛ andm > 0 are constants. An operator form of this
equation can be written as

Lt (u)C ˛Nu C Lxxx (u) D 0 ; (7)

where Lt � @/(@t), Nu D umux and Lxxx � @3/(@x3). It
is assumed that L�1t is an integral operator given by
L�1t �

R t
0 (:)dt. Operating with the integral operator L�1t

on both sides of (7) with

L�1t Lt (u) D �˛L�1t (Nu) � L�1t Lxxx (u) : (8)

Therefore, it follows that

u(x; t) D u(x; 0) � ˛L�1t (Nu) � L�1t Lxxx (u) :

We find that the zeroth component is obtained by

u0 D u(x; 0) ; (9)

which is defined by all terms that arise from the initial con-
dition and from integrating the source term and decom-
posing the unknown function u(x; t) as a sum of compo-
nents defined by the decomposition series

u(x; t) D
1X

nD0

un(x; t) : (10)

The nonlinear term umuxcan be decomposed into the in-
finite series of polynomials given by

Nu D umux D
1X

nD0

An ;
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where the components ui (x; t) will be determined recur-
rently, and the An polynomials are the so-called Adomian
polynomials [64] of u0; u1; u2; � � � ; ui defined by

An D
1
n!

"
dn

dn
˚

 
1X

kD1

kuk

!#ˇ̌
ˇ̌
ˇ
�D0

; n � 0 : (11)

Substituting (11) and (9) into (8) gives rise to

unC1 D �L�1t (An) � L�1t Lxxx (un) ; n � 0 (12)

where L�1t is the previously given integration opera-
tor. The solution u(x; t) must satisfy the requirements
imposed by the initial conditions. The decomposition
method provides a reliable technique that requires less
work if compared with the traditional techniques. To give
a clear overview of the methodology, the following exam-
ples will be discussed.

Example 1 Let’s consider the mKdV equation (6) for the
value of m D 1, which is called the classical KdV equation,
and take this equation with the following initial value con-
dition [36],

u (x; 0) D
3
˛
�

3
˛

tanh2
 p



2
x

!

; (13)

and then basically Eq. (6) is taken in an operator form ex-
actly in the samemanner as the form of the Eq. (6) and us-
ing (9) to find the zeroth component of u0 D u(x; 0). Tak-
ing into consideration (12) with (11) and one can calculate
the rest of the terms of the series with the aid ofMathemat-
ica and then write these terms to the Eq. (10), yielding

u (x; t) D

1
4˛

(

3t24


�2C cosh



x
p

��

sech4
 
x
p


2

!)

C
1

64˛

(

t47
 

� 33 � 26 cosh


x
p

�

C cosh


2x
p

�!

sech6
 
x
p


2

!)

C
1
8˛

(

t3
11
2 sech5

 
x
p


2

! 

� 11 sinh

 
x
p


2

!

C sinh

 
3x
p


2

!!)

C
1

640˛

(

t5
7
2 sech7

 
x
p


2
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302 sinh

 
x
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� 57 sinh
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p


2

!!)

C
1
˛

(
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x
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!)

�
1
˛

(
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˛
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!!)

C � � �

Example 2 Consider the mKdV equation (6) with the
values of m D 2 and ˛ D 6, it has the traveling wave so-
lution which can be obtained subject to the initial condi-
tion [41]

u(x; 0) D
p
c sech

�
k C
p
cx
�
; (14)

for all c � 0, where k is an arbitrary constant.
Again, to find the solution of this equation, simply take

the equation in a operator form exactly in the same man-
ner as the form of Eq. (6) and use (12) to find the zeroth
component of u0 D u(x; 0) and obtain sequential terms
by using (12) with (11) to determine the other individual
terms of the decomposition series with the aid of Mathe-
matica, to get

u (x; t) D
p
c sech

�
k C
p
cx


C
1
4
c
7
2 t2


�3C cosh

�
2k C 2

p
cx
�

sech3
�
k C
p
cx


C
1
192

c
13
2 t4


115 � 76 cosh

�
2k C 2

p
cx


C cosh
�
4k C 4

p
cx
 �

sech5
�
k C
p
cx


C
1

23040

(

c
19
2 t6


� 11774C 10543 cosh

�
2k C 2

p
cx


� 722 cosh
�
4k C 4

p
cx

C cosh

�
6k C 6

p
cx
 �

� sech7
�
k C
p
cx

)

C
1
4
c5t3 sech4

�
k C
p
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� 23 sinh

�
k C
p
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C sinh
�
3k C 3

p
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C
1

1920

(

c8t5 sech6
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Homotopy Analysis Method In this section, the homo-
topy analysis method (HAM) [44,46] is considered. HAM
has been constructed and successfully implemented as
an approximate and numerical solution for many types
of nonlinear problems [18,19,45,46,47,48,49,58,59,60] and
the references cited therein. A very nice explanation of the
basic ideas of the HAM, its relationships with other an-
alytic techniques, and some of its applications in science
and engineering are given in Liao’s book [46]. There are
many groups of methods similar to HAM in the literature
which are implemented nonlinear problems. Most of these
groups of methods are in principle based on a Taylor series
in an embedding parameter. If one could guess the initial
function and the auxiliary linear operator well, then one
can get very good approximations in a few terms, espe-
cially for a small value of the variable of the series.

For the purpose of illustration of the HAM [44], the
mKdV equation is written in the operator form as

L (u)C ˛ umux C uxxx D 0 ; (15)

where L is a linear operator: L � @/(@t). Equation (15) can
be written in a nonlinear operator form as

N
�
'
�
x; t; q

�
D
@'
�
x; t; q



@t

C ˛'m �x; t; q
 @'

�
x; t; q



@x
C
@3'

�
x; t; q



@x3
; (16)

where q 2 [0; 1] is an embedding parameter and '
�
x; t; q



is a function.
From u (x; 0) D U0 (x), �1 < x <1, it is straight-

forward to express the solution u by a set of base functions

fen (x) tn; n � 0g ;

where en (x) as a coefficient is a function with respect to
x. This provides us with the so-called Rule of Solution Ex-
pression.

Following Liao’s method [44,46], let u (x; 0) D U0 (x)
indicate an initial guess of the exact solution u; h ¤ 0,
an auxiliary parameter, H (x; t) ¤ 0 an auxiliary function.
A zero-order deformation equation is constructed as

�
1 � q


L
�
'
�
x; t; q


� u0 (x; t)

�

D qhH (x; t) N
�
'
�
x; t; q

�
; (17)

with the initial condition

'
�
x; 0; q


D U0 (x) : (18)

When q D 0 and 1, the above equation has the solution

'(x; t; 0) D u0(x; t) (19)

and

'(x; t; 1) D u(x; t) (20)

respectively.
Assume the auxiliary function H (x; t) and the auxil-

iary parameter h are properly chosen so that '
�
x; t; q


can

be expressed by the Taylor series

'
�
x; t; q


D u0 (x; t)C

1X

nD1

un (x; t) qn ; (21)

where

un (x; t) D
1
n!
@n'

�
x; t; q



@qn

ˇ̌
ˇ
ˇ̌
qD0

(22)

and that the above series is convergent at q D 1. Equations
(19) and (20) then yield

u (x; t) D u0 (x; t)C
1X

nD1

un (x; t) : (23)

For the sake of simplicity, define the vectors

Eun (x; t) D fu0 (x; t) ; u1 (x; t) ; : : : ; un (x; t)g (24)

differentiating the zero-order deformation Eq. (17) n times
with respect to the embedding parameter q, then setting
q D 0, and finally dividing by n!, the nth-order deforma-
tion equation is written as

L [un (x; t) � �nun�1 (x; t)]
D hH (x; t) Rn

�
Eun�1 (x; t)

�
; (25)
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where

Rn
�
Eun�1 (x; t)

�

D
1

(n � 1)!

(
@n�1

@qn�1
N

"
1X

mD0

um (x; t) qm
#) ˇ̌
ˇ̌
ˇ
qD0

(26)

and

�n D

(
0 ; n � 1
1 ; n > 1

(27)

with the initial condition

un (x; 0) D 0; n � 1 : (28)

Therefore the nth order approximation of u (x; t) is given
by

u (x; t) � u0 (x; t)C
NX

mD1

um (x; t) : (29)

Example 1 Let’s consider the mKdV equation (6) for the
value of m D 1, which is called the classical KdV equation,
and take this equation with the following initial value con-
dition

u (x; 0) D u0 D
3
˛

 

1 � tanh2
 p



2
x

!!

: (30)

All related formulae are the same as those given from (25),

Rn [un�1] D
@un�1
@t
C˛

n�1X

iD0

ui
@un�1�i
@x

C
@3un�1
@x3

; (31)

using (24) and (25) with (31) and the initial function (30),
three terms of the series (29) can be calculated as

u (x; t) D
3
˛

 

1 � tanh2
 p



2
x

!!

�
3ht

5
2 sech2



x
p
�

2

�
tanh



x
p
�

2

�

˛

C
1
4˛

(

3ht
5
2 sech4

 
x
p


2

!

�

�
�2C cosh



x
p

��
� 2 (1C h) sinh



x
p

�)

C
1
8˛

(

ht
5
2 sech2

 
x
p


2

!�
12h (1C h)t

3
2

�

�
�2C cosh



x
p

��

sech2
 
x
p


2

!

� h2t23 sech3
 
x
p


2

!

�

 

�11 sinh

 
x
p


2

!

C sinh

 
3x
p


2

!!

�24 (1C h)2 tanh

 
x
p


2

!�)

C
1

64˛

(

ht
5
2 sech2

 
x
p


2

!

�

�
144h (1C h)2t

3
2

�
�2C cosh



x
p

��

� sech2
 
x
p


2

!

C h3t3
9
2

�
33 � 26 cosh



x
p

�
C cosh



2x
p

��

� sech4
 
x
p


2

!

� 24h2 (1C h) t23

� sech3
 
x
p


2

!

�

 

�11 sinh

 
x
p


2

!

C sinh

 
3x
p


2

!!

� 192 (1C h)3 tanh

 
x
p


2

!�)

C � � �

Example 2 In this example, the mKdV equation (6) is
considered for the values of m D 2 and ˛ D 6. It has the
traveling wave solution which can be obtained subject to
the initial condition

u(x; 0) D
p
c sech

�
k C
p
cx
�
: (32)

For implementation of the HAM for this particular equa-
tion with the initial function (32), all related formulae are
the same as those given from (15) and (25) with the fol-
lowing Rn [un�1]:

Rn [un�1] D
@un�1
@t

C ˛

n�1X

iD0

iX

jD0

ujui� j
@un�1�i
@x

C
@3un�1
@x3

: (33)
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Using (24) and (25) with (33) by with the initial function
(32), we have

u (x; t) D
p
c sech

�
k C
p
cx
�

� c2ht sech
�
k C
p
cx
�
tanh

�
k C
p
cx
�

C
1
4
c2ht sech

�
k C
p
cx
�

�

�
2c

3
2 ht


1 � 2 sech2

�
k C
p
cx
�

� 4 (1C h) tanh
�
k C
p
cx
 �

C
1
24

c2ht sech
�
k C
p
cx


�

 

12c
3
2 h (1C h) t

�
�3C cosh



2
�
k C
p
cx
��

!

� sech2
�
k C
p
cx

C c3h2t2 sech3

�
k C
p
cx


�

�
23 sinh

�
k C
p
cx

� sinh



3
�
k C
p
cx
��

� 24 (1C h)2 tanh
�
k C
p
cx

C � � �

which are the three terms of the approximate series solu-
tion (29).

Homotopy Perturbation Method

In 1998, Liao’s early idea to construct the one-parame-
ter family of equations was introduced by He’s so-called
“homotopy perturbation method” [20,21,23,24], which is
only a special case of the homotopy analysis method [45].
But this homotopy perturbation method is almost the
same as Liao’s early one-parameter family equation which
can be found in [44]. There are some minor differences,
and detailed discussions and proofs can be seen in lit-
erature [20,21,23,24]. The authors in [20,21,23,24], have
proved that these two methods lead to the same solutions
of the considered equation for high-order approximations.
This is also mainly because of the Taylor series properties.
In conclusion of this, nothing is new in He’s idea, except
the new name “homotopy perturbation method” [58].

To illustrate HPM, consider the following nonlinear
differential equation

A (u) � f (r) D 0 ; r 2 ˝ (34)

with the boundary condition

B
�
u;
@u
@n

�
D 0 ; r 2 � ; (35)

where A (u) is written as follows:

A (u) D L (u)C N (u) : (36)

A is a general differential operator, B is a boundary oper-
ator, f (r) is a given analytic right hand side function, and
� is the boundary of the domain˝ . The operatorA can be
generally divided into two parts L and N, where L is linear
and N is the nonlinear term. So, Eq. (34) can be rewritten
as follows:

L (u)C N (u) � f (r) D 0 : (37)

By the homotopy technique [45], a homotopy
v
�
r; p


: ˝ � [0; 1]! < is obtained which satisfies

H
�
v; p



D
�
1 � p


[L (v) � L (u0)]C p

�
A (v) � f (r)

�

D 0 ; p 2 [0; 1] ; r 2 ˝ ; (38)

where p 2 [0; 1] is an embedding parameter, and u0 is
an initial approximation of Eq. (34) which satisfies the
boundary conditions. Obviously, from (38) the result will
be

H (v; 0) D L (v) � L (u0) D 0 ;
H (v; 1) D A (v) � f (r) D 0 ;

changing process of p from zero to unity is just that of
v
�
r; p


from u0 (r) to u (r). In topology, this is called de-

formation, and L (v) � L (u0) and A (v) � f (r) are called
homotopy.

We consider v as the following:

v D v0 C pv1 C p2v2 C p3v3 C � � � : (39)

According to HPM, the best approximation solution of
Eq. (37) can be explained as a series of the power of p,

u D lim v
p!1
D v0 C v1 C v2 C v3 C � � � : (40)

The above convergence is given in [21]. Some results have
been discussed in [20,23,24].

Example 1 Here, the mKdV equation (6) is again con-
sidered for the value of m D 1, which is called classical
KdV equation; first we construct a homotopy as follows:

�
1 � p

 h :
Y �

:
u0
i
C p

h :
Y C˛YY 0 C Y 000

i
D 0 ; (41)

where

:

Y D
@Y
@t
;Y 0 D

@Y
@x

;Y 000 D
@3Y
@x3

and p 2 [0; 1] :

With the initial approximation

Y0 D u0 D
3
˛
�

3
˛

tanh2
 p



2
x

!

;
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suppose the solution of Eq. (41) has the form:

Y D Y0 C pY1 C p2Y2 C p3Y3 C : : :

D

1X

nD0

pnYn (x; t) : (42)

Substituting Eq. (42) into Eq. (41) and arranging the coef-
ficients of “p” powers, we have

p0 :
:

Y0 �
:
u0 D 0 ; (43)

p1 :
:

Y1C
:
u0C˛Y0Y 00 C Y 0000 D 0 ; (44)

p2 :
:

Y2C˛Y0Y 01 C ˛Y1Y
0
0 C Y 0001 D 0 ; (45)

p3 :
:

Y3C˛Y0Y 02 C ˛Y1Y
0
1 C ˛Y2Y

0
0 C Y 0002 D 0 ; (46)

:::

and finally using Mathematica, the solutions of the equa-
tion can be obtained as follows:

Y0 D
3
˛
�

3
˛

tanh2
 p



2
x

!

; (47)

Y1 D
3t

5
2

˛
sech2

 
x
p


2

!

tanh

 
x
p


2

!

(48)

Y2 D

3t24

4˛

�
�2C cosh



x
p

��

sech4
 
x
p


2

!

; (49)

Y3 D
3t3

11
2

8˛
sech5

 
x
p


2

!

�

 

�11 sinh

 
x
p


2

!

C sinh

 
3x
p


2

!!

(50)

:::

The above terms of the series (42) could be calculated.
When the series (42) is considered with the terms (43)–
(46) and supposing p D 1, an approximate series solution
of the considered KdV equation is obtained as follows:

u (x; t) D
3
˛
�

3
˛

tanh2
 p



2
x

!

C
3t

5
2

˛
sech2
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p


2

!
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!

C
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!
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8˛
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�11 sinh
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p


2

!

C sinh
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p


2

!!

C � � �

Example 2 Let’s consider the mKdV equation (6) with
the values of m D 2 and ˛ D 6. For this method’s imple-
mentation, a homotopy is constructed as follows:

�
1 � p

 h :
Y �

:
u0
i
C p

h :
Y C6Y2Y 0 C Y 000

i
D 0 : (51)

With the initial approximation

Y0 D u0 D
p
c sech

�
k C
p
cx
�
;

suppose the solution of Eq. (41) has the form:

Y D Y0 C pY1 C p2Y2 C p3Y3 C : : :

D

1X

nD0

pnYn (x; t) : (52)

Substituting Eq. (52) into Eq. (51) and arranging the coef-
ficients of “p” powers, we have

p0 :
:

Y0�
:
u0 D 0 ; (53)

p1 :
:

Y1C
:
u0C6Y2

0 Y
0
0 C Y 0000 D 0 ; (54)

p2 :
:

Y2C12Y0Y1Y 00 C 6Y2
0 Y
0
1 C Y 0001 D 0 ; (55)

p3 :
:

Y3C12Y0Y2Y 00 C 6Y2
1 Y
0
0

C 12Y0Y1Y 01 C Y 0002 D 0 (56)

:::

Finally, using Mathematica, the few terms of the series so-
lution of the Eq. (51) can be obtained as follows:

u (x; t) D
p
c sech

�
k C
p
cx


C
1
4
c
7
2 t2
�
�3C cosh



2
�
k C
p
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� sech3
�
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24
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�
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�23 sinh
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p
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C sinh
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p
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��

C c2t sech
�
k C
p
cx

tanh

�
k C
p
cx

C � � �
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Variational IterationMethod

In this section, a kind of semi-analytical technique is con-
sidered for a non-linear problem called the variational iter-
ation method (VIM) [20,22,25]. It is proposed by He [20],
and the method is based on the use of restricted variations
and correction functionals. In this technique, a correction
functional is defined by a general Lagrange multiplier us-
ing the ingenuity of variational theory. This method is
implemented to get approximate solutions for many lin-
ear and non-linear problems in physics and mathemat-
ics [2,3,26,53,55,68]. When the method is implemented
on the differential equation, it does not require the pres-
ence of small parameters and the solution of the equa-
tion is obtained as a sequence of iterates. The method
does not require that the nonlinearities be differentiable
with respect to the dependent variable and its deriva-
tives [2,3,26,53,55,68].

To illustrate the VIM, let’s consider the nonlinear KdV
equation (6):

Lu C Nu D 0 ; (57)

where L and N are linear and nonlinear operators, respec-
tively. In [2,3,26,53,55,68], He proposed the VIM where
a correction functional for Eq. (57) can be written as:

unC1 (x; t)

D un (x; t)C
Z t

0

˚
Lun (x; �)C Ñun (x; �)

�
d� ;

n � 0 ; (58)

where  is a general Lagrange multiplier [20], which can
be identified optimally via the variational theory, and ũn is
a restricted variation, which means ıũn D 0. It is required
first to determine the Lagrangian multiplier  that will
be identified optimally via integration by parts. The suc-
cessive approximations unC1 (x; t), n � 0, of the solution
u (x; t) will be readily obtained upon using the Lagrangian
multiplier obtained and by using any selective function
u0. The initial values u (x; 0) and ut (x; 0) are usually used
for the selective zeroth approximation u0. Having  deter-
mined, then several approximations uj (x; t), j � 0, can be
determined. Consequently, the solution is given by

u D lim
n!1

un : (59)

In what follows, the VIM will apply to two nonlinear KdV
equations with similar initial functions to illustrate the
strength of the method and to compare the given above
methods.

Example 1 Let’s consider the mKdV equation (6) for the
value of m D 1 with the following initial function

u (x; 0) D
3
˛
�

3
˛

tanh2
 p



2
x

!

; (60)

where ; ˛ are arbitrary constant. The correction func-
tional for this equation is

unC1 (x; t)

D un (x; t)C
Z t

0

n�
un (x; �)


�
C
˛

2
�
ũ2n (x; �)


x

C
�
un (x; �)


xxx

o
d� ; n � 0 ; (61)

where  is the general Lagrange multiplier [20] whose
optimal value is found using variational theory. u0 is an
initial solution with or without unknown parameters. In
the case of no unknown parameters, u0 should satisfy ini-
tial-boundary conditions and ũ2n is the restricted varia-
tion [22], i. e., ũ2n D 0. To find the optimal value of , we
have

ıunC1 (x; t)

D ıun (x; t)C ı
Z t

0

n�
un (x; �)


�
C
˛

2
�
ũ2n (x; �)


x

C
�
un (x; �)


xxx

o
d� ; (62)

and this yields the stationary conditions

0 (�) D 0 ; 1C  (�)j�Dt D 0 :

This in turn gives  D �1 therefore, Eq. (51) can be writ-
ten as following

unC1 (x; t)

D un (x; t) �
Z t

0

n�
un (x; �)


�
C
˛

2
�
ũ2n (x; �)


x

C
�
un (x; �)


xxx

o
d� : (63)

Substituting the value of m D 1 into the mKdV equa-
tion (6) with an initial value (60), and then substituting
this into Eq. (63) and using Mathematica, the solutions of
the Eq. (6) with initial value (60) can be obtained as fol-
lows:

u (x; t) D
1

560˛


1C cosh



x
p

��
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Example 2 Again the mKdV equation (6) is considered
with the values of m D 2 and ˛ D 6 and the following ini-
tial function

u (x; 0) D
p
c sech

�
k C
p
cx
�
: (64)

The correction functional for this equation is

unC1 (x; t)

D un (x; t) �
Z t

0

n�
un (x; �)


�
C 2

�
ũ3n (x; �)


x

C
�
un (x; �)


xxx

o
d� ; n � 0 : (65)

Substituting the value of m D 2 into the mKdV equa-
tion (6) with initial value (64), and then substituting this
into Eq. (65) and using Mathematica, the solutions of the
considered equation with initial value (64) can be obtained

as follows:

u (x; t) D
1
4
sech

�
k C
p
cx


�
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2c
7
2 t2


1 � 2 sech2
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C 4

p

c C c2t tanh
�
k C
p
cx
�
)

C � � �

We have just written the series solution for the mKdV as
three terms rather than four terms.

Numerical Experiments For numerical comparisons
purposes, two KdV equations are considered. The first one
is the classical KdV and the second one is the modified
KdV equation. The formula of numerical results for ADM,
HAM and HPM are given as follows

lim
n!1

�n D u(x; t)

where �n(x; t) D
nX

kD0

uk(x; t) ; n � 0 : (66)

The formula of numerical results for VIM is as (59). The
recurrence relations of the methods are given as in (12),
(25), (43)–(46) and (58), respectively.

Moreover, the decomposition series of the KdV equa-
tion’s solutions generally converge very rapidly in real
physical problems [5,6,64]. Results were obtained about
the speed of convergence of this method, providing us
methods to solve linear and nonlinear functional equa-
tions. The convergence of the HAM and VIM are numer-
ically shown in some works [3,55] and references there in.
Here, how all these methods are converged to their corre-
sponding exact solutions has been proved.

Numerical approximations show a high degree of ac-
curacy and in most cases of � n , the n-term approximation
is accurate for quite low values of n. The solutions are very
rapidly convergent by utilizing the ADM, VIM, HPM and
HAM. The obtained numerical results justify the advan-
tage of these methodologies, and even with few terms the
approximation is accurate. Furthermore, as the all these
methods do not require discretization of the variables, i. e.
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Korteweg–de Vries Equation (KdV) andModified KdV (mKdV), Semi-analytical Methods for Solving the, Table 1
Comparison between the absolute error of the solution of KdV equation (6) (m D 1) at various values of t and x D 0:5 for
˛ D 1; � D 0:01 in ADM, VIM and HAM (h D �1)

t x D 0 x D 5
ADM HAM VIM ADM HAM VIM

0.1 2.9925� 10�8 2.9925� 10�8 3.� 10�8 0.0000130999 0.0000145274 0.0000145274
0.2 1.197� 10�7 1.197� 10�7 1.2� 10�7 0.0000261535 0.0000291008 0.000029101
0.3 2.69323� 10�7 2.69323� 10�7 2.69998� 10�7 0.0000391608 0.0000437201 0.0000437206
0.4 4.78795� 10�7 4.78795� 10�7 4.79995� 10�7 0.0000521216 0.0000583853 0.0000583862
0.5 7.48113� 10�7 7.48113� 10�7 7.49987� 10�7 0.000065036 0.0000730962 0.0000730976
0.6 1.07727� 10�6 1.07727� 10�6 1.07997� 10�6 0.0000779036 0.0000878527 0.0000878548
0.7 1.46628� 10�6 1.46628� 10�6 1.46995� 10�6 0.0000907246 0.000102655 0.000102658
0.8 1.91512� 10�6 1.91512� 10�6 1.91992� 10�6 0.000103499 0.000117502 0.000117506
0.9 2.42379� 10�6 2.42379� 10�6 2.42987� 10�6 0.000116226 0.000132395 0.0001324
1. 2.9923� 10�6 2.9923� 10�6 2.9998� 10�6 0.000128906 0.000147333 0.000147339

t x D 10 x D 15
ADM HAM VIM ADM HAM VIM

0.1 0.0000207071 0.0000229046 0.0000229046 0.0000216022 0.0000238682 0.0000238682
0.2 0.0000413971 0.000045826 0.0000458261 0.0000432119 0.0000477289 0.0000477289
0.3 0.0000620701 0.000068764 0.0000687642 0.0000648289 0.0000715819 0.0000715819
0.4 0.0000827257 0.0000917187 0.000091719 0.0000864532 0.0000954272 0.0000954271
0.5 0.000103364 0.00011469 0.00011469 0.000108085 0.000119265 0.000119265
0.6 0.000123985 0.000137677 0.000137678 0.000129723 0.000143094 0.000143094
0.7 0.000144588 0.000160681 0.000160682 0.000151369 0.000166916 0.000166916
0.8 0.000165173 0.0001837 0.000183702 0.000173022 0.00019073 0.000190729
0.9 0.000185741 0.000206736 0.000206738 0.000194682 0.000214535 0.000214535
1. 0.00020629 0.000229787 0.00022979 0.000216348 0.000238333 0.000238332

Korteweg–de Vries Equation (KdV) andModified KdV (mKdV), Semi-analytical Methods for Solving the, Table 2
Comparison between the absolute error of the solution for Eq. (6) (m D 1) by HAM and HPM at various values of t and x D 0:5 with
different values of h for HAM, in fact HPM is the value of h D �1 for HAM

t HPM HAM (h D �1) HAM (h D �1:4) HAM (h D �0:9) HAM (h D �0:6)
0.1 1.60354� 10�6 1.60354� 10�6 1.60838� 10�6 1.60346� 10�6 1.59877� 10�6

0.2 3.26676� 10�6 3.26676� 10�6 3.27654� 10�6 3.26662� 10�6 3.25727� 10�6

0.3 4.98966� 10�6 4.98966� 10�6 5.00446� 10�6 4.98946� 10�6 4.97551� 10�6

0.4 6.77222� 10�6 6.77222� 10�6 6.79214� 10�6 6.77196� 10�6 6.75346� 10�6

0.5 8.61444� 10�6 8.61444� 10�6 8.63955� 10�6 8.61411� 10�6 8.59111� 10�6

0.6 0.0000105163 0.0000105163 0.0000105467 0.0000105159 0.0000104885
0.7 0.0000124777 0.0000124777 0.0000125135 0.0000124773 0.0000124455
0.8 0.0000144988 0.0000144988 0.0000145401 0.0000144984 0.0000144621
0.9 0.0000165795 0.0000165795 0.0000166263 0.000016579 0.0000165384
1. 0.0000187197 0.0000187197 0.0000187722 0.0000187192 0.0000186744

time and space, it is not effected by computation round off
errors and one is not faced with the necessity of large com-
puter memory and time.

In order to verify numerically whether the proposed
methodologies lead to higher accuracy, the numerical so-

lutions can be evaluated using the n-term approximation
(66) and (59). The numerical results of the Eq. (6) (for KdV
m D 1 and for mKdV m D 2) for the various values of x
and t are illustrated in Tables 1 and 3 KdV and mKdV,
respectively. These tabulated results show the differences
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Korteweg–de Vries Equation (KdV) and Modified KdV (mKdV), Semi-analytical Methods for Solving the, Table 3
Comparison between the absolute error of the solution of Eq. (6) (mD 2) for c D 1; k D �7

juExact � '3j for ADM
tjx 0.1 0.2 0.3 0.4 0.5
0.1 8.23236� 10�9 1.29161� 10�7 6.41349� 10�7 1.98865� 10�6 4.76447� 10�6

0.2 9.098� 10�9 1.42742� 10�7 7.08789� 10�7 2.19776� 10�6 5.26547� 10�6

0.3 1.00546� 10�8 1.57752� 10�7 7.83317� 10�7 2.42885� 10�6 5.81914� 10�6

0.4 1.11118� 10�8 1.74338� 10�7 8.65678� 10�7 2.68424� 10�6 6.43099� 10�6

0.5 1.228� 10�8 1.92667� 10�7 9.56694� 10�7 2.96645� 10�6 7.10715� 10�6

juExact � u3jfor VIM
tjx 0.1 0.2 0.3 0.4 0.5
0.1 8.19516� 10�9 1.2858� 10�7 6.38476� 10�7 1.97978� 10�6 4.74334� 10�6

0.2 9.04779� 10�9 1.41958� 10�7 7.0491� 10�7 2.18579� 10�6 5.23696� 10�6

0.3 9.98686� 10�9 1.56692� 10�7 7.78082� 10�7 2.4127� 10�6 5.78065� 10�6

0.4 1.10203� 10�8 1.72908� 10�7 8.58611� 10�7 2.66243� 10�6 6.37904� 10�6

0.5 1.21566� 10�8 1.90738� 10�7 9.47155� 10�7 2.93702� 10�6 7.03703� 10�6

juExact � '3j for HPM � HAM with value of h D �1
tjx 0.1 0.2 0.3 0.4 0.5
0.1 8.19516� 10�9 1.2858� 10�7 6.38476� 10�7 1.97978� 10�6 4.74334� 10�6

0.2 9.04779� 10�9 1.41958� 10�7 7.0491� 10�7 2.18579� 10�6 5.23696� 10�6

0.3 9.98686� 10�9 1.56692� 10�7 7.78082� 10�7 2.4127� 10�6 5.78065� 10�6

0.4 1.10203� 10�8 1.72908� 10�7 8.58611� 10�7 2.66243� 10�6 6.37904� 10�6

0.5 1.21566� 10�8 1.90738� 10�7 9.47155� 10�7 2.93702� 10�6 7.03703� 10�6

juExact � '3j for HAMwith value of h D �0:9
tjx 0.1 0.2 0.3 0.4 0.5
0.1 2.1809� 10�9 1.26484� 10�7 1.18355� 10�7 1.28924� 10�7 5.68147� 10�7

0.2 2.41029� 10�9 1.39787� 10�7 1.30802� 10�7 1.42489� 10�7 6.27919� 10�7

0.3 2.66382� 10�9 1.54489� 10�7 1.44558� 10�7 1.57481� 10�7 6.93984� 10�7

0.4 2.94403� 10�9 1.70737� 10�7 1.59761� 10�7 1.74053� 10�7 7.67005� 10�7

0.5 3.25373� 10�9 1.88694� 10�7 1.76562� 10�7 1.9237� 10�7 8.47719� 10�7

of the absolute errors between the exact solution and the
numerical solution for the ADM, VIM and HAM. One
can conclude that the values on the interval 0 � x � 15
and for some small values of t all the considered meth-
ods give very close numerical solutions to a correspond-
ing KdV equation. If one closely looks at Tables 1 and 3
then it is evident that the numerical results are almost
the same for a few terms of the series solutions, such as
the first three terms. The calculation for the later terms of
the series has stopped because the scheme VIM does not
work very well in the sense of computer time. This prob-
lem needs to be approached in a completely different way.
Moreover, it has also been numerically proved that HPM
is a special case of the HAM which is tabulated in Ta-
ble 2 for the various values of h for interval�1:4 � h � 0:6
and similar constant values as in Table 1. It is numeri-
cally shown that when we take the value of h D �1 in

the formula HAM, then (numerically) HAM � HPM in
Table 2. It is also our experience that the choice of the
h value depends on the chosen equation and the solu-
tion of the equation, too. This can be seen in Tables 2
and 3.

Overall, one can see that closeness of the approximate
solutions and exact solutions of the all methods give al-
most equal absolute values of error, except for the approx-
imate solutions from HAM. The numerical solutions with
a special value of h D �0:9 for the HAM perform very
well, as one can see in Table 3. It is also a valuable oppor-
tunity for us to use HAM among the considered methods
because it gives the users flexibility to choose different val-
ues of h, depending on which value is necessary for the
problem.

The graphs of the numerical values of the exact and
approximate solutions of the classical KdV equation are
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Korteweg–de Vries Equation (KdV) andModified KdV (mKdV), Semi-analytical Methods for Solving the, Figure 3
A comparison by the ADM, VIM, HPM and HAMwith exact solution of Eq. (6) with (m D 1) at t D 0:5 for ˛ D 1; � D 0:01 in a–c and
˛ D 1; � D 0:01; h D �1 in d, respectively

Korteweg–de Vries Equation (KdV) andModified KdV (mKdV), Semi-analytical Methods for Solving the, Figure 4
A comparison by the ADM, VIM, HAM and HPM with exact solution of Eq. (6) with (m D 1) at t D 0:5 for ˛ D 1; � D 0:1 in a–c and
˛ D 1; � D 0:1; h D �1 in d, respectively

depicted in Figs. 3–6. In Figs. 3–5, and numerical results
are given for the KdV equation and corresponding ex-
act solution by using the considered methods. It is to be
noted that only four terms were used in evaluating the ap-

proximate solutions with different values of the constant
 D 0:01; 0:1; 1 in order to get how close the approx-
imate solutions were to the exact solution. A very good
approximation to the actual solution of the equation was



5158 K Korteweg–de Vries Equation (KdV) and Modified KdV (mKdV), Semi-analytical Methods for Solving the

Korteweg–de Vries Equation (KdV) and Modified KdV (mKdV), Semi-analytical Methods for Solving the, Figure 5
A comparison by the ADM, VIM, HAM and HPM with exact solution of Eq. (6) with (m D 1) at t D 0:5 for ˛ D 1; � D 1 in a–c and
˛ D 1; � D 1; h D �1 in d, respectively

Korteweg–de Vries Equation (KdV) and Modified KdV (mKdV), Semi-analytical Methods for Solving the, Figure 6
These two graphs is a comparison of uEr D

ˇ
ˇuExact � uApprox

ˇ
ˇ for ADM, HAMandVIMof the solutions of Eq. (6)with (m D 1) at t D 0:5

for ˛ D 1; � D 0:01; h D �1 in a and˛ D 1; � D 1; h D �1 in b, respectively

achieved by only using the four terms of the series derived
above (59) and (66) for all considered methods with the
value of  D 0:01 which are depicted in Fig. 3. This is be-
cause of the nature of the series methods. The closeness
of the numerical results for approximate solutions and
the exact solution diverges for the other value of  D 0:1
in all considered methods which are depicted in Fig. 4.
This divergence is very clear in Fig. 5 for the results of
the all the methods. But a sharp divergence can be seen
in the numerical results of VIM especially at the value of
x D 0:5, in Fig. 5b. In fact, these are illustrated in Tables 1–
2 and Figs. 3–4. It is evident that the overall errors can be

made smaller by adding new terms of the series (59) and
(66).

One can see from Fig. 6a, the absolute values of the
numerical results for approximate solutions and exact so-
lutions are very small at the value of 0 � x � 1 but other
than this values of the x neither positive nor negative val-
ues of the x gives small errors for all considered meth-
ods with the value of  D 0:01. However, in all considered
methods with the value of  D 1 a relatively small absolute
error is given at the value of 0 � x � 1, but all themethods
are given biggest absolute error at a value of x around˙2.
The VIM is poorly performed at the value of x around �2,
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but besides this all the other methods are performed rela-
tively well at the other values of the x, which can be seen in
Fig. 4b.

Lastly, the clear conclusion can be draw from the nu-
merical results that the ADM and HAM algorithms pro-
vide highly accurate numerical solutions without spatial
discretizations for nonlinear partial differential equations.
It is also worth noting that the advantage of the approxi-
mation of the series methodologies displays a fast conver-
gence of the solutions. The illustrations show the depen-
dence of the rapid convergence depends on the character
and behavior of the solutions just as in a closed form solu-
tions. Finally, it can be pointed out that, for given equa-
tions with initial values u(x; 0), the corresponding ana-
lytical and numerical solutions are obtained according to
the recurrence relations (12), (25), (43)–(46) and (58) us-
ing Mathematica package version of Mathematica 4 in PC
computer.

Future Directions

Nonlinear phenomena play a crucial role in applied math-
ematics and physics. Furthermore, when an original non-
linear equation is directly calculated, the solution will pre-
serve the actual physical characters of solutions. Explicit
solutions to the nonlinear equations are of fundamen-
tal importance. Various effective methods have been de-
veloped to understand the mechanisms of these physical
models, to help physicists and engineers, and to ensure
knowledge for physical problems and their applications.

In the future, the scientist will be very busy doingmany
works via applications of the nonlinear evolution equa-
tions in order to obtain exact and numerical solutions.
One has to find out more efficient and effectivemethods to
solve the nonlinear problems in applied mathematical ar-
eas of constructing either an exact solution or a numerical
solution. Scientists have long way to go in this nonlinear
study.
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Books and Reviews
The following, referenced by the end of the paper, is intended to
give some useful for further reading.

For another obtaining of the KdV equation for water waves,
see Kevorkian andCole (1981); one can see thework of the Johnson
(1972) for a different water-wave application with variable depth,
for waves on arbitrary shears in the work of Freeman and John-
son (1970) and Johnson (1980) for a review of one and two-dimen-
sional KdV equations. In addition to these; one can see the book
of Drazin and Johnson (1989) for some numerical solutions of non-
linear evolution equations. In the work of the Zabusky, Kruskal and
Deam (F1965) and Eilbeck (F1981), one can see themotion pictures
of soliton interactions. See a comparison of the KdV equation with
water wave experiments in Hammack and Segur (1974).

For further reading of the classical exact solutions of the non-
linear equations can be seen in the works: the Lax approach is de-
scribed in Lax (1968); Calogero and Degasperis (1982, A.20), the
Hirota’s bilinear approach is developed in Matsuno (1984), the
Bäckland transformations are described in Rogers and Shadwick
(1982); Lamb (1980, Chap. 8), the Painleve properties is discussed
by Ablowitz and Segur (1981, Sect. 3.8), In the book of Dodd, Eil-
beck, Gibbon and Morris (1982, Chap. 10) can found review of the
many numerical methods to solve nonlinear evolution equations
and shown many of their solutions.
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Glossary

Absolute error When a real number x is approximated by
another number x�, the error is x � x�. The absolute
error is jx � x�j.

Adomian decomposition method The method was in-
troduced and developed by George Adomian. The
method proved to be powerful, effective, and can easily
handle a wide class of linear or nonlinear differential
equations.

Adomian polynomials It is well known now that the
ADM suggests that the unknown linear function u
may be presented by the decomposition series
u D

P1
nD0 un , the nonlinear term F(u), such as

u2; u3; sin u; eu ; u2x , etc. can be expressed by an infinite
series of the so-called Adomian polynomials An.

Finite difference method The method handles the dif-
ferential equation by replacing the derivatives in the
equation with difference quotients.

Homotopy analysis method The HAM was introduced
by Shi-Jun Liao in 1992. For details see Sect. “The Vari-
ational Iteration Method (VIM)”.

Homotopy perturbation method The HPM was intro-
duced by Ji-HuanHe in 1999. For details see Sect. “Nu-
merical Applications and Comparisons”.

Korteweg–de Vries equation This is one of the simplest
andmost useful nonlinearmodel equations for solitary
waves.

Lagrange multiplier The multiplier in the functional
should be chosen such that its correction solution is
superior to its initial approximation (trial function)
and is the best within the flexibility of trial function, ac-
cordingly we can identify the multiplier by variational
theory.

Initial conditions The PDEs mostly arise to govern
physics phenomena such as heat distribution, wave
propagation phenomena. Most of the PDEs depend on
the time t. The initial values of the dependent vari-
able u at the starting time t D 0 should be prescribed.

Solitons It is interesting to point out that there is no pre-
cise definition of a soliton. However, a soliton can be
defined as a solution of a nonlinear partial differential
equation.

Variational iteration method The VIM was first pro-
posed by Ji-Huan He. This method has been employed
to solve a large variety of linear and nonlinear prob-
lems with approximations converging rapidly to accu-
rate solutions.

Definition of the Subject

In this work, the Adomian decomposition method
(ADM), the homotopy analysis method (HAM), the vari-
ational iteration method (VIM), the homotopy pertur-
bation method (HPM) and the explicit finite difference
method (EFDM) are implemented to investigate numer-
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ical solutions of the Korteweg–de Vries (KdV) equation
with initial condition. The five methods are compared
and it is shown that the HAM and EFDM are more effi-
cient and effective than the ADM, the VIM and the HPM,
and also converges to its exact solution more rapidly. The
HAM contains the auxiliary parameter ¯ which provides
us with a simple way to adjust and control the convergence
region of solution series.

Introduction

John Scott Russell first experimentally observed the soli-
tary wave, a long water wave without change in shape, on
the Edinburgh-Glasgow Canal in 1834. He called it the
great wave of translation and, then, reported his observa-
tions at the British Association in his 1844 paper “Report
on waves“ [1].

After 60 years from this discovery, the two scientists
D.J. Korteweg and G. de Vries formulated a mathemati-
cal model equation to provide an explanation of the phe-
nomenon observed by Russell [2]. They derived the fa-
mous equation, the Korteweg–de Vries (KdV) equation,
for the propagation of waves in one dimension on the sur-
face of water. This is one of the simplest and most useful
nonlinear model equations for solitary waves, and it repre-
sents the longtime evolution of wave phenomena in which
the steepening effect of the nonlinear term is counterbal-
anced by dispersion. The KdV equation is a nonlinear par-
tial differential equation of third order.

Modern developments in the theory and applications
of the KdV equation began with the seminal work pub-
lished as a Los Alamos Scientific Laboratory Report in
1955 by Fermi, Pasta and Ulam (FPU) on a numerical
model of a discrete nonlinear mass-spring system [3]. This
curious result of the FPU experiment inspired Zabusky
and Kruskal [4] marked the birth of the new concept of the
soliton, a name intended to signify particle like quantities.
They found that stable pulse like waves could exist in a sys-
tem described by the KdV equation. A remarkable qual-
ity of these solitary waves was that they could collide with
each other and yet preserve their shapes and speeds af-
ter the collision. This means that a collision between KdV
solitary waves is elastic. Subsequently, Zabusky [5] con-
firmed, numerically, the actual physical interaction of two
solitons, and Lax [6] gave a rigorous analytical proof that
the identities of two distinct solitons are preserved through
the nonlinear interaction governed by the KdV equation.
Subsequently, a paper by Gardner et al. [7] demonstrated
that it was possible to write many exact solutions to the
equation by using ideas from scattering theory. They dis-
covered the first integrable nonlinear partial differential

equation. Gardner et al. [8] and Hirota [9,10] constructed
analytical solutions of the KdV equation that provide the
description of the interaction among N solitons for any
positive integer N. Experimental confirmation of solitons
and their interactions has been provided successfully by
Zabusky and Galvin [11], Hammack and Segur [12], and
Weidman and Maxworthy [13]. During the past fifteen
years a rather complete mathematical description of soli-
tons has been developed.

The nondispersive nature of the soliton solutions to
the KdV equation arises not because the effects of disper-
sion are absent, but because they are balanced by non-
linearities in the system [14,15,16,17]. The KdV equa-
tion [2,7,18] arises in several areas of nonlinear physics
such as hydrodynamics, plasma physics, etc.

During the last five decades or so an exciting and ex-
tremely active area of research has been devoted to the
construction of exact and numerical solutions for a wide
class of nonlinear equations. This includes the most fa-
mous nonlinear one of Korteweg and de-Vries.

Exact solutions of the KdV equation have been used
for many powerful methods such as the application of the
Jacobian elliptic function [19,20,21], the powerful inverse
scattering transform [22], the Painleve analysis [23], the
Backlund transformations method [24], the Lie group the-
oretical methods [25], the direct algebraic method [26],
the tanh-method [27], the sine-cosine method [28], the
homogeneous balance method [29], the Riccati expansion
method with constant coefficient [30] and the mapping
method [31]. In addition, Sawada and Kotera [32], Ros-
ales [33], Whitham [34], Wadati and Sawada [35,36] have
all employed perturbation techniques. Recently, Helal and
El-Eissa [37], Khater et al. [38,39], Helal [40] have studied
analytically and numerically some physical problems that
lead to the KdV equation and the soliton solutions have
been obtained [17].

The KdV equation is a generic equation for the study
of weakly nonlinear long waves. The KdV type of equation
has been an important class of nonlinear evolution equa-
tions with numerous applications in physical sciences and
engineering fields. For example, in plasma physics, these
equations give rise to the ion acoustic solitons [41]; in geo-
physical fluid dynamics, they describe a long wave in shal-
low seas and deep oceans [42,43]. Their strong presence
is exhibited in cluster physics, super deformed nuclei, fis-
sion, thin film, radar and rheology [44,45], optical-fiber
communications [46] and superconductors [47].

Thus many analytical solutions of the KdV equa-
tion are found, and their existence and uniqueness have
been studied for a certain class of initial functions [14].
The numerical solutions of the KdV equation are essen-
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tial because of solutions which are not analytically avail-
able. Many methods have been proposed for numerical
treatment of the KdV equation for the various boundary
and initial conditions. For appropriate initial conditions,
Gradner et al. [7] have shown the existence and unique-
ness of solutions of the KdV equation. For the KdV equa-
tion, several quite successful numericalmethods have been
available such as spectral/pseudo spectral methods [48,49],
finite-difference methods and Fourier spectral methods
developed by many authors from both the theoretical and
computational points of view [50,51]. The exponential fi-
nite-difference method is used to solve the KdV equation
with the initial and boundary conditions by Bahadır [52].
Jain et al. [53] developed a numerical method for solving
the KdV equation by using splitting method and quintic
spline approximation technique. Soliman [54] worked nu-
merical solutions for the KdV equation based on the collo-
cation method using septic splines as element shape func-
tions were set up. Frauendiener and Klein [55] presented
the hyperelliptic theta-functions with spectral methods for
numerical solutions of the KP and KdV equations. Bhatta
and Bhatti [56] studied numerical solution of the KdV
equation by using modified Bernstein polynomials. Helal
andMehanna [57] presented a comparative study between
the Adomian decomposition method and the finite-differ-
ence method for solving the general KdV equation. Kut-
luay et al. [58] used the heat balance integral method to
the KdV equation prescribed by appropriate homogenous
boundary conditions and a set of initial conditions to ob-
tain its approximate analytical solutions at small times.
An analytical-numerical method was applied to the KdV
equation with a variant of boundary and initial conditions
to obtain its numerical solutions at small times by Özer
and Kutluay [59]. Recently, Dehghan and Shokri [60] pro-
posed a numerical scheme to solve the third-order non-
linear KdV equation using collocation points and approx-
imating the solution using multiquadric radial basis func-
tion. Dag and Dereli [61] presented numerical solution of
the KdV equation by using the meshless method based on
the collocation with radial basis functions.

SomeNumerical Methods
for Solving the Korteweg–de Vries (KdV) Equation

The Korteweg–de Vries (KdV) equation has the following
form:

ut � 6uux C uxxx D 0 ; (1)

subject to initial condition

u (x; 0) D f (x) ; (2)

where u (x; t) is a differentiable function and f (x) is
bounded. We shall assume that the solution u(x; t), along
with its derivatives, tends to zero as jxj ! 1. The sec-
ond and third terms uux and uxxx represent the nonlinear
convection and dispersion effects, respectively. The soli-
tons of the KdV equation arise as a balance between non-
linear convection and dispersion terms. The nonlinear ef-
fect causes the steepening of the waveform [61], while the
dispersion effect makes the waveform spread. Due to the
competition of these two effects, a stationary waveform
(solitary wave) exists. The solution is obtained among the
nonlinear and dispersion by stability. The soliton solutions
of nonlinear wave equations shown by Wadati [62,63]
have the following properties:

� Some certain waves propagate which does not change
its special behavior.

� Reginal waves do not lose their properties and also they
are stable towards the collisions.

The basic purpose of this work is to approach the KdV
Eq. (1) with initial condition (2) differently, by using four
semi inverse methods and the EFDM. In this work, we
will use the Adomian decomposition method (ADM), the
homotopy analysis method (HAM), the variational itera-
tion method (VIM), the homotopy perturbation method
(HPM) and the explicit finite difference method (EFDM).
The results are compared with those obtained using the
five methods. More details for the five methods can be
found in next sections.

The Adomian DecompositionMethod (ADM)

The ADM was first introduced by Adomian in the be-
ginning of [64,65,66]. The method is useful for obtain-
ing both a closed form and the explicit solution and nu-
merical approximations of linear or nonlinear differen-
tial equations and it is also quite straight forward for
writing computer codes. This method has been applied
to obtain a formal solution to a wide class of stochas-
tic and deterministic problems in science and engineer-
ing involving algebraic, differential, integro-differential,
differential delay, integral and partial differential equa-
tions [67,68,69,70,71,72,73,74,75,76]. The convergence of
ADM for partial differential equations was presented by
Cherruault [77]. Application and convergence of this
method for nonlinear partial differential equations are
found in [78,79,80,81].

In general, it is necessary to construct the solution of
the problems in the form of a decomposition series solu-
tion. In the simplest case, the solution can be developed as
a Taylor series expansion about the function, not the point
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at which the initial condition and integration of the right-
hand side function of the problem are determined (the first
term u0 of the decomposition series for n � 0). The sum
of the u0; u1; u2; : : : terms are simply the decomposition
series

u (x; t) D
1X

nD0

un (x; t) : (3)

Suppose that the differential equation operator, including
both linear and nonlinear terms, can be formed as

Lu C Ru C Nu D F (x; t) ; (4)

with initial condition

u (x; 0) D g (x) ; (5)

where L is the higher-order derivative which is assumed
to be invertible, R is a linear differential operator of order
less than L, N is the nonlinear term and F (x; t) is a source
term.We next apply the inverse operator L�1 to both sides
of Eq. (4) and using the given condition (5) to obtain

u (x; t) D g (x)C f (x; t)� L�1 (Ru)� L�1 (Nu) ; (6)

where the function f (x; t) represents the terms arising
from integrating the source term F (x; t) and from using
the given conditions, all are assumed to be prescribed. The
nonlinear term can be written as

Nu D
1X

nD0

An ; (7)

where An is the Adomian polynomials. These polynomials
are defined as

An D
1
n!

dn

dn

"

N

 
1X

nD0

kuk (x; t)

!#

kD0

;

n D 0; 1; 2; : : : (8)

for example

A0 D N (u0) ;
A1 D u1N 0 (u0) ;

A2 D u2N 0 (u0)C
1
2
u1N 00 (u0) ;

A3 D u3N 0 (u0)C u1u2N 00 (u0)C
1
6
u31 N

000 (u0) ;

(9)

and so on, the other polynomials can be constructed in
a similar way [66]. As indicated before, Adomian method
defines the solution u by an infinite series of components

given by Eq. (4) and the components u0; u1; u2; : : : are
usually recurrently determined. Thus, the formal recursive
relation is defined by

(
u0 (x; t) D g (x)C f (x; t) ;
unC1 (x; t) D �L�1 (Run)� L�1 (Nun) ; n � 0 ;

(10)

which are obtained for all components of u. As a result,
the terms of the series u0; u1; u2; : : : are identified and the
exact solution may be entirely determined by using the ap-
proximation

u (x; t) D lim
n!1

'n (x; t) ; (11)

where

'n (x; t) D
n�1X

kD0

uk (x; t) ; (12)

or
8
ˆ̂̂
ˆ̂̂
<̂

ˆ̂
ˆ̂̂
ˆ̂:

'0 D u0 ;
'1 D u0 C u1 ;
'2 D u0 C u1 C u2 ;
:::

'n D u0 C u1 C u2 C : : :C un�1; n � 0 :

(13)

The Homotopy Analysis Method (HAM)

The HAM was developed in 1992 by Liao in [82,83,84,85].
This method has been successfully applied by many au-
thors [86,87,88,89,90,91]. The HAM contains the auxiliary
parameter ¯ which provides us with a simple way to adjust
and control the convergence region of solution series for
large or small values of x and t.

We consider the following differential equation

N [u (x; t)] D 0 ; (14)

whereN is a nonlinear differential operator, x and t denote
independent variables, u (x; t) is an unknown function. By
means of the HAM, one first constructs a zero-order de-
formation equation

�
1 � p


£
�
�
�
x; t; p


� u0 (x; t)

�
D p ¯ N

�
�
�
x; t; p

�
;

(15)

where p 2 [0; 1] is the embedding parameter, ¯ ¤ 0 is
a non-zero auxiliary parameter, is an auxiliary linear op-
erator, u0 (x; t) is an initial guess of u (x; t) and �

�
x; t; p
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is a unknown function. It is important that one has great
freedom to choose auxiliary things in the HAM. Obvi-
ously, when p D 0 and p D 1, it holds

� (x; t; 0) D u0 (x; t) ; � (x; t; 1) D u (x; t) ; (16)

respectively. The solution �
�
x; t; p


varies from the ini-

tial guess u0 (x; t) to the solution u (x; t) : Expanding
�
�
x; t; p


in Taylor series about the embedding parame-

ter

�
�
x; t; p


D u0 (x; t)C

C1X

mD1

um (x; t) pm ; (17)

where

um (x; t) D
1
m!
@m �

�
x; t; p



@pm

ˇ̌
ˇ̌
pD0

: (18)

The convergence of the series (17) depends upon the aux-
iliary parameter ¯. If it is convergent at p D 1, one has

u (x; t) D u0 (x; t)C
C1X

mD1

um (x; t) : (19)

According to the definition (19), the governing equation
can be deduced from the zero-order deformation Eq. (15).
Define the vector
!
u n D fu0 (x; t) ; u1 (x; t) ; : : : ; un (x; t)g :

Differentiating Eq. (15) m-times with respect to the em-
bedding parameter p and then setting p D 0 and finally
dividing them by m!, we have the so-called mth-order de-
formation equation

£ [um (x; t)� �m um�1 (x; t)] D ¯ <m



!
u m�1

�
; (20)

where

<m



!
u m�1

�
D

1
(m � 1)!

@m�1 N
�
�
�
x; t; p

�

@pm�1

ˇ
ˇ̌
ˇ
pD0

; (21)

and

�m D

(
0; m � 1 ;
1; m > 1 :

(22)

It should be emphasized that um (x; t) for m � 1 is
governed by the nonlinear Eq. (20) with the linear bound-
ary conditions that come from the original problem, which
can be easily solved by symbolic computation software
such as Maple and Mathematica.

The Variational IterationMethod (VIM)

The VIM was first proposed by He [92,93,94,95,96]. This
method has been employed to solve a large variety of linear
and nonlinear problems with approximations converging
rapidly to accurate solutions. The idea of VIM is to con-
struct a correction functional by a general Lagrange mul-
tiplier. The multiplier in the functional should be chosen
such that its correction solution is superior to its initial ap-
proximation (trial function) and is the best within the flex-
ibility of the trial function, accordingly we can identify the
multiplier by variational theory. The initial approximation
can be freely chosenwith possible unknowns, which can be
determined by imposing the boundary/initial conditions.

We consider the following general differential equa-
tion:

Lu C Nu D g ; (23)

where L and N are linear and nonlinear operators respec-
tively, and g(t) is the source inhomogeneous term.

According to the VIM, the terms of a sequence fung
are constructed such that this sequence converges to the
exact solution. uns are calculated by a correction func-
tional as follows:

unC1 (x; t)

D un (x; t)C
tZ

0


n
Lun (�)C N

�
un (�) � g (�)

o
d� ;

n � 0 ; (24)

where  is the general Lagrange multiplier, which can
be identified optimally by the variational theory, the sub-
script n denotes the nth approximation and

�
un considered

as a restricted variation, i. e. ı
�
un D 0. For linear problems,

the exact solution can be obtained by only one iteration
step due to the fact that the Lagrange multiplier can be
exactly identified. In nonlinear problems, in order to de-
termine the Lagrange multiplier in a simple manner, the
nonlinear terms have to be considered as restricted vari-
ations. Consequently, the exact solution may be obtained
by using

u (x; t) D lim
n!1

un (x; t) : (25)

This method has been employed to solve a large va-
riety of linear and nonlinear problems with approxima-
tions converging to accurate solutions. This technique was
used to find the solutions of partial differential equations,
ordinary differential equations, boundary-value problems
and integral equations by many authors [97,98,99,100,
101,102,103,104,105].
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The Homotopy PerturbationMethod (HPM)

The HPM was developed by He [106,107,108,109]. In re-
cent years, the applications of HPM in nonlinear prob-
lems has been devoted to scientists and engineers [110,111,
112,113].

We consider the following general nonlinear differen-
tial equation:

A
�
y

� f (r) D 0 ; r 2 ˝ ; (26)

with boundary conditions

B
�
y; @y/@n


D 0 ; r 2 � ; (27)

where A is a general differential operator, B is a boundary
operator, f (r) is a known analytic function and � is the
boundary of the domain˝ . The operator A can be gener-
ally divided into two parts L andN, where L is linear andN
is nonlinear. Therefore, Eq. (26) can be written as follows:

L
�
y

C N

�
y

� f (r) D 0 : (28)

We construct a homotopy of Eq. (26) y
�
r; p


: ˝ �

[0; 1]! R which satisfies

H
�
y; p


D
�
1 � p

 �
L
�
y

� L

�
y0
�
C p

�
A
�
y

� f (r)

�

D 0 ; r 2 R ;
(29)

which is equivalent to

H
�
y; p


D L

�
y

� L

�
y0

C pL

�
y0

C p

�
A
�
y

� f (r)

�

D 0 ;
(30)

where p 2 [0; 1] is an embedding parameter and y0 is an
initial approximation which satisfies the boundary condi-
tions. It follows from Eqs. (29) and (30) that

H
�
y; 0


D L

�
y

� L

�
y0

D 0 and

H
�
y; 1


D A

�
y

� f (r) D 0 :

(31)

Thus, the changing process of p from 0 to 1 is just
that of y

�
r; p


from y0 (r) to y (r). In topology this is

called deformation and L
�
y

� L

�
y0

and A

�
y

� f (r)

are called homotopic. Here the embedding parameter is
introduced much more naturally, unaffected by artificial
factors; further it can be considered as a small parameter
for 0 � p � 1. So it is very natural to assume that the so-
lution of (29) and (30) can be expressed as

y (x) D u0 (x)C pu1 (x)C p2u2 (x)C � � � : (32)

According to HPM, the approximate solution of (26) can
be expressed as a series of the power of p, i. e.,

y D lim
p!1

y (x) D u0 (x)C u1 (x)C u2 (x)C � � � : (33)

The convergence of series (33) has been proved by He
in [106].

Numerical Applications and Comparisons

We now consider the initial value problem associated with
the KdV equation:

(
ut � 6uux C uxxx D 0 ;

u (x; 0) D � c
2 sec h

2

p

c
2 x

�
;

(34)

with u (x; t) is a sufficiently smooth function and c is the
velocity of the wavefront.

In this section, we apply the above described four
methods and the explicit finite difference method on the
KdV Eq. (34) so that the comparisons are made numeri-
cally.

The ADM for Eq. (14)

According to the ADM [64,65,66], Eq. (34) can be written
in an operator form

(
Lu D 6uux � uxxx ;

u (x; 0) D f (x) D � c
2 sec h

2

p

c
2 x

�
;

(35)

where the differential operator L is

L �
@

@t
; (36)

and the inverse operator L�1 is an integral operator given
by

L�1 (ı) D
Z t

0
(ı) dt : (37)

The ADM [64,65,66] assumes a series solution for the un-
known function u (x; t) given by Eq. (3) and the nonlinear
term Nu D uux can be decomposed into a infinite series
of polynomials given by Eq. (5). Operating with the inte-
gral operator (37) on both sides of (35) and using the initial
condition, we get

u (x; t) D f (x)C L�1 (6uux � uxxx ) : (38)
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Substituting (3) and (5) into the functional Eq. (38)
yields

1X

nD0

un (x; t)

D f (x)C L�1
"

6

 
1X

nD0

An

!

�

 
1X

nD0

un

!

xxx

#

:

(39)

The ADM admits that the zeroth component u0 (x; t)
be identified by all terms that arise from the initial condi-
tions and from the source terms if exist, and as a result, the
remaining components un (x; t), n � 1 can be determined
by using the recurrence relation:

(
u0 (x; t) D f (x) D � c

2 sec h
2

p

c
2 x

�
;

ukC1 (x; t) D L�1
�
6Ak � (uk)xxx


; k � 0 ;

(40)

where Ak, k � 0 are Adomian polynomials that represent
the nonlinear term (uux ) and given by

8
ˆ̂̂
<̂

ˆ̂̂
:̂

A0 D u0u0x ;
A1 D u0xu1 C u0u1x ;
A2 D u1u1x C u0xu2 C u0u2x ;
A3 D u1u2x C u1xu2 C u0xu3 C u0u3x :

(41)

Thus, some of the symbolically computed components are
found as:

u0 (x; t) D �
c
2
sec h2

�p
c
2

x
�
;

u1 (x; t) D �
c5/2

2
sec h2

�p
c
2

x
�
tanh

�p
c
2

x
�
t ;

u2 (x; t) D �
c4

8
�
cosh

�p
cx
�
� 2


sec h4

�p
c
2

x
�
t2 ;

u3 (x; t) D �
c11/2

48
sec h5

�p
c
2

x
�

�

�
�11 sinh

�p
c
2

x
�
C sinh

�
3
p
c

2
x
��

t3 ;

u4 (x; t) D �
c7

384
sec h6

�p
c
2

x
�

�
h
33 � 26 cosh

�p
cx
�
C cosh

�
2
p
cx
� i

t4 ;

and so on. In this manner the other components of the de-
composition series can be easily obtained using any sym-

bolic program. The solution in a series for is given by

u(x; t) D
1X

nD0

un(x; t)

D u0(x; t)C u1(x; t)C u2(x; t)C u3(x; t)C � � � ;

D �
c
2
sec h2

�p
c
2

x
�

�
c5/2

2
sec h2

�p
c
2

x
�
tanh

�p
c
2

x
�
t

�
c4

8
�
cosh

�p
cx
�
� 2


sec h4

�p
c
2

x
�
t2

�
c11/2

48
sec h5

�p
c
2

x
�

�

�
�11 sinh

�p
c
2

x
�
C sinh

�
3
p
c

2
x
��

t3

C : : : ;

(42)

so that the exact solution

u (x; t) D �
c
2
sec h2

�p
c
2

(x � ct)
�
; (43)

is readily obtained.
The convergence analysis of the ADM applied to the

KdV Eq. (35) without the initial condition has been con-
ducted by Helal and Mehanna [55].

The HAM for Eq. (34)

We will apply the HAM to the Eq. (34) to illustrate the
strength of the method and to establish exact solution for
this Eq. (34). We choose the linear operator

£
�
�
�
x; t; p

�
D
@�
�
x; t; p



@t
; (44)

with property

£
�
k
�
D 0 ; (45)

where k is a constant. We now define a nonlinear operator

N
�
�
�
x; t; p

�
D
@�
�
x; t; p



@t

� 6�
�
x; t; p

 @�
�
x; t; p



@x
C
@3�

�
x; t; p



@x3
: (46)
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We construct the zeroth-order deformation equation

�
1 � p


£
�
�
�
x; t; p


� u0 (x; t)

�
D p ¯ N

�
�
�
x; t; p

�
:

(47)

For p D 0 and p D 1, we can write

(
� (x; t; 0) D u (x; 0) D u0 (x; t) ;
� (x; t; 1) D u (x; t) :

(48)

So we obtainmth-order deformation equation

£ [um (x; t) � �m um�1 (x; t)] D ¯ <m



!
u m�1

�
; (49)

where

<m



!
u m�1

�
D
@�m�1

�
x; t; p



@t

� 6
m�1X

nD0

�n
�
x; t; p

 @�m�1�n
�
x; t; p



@x

C
@3�m�1

�
x; t; p



@x3
: (50)

Now the solution of the mth-order deformation Eq. (49)
for m � 1 become

um (x; t) D �m um�1 (x; t)C¯ £�1
h
<m



!
u m�1

�i
: (51)

Thus we get the following terms by using (51) for Eq. (34):

u0 (x; t) D �
c
2
sec h2

�p
c
2

x
�
;

u1 (x; t) D
c5/2

2
¯ sec h2

�p
c
2

x
�
tanh

�p
c
2

x
�
t ;

u2 (x; t) D �
c5/2

2
¯t sec h4

�p
c
2

x
�h

c3/2¯t cosh
�p

cx


� 2


c3/2¯t C (1C ¯) sinh

�p
cx
 �i

;

u3(x; t) D
c5/2

48
¯t sec h2


pc
2

x
�"

c3¯2t2 sec h3

pc

2
x
�

� sinh

3
p
c

2
x
�
C 24¯(1C ¯) tanh


pc
2

x
�

C sec h2

pc

2
x
��
� 12c3/2¯(1C ¯)t cosh(

p
cx)

C 12(1C ¯) sinh(
p
cx)

C c3/2¯t
�
24C24¯�11c3/2¯t tanh


pc
2

x
���

#

;

and so on. In this manner the other components of the de-
composition series can be easily obtained using any sym-
bolic program.

Liao [82,83,84,85] showed that whatever a solution se-
ries converges to it will be one of the solutions of consid-
ered problem. Liao [82,83,84,85] showed the approximate
solutions obtained by the HAM to be controlled by the
auxiliary parameter and the rate of convergence of ¯.

It is noted that the approximate solutions converge
at �2:1 � ¯ � �1:1 for 5th-order approximation and at
�4 � ¯ � 2 for 10th-order approximation for the KdV
Eq. (34) when x D 10, t D 0:5, c D 1 and c D 5 (see
Figs. 2 and 3).

The VIM for Eq. (34)

To solve the KdV Eq. (34) by means of the VIM, we con-
struct a correction functional which reads as

unC1 (x; t) D un (x; t)

C

Z t

0


 
@un (x; �)

@�
� N

�
un (x; �)C

@3
�
un (x; �)
@x3

!

d� ;

(52)

where  is the general Lagrangemultiplier [109] whose op-
timal value is found using variational theory, u0 (x; t) is an
initial approximation which must be chosen suitable and
N
�
un is the restricted variation, i. e., ı

�
un D 0 [107]. To find

the optimal values of  we have

ıunC1 (x; t) D ıun (x; t)Cı
Z t

0


�
@un (x; �)

@�

�
d� ; (53)

that results

ıunC1 (x; t) D ıun (x; t) (1C )�
Z t

0
ıun (x; t)0 d� ;

(54)

which yields

0 (�) D 0 Í�Dt ; 1C  (�) D 0 j�Dt : (55)

Thus we have

 (t) D �1 ; (56)
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and we obtain the following iteration formula

unC1(x; t) D un(x; t)�
Z t

0

�
@un (x; �)

@�

� 6un (x; �)
@un (x; �)

@x
C
@3un (x; �)

@x3

�
d� : (57)

Now using (57) we can find the solution of the KdV
Eq. (34) as a convergent sequence. We get the following
components:

u0 (x; t) D �
c
2
sec h2

�p
c
2

x
�
;

u1 (x; t) D �
c
2
sec h3

�p
c
2

x
��

cosh
�p

c
2

x
�

C c3/2t sinh
�p

c
2

x
��

;

u2 (x; t) D �
c
32

sec h7
�p

c
2

x
��
� 2

�
4c3t2 � 5



� cosh
�p

c
2

x
�
C
�
5 � c3t2


cosh

�
3
p
c

2
x
�

C cosh
�
5
p
c

2
x
�
C c3t2 cosh

�
5
p
c

2
x
�

C 4c3/2t sinh
�p

c
2

x
�
� 60c9/2t3 sinh

�p
c
2

x
�

C 6c3/2t sinh
�
3
p
c

2
x
�
C 12c9/2t3 sinh

�
3
p
c

2
x
�

C 2c3/2t sinh
�
5
p
c

2
x
��

;

and so on. In the same manner the rest of components of
the iteration formulae (57) can be obtained using any sym-
bolic packages.

So we obtain

u (x; t) D lim
n!1

un (x; t) D �
c
2
sec h2

�p
c
2

(x � ct)
�
:

(58)

The HPM for Eq. (34)

To investigate the approximate solution of Eq. (34), we
first construct a homotopy as follows:

�
1 � p

 
 :
Y �

:
u0
�
C p


 :
Y � 6YY 0 C Y 000

�
D 0 ; (59)

where “primes” denote differentiation with respect to x,
and “dot” denotes differentiation with respect to t. In or-
der to obtain the unknowns of Yi (x; t), i D 1; 2; 3; 4, we

must construct and solve the following system which in-
cludes four equations with three unknowns, considering
the initial condition of Y (x; 0) D u (x; 0) and having the
initial approximation of Eq. (34):

p0 :
:

Y0 �
:
u0 D 0 ;

p1 :
:

Y1 C
:
u0 � 6Y0Y 00 C Y 0000 D 0 ;

p2 :
:

Y2 � 6Y0Y 01 � 6Y1Y0
0 C Y 0001 D 0 ;

p3 :
:

Y3 � 6Y0Y 02 � 6Y1Y20
1 � 6Y2Y 00 C Y 0002 D 0 :

(60)

Thus, we will obtain:

u (x; t) D lim
p!1

Yk (x; t) ; k D 0; 1; 2; 3; � � � : (61)

To calculate the terms of the homotopy series (61) for
u (x; t), we substitute the initial condition into the sys-
tems (60) and finally using Mathematica, the solutions of
the equation can be obtained as follows:

u0 (x; t) D �
c
2
sec h2

�p
c
2

x
�
;

u1 (x; t) D �
c5/2

2
sec h2

�p
c
2

x
�
tanh

�p
c
2

x
�
t ; (62)

u2 (x; t)

D
c5/2

2
t2 sec h4

�p
c
2

x
�h
�c3/2 cosh

�p
cx

C2c3/2

i
;

and so on. In this manner the other components can be
easily obtained. Substituting Eq. (62) into Eq. (61):

u (x; t) D Y0 (x; t)C Y1 (x; t)C Y2 (x; t)C � � �

D �
c
2
sec h2

�p
c
2

x
�

�
c5/2

2
sec h2

�p
c
2

x
�
tanh

�p
c
2

x
�
t

�
c4

2
t2 sec h4

�p
c
2

x
� �

cosh
�p

cx

� 2

�
C � � � :

(63)

The EFDM for Eq. (34)

The finite difference methods are the most frequently used
and universally applicable. These methods are approxi-
mate in the sense that the derivatives at a point are approx-
imated by difference quotients over a small interval [114].
In order to obtain a finite difference replacement of the
KdV Eq. (34) the region to be examined is divided into
equal rectangular meshes with sides
x and
t parallel to
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the x- and t-axes respectively. The function u(x; t) is ap-
proximated by uni D u (i
x; n
t) where i and n are inte-
gers and i D n D 0 is the origin. Let us define

Ut Í(i;n) D
UnC1

i � Un�1
i

2
t
; (64)

Ux Í(i;n) D
Un

iC1 � Un
i�1

2
x
; (65)

Uxxx Í(i;n)D
1

2 (
x)3
�
Un

iC2 � 2Un
iC1 C 2Un

i�1 � Un
i�2
�
:

(66)

The explicit scheme computes the value of the numeri-
cal solution at the forward time step in terms of known
values at the previous time step. An explicit scheme for
solving the KdV equation produced originally by Zabusky
and Galvin [11] is centered in time and space. Substitut-
ing (64)–(66) into the KdV Eq. (34) with

U Í(i;n)D
1
3
�
Un

i�1 C Un
i C Un

iC1

; (67)

leads to

UnC1
i

D Un�1
i C 2
t

�
Un

i�1 C Un
i C Un

iC1
 �
Un

iC1 � Un
i�1


�

t

(
x)3
�
Un

iC2 � 2Un
iC1 C 2Un

i�1 � Un
i�2

: (68)

For the initial step, we use a scheme which is forward in
time and centered in space

U1
i DU0

i C
t
�
U0

i�1 C U0
i C U0

iC1
 �
U0

iC1 � U0
i�1


�

t

(
x)3
�
U0

iC2 � 2U0
iC1 C 2U0

i�1 � U0
i�2

:

(69)

It is clear that Eq. (68) is a three-level scheme of time,
i. e. in order to obtain Ui at the time level nC 1, we need
the following values of Ui�2, Ui�1, UiC1 and UiC2 at the
previous time level n in addition to the value of Ui at
the time level n � 1. The explicit difference scheme (68)
has second order accuracy in 
t and 
x as the trunca-
tion error isO (
t)2 C O (
x)2 and is also consistent with
KdV equation. A stability analysis of the nonlinear numer-
ical scheme (68) using Fourier mode method is not easy
to handle unless it is assumed that U, in the nonlinear
term, is locally constant. This is equivalent to replacing the
term (67) in Eq. (68) byU�. This linearized scheme for the
KdV Eq. (34) has stability condition [115]:


t

x

�
�6
ˇ
ˇU�

ˇ
ˇC

4
(
x)2

�
� 1 : (70)

In Table 7, h is x-direction mesh size and k is t-direc-
tion time step.

Conclusions and Discussions

In this paper, the ADM, HAM, VIM, HPM and EFDM
were used for the KdV Eq. (34) with initial conditions.
We made comparisons of the numerical results obtained
by using ADM, HAM, VIM, HPM and EFDM. The ap-
proximate solutions to the equation has been also calcu-
lated by using the ADM, HAM, VIM, HPM and EFDM
without any need to use transformation techniques and
linearization of the equation. The ADM, HAM and HPM
avoids the difficulties and massive computational work by
determining analytic solutions of the nonlinear equations.
The main advantage of HAM, VIM and HPM are to over-
come the difficulty arising in calculating Adomian’s poly-
nomials in the ADM. But the main disadvantage of VIM
and EFDM, in general, very big terms and the consum-
ing time to compute it is big, so we need a large computer
memory and time. In addition, it is difficult and takes a lot
of time to calculate the terms after the fifth term in the
VIM for the KdV Eq. (14). It is convenient to examine
Tables 1, 2, 3, 4, 5, 6, 7 and Figs. 1, 3, 4, 5 for compar-
ing exact solution and numerical solutions which one gets
by using these five methods. Tables and figures are calcu-
lated for these methods by using five terms and c D 1, ex-
cept Tables 2 and 4. The results which are obtained by the
EFDM are better than the results which are obtained by
the other four (semi-inverse) methods for five terms (see
Tables 1, 3, 5, 6, 7. If you increase the numbers of terms
in the semi-inverse methods, we can see that the results
are better (see Tables 2 and 4. Obtaining serial solutions
with the semi-inverse methods are easier and more effi-
cient than pure numerical methods (the finite difference
methods, the finite element methods, B-spline methods,
etc.). Finding numerical results by the EFDM are difficult
and take time. The present methods give nearly the same
results for c D 1 and large values of x but the HAM is
the more sensitive method than the others. Because it is
possible to obtain a rapidly convergent solution for large
and small values of x and t by choosing convenient helper
the auxiliary parameter ¯. For this it is enough to consider
Figs. 1, 3, 4, 5. Finally, we point out that, for given equa-
tions with initial value, the corresponding analytical and
numerical solutions are obtained according to the recur-
rence equations by using Mathematica.

Future Directions

The Korteweg–de Vries equation, which is the most im-
portant equation of mathematical physics, has solitons and
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Korteweg–de Vries Equation (KdV), Some Numerical Methods for Solving the, Figure 1
The comparison of the ADM

�
'5

�
and the exact solutions for Eq. (34) at c D 1

Korteweg–de Vries Equation (KdV), Some Numerical Methods for Solving the, Figure 2
The ¯-curves for x D 10, t D 0:5, c D 1 for 5th-order approximation and x D 10, t D 0:5, c D 5 for 10th-order approximation of
u

�
x; t

�
, respectively

Korteweg–de Vries Equation (KdV), Some Numerical Methods for Solving the, Figure 3
The comparison of the HAM

�
5th-order approximation

�
and the exact solutions for Eq. (34) at c D 1

Korteweg–de Vries Equation (KdV), Some Numerical Methods for Solving the, Figure 4
The comparison of the VIM (five iterations) and the exact solutions for Eq. (34) at c D 1
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Korteweg–de Vries Equation (KdV), Some Numerical Methods for Solving the, Figure 5
The comparison of the HPM (five iterations) and the exact solutions for Eq. (34) at c D 1

Korteweg–de Vries Equation (KdV), Some Numerical Methods for Solving the, Table 1
Error between the ADM

�
'5

�
and exact solutions for the KdV Eq. (14) at c D 1

t/x 10 15 20 25 30
0.1 2:00679 � 10�4 1:35233 � 10�6 9:11171 � 10�9 6:13942 � 10�11 4:13671 � 10�13

0.2 2:22178 � 10�4 1:49452 � 10�6 1:00712 � 10�8 6:78512 � 10�11 4:57177 � 10�13

0.3 2:45102 � 10�4 1:65169 � 10�6 1:11292 � 10�8 7:49865 � 10�11 5:05255 � 10�13

0.4 2:70872 � 10�4 1:82535 � 10�6 1:22991 � 10�8 8:28713 � 10�11 5:58381 � 10�13

0.5 2:99336 � 10�4 2:01722 � 10�6 1:35919 � 10�8 9:15815 � 10�11 6:17071 � 10�13

Korteweg–de Vries Equation (KdV), Some Numerical Methods for Solving the, Table 2
Error between the ADM

�
'10

�
and exact solutions for the KdV Eq. (34) at c D 5

t/x 10 15 20 25 30
0.1 2:00679 � 10�8 1:35233 � 10�13 9:11171 � 10�18 6:13942 � 10�23 4:1367 � 10�28

0.2 2:22178 � 10�8 1:49452 � 10�12 1:00712 � 10�18 6:78512 � 10�23 4:5717 � 10�27

0.3 2:45102 � 10�7 1:65169 � 10�12 1:11292 � 10�17 7:49865 � 10�22 5:0525 � 10�27

0.4 2:70872 � 10�7 1:82535 � 10�12 1:22991 � 10�17 8:28713 � 10�22 5:5838 � 10�26

0.5 2:99336 � 10�6 2:01722 � 10�11 1:35919 � 10�16 9:15815 � 10�21 6:1707 � 10�26

Korteweg–de Vries Equation (KdV), Some Numerical Methods for Solving the, Table 3
Error between the HAM

�
5th-order approximation

�
and exact solutions for the KdV Eq. (34) at c D 1 and ¯ D �0:5

t/x 10 15 20 25 30
0.1 1:94277 � 10�4 1:30915 � 10�6 8:82101 � 10�9 5:94355 � 10�11 4:00473 � 10�13

0.2 2:08022 � 10�4 1:40179 � 10�6 9:44517 � 10�9 6:36412 � 10�11 4:28811 � 10�13

0.3 2:22925 � 10�4 1:50222 � 10�6 1:01219 � 10�8 6:82009 � 10�11 4:59534 � 10�13

0.4 2:39102 � 10�4 1:61125 � 10�6 1:08565 � 10�8 7:31508 � 10�11 4:92886 � 10�13

0.5 2:56683 � 10�4 1:72975 � 10�6 1:16549 � 10�8 7:85304 � 10�11 5:29134 � 10�13

Korteweg–de Vries Equation (KdV), Some Numerical Methods for Solving the, Table 4
Error between the HAM

�
10th-order approximation

�
and exact solutions for the KdV Eq. (34) at c D 5 and ¯ D 0:5

t/x 10 15 20 25 30
0.1 8:12684 � 10�9 1:13334 � 10�13 1:58053 � 10�18 2:20415 � 10�23 3:0738 � 10�28

0.2 3:62126 � 10�8 5:05121 � 10�13 7:04272 � 10�18 9:82156 � 10�23 1:3696 � 10�27

0.3 8:86781 � 10�7 1:23668 � 10�12 1:72463 � 10�17 2:40512 � 10�22 3:3541 � 10�27

0.4 1:87306 � 10�7 2:61211 � 10�12 3:64277 � 10�17 5:08009 � 10�22 7:0845 � 10�27

0.5 5:02718 � 10�7 7:01076 � 10�12 9:77698 � 10�17 1:36347 � 10�21 1:9014 � 10�26
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Korteweg–de Vries Equation (KdV), Some Numerical Methods for Solving the, Table 5
Error between the VIM (5 terms) and exact solutions for the KdV Eq. (34) at c D 1

t/x 10 15 20 25 30
0.1 2:33263 � 10�4 1:57189 � 10�6 1:05913 � 10�8 7:13638 � 10�11 4:24233 � 10�13

0.2 2:99151 � 10�4 2:01592 � 10�6 1:35833 � 10�8 9:15216 � 10�11 6:16666 � 10�13

0.3 3:81873 � 10�4 2:57322 � 10�6 1:73383 � 10�8 1:16824 � 10�10 7:87156 � 10�13

0.4 4:84308 � 10�4 3:26302 � 10�6 2:19864 � 10�8 1:48141 � 10�10 9:98164 � 10�13

0.5 6:09593 � 10�4 4:10597 � 10�6 2:76657 � 10�8 1:86417 � 10�10 1:25602 � 10�12

Korteweg–de Vries Equation (KdV), Some Numerical Methods for Solving the, Table 6
Error between the HPM (five iterations) and exact solutions for the KdV Eq. (34) at c D 1

t/x 10 15 20 25 30
0.1 2:00679 � 10�4 1:35232 � 10�6 9:11171 � 10�9 6:13942 � 10�11 4:13671 � 10�13

0.2 2:21782 � 10�4 1:49452 � 10�6 1:00734 � 10�8 6:78513 � 10�11 4:57177 � 10�13

0.3 2:45102 � 10�4 1:65169 � 10�6 1:11296 � 10�8 7:49865 � 10�11 5:05255 � 10�13

0.4 2:70871 � 10�4 1:82535 � 10�6 1:22991 � 10�8 8:28716 � 10�11 5:58381 � 10�13

0.5 2:99337 � 10�4 2:01722 � 10�6 1:35919 � 10�8 9:15815 � 10�11 6:17071 � 10�13

Korteweg–de Vries Equation (KdV), Some Numerical Methods for Solving the, Table 7
Error between the EFDM and exact solutions for the KdV Eq. (34) at c D 1;h D 0:05 and k D 0:025

t/x 10 15 20 25 30
0.1 6:15156 � 10�6 4:14842 � 10�8 2:79520 � 10�10 1:88339 � 10�12 1:26902 � 10�14

0.2 7:54177 � 10�6 5:09160 � 10�8 3:43074 � 10�10 2:31161 � 10�12 1:55755 � 10�14

0.3 9:14755 � 10�6 6:19126 � 10�8 4:17173 � 10�10 1:70489 � 10�12 1:89396 � 10�14

0.4 1:10086 � 10�5 7:46977 � 10�8 5:03358 � 10�10 3:39162 � 10�12 1:38607 � 10�14

0.5 1:35102 � 10�5 8:94343 � 10�8 6:03380 � 10�10 4:06554 � 10�12 2:73934 � 10�14

solitary wave solutions. It was solved by using analytical
and numerical methods by many authors. We have men-
tioned these analytical and numerical methods in the in-
troduction. The theoretical studies on the KdV equation
have been nearly completed, but we may find new soliton
solutions by producing new analytical methods or expand-
ing the old methods. It is also possible to perform same
operations on numerical methods. We may show the in-
teraction of KdV solitons with each other by numerical.
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