
Jamming of Granular Matter J 4997

J

Jamming of Granular Matter

BULBUL CHAKRABORTY1, BOB BEHRINGER2
1 Department of Physics, Brandeis University,
Waltham, USA

2 Department of Physics, Duke University,
Durham, USA

Article Outline

Glossary
Definition of the Subject
Introduction
Statistical Framework of Jamming
Jamming Phase Diagram
Force Fluctuations, Dynamical Heterogeneities,

Length and Time Scales in Granular Flows
Approaching Jamming

Force Distributions, Length and Time Scales
in Jammed States near the Jamming Transition

Isostaticity and Point J
Future Directions
Bibliography

Glossary

Granular matter Material such as sand or sugar, which is
composed of independent, macroscopic particles char-
acterized by short range interactions that do not con-
serve energy. Energy is lost to excitations of internal
degrees of freedom, and is then unavailable for macro-
scopic flow.

Supercooled liquid A liquid cooled below its freezing
point by avoiding crystallization.

Shear deformation Deformation of a material in which
internal clusters or layers slide past each other.

Couette flow Flow between two surfaces one of which is
moving with respect to the other.

Definition of the Subject

A jammed material is defined as one that is structurally
disordered but, unlike a fluid, possesses an yield stress. In
the field of traditional condensed matter physics, such
a material would be called an amorphous solid. The
broader use of “jammed” extends this concept to non-
traditional materials such as granular systems, foams and
colloids. Jamming is, similarly, the extension of the con-
cept of freezing to the transition from a fluid state to
a jammed state. Understanding jamming in granular sys-
tems is important from technological, environmental,
and basic science perspectives. Jamming of grains in si-
los causes catastrophic failures. Avalanches are examples
of unjamming, which we need to understand prevent
and control. The phenomenon of jamming in granular
matter poses fundamental challenges in basic science be-
cause there is no known framework leading from the
microscopic, grain level interactions to the macroscopic
properties that reflect collective behavior.

Jamming in granular matter is intimately related to
stress propagation, and the nature of jamming will depend
on whether the material is under shear or isotropic com-
pression. It will also depend on whether there is sustained
motion with the grains having a finite kinetic energy or if
the system is at rest and being slowly deformed. In the fol-
lowing sections, we explore different types of jamming in
granular matter.

Introduction

Experiments point to many similarities between the jam-
ming transition in granular materials [1,2,3] and other
similar non-equilibrium transitions such as that in driven
foams, emulsions and gels. The common unifying features
are: (a) these are purely non-equilibrium transitions since
the flowing state can be maintained only by external driv-
ing, (b) the systems exhibit anomalously slow dynamics as
the transition is approached and (c) there are no obvious
structural signatures of the transition. By structural, we re-
fer to the geometric arrangement of particles. In addition,
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we will see that there is increasing evidence for a diver-
gence in correlation functions for forces in the granular
case. Features (b) and (c) are, in fact, similar to a transition
in a thermal system; that of a supercooled liquid under-
going the glass transition. The origin of the slow dynam-
ics and the relationship between time and length scales
has been studied extensively in the context of the glass
transition in supercooled liquids, and it has been shown
that the dynamics becomes spatially heterogeneous as the
glass transition is approached [4,5,6,7]. There is a time
scale and a length scale associated with dynamical hetero-
geneities and these have beenmeasured in experiments [7]
and simulations [8]. Inspired by this framework, dynami-
cal heterogeneities have been explored in experiments on
granular systems approaching jamming and a length and
time scale associated with the jamming transition has been
identified [9,10,11].

In granular systems, there is a type of heterogeneity
arising from stress transmission which is distinct from the
heterogeneity of particle displacements and density fluc-
tuations that are common to both supercooled liquids and
granular matter. Stress heterogeneities in flowing granular
matter has been studied in experiments on Couette shear
flow [12,13,14,15,16,17,18] and in hopper flow [19]. Sim-
ulations have a played a seminal role in the developments
leading up to the dynamical heterogeneities framework
in supercooled liquids. Likewise, simulations of granular
flows can play a role in clarifying the relationship be-
tween heterogeneity in different dynamical variables. For
instance, a simulation of grains flowing through a hop-
per (a long, vertical tube with a narrow opening at the
bottom), has identified/characterized both stress and dis-
placement heterogeneities. However, a clear relationship
between the two has not been identified [20]. Indeed, there
may be some reason to think that there is anti-correlation
between the strong force structures of force chains, and
the freedom needed for density fluctuations. Dynamical
heterogeneities have been explored in simulations of other
types of dense granular flows [21,22,23].

The similarities in dynamics between supercooled liq-
uids and granular systems have raised the intriguing possi-
bility of “universality” in the jamming transition. Univer-
sality is a concept associated with continuous phase tran-
sitions in thermal systems such as the liquid-gas transition
or the Curie point in ferromagnets [24]. In these systems,
universality, owes its origin to the presence of a diverg-
ing length-scale at the transition. Microscopic properties
of the system can be coarse-grained because of the pres-
ence of this diverging length scale and universality classes
can be specified by properties such as the symmetry of the
system and the spatial dimensionality. These concepts are

still evolving in the context of granular systems. However,
there are an increasing number of studies that have iden-
tified a growing, possibly diverging, length scale.

Statistical Framework of Jamming

The ubiquitous presence of force fluctuations, well-de-
fined statistical distributions and similarities to thermal
systems observed in granular systems close to jamming,
have led researchers to look for a statistical framework that
can describe the spatial and temporal fluctuations in static
and quasi-static (weakly driven) granular flows.

Experiments and simulations suggest that the phe-
nomenon of jamming has the flavor of a phase transi-
tion. Phase transitions can be broadly divided into two
classes: (a) Equilibrium and (b) Non-equilibrium. The
former encompasses transitions such as the liquid-solid
transition, the superfluid and superconducting transi-
tions, and describes transitions between states which are
in thermal equilibrium. Non-equilibrium phase transi-
tions are commonly observed in pattern-forming systems
such as chemical reactions, a well known example be-
ing the Belousov–Zhabotinsky reaction [25], or in fluid
flows, such as Raleigh–Bénard convection. The framework
of equilibrium statistical mechanics is well established
and can be used to analyze and understand equilibrium
phase transitions. In contrast, there is no universal frame-
work for nonequilibrium phase transitions even though
there are many specific transitions which are well un-
derstood [26,27]. In many cases where non-equilibrium
transitions occur, the systems are locally close to thermal
equilibrium, but not globally so. It is then possible to use
hydrodynamic-like descriptions involving gradients in rel-
evant quantities, as well as transport models. Transitions
in such systems often involve spatially extended modes
which become unstable or stable for different control pa-
rameters. In the usual case, it is the most unstable mode
which dominates, and thermal fluctuations play a very
limited role.

An interesting question is whether a statistical ap-
proach can be used to understand jamming and other
phenomena in granular matter. In such an approach, one
would like to know the ensemble of states that are con-
sistent with the external constraints. In the granular case,
there is some evidence to suggest that fluctuations are im-
portant, particulary near jamming unlike the typical non-
equilibrium transition discussed above.

Granular Packings

A static granular packing is in mechanical equilibrium if
every grain satisfies the conditions of force and torque bal-
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ance. At the microscopic level, the grains interact via con-
tact forces, which are frictional. For rigid grains, friction
leads to a microscopic indeterminacy of the forces since
the tangential force magnitude at a contact has to be less
than the normal force: j ftj � � fn , where � is the friction
coefficient.

There is a broader class of indeterminacy which has
to do with the fact that there are many packing configu-
rations that are consistent with a set of macroscopic con-
straints. For example, if one shakes a box of marbles and
examines the positions of the marbles after the shaking has
stopped, the positions and the contact network will be dif-
ferent each time one stops shaking. This is analogous to the
situation of systems in thermal equilibrium: many micro-
scopic configurations of the oxygen molecules in a closed
room occur while the temperature and total volume re-
main fixed. Of course, in the granular case, there is no in-
ternal ‘shaking’ mechanism.

The different configurations of systems in thermal
equilibrium (such as the oxygenmolecules in a room) have
a given probability of occurring at a given temperature.
This probability is well known from equilibrium statistical
mechanics and is the Boltzmann distribution: e�ˇE . Here
ˇ D 1/kBT is the inverse of the temperature T multiplied
by the Boltzman constant kB, and E is the energy of the
configuration. The probability of finding a configuration
is, therefore, completely determined by its energy and does
not depend on the particular dynamics or the history. This
is the essence of systems in thermal equilibrium and leads
to their simplicity.

Edward’s Ensemble

The configurations of a box ofmarbles at the end of a shak-
ing experiment are certainly not in thermal equilibrium.
Marbles are large objects, and they dissipate energy as
heat when they interact. Ordinary thermal fluctuations
are not relevant to a box of marbles; one has to shake
them to move them and generate new states. These end
states are, however, static. A natural question to ask is
whether one can make a priori prediction of the proba-
bility of occurrence of a particular configuration, as we
can for systems in thermal equilibrium. The first theo-
retical approach to address this question was that of the
Edwards ensemble which asserts that the total volume (V)
of a mechanically stable grain packing plays the role of
energy, and that there is a temperature-like quantity called
the compactivity [28,29,30,31]. The mechanically stable
grain packings of infinitely rigid objects have been termed
blocked states [31], and are related to strictly jammed
states [32]. The basic hypothesis underlying the Edwards

ensemble is the microcanonical [24] hypothesis that all
blocked states with the same total volume V are equally
likely. This hypothesis has been tested in numerical sim-
ulations, in experiments, and in some exactly solvable
models [33,34,35,36,37,38]. The consensus seems to be
that the hypothesis is not universally valid but holds un-
der some conditions. The Edwards hypothesis involves
the definition of the Edwards entropy: S(V ) D ln˝(V ),
where ˝(V) is the density of blocked states, that is, the
number of blocked states between V and V C ıV . Eval-
uating this function has been a challenging problem, al-
though progress has been made recently [39].

Force Ensembles

The Edwards picture was originally based on the assump-
tion of completely rigid particles. However, all physical
particles have finite stiffness, and in the usual case, inter-
act via frictional contact forces. The conditions of finite
vs. infinite stiffness and frictionless vs. frictional interac-
tions has some important consequences for granular pack-
ings. Relaxing the infinite stiffness constraint introduces
couplings between the positions of grains and the con-
tact forces. Below we discuss an ensemble for frictionless,
spherical particles.

A mechanically stable packing of frictionless, de-
formable, spherical particles have to satisfy the equations
of force balance. In addition, there is force law relating the
positions of the particles to the forces [40,41]. For grains
interacting through purely repulsive, short-range, forces,
there are dN equations of force balance for N grains in
a space of dimensionality d:

force � balance dN eqs :
X

j

Fi j
ri j
jri jj
D 0 (1)

force � law hziN/2 eqs : Fi j D f (ri j) (2)

Here hzi is the average number of contacts per grain, Fi j is
the magnitude of the contact force between grains i and j,
the angles of the contacts being fixed by the geometry,
and f (ri j) is a function specifying the inter-grain force
law. For a given geometry, (i. e. fixed ri j

jri jj
), the equations

of force balance involve hziN/2 unknowns. The number of
force-balance equations cannot be greater than the num-
ber of unknowns, otherwise the forces are overdetermined,
and, therefore, hziN/2 � dN .

For rigid, non-deformable grains, the force law be-
comes a constraint on the positions of the grains [41].
There is one constraint for each contact, which leads to
hziN/2 equations for the dN positions, the unknowns.
Since the number of constraint equations have to be larger
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than the number of unknowns, hziN/2 � dN . The force
law and the force balance constraints can, therefore be sat-
isfied only if hzi D ziso D 2d. This enumeration argument
applies only to disordered packings, since for ordered,
crystalline packings, angles of the lines connecting the
grains are not independent, and therefore, not all the
constraint equations are linearly independent. Consider-
ing such disordered packings, the enumeration argument
leads to the conclusion that packings of rigid, isotropic,
frictionless particles have to be isostatic; they have to have
hzi D ziso.

For deformable particles, mechanically stable packings
can exist for hzi � ziso. If the particles are very stiff, the
magnitude of the forces change a lot for small changes in
the separation between grains. There is, therefore, an effec-
tive separation of scales [40,42] in Eqs. (1) and (2), and one
can consider the ensemble of forces which satisfy force-
balance for a fixed geometry of the packing, i. e., a packing
with fixed grain positions. The properties of such force-
ensembles have been studied [40,42,43,44,45,46,47], and
it has been shown that P(F), the probability distribution
function (PDF) of contact forces, evolves to a exponential
form as the particles aremade increasingly rigid [40,42]. In
addition, work on sheared and isotropically compressed
packings have shown that there are more extended spa-
tial correlations of the forces in the force ensembles for
sheared packings [48].

The force ensemble approach captures many features
of packings near Point J. However, the approach to this
point involves coupling between the geometry and forces,
as observed in simulations [49]. Below, we discuss a gener-
alized ensemble that allows for the coupling of these two,
and applies to spherical and non-spherical grains with and
without friction.

Generalized Ensembles

In a more recent development, it has been shown that
the “equally likely” hypothesis of Edwards and the Micro-
canonical ensemble of thermal systems [24] is not essen-
tial for the definition of a temperature-like quantity, and
a much weaker condition of factorizability of distributions
is sufficient [50,51,52]. The necessary conditions for be-
ing able to define a temperature-like variable and a statisti-
cal ensemble based on this variable are (a) the existence of
a physical quantity that is conserved by the natural dynam-
ics of the system (in thermal systems energy is conserved
but in dissipative granular media, it is not) and (b) that the
frequency of finding different states with the same value of
the conserved quantity is factorizable: !�1C�2 D !�1 !�2 .
The latter condition implies that if one creates a configura-

tion by bringing together two configurations 1 and 2, then
the frequency of occurrence of this joint configuration is
a product of the frequency !� of the individual configura-
tions.

In the context ofmechanically stable packings of grains
(soft, deformable or rigid), a conserved quantity that has
been identified is the force-moment tensor [53,54,55]
which is related to the Cauchy stress tensor:

�̂ D (1/V)
X

i j

Eri j EFi j (3)

The summation in Eq. (3) is over all contacts fi jg in an as-
sembly of grains, occupying a volumeV , with contact vec-
tors Eri j and contact forces EFi j (for grains with friction EFi j
does not lie along the direction of Eri j).

The microscopic force moment tensor for a grain is
given by:

�̂i D
X

j

Eri j EFi j ; (4)

where the sum is over all grains j that contact grain i.
For grains in mechanical equilibrium, it can be shown, us-
ing a generalized Stoke’s theorem [28,56,57], that the total
force moment tensor

ˆ̇ D
X

i

�i

becomes a boundary integral for systems with open
boundaries and is a topologically conserved quantity for
systemswith periodic boundary conditions [53]. In two di-
mensions, this property can be explicitly demonstrated by
introducing a set of auxiliary variables [55] which are the
analog of the vector potential in electromagnetism. The
connection to electromagnetism is natural if one remem-
bers that for mechanically stable packings, the divergence
of the stress tensor is zero, just as the divergence of the
magnetic field is zero in electromagnetism.

Given the topologically conserved nature and/or the
strict boundary sensitivity of ˆ̇ , the phase space of all
mechanically stable packings can be grouped into sectors
characterized by the value of ˆ̇ . Thinking of systems with
periodic boundary conditions, the topologically conserved
nature implies that packings in different sectors are com-
pletely disconnected by any natural dynamics, and there-
fore, ˆ̇ is the type of conserved quantity that meets crite-
rion (a) of the previous paragraph. If we now assume crite-
rion (b), then a statistical ensemble can be constructed to
describe the end states of processes such as shaking grains.
The role of energy is played by ˆ̇ which is an extensive
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quantity (scales with system size) and the analog of tem-
perature is a tensorial quantity, ˆ̨ (In the context of in-
finitely, rigid grains, this intensive variable has been called
Angoricity by Edwards [28]). This tensor is defined by:

ˆ̨ ( ˆ̇ ) D
@Z0( ˆ̇ )
@ ˆ̇ (5)

where

Z0( ˆ̇ ) D
X

�

!�ı( ˆ̇� � ˆ̇ )

and the sum is over all mechanically stable packings �.

Tests of the Stress-Based Ensemble

The ability to define an ensemble does not necessarily
mean that real granular packings conform to this ensem-
ble. The assumption of factorizabilty could break down or
the frequency of occurrence of a packing, !� could be his-
tory-dependent making the temperature or the ensemble
concept not very useful. It is, therefore, essential to check
the predictions of this ensemble against experiments and
simulations.

This has been done for simulations of frictionless grain
packings in two dimensions [53] and it has been shown to
work remarkably well. As a result of this comparison, an
equation of state analogous to thermal equations of state,
has been derived for frictionless grain packing approach-
ing Point J [53], that is consistent with the field theory con-
structed for Point J [57].

Two applications of the stress-based ensemble to ex-
periments probing the jamming transition will be dis-
cussed below.

Jamming Phase Diagram

About a decade ago, Liu and Nagel proposed that the jam-
ming transitions in all systems, including the glass transi-
tion in supercooled liquids can be described by one unified
framework through the jamming phase diagram and a spe-
cial point in this phase diagram referred to as Point J [58].
The proposed phase diagram, shown in Fig. 1, delineates
the boundaries of the jammed region in a phase space
spanned by a temperature, density, and a load axis. The
load axis captures the non-equilibrium aspects of these
materials. For ideal spherical particles, the transition at
Point J is a purely density-driven change, occurring at
a critical packing fraction, �c between an amorphous solid
state of dry granular packings and a state where the pack-
ings fall apart under any external stress [49]. Recent exper-
iments in granular packings have verified the existence of

Jamming of Granular Matter, Figure 1
Jamming Phase Diagram proposed by Liu and Nagel. Adapted
from [49]

this, transition [59], as discussed in the section on exper-
iments, and a theoretical description of this specific point
is also emerging [56,60,61].

In recent years, a theoretical framework has been
developed [62,63,64] that describes the complete phe-
nomenology of the glass transition in supercooled liq-
uids. There are similarities between this framework and
the properties of Point J, but whether or not these diverse
phenomena can be unified under the umbrella of univer-
sality is a subject of intense current research. The stress-
based ensemble approach described earlier has been used
to construct a coarse-grained field theory of Point J and the
jamming transition [56,57]. Since field theories and scal-
ing ideas based on them underlies universality in thermal
phase transitions, the extension of this approach to granu-
lar materials hold out the promise of identifying different
universality classes in the context of jamming.

The special properties of Point J are related to isostatic-
ity [49]. The discussion in Sect. “Statistical Framework
of Jamming” analyzes isostaticity for frictionless, spheri-
cal grains. In general, isostatic packings are those special
ones where the number of contacts is just enough to pro-
vide mechanical stability [41]. It has become increasingly
evident [65] that isostaticity plays very different roles in
spherical vs. non-spherical particles, which raises the ques-
tion of whether Point J is special to frictionless spheres and
disks. Also, it is not clear how generic the properties of this
special point are, and whether or not it controls the behav-
ior as one moves away from it in parameter space.
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The jamming phase diagram of Liu andNagel provides
a framework for exploring the phenomenon of jamming
in granular matter. Since temperature is not a relevant
variable in the granular case, the phase space of interest
would generically be the loading-density plane. The me-
chanical failure (or unjamming) of granular packings can
occur because of (i) a vanishing bulk modulus (instabil-
ity with respect to volume fluctuations) or (ii) a vanishing
shear modulus (instability with respect to fluctuations of
the shear stress). The state at Point J is an especially fragile
one since both conditions (i) and (ii) are met. The stress
state of the packing at this point is isotropic. In many in-
stances, however, a granular material can be irreversibly
deformed through the application of shear, and this pro-
cess is also frequently referred to as unjamming. Specifi-
cally, for large enough shear stresses, a solid-like granular
material will dilate, and fail in a process that typically leads
to a locally weak and dilated region known as a shear band.
This type of process has interesting analogues in the plastic
failure of disordered glassy materials, in foams, in colloids
and perhaps elsewhere. The tendency of densely packed
granular materials to dilate under shear was discovered
by Reynolds [66], and the adjustment of the density un-
der shear is incorporated into critical state models of soil
mechanics [67]. Although under shear, granular materi-
als yield, and in some sense are ‘unjammed’, this process
typically occurs under non-zero pressure as well as non-
zero shear stress. Hence, ‘unjamming’ due to shear differs
from the isotropic-stress state that occurs at Point J. In
fact, the vast majority of experiments associated with jam-
ming/unjamming are of this latter shear-induced process.
There is compelling reason, discussed below, to think that
plastic failure by shearing has a qualitatively different be-
havior than what occurs at Point J. For instance, jammed
states also depend on whether they are isotropic or not, as
shown by Majmudar and Behringer [68].

Given the dilatancy effects, and the differences be-
tween isotropically and anisotropically stressed states, we
organize our discussion of jamming around a phase space
spanned by the components of the Cauchy stress ten-
sor (Eq. (3)). This is a symmetric tensor, and in two di-
mensions we can, therefore, work with the isotropic pres-
sure, P, and the shear stress � . P D �1 C �2, and � D �1
� �2, where the �i are the principal stresses, i. e. eigen-
values of the stress tensor. Since the principal stresses are
positive for granular materials, the physical space is en-
closed by the j� j D P and P D 0 lines. In fact, shear failure
typically occurs for j� j < P. Point J lies at P D 0 ; � D 0.
Along the � D 0 axis, simulations provide strong evidence
of Point J having critical properties with, in particular, at
least one diverging length scale [49].

If � ¤ 0 then the jamming behavior could be quite
different from that characteristic of Point J. Here, a use-
ful analogy to equilibrium phase transitions may be the
difference between a critical point, where a line of first-
order phase transitions terminates, such as the ferromag-
netic Curie Point which occurs at zero magnetic field and
at a characteristic temperature Tc, or a tricritical point,
which separates a region of second-order transitions from
a region of first-order transitions. This type of a critical
point arises in multicomponent, thermodynamic systems
and a well-known example is superfluidity in a mixture
of He3 and He4. For a high enough concentration of He3,
the mixture undergoes a first order transition into two
phases, and only one, the He4-rich phase is superfluid [69].
A characteristic of a tricritical point is the existence of two
diverging length scales, and in particular, there is a higher
dimensional phase space that describes the various tran-
sitions. We present this discussion here purely as an illus-
trative example of a phase-transition scenario in which the
signatures depend on what parameters are varied. We use
the phase diagram of Fig. 2 to provide a framework for dif-
ferentiating between the avenues available for approaching
the jamming transition. In much of the literature, no dis-
tinction has beenmade, and we believe that has led to con-
fusion. For each possible path, the transition can also be
approached from the jammed side or the unjammed side.
If � D 0, then the unjammed state is fluid-like in the sense
that the system cannot respond elastically to any applied
stress.

Jamming of Granular Matter, Figure 2
Jamming Phase Diagram in the space of components of the
Cauchy stress tensor. The diagram shows a schematic in
the P� j�j plane, with arrowsmarking possible avenues of un-
jamming
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Below, we first provide an overview of the signatures of
jamming observed as the transition is approached from the
fluid-like side (Sect. “Force Fluctuations, Dynamical Het-
erogeneities, Length and Time Scales in Granular Flows
Approaching Jamming”), we then discuss the properties
of jammed states under both shear and isotropic compres-
sion, as the jamming transition is approached from the
jammed side (Sect. “Force Distributions, Length and Time
Scales in Jammed States near the Jamming Transition”). In
Sect. “Isostaticity and Point J”, we summarize the experi-
mental and theoretical description of Point J and the asso-
ciated length and time scales. Related areas of research that
we do not include in this article at all, are the phenomenon
of aging, non-equilibrium dynamics, and generalized elas-
ticity for granular matter.We refer the interested reader to
articles listed in the bibliography.

Force Fluctuations, Dynamical Heterogeneities,
Length and Time Scales in Granular Flows
Approaching Jamming

In this section, we review a number of physical and numer-
ical experiments which give insight into the nature of the
jamming process. Each approach has advantages and dis-
advantages. Numerics, typically consisting of direct simu-
lations of the equations of motions for a set of particles, has
the advantage that it is possible to easily explore parame-
ter space. This approach is referred to as Molecular Dy-
namics (MD) or as Discrete Element Simulations (DEM),
depending on the community. The disadvantage of simu-
lation is that it is difficult to achieve an accurate represen-
tation of friction (often friction is neglected), and in addi-
tion, simulations are typically done only for spheres in 3D
or disks in 2D (which we will refer to as isotropic parti-
cles). Experiments do not suffer from issues of accuracy of
the interaction law, but it is very difficult to obtain quan-
titative data except at the boundary of 3D systems. Alter-
natively, it is possible to obtain information using quasi-
2D systems, such as collections of disks, something that
is also done frequently for simulations. Two-dimensional
systems for both experiments and simulations can yield
excellent quantitative information, but may leave open
the question of generalizability to higher dimension. With
these caveats, we turn to a review of both numerical and
physical experiments that probe the jamming transition
from the fluid-like side. Granular flows can be broadly di-
vided into two categories, (a) inertial flows dominated by
collisions between grains, and (b) quasistatic flows that
involve extended contacts and slow evolution from one
static, mechanically stable state to another.

Recent results from numerical simulations by Lois
et al. [70,71] are of particular interest here. These authors
studied shear flow of rigid particles which they modeled
using contact dynamics, a version of MD/DEM for rigid
particles. A particularly interesting discovery coming from
these studies was the existence of a divergent correlation
length for forces, associated with the formation of clus-
ters, as the packing fraction approached �c from below.
The presence of a divergent length scale reinforces the idea
that jamming is actually a critical transition.

Evidence for critical properties also come from exper-
iments on hopper flow by Longhi et al. [19]. These exper-
iments involved a quasi-2D flow of monodisperse spheres
out of a hopper-shaped container. Necessarily, the pres-
ence of flow implies that the states studied here were un-
jammed. As the particles moved by, a small high speed
force gauge mounted near the outlet of the hopper yielded
the impulse of individual collisions. The collisions could
be clearly identified because of a large separation of scales
between the duration of contact, and time between con-
tacts. The distributions of these impulses, at large im-
pulses were roughly exponentially distributed, and inde-
pendent of the flow rate. At small impulses, the distri-
butions evolve with flow rate with a relative increase of
small impulse events as the flow rate decreases. A more
interesting statistic is the distribution of � ’s, the time be-
tween successive collisions. As the jamming transition was
approached, these distributions approached a powerlaw,
P(�) / ��3/2.

An MD simulation of hard disks, in a geometry de-
signed to mimic the experiments of Longhi et al. [19],
provided an explanation for the evolution of the im-
pulse distribution in terms of increasing velocity corre-
lations [72,73]. These correlations also led to a qualita-
tive explanation of the changes in P(�) [72], which oc-
cur because the average time between collisions decreases
as the flow velocity decreases while at the same time the
time taken for a particle to fall through its own diameter
increases. This leads to a large separation of time scales
and a range of times over which the dynamics is scale in-
variant. The simulations provided strong indications that
these physical effects owe their origin to the existence of
chains of frequently-colliding particles. In addition, it was
shown that these collision chains could be interpreted as
stress chains with the stress measured through momen-
tum transfer [20, the counterpart of force chains in this
system of flowing hard particles. Fig. 3 is a snapshot of
a simulation illustrating the stress chains for two different
flow rates, as controlled by the width of the opening at the
bottom of the hopper. More recent work on this system
of hard disks has provided evidence for the existence of
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Jamming of Granular Matter, Figure 3
Stress chains. The grayscale plot is constructed by scaling the
collisional stress by the average collisional stress (h�i) obtained
by coarse graining over many collisions. Close to jamming, the
coarse-graining time is much shorter than the time taken by
a particle to fall through its own diameter [72]

dynamical heterogeneities identified through the displace-
ments of grains [72].

A length scale can be extracted from measurements
of spatio-temporal correlations of these heterogeneities.
As in supercooled liquids, there is a length scale that has
a peak at a characteristic time. Both length and time scales
depend on the average flow velocity, growing as the sys-
tem approaches jamming. The increase in length, how-
ever, is not as dramatic as in supercooled liquids or in ex-
periments on air-driven granular beads [9]. As an example
of the characteristic shapes of the length versus time curves
observed in all of these systems, supercooled liquids, iner-
tial and quasistatic granular flows, we show a set of data
from the MD simulations of hopper flow in Fig. 4 [20].

Pouliquen et al. have carried out a series of experi-
ments on flow down chutes/inclined planes [11,76]. These
studies have shown that there is a range of inclination an-
gles, � , for the chute for which it is possible to obtain
steady state flow, and that the depth of the flowing layer,
h, depends on � . The flow stops if h is smaller then an in-
clination-angle-dependent function, hstop(�). Data for the

Jamming of Granular Matter, Figure 4
Lengths scale, �, associated with the heterogeneity of dynam-
ics as a function of the mean square displacement, r, of particles
in MD simulations of a two-dimensional hopper flow [20]. This
length scale, extracted by analyzing the spatial correlation be-
tween displacements of particles [74,75], peaks at a characteris-
tic displacement which can be related to a characteristic time at
which the dynamics is most heterogeneous. This plot is qualita-
tively similar to � vs. time plots observed in the experiments of
Durian et al. on air-driven beads, in the experiments of Dauchot
et al. on particles driven by oscillating shear (see text), and in su-
percooled liquids

depth-averaged velocity, u can then be expressed in terms
of a flow rule, u/(gh)1/2 D ˇh/hstop(�), where ˇ is a ma-
terial-dependent O(1) constant. Following a suggestion by
Ertas and Halsey [77], Pouliquen [11] explored the possi-
bility that there might be observable spatial correlations
for the surface velocity which would signal the onset of
jamming. Indeed, such correlations exist, and they grow
as the inclination angle of the chute is lowered, i. e. as the
system approaches the jammed state.

Kolb et al. [78] have studied the response of a jammed
2D layer to a localized cyclic displacement. This process
was carried out quasi-statically, and in such a way as to
locally unjam the system. More specifically, the experi-
ment consisted of a bidisperse layer of disks, inclined from
the vertical, so that the system was normally jammed. An
intruder particle having a diameter corresponding to the
larger of the two grain sizes, was displaced periodically in
time by small amounts. These local displacements led to
a much longer range set of displacements, part of which
was reversible, but part of which was irreversible. This
long-range response is suggestive of a critical-like response
for states near jamming.

Drocco et al. [79] have used MD to to simulate the be-
havior of a 2D particle that is pushed through originally
static bidisperse packings of similar particles. The pack-
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Jamming of Granular Matter, Figure 5
Data for length (�) and time (t�) showing an increase in these scales associated with dynamical heterogeneities in a system of air-
driven beads. Reprinted from [9]

ings reside in a square geometry with periodic bound-
ary conditions, and are prepared at packing fractions be-
low the jamming value for this system. The authors first
focus on the intruder velocity, which becomes increas-
ingly intermittent as � ! �c from below. To characterize
the intermittency, Drocco et al. use multifractal analysis to
compute moments, M(q) D

R
dvP(v)v�q / (�c � �)�(q),

and present evidence for multiscaling. Of particular rele-
vance here is a demonstration that as � ! �c , the num-
ber of disks, n, that move in response to a fixed push-
ing distance for the intruder grows rapidly. These authors
use data for the number of moving disks vs. � to esti-
mate a correlation length, which diverges as � / (�c�)�� ,
with � D 0:71˙ 0:12. These numerical studies have an in-
teresting parallel with experimental studies by Geng and
Behringer [80] which yielded the force needed to push
a disk through a channel of other disks in the jammed
state. These data yielded a pushing force that also became

increasingly intermittent on approach to �c , in this case
from above, and a mean force that vanished as (� � �c)˛

with ˛ D 1:5.
Dauchot et al. [10] have studied correlations in sys-

tems of particles in 2D that are subject to small-am-
plitude oscillating shear. In this case, simple shear was
applied, meaning that a rectangular sample was alter-
nately tilted into a parallelogram to the right, then left.
Dauchot et al. were particularly interested in characteriz-
ing the spatio-temporal fluctuations of systems near jam-
ming. An image was obtained each time that the system
was returned to the rectangular state, and the location
of each particle was then determined. From these data,
the authors first calculated a measure of individual parti-
cle motion, the self-intermediate scattering function, Fs D
hF̂s(k; t)i D N�1˙ jhexp[�ik(r j(t) � r j(0))]i. The results
for Fs(k; t) / exp[�(t/�(k))ˇ (k) indicate Brownian dif-
fusion at small k, but a different behavior at large k,
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i. e. smaller spatial scales, where ˇ is smaller than unity:
a stretched exponential. They attribute this behavior to
dynamical heterogeneities, and they further quantify the
nature of these dynamical heterogeneities by analyzing
length and time scales associated with fluctuations of
F̂s(k; t), as has been done for supercooled liquids. The
analysis identifies a moderate length scale associated with
the fluctuations, in agreement with the type of length
scales that have been observed in supercooled liquids.

Durian et al. [9] have studied dynamical hetero-
geneities in a system of air-driven granular beads as a func-
tion of the packing density. Using multiple measures of
lengths associated with dynamical heterogeneities, these
authors demonstrate that there are length and time scales,
which grow with the approach to Point J. They also
show that the increase in these scales follows the Vogel–
Fulcher–Tamann form: a form that is associated with su-
percooled liquids approaching the glass transition [81].
Figure 5 shows length and time scales extracted from dif-
ferent measures of dynamical heterogeneities as a func-
tion of the packing fraction. The fits are to the predictions
of Mode-Coupling-Theory of the glass transitions and to
the Vogel–Fulcher–Tamann form, which implies an ex-

Jamming of Granular Matter, Figure 6
Distributions of forcesmeasured at the base of a continuously sheared layer of glass spheres, for different sphere diameters of 1mm,
2mm, 3mmand 4mm, as indicated, and a fixed detector diameter of 1.0 cm. The other numbers give the depth of the granular layer
as a fraction of the full height, 4.1 cm, and the shearing rate [12]

ponential divergence at a packing fraction �0. Interest-
ingly, the value of �0 is very close to the �c associated with
Point J [9].

Force Distributions, Length and Time Scales
in Jammed States near the Jamming Transition

An interesting premise is that the distribution of inter-
particle contact forces, P(F), can provide insight into the
nature of the global granular state of a system. In par-
ticular, it may be useful as a tool to distinguish jammed
from unjammed or nearly unjammed states. It is also an
important indicator of the overall stress state of the sys-
tem, as demonstrated in experiments [68,82] and the-
ory [83,84]. Since the transition to a deforming state in
a dense granular material has often been obtained by
shearing, there have been a number of studies that have
addressed this case [12,13,14,16,17,18,85,86]. In particu-
lar, Howell et al. [13,14] have directly probed the transition
that occurs when the density of a sheared granular sample
is reduced to the point where stresses vanish. Other stud-
ies have probed the nature of steady granular shear [12,16,
18,85,86].
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We discuss below several recent experimental studies
which help elucidate this point. Here, we focus first on
sheared, and then on isotropicically confined systems.

Sheared States

Fluctuations, their distributions and their correlations, are
interesting for a number of reasons. First, they can reveal
the nature of short and long range behavior. In addition,
they provide a useful test of model behavior, and they help
to identify key parameters. One of the earliest experimen-
tal characterization of force fluctuations in dense granular
materials was by Miller et al. [12]. These experiments in-
volved the shearing of an annular layer of glass spheres.
A rough plate sheared the top of the annular layer and
the pressure was measured at the bottom of the layer us-
ing a force gauge of fixed area. These studies are typical
of many quasi-static shearing experiments. The system re-
mains close to a static state, so that if the shear stress is
reduced, the system typically reverts to a static state with
only small changes in the particle configurations. How-
ever, enough shear is applied during steady-state motion
that the system unjams intermittently, presumably associ-
ated with a short-term weakening of the shear modulus.
In some sense, this type of motion straddles the jammed-
unjammed boundary, first on one side, and then on the
other. In addition, it is typical that a region of the mate-
rial weakens and forms what is called a shear band. Be-
cause a shear band has lower shear strength than other re-
gions, it tends to persist as a localized region where most
of the shear deformation occurs. This process is typified by
local structural rearrangements and frequently with large
force fluctuations. The fluctuations in the experiments of
Miller et al. showed a kind of rate-independence. They
also yielded information on the force and pressure dis-
tributions, Fig. 6. The force detector was of fixed diame-
ter, so by varying the particle diameter, it was possible to
tune the number of particles contacting the detector from
a small number, to � 100 particles. For the largest parti-
cles, this provided, at least roughly, information on P(F).
For the smallest particles, one might expect that the force
fluctuations would be substantially averaged out, yielding
something more like the mean pressure. We show data for
the PDF’s of the measured forces/stresses, in Fig. 6. If the
forces acting on the detector from individual particles were
uncorrelated, then one would expect that this would nar-
row as N1/2, i. e. as the square root of the number of con-
tacting particles, and evolve towards a gaussian. In fact,
there is much less narrowing than would occur for uncor-
related forces from individual particles.

Two recent studies of 3D continuously sheared sys-
tems provide additional insight [16,17,18,86]. Both sys-
tems yield PDF’s of forces at the boundaries, and it is in-
teresting to contrast the two sets of results.

Corwin et al. [87] have recently presented extensive
experiments using a photoelastic technique to measure
forces at the bottom boundary of a cylindrical container
filled with spherical particles and sheared from above. In
the steady state, particles in the bottom layer located be-
yond a characteristic radius, Rb, exhibited dynamic shear
flow, specifically, a shear band. Particles located closer to
the center than this radius remained in a permanently
jammed state and moved as a solid body. Corwin et al.
obtained P(F)’s, with a particular focus on the region
above Rb. These distributions, Fig. 7, show an enhance-
ment for small F, and qualitatively resemble those ob-
tained by Howell et al. for 2D shear flow, as discussed

Jamming of Granular Matter, Figure 7
P(F) in sheared and non-sheared zones. Reprinted from [87]



5008 J Jamming of Granular Matter

below. Corwin et al. proposed that these distributions
can be related to an effective temperature, Teff, by not-
ing that the distribution of forces and the radial correla-
tion function, assuming forces described by a potential,
V(r), should satisfy P(F)dF D G(r)dr, where G(r)dr is
the radial distribution function. They then drew on the
small-r thermal result G(r) / r�2 exp[�V (r)ˇ] where
ˇ D 1/(kBT) (in this case, T should be replaced by Teff).
This argument leads to the prediction that at low forces,
one should expect P(F) / F�1/3, a prediction that de-
scribes their data well. The resulting effective tempera-
tures obtained from this analysis are insensitive to shear
rate and also to the height of the granular layer.

Other recent studies of sheared 3D particles, this time
in an annular channel, were carried out by Daniels and
Behringer [16,17,18]. In these experiments, the overall ge-
ometry was similar to Miller et al. [12] but in addition,
the bottom boundary of the experiment was shaken with
peak accelerations that typically exceeded the acceleration
of gravity. The shaking motion allowed the system to find
not only a jammed state, but actually a crystalline state. At
high enough shear, the crystal melted, producing a shear-
banded, disordered, and flowing state. This transition was
clearly evident in P(F). Here, F is the force exerted by par-
ticles on a transducer that is roughly three particle diam-

Jamming of Granular Matter, Figure 8
Distributions for the pressure/force at the bottom of an annular
layer of spheres that is sheared at a rate˝ , from above, and that
is vibrated from below with a peak acceleration of � D 2:0, in
units of g. R is the mean radius of the annulus, and d is the parti-
cle diameter. The two-peaked distributions are in the crystalline
phase, and the single-peaked distributions are in the disordered
phase. The inset shows the Kurtosis of the distributions as a func-
tion of a scaled shear rate. The cusp in the kurtosis is caused by
the stretching out of the distributions as ˝ is decreased from
a large value where the state is disordered

eters across. In the crystalline state, P(F), Fig. 8, had an
overall envelope that was roughly gaussian, but that had
two peaks which were induced by the vibrational motion.
In the melted, disordered state, P(F) resembled the distri-
butions ofMiller et al. As the transition to the ordered state
was approached from the disordered state, the tail of P(F)
became increasingly extended. Associated with this long
tail were increasingly large volume fluctuations. In fact, the
variance of volume fluctuations and the various moments,
including the kurtosis of the P(F), showed a cusp at the
transition. This is particularly interesting in the present
discussion, since the volume variance should be propor-
tional to the derivative of the Edwards entropy (discussed
in Sect. “Statistical Framework of Jamming”) with respect
to compactivity, i. e. the Edwards ensemble analogue of
a specific heat.

A relatively early demonstration of jamming proper-
ties was the work of Howell et al. [13,14] These experme-
nts consisted of photoelastic disks which were sheared in
an annular Couette geometry, as in the sketch of Fig. 9. The
boundaries of the apparatus consisted of a fixed outer ring,
and in inner wheel whose rotations provided the shear.
The particles were confined in the horizontal directions
by the ring and wheel, and they rested on a smooth pow-
der-lubricated horizontal Plexiglas sheet. Data were ob-
tained in a steady state after the system had been sheared
for roughly 30 minutes. The low shearing rate meant that
that the process was quasi-static and hence always close
to equilibrium. In particular, if the shearing was stopped,
the majority of the force chains remained unchanged fol-
lowing an initial relaxation. Over long times, more of the
force chains decayed, but that process was logarithmi-
cally slow [85]. In these experiments, the average force per
particle (roughly a measure of the particle-scale pressure)
was obtained by calibrating an applied compression to the
photoelastic response of the particles. These experiments,
as well as those of Daniels and Behringer [18,88], showed
an increase of the mean stress with the shear rate that var-
ied linearly as the logarithm of the shear rate. The log-
arithmic strengthening has been shown to be consistent
with predictions of the stress-based ensemble, described
in Sect. “Statistical Framework of Jamming” [89].

Several observations concerning these experiments are
noteworthy. First, these experiments yielded the force dis-
tributions for the mean force on a particle, and also for av-
erages over multiple particles. Second, they showed a kind
of critical slowing down as the packing fraction, � , ap-
proached the jamming transition from above, and third,
they showed that a characteristic length scale associated
with the mean length of force chains grew as � ! �c from
above. We reproduce these results in Figs. 10 and 11 [13].
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Jamming of Granular Matter, Figure 9
Sketch of the basic two-dimensional Couette shear apparatus,
with an overlaid image showing the heterogeneous force struc-
ture that occurs. Photoelastic particles are confinedwithin an an-
nular region whose boundaries are a rotating inner wheel, and
a fixed outer ring. Also shown is a blow-up sketch indicating the
rough nature of the shearing wheel, and the fact that the pho-
toelastic disks are marked with small bars for tracking purposes.
In the false-color image from this experiment, red corresponds
to particles experiencing a large force, and blue 0 to particles ex-
periencing a small force [13,14]

The distributions for the single particle forces depend
on the distance to �c . For � close to �c , the distributions
fall off roughly exponentially with large force, although
there is an extra density of low force states. These dis-

Jamming of Granular Matter, Figure 10
PDF’s from the 2D Couette experiment for single particles (bot-
tom) and for collections of particles lying within an extended
region. Numbers indicate the packing fraction. This system has
a critical value of � D 0:776 where stresses vanish. Note that
the distributions of forces for single particles develops a maxi-
mum for large packing fractions. The distributions for forces for
collections of roughly 260 particles in a contiguous region show
a much stronger peak as � increases, and no peak when � is
just above �c . This suggests that correlations in force grow as
�! �c [13]

tributions are nominally rather similar to single particle
force distributions which were observed for particles at the
boundaries of the 3D sheared system by Corwin et al. [86].
For larger � , the distributions from the 2D shear experi-
ments developed a peakwhich graduallymigrated to larger
force as the density grew. The distributions for the force on
collections of particles also depend on the density. Close
to jamming, they are similar to the single-particle distri-
butions; at larger density, they evolve to a more gaussian
shape. The multi-particle-force distributions are then in-
teresting on several accounts. First, they provide a way to
compare to earlier 3D pressure measurements (i. e. force
measurements involving multiple particles) and they also
give some sense of force correlations. That is, if the force
on a given particle were uncorrelated with the force on
other nearby particles, then the distribution for the forces
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Jamming of Granular Matter, Figure 11
Photoelastic images from the Couette shear experiment at a low (left,���c D 0:001) and high (right,�� phic D 0:031) distance
from the unjamming point of this system. Note the long filimentary chains near�c and the tangled network far from�c [13,14]

Jamming of Granular Matter, Figure 12
Data for the mean azimuthal velocity profiles vs. radial distance
from the shearing wheel for the 2D Couette experiment. These
data are normalized by the angular speed, ˝ , of the shearing
wheel. Inset shows that these data collapse onto a single curve
when scaled a function/ (���c)1 [13]

experienced by a collection of particles would typically
evolve to a guassian as the number of particles in the col-
lection increases. This is consistent with what is observed
for larger � , but not with what is observed for � near �c .
Hence, by inference, there exist correlations for the par-
ticle-scale forces for near-critical � ’s. To make this idea

Jamming of Granular Matter, Figure 13
Computed PDF of the force per particle exerted by collections
of n particles whose forces are uncorrleated and are drawn from
exponential distributions. The absence of correlations leads to
the expected narrowing by n�1/2

somewhat more precise, we show in Fig. 13 what happens
to the PDF for the collective force for groups of particles
acting on a detector if a) the forces exerted by each par-
ticle are chosen from q-model like distribution [103], and
b) the forces exerted by any one particle are uncorrelated
with any of the others. Specifically, the distribution nar-
rows as N�1/2.
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The results from the 2D Couette shear for the veloc-
ity profiles vs. � and also data for the characteristic force
chain length both suggest that the system becomes increas-
ingly inhomogeneous, in terms of force transmission as
� ! �c from above. In particular, the typical force chain
length clearly grows, although it does not necessarily di-
verge, in these experiments on approach to �c . In fact,
given our discussion above concerning a P � � phase dia-
gram, we might well expect that in shear experiments one
approaches point J along a path which lies above the P
axis. Figure 11 contrasts a photoelastic image from How-
ell et al. [13] taken well above �c with an image for � just
slightly above �c . In the higher � case, the force network
is more nearly homogeneous, in contrast to the case just
above �c . For the latter case, only a handful of particles
are visibly in a force chain. (Here, some caution must be
taken, since there is a force below which the photoelastic
image is too weak to be resolved.) Nevertheless, only inter-
mittently is there a strong enough contact at the shearing
wheel so that a particle is entrained by the shearing wheel.
This leads to critical slowing down which is evident in the
mean velocity profiles, Fig. 12.

Isotropic vs. Anistropic Stress States

As discussed above, the nature of jamming depends, in
what appears to be a significant way, on the presense or
absence of shear stresses. The experiments and simula-
tion discussed above have all involved sheared states. Here,
we consider simulations and experiments which are for
isotropic systems, and which focus on an approach to jam-
ming that involves the dense/jammed side.

Numerical Simulations The phenomenon of jamming
in isotropically stressed states has been extensively in-
vestigated through numerical simulations of frictionless,
spherical grains in both two and three dimensions [49,90].
This work includes in particular, a series of MD simula-
tions by O’Hern, Silbert, Liu andNagel [49,91,92]. This se-
ries of simulations led to the introduction of the existence
of a critical point at zero shear and a critical density, �c :
Point J. The simulations probed the nature of the pack-
ings of spherical grains (disks in two dimensions), which
interact via a short-range, soft-repulsive potential, mean-
ing that there are no long-range interactions, and that
there are purely repulsive normal forces which come into
play when the grains are compressed. The packings were
obtained by quenching from initial random states with
a packing fraction � D NVp/V , where N grains each with
volumeVp were packed in a box of volumeV . For polydis-
persed assemblies of grains, the definition of the packing

fraction can be easily generalized. An interesting protocol
that was developed in trying to identify Point J was that of
inflation or deflation, in which the pressure of a quenched
state was measured, and the radius of the grains were
scaled up or down by small factors until the pressure
was zero (within a numerical tolerance). For each initial
configuration (�) the zero pressure state corresponded to
a particular packing fraction, � c

� . At this packing fraction,
the grains just touched and if the packing fraction was
reduced below this, no mechanically stable states could
be obtained. The crucial findings of these simulations are
summarized below:

1. If properties such as pressure, shear modulus, and av-
erage number of contacts of the packings are measured
as a function of �� � � c

� , then the properties are found
to be independent of �.

2. The pressure, bulk modulus and shear modulus all go
to zero as some power of �� � � c

� . The exponent of
the power law for the pressure and the bulk modu-
lus follows from the force law but the shear modulus
has a non-trivial exponent that indicates non-affine dis-
placements [49,93].

3. The distribution of � c
� becomes narrower with increas-

ing system size and the mean approaches the Random
Close Packing value [32].

4. Above �c , the average number of contact follows
a power law: hzi � ziso / (� � �c)1/2.

5. The vibrational density of states exhibits increasing
weight at low frequencies as Point J is approached, and
the lowest frequency below which the packing behaves
as a normal elastic material approaches zero [94].

6. Two different diverging lengths scales can be identi-
fied from analysis of the vibrational spectrum. These
two length scales diverge with different exponents [95],
and therefore indicate the existenc of multiple diverg-
ing correlation lengths at Point J.

7. The force distribution, P(F) is sensitive to the distance
from �c , and approaches an exponential as the packing
fraction approaches �c

Experiments Regarding physical experiments for the
isotropic case, we are aware of only one set of results,
namely data by Majmudar and Behringer [68]. These re-
sults depend crucially on using photoelastic techniques in
a much more precise way to obtain contact forces [68,82].
Hence, we discuss briefly how this approach works. The
basic idea is the following. For given contact forces act-
ing on a disk, the stress field within the disk is deter-
mined. The stress field in turn determines the photoelas-
tic response. Specifically, for a ray that traverses a slab of
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Jamming of Granular Matter, Figure 14
Biaxial experiment. a Sketch illustrating the fact that two walls of the experiment are moveable, allowing the creation of arbitrary
(rectangular) deformations and stress states. b Two different stress states produced by top: isotropic compression, and bottom:
pure shear, i. e. compression in one direction and equal dilation in the opposite. c A closeup image of a single photoelastic particle
showing the detailed photoelastic pattern that is used to deduce contact forces [68]

photoelastic material of thickness L that is sandwiched be-
tween crossed circular polarizers, the transmitted inten-
sity is I D Io sin2[(�2 � �1)CL/
]. Here, �2 and �1 are the
principal stresses in the plane of the slab (or disk), C, the
stress optic coefficient is a property of the material, and 

is the wavelength of the light with intensity Io. Thus, con-
tact forces determine stresses which in turn determine the
photoelastic pattern. The idea is to carry out the inverse of
this process. Specifically, from the photoelastic pattern, de-
termine the applied forces. This can be done efficiently in
the case of a disk because there is a closed form relation for
the stress field generated by any number of contact forces.

MB have developed such an inverse process and ap-
plied it to systems of photoelastic disks that have been pre-
pared in well defined stress/deformation states. The partic-
ularly important aspect of these experiments is that they
have yielded the only experimental data, to our knowl-
edge, for contact forces inside a granular sample, although
a number of other experiments have yielded forces at

boundaries. This point is important; theoretical studies by
Snoeijer et al. [83,84] indicate that force distributions for
contacts at boundaries and in the interior of a sample dif-
fer substantially.

Figure 14 shows a rough schematic of a biaxial tester
(or biax) and resulting photoelastic response images for
different types of applied stresses [68]. The purpose of the
biax is to prepare states of well controlled strain or stress.
The biax is constructed so that the space between opposing
pairs of walls can be set to any convenient value. The par-
ticles in this sample are bidisperse disks, with about 80%
having a smaller diameter (0.8cm) and 20% having a larger
diameter (0.9 cm). Bidisperse packings of this sort typically
have no long-range crystalline order, although they tend to
show hexagonal bond order.

Manifestly, the force chain structures that result from
pure shear vs. isotropic compression, Fig. 14b, are substan-
tially different. Pure shear induces force chains that extend
nearly straight and uninterrupted over the compressional
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Jamming of Granular Matter, Figure 15
Distributions of forces for pure shear (top) and isotropic compression (bottom). Parts a and c give distributions of normal (Fn) and
tangential (Ft , frictional) forces, all normalised by the appropriate mean normal force, hFni. Parts b and d indicate the mobilization
of friction, where the variable S indicates fully mobilized (at the point of slipping) friction when S D 1 [68]

direction of the biax. This is intuitively reasonable, since
the pure shear state is achieved by compressing, hence
strengthening contacts in one direction, while dilating the
sample, thus weakening contacts, in the perpendicular di-
rection. By contrast, for an isotropically compressed sam-
ple, the force network consists of a dense tangle of short
force chain segments.

Various statistical measures reflect the fact that shear
and isotropic compression yield qualitatively different
states. We consider first, the distributions of contact
forces, P(F), which are given in Fig. 15. For convenience,
forces are normalized by hFni, the mean normal force. The
figures show separate distributions for the normal and tan-
gential contact forces. Although the distributions for the
tangential forces are always exponentially distributed, re-
gardless of the stress state, the same is not true for the nor-
mal force distribution. These clearly reflect the stress state,
with a state of pure shear showing a roughly exponential
fall-off at large F, and with a state of isotropic compression
showing a much more rapid fall-off with F. In fact, these

distributions are consistent with recent entropy-based ar-
guments by Snoeijer et al. [83] and by Tighe et al. [96]. In
both cases, the distributions for the normal forces show
a peak at a force comparable to the mean. Perhaps a better
measure of the difference between the shear and isotropic
deformations is given by the force correlation function,
which is significantly longer range along the force chain
direction of the sheared case, than any direction for the
isotropic case [68]. We show these results in Fig. 16.

Isostaticity and Point J

Isostaticity and Random Close Packing

This section is devoted to a geometrical picture which of-
fers a perspective that is complementary to the statisti-
cal ensemble picture. The geometrical approach is focused
on mathematically precise descriptions of packing of in-
finitely rigid particles [32,65]. In this statistical geometric
picture, packings are characterized by the type of jamming:
local, collective or strict. In the hierarchy of jammed states,
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Jamming of Granular Matter, Figure 16
Force-force correlation functions obtained from 2D experiments. To compute these correlation functions, we compute the average
forcemagnitude, hF(rC r0)F(r)i, acting on a particle. Since the systemmaybe anisotropic, the averageover r0 must retain the angular
information. We contrast data for a system that has been subjected to pure shear, top, with one that has been subject to isotropic
compression, bottom. (See part b of Fig. 14). The right side of the figure shows a grayscale representation of the data. For the shear
case, the correlation function has a roughly power-law decay (to the limits of the system size) for correlations along the strong force
chain direction, and a rapid drop off for the transverse direction. For the isotropically compressed case, the correlations are identical
in all directions, and decay rapidly [68]

locally jammed states are ones where each particle in the
system is locally trapped by its neighbors. Collectively
jammed states are ones where all finite subsets of parti-
cles are trapped by their neighbors, and strictly jammed
states are collectively jammed configurations for which
no global, volume-nonincreasing deformations are possi-
ble [32]. In addition, the degree of order in the packings
is characterized by an order parameter or an order met-
ric [97]. The emphasis in this approach is to understand
the existence of packings, not their statistical weight in any
dynamical protocol. The geometrical approach applies to
infinitely rigid bodies which is an idealization of real par-
ticles, but the classification into jamming categories and
a precise understanding of the nature of packings which
can exist as the packing fraction is varied provides a frame-

work onto which the statistical decsription can be super-
posed. There are a few special points on a phase diagram
in the order-packing fraction space: (a) themaximally ran-
dom jammed state (MRJ) is an extremal point correspond-
ing to the least ordered, strictly jammed state, (b) the ran-
dom-loose-packed (RLP) state is another extremal point
corresponding to the lowest density at which a strictly
jammed state can exist. This RLP state is more ordered
than theMRJ state and is extremely fragile [97]. In contrast
to the concept of random close packing (RCP) [32,97], the
MRJ state is protocol-independent leading to a mathemat-
ical framework for studying randomeness in hard particle
packings. The definition of MRJ does, however, depend on
the choice of the order parameter, and further work needs
to be done to explore appropriate order parameters.
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Isostatic Packings are Marginal

It has become increasingly clear through theoretical anal-
ysis and simulations that isostatic packing of frictionless,
isotropic particles are marginally stable. Simulations show
that the vibrational spectrum of these packings have many
soft modes and that the density of states of zero-frequency
modes become non-zero as Point J (which is isostatic) is
approached [49]. There is a diverging length scale associ-
ated with these vibrational modes, and this length scales
as 1/(z � ziso) [61,94]. The theoretical explanation for this
divergence is rooted in the vanishing degrees of freedom
as the isostatic point is approached from the jammed, hy-
perstatic side [60,61,93]. Stability analysis of the packing
of deformable, isotropic grains, also shows that there is
a marginal stability line along which, the pressure of the
packing obeys p/B D (z � ziso)2, where p is the pressure
and B is the bulk modulus of the packing [60,93]. Packings
with fewer than the number of contacts specified by this
relation are unstable. The question of whether isostacity
and marginality always go hand in hand is an interesting
question that is beginning to be explored [65,98].

Simulations and Theory

As discussed in Sect. “Isotropic vs. Anistropic Stress
States”, simulations of deformable, spherical grains [49,91]
exhibit a special packing fraction, �c , below which it is
impossible to construct a jammed packing, and interest-
ingly, for large systems, �c approaches the RCP value.
Recent theoretical work based on the isostatic nature of
Point J [60,93], have provided an explanation for the di-
verging correlation length and the scaling relation between
pressure and the number of contacts. A theory based on
a minimum number of contacts needed for local stability
is the K-core percolation model of Schwarz, Chayes and
Liu [99]. This theory focusses on the mixed first-second
order nature of the transition at Point J in terms of the
order parameter, hzi, which approaches ziso with an ex-
ponent close to 1/2 as � ! �Cc , but which is predicted to
be zero for � infinitesimally below �c . The meanfield ex-
ponents of this model agree with the exponents associated
with Point J in the numerical simulations.

A field theory of jammed grain packings in two di-
mensions, and close to Point J has been constructed us-
ing the generalized stress-based ensemble (Sect. “Statistical
Framework of Jamming”), and a fluctuating field related to
the Airy Stress function [55]. This field theory [56], iden-
tifies two order parameters associated with the transition
at Point J; the Airy stress function and the deviation of the
number of contacts from the isostatic value. The field the-
ory predicts a transition with a diverging length scale. Re-

cent work [57] has focussed on refining this field theory
by comparing its predictions to simulations of frictionless
disks [49].

The stress-based ensemble described in Sect. “Statisti-
cal Framework of Jamming” can be used to understand the
exponential form of P(F), if one uses the fact that the pack-
ings at �c are isostatic. The starting point of this calcula-
tion is the canonical partition function of the stress-based
ensemble: Z(˛) D

P
� e
�˛�� , where ˛ is the counter-

part of the inverse temperature and � D
P

i j jri jjFi j [53].
At �c , the spheres or disks are just touching, and therefore,
the separations jri jj can be replaced by the diameter of the
grains. The sum over grain configurations, �, therefore, in-
volves a sum over the Fi j’s and the angles of the contact
vectors. The isostatic point is special in that there is a one-
to-one correspondence between geometry and forces. This
means that for a chosen set of fFi jg, there is only one ge-
ometry characterized by a set of contact angles that can be
mechanically stable. The partition function then becomes:

Z(˛) D
X

fFi jg

e�
P

i j ˛Fi j D

� Z 1

0
dFe�˛F

�zisoN/2
(6)

The integral is easily performed, and the result can be
used to relate ˛ to the average contact force, hFi: ˛ D
(ziso/2)hFi. Since the forces on different contacts are com-
pletely independent of each other at this isostatic point,
as seen from Eq. (6), it follows that P(F) / e�˛F D
e�zisoF/(2hFi) , a pure exponential. This is a consequence of
isostaticity. Away from the isostatic point, the correspon-
dence between geometry and a set of contact forces is no
longer one-to-one and distributions will acquire a non-ex-
ponential character, in agreement with observations that
P(F) of crystalline packings are more Gaussian than disor-
dered packings, as discussed in Sect. “Force Distributions,
Length and Time Scales in Jammed States near the Jam-
ming Transition”.

Analysis of simulations of frictionless disks, using this
generalized ensemble led to a definitive functional form
for the distribution of �m D

Pm
iD1

P
j ri jFi j , the pressure

of m particles inside an assembly of N grains, integrated
over the volume occupied by the grains (� is known as the
internal virial). The distribution Pm(�m) depends only on
x D N�m/�N , where �N is the internal virial of the whole
assembly of N grains, and the functional form is [53]:

Pm(x) / xmae�ax ; (7)

where a D 2C (hzi � ziso)2 This form indicates that the
distribution would approach a Gaussian with a width
which narrows as

p
m, in x space. In the space of the
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unscaled variable �m , however, the distribution could ac-
quire a non-trivial shape and scaling with m if �N ! 0,
or equivalently, ˛ !1. Since this is what happens as
� ! �c , one can expect non-trivial scaling of the pressure
distribution. Equation (7) also shows that the exponential
tail is maximally stretched at hzi D ziso. Evidence for this
may appear in the distributions of Fig. 8, where just at the
transition, the exponential tail has become extremely ex-
tended.

There are many existing models for the exponential
distribution of forces. In one view [87,91], the exponen-
tial distribution is related to the form of the pair correla-
tion functionG(r), a function thatmeasures the number of
particles separated by a distance r, at small r. Using generic
properties of G(r) and the limit where grains are barely
compressed, leads to a P(F) / e�F� , where the exponent �
depends on the force law. In this approach, the exponential
distribution is not related to isostaticity. This point of view
was developed through the discussion of the experimental
results of Corwin et al. [87]. A different set of approaches
have considered the origin of the unidirectional transmis-
sion of forces (force chains) [100,101,102] by proposing
a new class of constitutive relations arising from con-
straints on the stress tensor due to geometry of the pack-
ings. This approach has a natural connection to the gen-
eralized ensemble [28,54] and isostaticity [28,41,55]. An
earlier, heuristic model, the q-model led to unidirectional
propagation of forces, and an exponential distribution of
contact forces [103]. More recently, Snoeijer et al. [83] and
Tighe et al. [96] have predicted force distributions using
the force ensemble approach (Sect. “Statistical Framework
of Jamming”). The connection between the stress-based
ensemble and force chains, away from isostaticity is still
being explored.

Experimental Observations

Direct experimental investigation of Point J, approached
from the jammed side, and the behavior in its vicinity
have been more limited than computational and theoreti-
cal studies. We are aware of only one experiment by Maj-
mudar et al. [59] that has directly probed Point-J from the
jammed side. This work [59] has provided detailed experi-
mental data for the mean contact number, Z, and the pres-
sure, P vs. the packing fraction, �c . Hence, it is possible
now to make direct comparison between a physical experi-
ment and theory/model results. In these experiments, pho-
toelastic disks were confined in the biaxial tester discussed
above. The photoelastic approach allows the experimental
determination of contact forces between pairs of particles
or between particles and a boundary.

Figure 17 shows results for Z(�) and P(�). The data
for Z show a fairly rapid increase in Z with increasing � ,
but not a truly sharp discontinuity. However, assuming
a reasonable choice of �c , the data indicate an increase of Z
above the critical value which varies as Z�Zc / (���c)˛

with an exponent ˛ D 0:55˙ 0:05. This result is in agree-
ment with the simulation of frictionless grains [49]. The
pressure also follows a power-law in � � �c with an ex-
ponent of 1:1˙ 0:05, which is in agreement with Silbert
et al. [49]. Finally, it is possible to compare to the stress-
ensemble predictions of Henkes and Chakraborty by elim-
inating ˛ in their predictions for P(˛) and Z(˛) to obtain
an expression for P(Z). The data, Fig. 18, are also in rea-
sonable agreement with this prediction.

Jamming of Granular Matter, Figure 17
Data for the pressure and for the mean contact number per par-
ticle, Z vs. �. The inset shows that Z vs. � over a larger range
than the top part of the figure. Data including rattlers as shown
by asterisks, and data without rattlers by diamonds. Note that Z
rises rapidly but not discontinuously at jamming. Power-law fits
of P and Z � Zc vs.���c above jamming and for reasonable�c
show expected exponents of 0:55˙ 0:05 for Z � Zc and 1.1
for P [59]
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Jamming of Granular Matter, Figure 18
Data of Majmudar et al. for P vs. Z showing the generally good
agreement with the predictions of Henkes and Chakraborty [59]

Future Directions

From the combined experimental, theoretical, and simu-
lation studies of the last decade, a picture of the nature
of jamming in granular matter is beginning to emerge,
although many questions remain. In our discussion,
we distinguish jamming/unjamming under isotropic and
anisotropic stress conditions. Many recent simulations
have considered the isotropic approach to Point J. A num-
ber of experiments have explored jamming/unjamming,
although most of these involved the succession of fail-
ures that occur under shear and away from Point J, which
corresponds to processes with a heuristically ‘first-order’
character. We believe that it is important to distinguish
these various cases. To our knowledge, no one has con-
sidered the approach to Point J along an anisotropic stress
path.

There are clear indications of heterogeneities in gran-
ular matter. These have both a spatial and a temporal as-
pect, and they become increasingly important with the ap-
proach to jamming. They have been identified on both the
fluid-like and jammed side of the transition.

One aspect of these heterogeneities is concerned with
forces and their transmission. A clear manifestation is in
force chains, which can show strong correlations in the
sheared state, but very short range correlations in the
isotropic stress state. In dynamic processes, force chains
continually rearrange, leading to strong force fluctuations.
Although force chains are clearly visible in a variety of 2D
experiments that are carried out above jamming, incipient
stress chains have been observed in simulations of hopper
flow on the fluid-like side [20], and there is evidence of
arch formation and stress chains in experiments studying

jamming in hopper flow [104,105,106]. An open question
concerns the role that such structures may play if Point J
is approached along a path of anisotropic stress.

A different type of heterogeneity in granular flows is
related to the mobilities of grains [9,10]. This situation is
similar to heterogeneities in supercooled liquids.

The analogies between jamming and thermal phase
transitions prompts questions about the extent of the simi-
larities between the two. For instance, is there an order pa-
rameter associated with the transition? Studies of the spe-
cial type of jamming at Point J suggest that pressure and
the deviation of the number of contacts from the isostatic
value are the two, possibly coupled, candidates for the or-
der parameter.

The generic jamming/unjamming transition that takes
place in the presence of non-zero shear stress is character-
ized by intermittent dynamics and is reminiscent of trap-
like dynamics, where the shearing causes the system to
“hop” from one jammed state to another and jamming
occurs when the average time scale for exploring all the
traps diverges [89,107]. The framework of soft-glassy-rhe-
ology [108] provides an approach to calculating the stress
response of granular packings approaching jamming. In
this picture, the jammed state is an intrinsically non-equi-
librium state, which exhibits aging, meaning a slow evo-
lution of its properties with time. The issues raised here
are much the same as those arising in the context of the
glass transition, and involve understanding the relation
between fluctuations and response [109], through the def-
inition of an effective temperature. This is an area of active
research [110,111,112,113,114].

Understanding the jamming of non-spherical grains is
much less advanced than that of spherical grains. In this
regard, the geometrical approach of Torquato and Still-
inger [65] is being applied to non-spherical grains. Exper-
iments have probed the issue of isostaticity in non-spher-
ical grains [115,116,117]. The stress-based ensemble de-
scribed in this article is a promising approach for analyz-
ing these issues.

In the context of frictional and frictionless packings,
a question that needs to be addressed is what aspects of
the jamming transition are sensitive to the presence of fric-
tion. Simulations and theories of jamming have mainly fo-
cussed on frictionless grains. The statistical ensemble ap-
proaches, however, are general and provide an avenue for
a unified framework.

These observations raise many questions:
1. How are stress chains related to the the mobility of

grains? Since force chains tend to lock grains in place, it
may well be that there is anti-correlation between force
chains and mobility.
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2. Is there a basic dynamical principle leading to the oc-
currence of stress chains, or are they more strongly in-
fluenced by geometry?

3. What if any, is the relationship between the length and
time scales on the jammed side to those observed on the
flowing side?

4. Are incipient chains on the fluid-like side responsible
for jamming as the transition is approached? Is jam-
ming caused by a divergence of the lifetime of these
chains?

5. Is there an extension to jamming in the presence of
shear? That is, how does the path in P-� space affect
jamming?

6. What is the nature of jamming for nonspherical parti-
cles, for systems with a broad range of particle sizes, or
for particles that interact with cohesive forces?

The advances in experimental techniques which have
led to the measurement of grain-level forces, has been
a tremendous boon for theorists. Simulations have led to
detailed descriptions of fluctuations which provide means
for testing theoretical frameworks. The recent advance in
the statistical ensemble approach to jamming, the geomet-
rical characterizations of packings of rigid grains, com-
bined with the detailed experimental and simulation stud-
ies, is expected to answer many of the remaining questions
and lead to a fuller understanding of the phenomenon of
jamming.

Bibliography

1. Jaeger H, Nagel S, Behringer R (1996) Granular solids, liquids,
and gases. Rev Mod Phys 68:1259–1273

2. Jaeger H, Nagel S, Behringer R (1996) The physics of granular
materials. Phys Today 49:32–38

3. Kadanoff LP (1999) Built upon sand: Theoretical ideas inspired
by granular flows. Rev Mod Phys 71:435

4. Weeks ER, Crocker JC, Levitt AC, Schofield A, Weitz DA (2000)
Three-dimensional direct imaging of structural relaxation
near the colloidal glass transition. Science 287:627

5. Donati C et al (1998) Stringlike cooperativemotion in a super-
cooled liquid. Phys Rev Lett 80:2338

6. Donati C, Glotzer S, Poole P, Kob W, Plimpton S (1999) Spa-
tial correlations of mobility and immobility in a glass-forming
lennard-jones liquid. Phys Rev E 60:3107

7. Berthier L et al (2005) Direct experimental evidence of a grow-
ing length scale accompanying the glass transition. Science
310:1797–1800

8. Lacevic N, Starr F, Schroder T, Glotzer S (2003) Growing corre-
lation length on cooling below the onset of caging in a simu-
lated glass-forming liquid. J Chem Phys 119:7372

9. Keys AS, Abate AR, Glotzer SC, Durian DJ (2007) Direct ob-
servation of growing dynamical length scales and prediction
of the jamming transition from dynamical heterogeneity in
a granular system. Nat Phys 3:260

10. Dauchot O, Marty G, Biroli G (2005) Dynamical heterogeneity
close to the jamming transition in a sheared granularmaterial
Phys Rev Lett 95:265701

11. Pouliquen O (2004) Velocity correlations in dense granular
flows. Phys Rev Lett 93:248001

12. Miller B, O’Hern C, Behringer RP (1996) Stress fluctuations
for continously sheared granular materials. Phys Rev Lett 77:
3110

13. Howell D, Behringer RP (1999) Fluctuations in a 2d granular
Couette experiment: A critical transition. Phys Rev Lett 82:
5241

14. Veje C, Howell D, Behringer RP (1999) Kinematics of a two-
dimensional granular couette experiment at the transition to
shearing. Phys Rev E 59:739–745

15. Geng J, Behringer RP, Reydellet G, Clément E (2003) Green’s
function measurements of force transmission in 2d granular
materials. Physica D 182:274

16. Daniels KE, Behringer RP (2005) Hysteresis and competition
between disorder and crystallization in sheared and vibrated
granular flow. Phys Rev Lett 94:168001

17. Daniels KE, Behringer RP (2005) Characterization of a freez-
ing/melting transition in a vibrated and sheared granular
medium. In: Garcia-Rojo R, Herrmann HJ, McNamara S (eds)
Powders, Grains 05 357–360 Balkema, Rotterdam

18. Daniels KE, Behringer RP (2006) Characterization of a freez-
ing/melting transition in a vibrated and sheared granular
medium. J Stat Mech 7:P07018

19. Longhi E, Easwar N, Menon N (2002) Large force fluctuations
in a flowing granular medium. Phys Rev Lett 89:0455011–
0455014

20. Ferguson A, Chakraborty B (2007) Spatially heterogenous
dynamics in dense, driven granular flows. Europhys Lett
78

21. Silbert LE, Ertas D, Grest GS, Halsey TC, Levine D (2002) Analo-
gies between granular jamming and the liquid-glass transi-
tion. Phys Rev E 65:051307

22. Silbert L (2005) Temporally heterogeneous dynamics in gran-
ular flows. cond-mat/0501617

23. Silbert LE, Grest GS, Brewster R, Levine AJ (2007) Rheology
and contact lifetimes in dense granular flows. Phys Rev Lett
99:068002

24. Chandler D (1987) Introduction to Modern Statistical Me-
chanics. Oxford University Press, New York

25. DolnikM, Zhabotinsky A, Epstein I (1996)Modulated standing
waves in a short reaction-diffusion system. J Physical Chem
100:6604–6607

26. Dhar D (2006) Theoretical studies of self-organized criticality.
Phys A-Stat Mech Appl 369:29–70

27. Schmittmann B, Zia RKP (1995) Statistical Mechanics of Driven
Diffusive Systems. In: Domb C, Lebowitz J (eds) Phase Tran-
sitions and Critical Phenomena, vol 17. Academic Press,
New York

28. Edwards SF, Blumenfeld R (2007) The thermodynamics of
granular materials. In: Mehta A (ed) Physics of Granular Ma-
terials, Cambridge University Press, Cambridge

29. Edwards SF, Grinev DV (1999) Statistical mechanics of stress
transmission in disordered granular arrays. Phys Rev Lett
82:5397

30. Edwards SF, Oakeshott RBS (1989) Theory of powders. Phys A
157:1080

31. Edwards SF, Grinev DV (2001) Jamming and Rheology: Con-



Jamming of Granular Matter J 5019

strained Dynamics on Microscopic and Macroscopic Scales.
Taylor, New York

32. Donev A, Torquato S, Stillinger F, Connelly R (2004) Jam-
ming in hard sphere and disk packings. J Appl Phys 95:989–
999

33. Barrat A, Kurchan J, Loreto V, Sellitto M (2001) Edwards’ mea-
sures: A thermodynamic construction for dense granular me-
dia and glasses. Phys Rev E 6305:0513011–05130114

34. Barrat A, Kurchan J, Loreto V, Sellitto M (2000) Edwards’ mea-
sures for powders and glasses. Phys Rev Lett 85:5034

35. Coniglio A, Fierro A, Nicodemi M (2002) Probability distri-
bution of inherent states in models of granular media and
glasses. Eur Phys J E 9:219

36. Coniglio A, Fierro A, Nicodemi M (2001) Applications of the
statistical mechanics of inherent states to granular media.
Phys a-Stat Mech Appl 302:193

37. Kurchan J (2001) Recent theories of glasses as out of equi-
librium systems. Comptes Rendus Acad Sci Ser Iv Phys Astro-
phys 2:239–247

38. Makse H, Kurchan J (2002) Testing the thermodynamic ap-
proach to granular matter with a numerical model of a de-
cisive experiment. Nature 415:614–617

39. Blumenfeld R, Edwards SF (2003) Granular entropy: Explicit
calculations for planar assemblies. Phys Rev Lett 90:1143031–
1143034

40. Snoeijer JH, Vlugt TJH, van Hecke M, van Saarloos W (2003)
Force network ensemble: a new approach to static granular
matter. Phys Rev Lett 91:072303

41. TkachenkoA,Witten T (1999) Stress propagation through fric-
tionless granular material Phys Rev E 60:687

42. Snoeijer J, Vlugt T, van Hecke M, van Saarloos W (2004) Force
network ensemble: A new approach to static granularmatter.
Phys Rev Lett 92:0543021–0543024

43. Snoeijer J, EllenbroekW, Vlugt T, van Hecke M (2006) Sheared
force networks: Anisotropies, yielding, and geometry. Phys
Rev Lett 96:09800191–0980014

44. van Eerd ART, EllenbroekWG, van HeckeM, Snoeijer JH, Vlugt
TJH (2007) Tail of the contact force distribution in static gran-
ular materials. Phys Rev E 75:0603021–0603024

45. Snoeijer J, van Hecke M, Somfai E, van Saarloos W (2003)
Force and weight distributions in granular media: Effects of
contact geometry. Phys Rev E 67:0303021–0303024

46. Snoeijer J, vanHeckeM, Somfai E, van SaarloosW (2004) Pack-
ing geometry and statistics of force networks in granular me-
dia. Phys Rev E 70:0113011–01130115

47. Snoeijer J, Vlugt T, Ellenbroek W, van Hecke M, van Leeuwen
J (2004) Ensemble theory for force networks in hyperstatic
granular matter. Phys Rev E 70:0613061–06130616

48. Tighe B, Socolar J, Schaeffer D, Mitchener W, Huber M (2005)
Force distributions in a triangular lattice of rigid bars. Phys
Rev E 72:0313061–03130610

49. O’Hern CS, Silbert LE, Liu AJ, Nagel SR (2003) Jamming at zero
temperature and zero applied stress: The epitome of disor-
der. Phys Rev E 68:011306

50. Bertin E, Dauchot O, Droz M (2006) Definition and rele-
vance of nonequilibrium intensive thermodynamic parame-
ters. Phys Rev Lett 96:1206011–1206014

51. Bertin E, Dauchot O, Droz M (2005) Nonequilibrium temper-
atures in steady-state systems with conserved energy. Phys
Rev E 71:0461401–04614014

52. Bertin E, Dauchot O, Droz M (2004) Temperature in nonequi-

librium systems with conserved energy. Phys Rev Lett
93:2306011–2306014

53. Henkes S, O’Hern CS, Chakraborty B (2007) Entropy and tem-
perature of a static granular assembly: An ab initio approach.
Phys Rev Lett 99:0380021–0380024

54. Blumenfeld R (2007) On entropic characterization of granular
materials. To appear in: Aste T, Tordesiillas A, Matteo T (eds)
Lecture Notes. World Scientific, Singapore

55. Ball RC, Blumenfeld R (2002) Stress field in granular sys-
tems: Loop forces and potential formulation. Phys Rev Lett
88:115505

56. Henkes S, Chakraborty B (2005) Jamming as a critical phe-
nomenon: A field theory of zero-temperature grain packings.
Phys Rev Lett 95:1980021–1980024

57. Henkes S, Chakraborty B (2008) Field theory, soft modes
and the nature of jamming the critical point. Phys Rev E (to
appear)

58. Liu AJ, Nagel SR (1998) Jamming is not just cool anymore. Na-
ture 396:21

59. Majmudar TS, Sperl M, Luding S, Behringer RP (2007) Jam-
ming transition in granular systems. Phys Rev Lett 98:058001

60. Wyart M (2005) On the rigidity of amorphous solids. Ann Phys
30:1–96

61. Wyart M, Nagel S, Witten T (2005) Geometric origin of excess
low-frequency vibrational modes in weakly connected amor-
phous solids. Europhys Lett 72:486–492

62. Kirkpatrick TR, Thirumalai D, Wolynes PG (1989) Scaling con-
cepts for the dynamics of viscous liquids near an ideal glassy
state. Phys Rev A 40:1045

63. Xia X, Wolynes PG (2001) Fragilities of liquids predicted from
the random first order transition theory of glasses. Phys Rev
Lett 86:5526

64. Bouchaud J, Biroli G (2004) On the adam-gibbs-kirkpatrick-
thirumalai-wolynes scenario for the viscosity increase in
glasses. J Chem Phys 121:7347–7354

65. Donev A, Connelly R, Stillinger FH, Torquato S (2007) Under-
constrained jammed packings of nonspherical hard particles:
Ellipses and ellipsoids. Phys Rev E 75:0513041–05130432

66. Reynolds O (1885) On the dilatancy of media composed of
rigid particles in contact. Philos Mag Ser 5 50–20:469

67. Nedderman RM (1992) Statics and kinematics of granularma-
terials. Cambridge University Press, Cambridge

68. Majmudar TS, Behringer RP (2005) Contact force measure-
ments and stress-induced anisotropy in granular materials.
Nature 435:1079–1082

69. Blume M, Emery V, Griffiths RB (1971) Ising model for the
lambda transition... Phys Rev A 4:1071

70. Lois G, Lemaitre A, Carlson JM (2007) Spatial force correla-
tions in granular shear flow. i. numerical evidence. Phys Rev
E 76:0213021–02130212

71. Lois G, Lemaitre A, Carlson JM (2007) Spatial force correla-
tions in granular shear flow. ii. theoretical implications. Phys
Rev E 76:0213031–02130314

72. Ferguson A, Chakraborty B (2006) Stress and large-scale spa-
tial structures in dense, driven granular flows. Phys Rev E
73:0113031–0113037

73. Ferguson A, Fisher B, Chakraborty B (2004) Impulse distribu-
tions in dense granular flows: Signatures of large-scale spatial
structures. Europhys Lett 66:277–283

74. Hurley M, Harrowell P (1995) Kinetic structure of a two-di-
mensional liquid. Phys Rev E 52:1694–1698



5020 J Jamming of Granular Matter

75. Perera D, Harrowell P (1996) Kinetic structure of a two-dimen-
sional liquid. Phys Rev E 54:1652

76. Pouliquen O (1999) Scaling laws in granular flows down
rough inclined planes. Phys Fluid 11:542–548

77. Ertas D, Halsey T (2002) Granular gravitational collapse and
chute flow. Europhys Lett 60:931–937

78. Kolb E, Cviklinski J, Lanuza J, Clauding P, Clement E (2004)
Reorganizationof a dense granular assembly: The unjamming
response function. Phys Rev E 69:031306

79. Drocco JA, Hastings MB, Reichardt CJO, Reichardt C (2005)
Multiscaling at point j: Jamming is a critical phenomenon.
Phys Rev Lett 95:088001

80. Geng J, Behringer RP (2005) Slow drag in two-dimensional
granular media. Phys Rev E 71:011302

81. Ediger MD, Angell CA, Nagel SR (1996) Supercooled liquids
and glasses. J Phys Chem 100:13200

82. Majmudar TS, Behringer RP (2005) Contact forces and stress
induced anisotropy. In: Garcia-Rojo R, Herrmann HJ, McNa-
mara S (eds) Powders and Grains. 65 AA Balkema, Leiden

83. Snoeijer JH, van Hecke M, Somfai E, van Saarloos W (2004)
Force and weight distributions in granulr media: Effects of
contact geometry. Phys Rev E 67:030302

84. Snoeijer JH, Vlugt TJH, van Hecke M, van Saarloos W (2004)
Force network ensemble: A new approach to static granular
matter. Phys Rev Lett 92:054302

85. Hartley RR, Behringer RP (2003) Logarithmic rate depen-
dence of force networks in sheared granularmaterials. Nature
421:928

86. Corwin EI, Jaeger HM, Nagel SR (2005) Structural signature of
jamming in granular media. Nature 435:1075–1078

87. Corwin E, Jaeger H, Nagel S (2005) Structural signature of jam-
ming in granular media. Nature 435:1075–1078

88. Daniels KE, Behringer RP (2005) Hysteresis and competition
between disorder and crystallization in sheared and vibrated
granular flow: Hysteresis and competition between disor-
der and crystallization in sheared and vibrated granular flow.
Phys Rev Lett 94:168001

89. Behringer RP, Chakraborty B, Henkes S, Hartley RR (2008)Why
do granular materials stiffen with shear rate? a test of novel
stress-based statistics. Phys Rev Lett (to appear)

90. Makse H, Johnson D, Schwartz L (2000) Packing of compress-
ible granular materials. Phys Rev Lett 84:4160–4163

91. O’Hern C, Langer S, Liu A, Nagel S (2001) Force distributions
near jamming and glass transitions. Phys Rev Lett 86:111

92. O’Hern C, Langer S, Liu A, Nagel S (2002) Random packings of
frictionless particles. Phys Rev Lett 88:075507

93. Ellenbroek WG (2007) Response of Granular Media near the
Jamming Transition. Ph.D thesis, Leiden University

94. Wyart M, Silbert LE, Nagel SR, Witten TA (2005) Effects of
compression on the vibrational modes of marginally jammed
solids. Phys Rev E 72:051306

95. Silbert LE, Liu AJ, Nagel SR (2005) Vibrations and diverging
length scales near the unjamming transition. Phys Rev Lett
95:098301

96. Tighe BP, Socolar JES, Schaeffeer DG, Mitchener WG, Huber
ML (2005) Force distributions in a triangular lattice of rigid
bars. Phys Rev E 72:031306

97. Torquato S, Truskett T, Debenedetti P (2000) Is random close
packing of spheres well defined? Phys Rev Lett 84:2064–2067

98. Krzakala F, Kurchan J (2007) Landscape analysis of constraint
satisfaction problems. Phys Rev E 76:0210021–02100213

99. Schwartz J, Liu A, Chayes L (2006) The onset of jamming as
the sudden emergence of an infinite k-core cluster. Europhys
Lett 73:560–566

100. Cates M, Wittmer J, Bouchaud J, Claudin P (1998) Jamming,
force chains, and fragile matter. Phys Rev Lett 81:1841–1844

101. Cates M, Wittmer J, Bouchaud J, Claudin P (1998) Develop-
ment of stresses in cohesionless poured sand. Philos Trans
Royal Soc London Ser A-Math Phys Eng Sci 356:2535–2560

102. Cates ME, Wittmer JP, Bouchaud JP, Claudin P (1999) Jam-
ming and static stress transmission in granular materials.
Chaos 9:511–522

103. Coppersmith S, Liu C, Majumdar S, Narayan O, Witten T
(1996) Model for force fluctuations in bead packs. Phys Rev E
53:4673–4685

104. To K (2005) Jamming transition in two-dimensional hoppers
and silos. Phys Rev E Stat Nonlin Soft Matter Phys 71:060301

105. Zuriguel I, Garcimartin A, Maza D, Pugnaloni LA, astor JM
(2005) Jammingduring the discharge of granularmatter from
a silo. Phys Rev E Stat Nonlin Soft Matter Phys 71:051303

106. Easwar N Private Communication
107. Monthus C, Bouchaud J-P (1996) Models of traps and glass

phenomenology. J Phys A 29:3847
108. Sollich P (1998) Rheological constitutive equation for amodel

of soft glassy materials. Phys Rev E 58:738
109. Bouchaud J, Cugliandolo L, Kurchan J, Mezard M (1996)

Mode-coupling approximations, glass theory and disordered
systems. Physica A 226:243–273

110. Song C,Wang P, Potiguar F, Makse H (2005) Experimental and
computational studies of jamming. J Phys-Condens Matter
17:S2755–S2770

111. Song C, Wang P, Makse H (2005) Experimental measurement
of an effective temperature for jammed granular materials.
Proc National Acad Sci USA 102:2299–2304

112. Potiguar F, Makse H (2006) Effective temperature and jam-
ming transition in dense, gently sheared granular assemblies.
Euro Phys J E 19:171–183

113. Ono I et al (2002) Effective temperatures of a driven system
near jamming. Phys Rev Lett 89:0957031–0957034

114. O’Hern C, Liu A, Nagel S (2004) Effective temperatures in
driven systems: Static versus time-dependent relations. Phys
Rev Lett 93:1657021–1657024

115. Desmond K, Franklin SV (2006) Jamming of three-dimen-
sional prolate granular materials. Phys Rev E Stat Nonlin Soft
Matter Phys 73:031306

116. Man W et al (2005) Experiments on random packings of ellip-
soids. Phys Rev Lett 94:198001

117. Blouwolff J, Fraden S (2006) The coordination number of
granular cylinders. Europhys Lett 76:1095

Books and Reviews

Blumenfeld R (2004) Stresses in isostatic granular systems and
emergence of force chains. Phys Rev Lett 93:108301

Bouchaud JP (2003) Granular media: Some ideas from statistical
physics. In: Barrat JL, Dalibard J, Feigelman M, Kurchan J (eds)
Slow relaxations and nonequilibriumdynamics in condensed
matter. Springer, Berlin

Bouchaud JP, Claudin P, Levine D, Otto M (2001) Force chain
splitting in granular materials: A mechanism for large-scale
pseudo-elastic behaviour. Eur Phys J E 4:451–457



Jerky Motion in Slowly Driven Magnetic and Earthquake Fault Systems, Physics of J 5021

Coniglio A, Fierro A, Herrmann H, Nicodemi M (eds) (2004) Unify-
ing concepts in granular media and glasses, 1st edn. Elsevier,
Amsterdam

Mehta A (1994) Granular matter: an interdisciplinary approach.
Springer, New York

Halsey TC, Mehta A (2002) Challenges in granular physics. World
Scientific, Singapore

Herrmann HJ, Hovi JP, Luding S (1998) Physics of dry granular me-
dia. In: NATOASI series. Series E, Applied sciences, vol 350.
Kluwer Academic, Dordrecht

Jiang Y, Liu M (2007) A brief review of “granular elasticity”: why and
how far is sand elastic? Eur Phys JE Soft Matter 22:255–260

Krimer DO, Pfitzner M, Brauer K, Jiang Y, Liu M (2006) Granular elas-
ticity: general considerations and the stress dip in sand piles.
Phys Rev E Stat Nonlin Soft Matter Phys 74:061310

Otto M, Bouchaud JP, Claudin P, Socolar JES (2003) Anisotropy in
granular media: classical elasticity and directed-force chain
network. Phys Rev E Stat Nonlin Soft Matter Phys 67:031302

OvarlezG, Fond C, Clement E (2003) Overshoot effect in the janssen
granular column: a crucial test for granular mechanics. Phys
Rev E Stat Nonlin Soft Matter Phys 67:060302

Torquato S, Donev A, Stillinger F (2003) Breakdown of elasticity the-
ory for jammed hard-particle packings: conical nonlinear con-
stitutive theory. Int J Solid Struct 40:7143–7153

Jerky Motion in Slowly Driven
Magnetic and Earthquake Fault
Systems, Physics of
KARIN A. DAHMEN1, YEHUDA BEN-ZION2

1 Department of Physics, University of Illinois
at Urbana-Champaign, Urbana, USA

2 Department of Earth Sciences, University of Southern
California, Los Angeles, USA

Article Outline

Glossary
Definition of the Subject
Introduction
Models
Theoretical Results
Summary
Future Directions
Acknowledgments
Bibliography

Glossary

Mean field theory A theoretical approximation with an
interaction field that has constant strength and infinite
range. In mean field approximation every domain in-
teracts equally strongly with every other domain, re-
gardless of their relative distance.

Critical point A (phase transition) point in the parame-
ter space of a physical system where the length scale
characteristic of its structure, called the correlation
length � , becomes infinite and the system displays
power law scaling behavior on all available scales. The
associated critical power law exponents are universal,
i. e. they are independent of the microscopic details of
the system.

Universality Power law scaling exponents and scaling
functions near a critical point are the same for a class of
systems, referred to as universality class, independent
of the microscopic details. Universal aspects typically
depend only on a few basic physical attributes, such
as symmetries, range of interactions, dimensions, and
dynamics.

Tuning parameters Parameters such as disorder, tem-
perature, pressure, driving force etc. that span phase
diagrams. Critical values of the tuning parameters de-
scribe critical points of the phase diagrams.

Renormalization group (RG) A set of mathematical
tools and concepts used to describe the change of
physics with the observation scale. Renormalization
Group techniques can be used to identify critical
points of a system as fixed points under a coarse grain-
ing transformation, and to calculate the associated
critical power law exponents and the relevant tuning
parameters. They can also be used to determine what
changes to the system will leave the scaling exponents
unchanged, and thus to establish the extent of the
associated universality class of the critical point.

Earthquake quantities Themost common form of earth-
quake data consists of seismic catalogs that list the
time, location, and size of earthquakes in a given space-
time domain. The size of earthquakes is usually speci-
fied bymagnitudes associated with spectral amplitudes
of seismograms at a given frequency and site-instru-
ment conditions. The seismic potency and moment
provide better physical characterizations for the over-
all size of earthquakes. Additional important quanti-
ties are the geometry of faulting (e. g., strike slip), stress
drop at the source region, and radiated seismic energy.

Seismic potency A physical measure for the size of earth-
quakes given by the integral of slip over the rupture
area during a seismic event.

Seismic moment A physical measure of earthquakes
given by the rigidity at the source region times the seis-
mic potency.

Strike slip fault A style of faulting involving pure hor-
izontal tangential motion, predicted for situations
where the maximum and minimum principal stresses
are both horizontal. Prominent examples include the



5022 J Jerky Motion in Slowly Driven Magnetic and Earthquake Fault Systems, Physics of

San Andreas fault in California, the Dead Sea trans-
form in the Levant and the North Anatolian fault in
Turkey.

Definition of the Subject

Observations indicate that earthquakes and avalanches
in magnetic systems (Barkhausen Noise) exhibit broad
regimes of power law size distributions and related scale-
invariant quantities. We review results of simple mod-
els for earthquakes in heterogeneous fault zones and
avalanches in magnets that belong to the same universal-
ity class, and hence have many similarities. The studies
highlight the roles of tuning parameters, associated with
dynamic effects and property disorder, and the existence
of several general dynamic regimes. The models suggest
that changes in the values of the tuning parameters can
modify the frequency size event statistics from a broad
power law regime to a distribution of small events com-
bined with characteristic system size events (characteris-
tic distribution). In a certain parameter range, the earth-
quake model exhibits mode switching between both dis-
tributions. The properties of individual events undergo
corresponding changes in different dynamic regimes. Uni-
versal scaling functions for the temporal evolution of in-
dividual events provide similar predictions for the earth-
quake andmagnet systems. The theoretical results are gen-
erally in good agreement with observations. Additional
developments may lead to improved understanding of the
dynamics of earthquakes, avalanches in magnets, and the
jerky response to slow driving in other systems.

Introduction

Global Statistics and Power Law Scaling

Earthquakes occur in a broad spectrum of sizes, ranging
from unnoticeable tremors to catastrophic events. While
short term earthquake prediction is still beyond reach, un-
derstanding the statistics of earthquakes might facilitate
longer term prediction of large earthquakes and statistical
estimates of seismic hazard. Gutenberg and Richter [29]
found that the frequency of observed regional and global
earthquakes versus magnitude forms a regular function
over a very large range of scales (see Fig. 1). When the
measure for the earthquake size is the seismic potency or
moment (see “Glossary”), the frequency size statistics of
regional and global earthquakes follow a power law distri-
bution. Precise definitions and details on the seismic po-
tency and moment are given in [1] and [3]. (In this paper
we assume a unit nominal rigidity and will therefore use
potency and moment interchangeably.) Omori [57] found

Jerky Motion in Slowly Driven Magnetic and Earthquake Fault
Systems, Physics of, Figure 1
Histogramof earthquakeswithmagnitude 2.0 or larger recorded
by the Southern California network during 1984–2002. The
earthquake catalog is available at http://www.data.scec.org/
research/SHLK.html

that the decay rate of aftershocks with time follows a power
law distribution. One would expect that there might be
a simple explanation for why earthquakes occur in a broad
range of sizes and follow regular statistical patterns!

In the last two decades it has become increasingly ev-
ident that there are many other systems that respond to
slowly changing external conditions with events on ex-
tremely large ranges of scales (“crackling noise”). An ex-
ample of particular interest here involves magnets, which
respond to a slowly varying external field by changing their
magnetization in a series of bursts or “avalanches” called
Barkhausen Noise. Just like earthquakes, these avalanches
come in many sizes, ranging from microscopic to macro-
scopic and are distributed according to a regular function
over the entire range. The spectra of the source time func-
tion of earthquakes is approximately flat up to a corner
frequency related to the rupture size, followed by a power
law decay at higher frequencies [1,3]. Similarly, the spec-
tra of the number of spins flipping per time during an
avalanche in magnets has high frequency power law de-
cay with a low frequency roll off [68]. For certain values of
tuning parameters, earthquake and magnet quantities are
associated with scale invariant functions (power laws). In
such cases each individual magnetic avalanche or earth-
quake slip has fractal spatial structure (see Fig. 2 for mag-
nets and Fig. 5a for earthquakes). Other systems with sim-
ilar “collective events” of all available sizes include, among
others, superconductors, charge density waves, and group
decision making [66].

While there are several interesting recent reviews,
pointing out the similarities between systems with power
law event size distributions, the goal of this paper is to de-

http://www.data.scec.org/research/SHLK.html
http://www.data.scec.org/research/SHLK.html
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Jerky Motion in Slowly Driven Magnetic and Earthquake Fault
Systems, Physics of, Figure 2
Fractal spatial structure of a medium sized avalanche of 282785
domain flips in the 3 dimensional random field Ising model [66].
Fractal structures and power laws are characteristic of systems
at their critical point. The shading represents time of the do-
main flips: the first domains to flip are at the right end of the
avalanche, the last towards the left. The short range of the ferro-
magnetic interactions causes the avalanche to be spatially con-
nected (see [66])

velop in detail some of the connections and analysis meth-
ods in earthquake and magnetic systems. Expanding on
some of our earlier results, we focus especially on the role
of disorder and dynamic changes in the strength thresh-
old as potential tuning parameters to drive the system to-

Jerky Motion in Slowly Driven Magnetic and Earthquake Fault Systems, Physics of, Table 1
Some scaling features that are similar formagnets and earthquakes.More details on the various properties are given in the indicated
sections

Earthquake system Magnetic system
Frequency size
statistics

Power law near criticality, characteristic distribution away from
criticality (Sect. “Results on the Monotonic Version of the Model”)

Same as earthquakes (Sect. “Results on
the Monotonic Version of the Model”)

Scaling of source
shape functions

Parabola for moment rate shape of events with fixed duration T in
simulations, scaling function skewed to the left for observational data
(Sect. “Moment Rate Shapes for Monotonic Models”)

Same as earthquakes (Sect. “Moment
Rate Shapes for Monotonic Models”)

Spatial properties of
individual events

Fractal near criticality, compact away from criticality
(Sect. “Non-monotonic Models” and Fig. 5)

Same as earthquakes
(Sects. “Non-monotonic Models””
and “Phase Diagram”” and Fig. 2)

Spectral decay of
source function of
individual events

Flat up to a corner frequency followed by power law decay
(Sect. “Introduction”)

Same as earthquakes
(Sect. “Introduction”)

ward power law scaling behavior or away from it. Table 1
summarizes some of the similarities between magnets and
earthquakes that are discussed in this review.

In Sect. “Models” we describe several magnet and
earthquake models that are simple enough to make the
connections transparent and easy to recognize. In Sect.
“Theoretical Results” we review theoretical results ob-
tained from these models and their comparison to exper-
imental or observational data. Finally in Sect. “Summary”
we summarize the results and discuss future work, both
observationally and theoretically, that can help to improve
our understanding of the dynamics of earthquakes and
magnets.

Models

Models for Barkhausen Noise in Magnets

Hysteresis and avalanches in disordered magnetic materi-
als have been modeled using several variants of the non-
equilibrium, zero-temperature random-field Ising model
(RFIM), which is one of the simplest models of mag-
netism, with applications far beyond magnetic systems
(for a review, see [66], and also [15,56,58]). In contrast to
some other hysteresis models, like the Preisach model [44]
and the Stoner–Wohlfarth model [33], where interactions
between the individual hysteretic units (grains) are not in-
cluded and collective behavior in the form of avalanches
is not addressed, in the RFIM the inter grain coupling is
an essential feature and cause for hysteresis and avalanche
effects.

The Random Field Ising Model (RFIM) The equilib-
rium RFIM was originally introduced to study disor-
dered magnetic materials in thermal equilibrium. We
study the nonequilibrium version, to model hysteresis and
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avalanches observed far from thermal equilibrium. Even
though the model is a toy version of the microscopic de-
tails in a magnet, near the critical point it correctly de-
scribes the large scale behavior of systems with the same
general properties such as symmetries, dimensions, inter-
action ranges and dynamics [15], as follows from renor-
malization group arguments.

In the RFIM, to each site i in a simple cubic lat-
tice is assigned a variable si, a so called “spin”, which
can take two different values, si D C1 (“up”) or si D �1
(“down”). (This corresponds to a real magnet where
a crystal anisotropy prefers the magnetic moments or ele-
mentary domains, represented by the spins, to point along
a certain easy axis.) Each spin interacts with its nearest
neighbors on the lattice through a positive exchange inter-
action, Jnn, which favors parallel alignment. (For the be-
havior on large scales the exact range of the microscopic
interaction is irrelevant, so long as it is finite.) Some varia-
tions of the RFIM also include long range interactions due
to the demagnetizing field and the dipole-dipole interac-
tions. A general form of the Hamiltonian can be written
as [37]

H D �
X

nn
Jnnsi s j �

X

i

Hsi �
X

i

hi si

C
X

i

Jinf
N

si �
X

fi; jg

Jdipole
3 cos(�i j) � 1

r3i j
si s j ; (1)

where H is the homogeneous external magnetic driving
field, hi is a local, uncorrelated random field, that mod-
els the disorder in the system, Jinf is the strength of an in-
finite range demagnetizing field, N is the total number of
spins in the system, and Jdipole is the strength of the dipole-
dipole interactions. The power laws of generated events
are independent of the particular choice for the distribu-
tion �(hi ) of random fields, for a large variety of distribu-
tions. Usually a Gaussian distribution of random fields is
used, with a standard deviation (“disorder”) R. As a sim-
ple approximation the model is studied at zero tempera-
ture, far from equilibrium, to describe materials with suf-
ficiently high barriers to equilibration, so that temperature
fluctuations are negligible on experimental time scales. As
the magnetic field is adiabatically slowly changed between
H D �1 to H D C1 two different local dynamics have
been considered:

(1) in the first (“bulk”) dynamics, each spin si flips
while decreasing its own energy. We have studied this dy-
namics for the original RFIM without long range inter-
actions, i. e. for Jinf D Jdipole D 0 [15,58]. This dynamics
allows for both domain nucleation (when a spin si sur-
rounded by equal valued spins flips in the opposite di-

rection), and for domain wall motion (when a spin flips
on the surface of a preexisting cluster of uniform spins in
a background of opposite valued spins). A spin flip can
trigger neighboring (or more generally, coupled) spins to
flip as well, leading to an avalanche of spin flips, analogous
to a real Barkhausen pulse. During an avalanche the exter-
nal field is kept constant until the avalanche is finished, in
accordance with the assumed adiabatic limit. The model is
completely deterministic – two successive sweeps through
the hysteresis loop produce the exact same sequence of
avalanches (since the temperature is set to zero). This dy-
namics may be appropriate to describe for example hard
magnetic materials with strong anisotropies. The analogue
earthquake system may be associated with fault regions or
fault networks that have strong geometrical and material
heterogeneities.

(2) The second dynamics is a “front propagation dy-
namics” in which only the spins on the edge of an existing
front (interface between up and down spins) flip if that de-
creases their energy. This dynamics can be used to model
soft magnetic materials with a single or several nonin-
teracting advancing domain walls and negligible new do-
main nucleation, due to antiferromagnetic demagnetizing
fields. The front propagation model without long range in-
teractions (Jinf D Jdipole D 0) was originally introduced by
Robbins et al. to model fluids invading porous media [43].
The analogue earthquake system for this case may be asso-
ciated with a single fault zone.

Simple Models for Inhomogeneous Earthquake Faults

Much of the previous work on simple earthquake models
has involved variants of the Burridge–Knopoff (or “slid-
erblock”) model, in which complex behavior is generated
in a systemwithmany degrees of freedom, and where iner-
tia, friction laws and inherent discreteness play important
roles [11,38,61]. These systems appear to exhibit power-
law statistics over some range with a cutoff beyond some
magnitude, and with most of the slip occurring in larger
system-size events. However the understanding of the ori-
gin of the power law behavior is limited. Our approach
here is to obtain an analytic understanding of a class of
models and then to add in various additional features by
analytic scaling arguments using tools from the theory of
phase transition and the renormalization group, aided by
numerical studies. There are interesting related studies us-
ing tools from statistical physics [12,63]. Some studies sug-
gest that the power law scaling is connected to a spin-
odal [34]. Various cellular automatamodels have also been
used for modeling earthquakes [40]. Rather than review-
ing a large number of models, we will focus on a subgroup
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of models, that we found particularly well suited to clarify
the connection between earthquake and magnetic systems
with a jerky response to slowly changing external condi-
tions.

The Ben-Zion and Rice Model A representative of the
class of models that we consider is a model developed orig-
inally by Ben-Zion and Rice [2,5,6], referred to below as
the BZR model. The model assumes that a narrow irregu-
lar strike-slip fault zone of horizontal length L and verti-
cal depth W may be represented by an array of N � LW
cells in a two dimensional planar region of length L and
width W, with long range interaction, abrupt transitions
in the threshold dynamics during failure, and constitutive
parameters that vary from cell to cell to model the disorder
(offsets etc.) of the fault zone structure (Fig. 3).

The cells represent brittle patches on the interface be-
tween two tectonic blocks that move with slow transverse
velocity v in the x direction at a great distance from the
fault. The interaction between cells during slip events is
governed by 3-D elasticity and falls off with a distance r
from the failure zone as 1/r3. The cells remain stuck while
the stress �i on each cell is increased gradually as a re-
sult of the external loading which grows adiabatically (that
is we take the limit v ! 0). When the stress on a cell i

Jerky Motion in Slowly Driven Magnetic and Earthquake Fault
Systems, Physics of, Figure 3
Illustration of the Ben-Zion and Rice (BZR) model: projection of
a 3D fault zone (top) onto a 2D interface embedded in a 3D elas-
tic halfspace (bottom). The geometrical inhomogeneities of the
physical fault zone aremodeled by spatially varying constitutive
parameters of the brittle patches (see [46])

reaches its local failure threshold �s;i , the cell slips until the
stress is reduced to its local arrest stress �a;i . Both failure
stress and arrest stress are distributed according to some
bounded probability distribution. The stress drop result-
ing from a cell failure is redistributed to the other cells ac-
cording to the long range elastic stress transfer function.
The resulting stress increase on the other cells can cause
some of them to slip as well, leading to an avalanche of cell
slips, or a model earthquake. A review of extensive numer-
ical simulations with various versions of the BZRmodel, in
relation to observed features of seismicity, criticality, and
other dynamic regimes, is given in [75].

Dynamical Weakening The model includes dynamic
weakening effects during the failure process [2,5,6]: after
an initial slip in an earthquake, the strength of a failed cell
is reduced to a dynamical value:

�d;i � �s;i � �(�s;i � �a;i); (2)

with 0 � � � 1 parametrizing the relative importance of
the dynamical weakening in the system. This weakening
represents the transition from static friction to dynamic
friction during the rupture. The strength of a failed cell
remains at its dynamic value throughout the remainder of
the earthquake. In the time intervals between earthquakes
all failure thresholds heal back to their static value �s;i .

Dynamical Strengthening The model can be expanded
further to include dynamic strengthening represented by
� < 0. Multidisciplinary observations indicate [7] that
brittle failure of rock has an initial transient phase asso-
ciated with strengthening, distributed deformation, and
creation of new structures. Detailed frictional studies also
show an initial strengthening phase associated with the
creation of a new population of asperity contacts [3,19].
In mean field studies of our model (Fig. 3) discussed in
Sect. “Results on Aftershocks”, we associate � < 0 with re-
gions off the main fault segments that are in an early de-
formation stage. The events that are triggered as the failure
stresses are lowered back in the following weakening pe-
riod are referred to as aftershocks. The Omori law [3,69,70]
is obtained if we assume that the increased failure stress
thresholds � f ;i are slowly lowered with time as log(t) to-
wards their earlier static values �s;i , and that the stresses
are distributed over a wide range of values [46].

Related General ContinuumEquations of Motion The
above model is a special case of a more general class of
models for infinite systems driven by a constant drive
force F [27]. We consider general equations of motion of
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the form:

�@u(r; t)/@t
D F C �(r; t) � fR[u(r; t); r; fu(r; t0 < t)g] (3)

where

�(r; t) D
tZ

�1

dt0
Z

dd r0 J(r � r0; t � t0)

� [u(r0; t0) � u(r; t)] (4)

is the stress and f R is a quenched random “pinning” force
crudely representing inhomogeneities in the friction, as-
perities, stepovers etc., which in general can depend on the
local past history (e. g. as in velocity dependent friction).
The dynamical variables u(r; t) are assumed to represent
the discontinuity across the fault plane in the component
of the displacement in the direction of slip. The dynam-
ics depend on the local history dependence of the pinning
force, the stress transfer function J(r; t), and the coeffi-
cient � that represents the fault impedance. (In an elas-
tic medium, the impedance depends on mass density, the
elastic parameters, and directional parameters [1].) Equa-
tion (3) can be considered a continuum description of the
rules of the BZRmodel. Integrating out the degrees of free-
dom due to the bulk material on either side of the d=2 di-
mensional fault plane leaves us with effective long range
static stress transfer: Js(r) �

R
dtJ(r; t) � 1/rdC� � 1/r3.

For a planar fault in an elastic half space, d D 2 and
� D 1 [2,6]. The correlations in f R are generally assumed
to be short-range in u and r. (For results on the BZRmodel
with long range correlations in the disorder, see [2,27,77]
and Sect. “Theoretical Results”.) In a version of the BZR
earthquake model with a constant driving force F, the
loading may be replaced by driving through a weak spring
with spring constant K � 1/L coupled to the slowly mov-
ing continents far away (i. e. replacing F in Eq. (3) by
F(r; t) D K[vt � u(r; t)], with v ! 0).

Monotonic Models Substantial simplifications occur if f R
is history independent and J(r; t) � 0 for all (r; t); lead-
ing to monotonic models [27]. Related monotonic mod-
els have been studied extensively in various other con-
texts [25,53]. Examples include elastic depinning models
for contact lines, vortex lines, liquids invading porous ma-
terials, and elastic charge density waves. Their crucial sim-
plifying feature is that the steady state velocity v � h@u/@ti
is a history independent function of F [48]. In the context
of the BZR model this corresponds to the case with zero
weakening (� D 0) and non-negative J. A crucial feature of
monotonic models is that the slip profile
u(r) of a quake

is independent of the dynamics [48]. However, several in-
teresting dynamical issues discussed below are associated
with the effects left out of the monotonic models that can
make this feature break down.

Non-monotonic Models (a) Weakening: We first con-
sider including some weakening effects of sections which
have already slipped in a given quake. This is best studied
in the discrete model. In analogy to the dynamic weaken-
ing in the BZR model discussed above, we choose [27]

fR D f̃R[u(r); r]f1 � �	[u(r; t) � u(r; t � T)]g (5)

with T a cutoff time much longer than the duration of
the largest quakes, but much smaller than the interval be-
tween the quakes. Here 	(x) is the Heavyside step func-
tion. As mentioned, the case � > 0 represents the differ-
ence between static and dynamic friction. The effects of
small weakening (� > 0) can be analyzed perturbatively
(see Sect. “Theoretical Results”).
(b) Stress Pulses: A similar but more subtle effect can
be caused by stress pulses that result from non-posi-
tive J(r; t); these arise naturally when one includes elas-
todynamic effects. We consider

J(r; t) �
ı
�
t � r

c



rdC�
C
˛ı0
�
t � r

c



crdC�
(6)

with c the sound speed, ı(t) the Dirac delta distribution,
and ı0(t) D dı(t)/dt. The scalar approximation to elastic-
ity in a half space corresponds to d D 2, � D 1, � D 0,
and ˛ D 1 [27]. If a region slips forward, the stress at an-
other point first has a short pulse at the sound arrival time
from the second term in Eq. (6), and then settles down
to its smaller static value, i. e. it is non-monotonic. The
magnitude of these stress pulses and their duration is set
by various aspects of the models; for example larger � in
Eq. (3) implies weaker stress pulses as the local motion will
be slower.

Theoretical Results

Both the magnet and earthquake models of the previous
section are capable of producing a large range of power
law scaling of event sizes, and related scale invariant quan-
tities in response to a slowly varying driving force or field.
This section highlights similarities between these different
physical systems and attempts to explain them.

The Universality Class of the BZRModel

We first review results for the simplified monotonic case,
starting with scaling relations for driving with fixed force
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and far field plate motion and continuing with moment
rate shapes. We then discuss additional results associ-
ated with non monotonic versions of the model, including
mode-switching and aftershocks.

Results on the Monotonic Version of the Model

General results: Depinning transition As mentioned
above, substantial simplifications occur for the monotonic
version of the model, i. e. if f R is history independent
and J(r; t) � 0 for all (r; t). In [25,27,53] it is shown that
for F greater than a critical force Fc the displacement
grows continuously in a “sliding state” for which the mean
velocity v � h@u/@ti � (F � Fc)ˇ . Here ˇ is a universal
exponent that is independent of the microscopic details of
the system. It only depends on a few fundamental prop-
erties, such as symmetries, spatial dimensions d, range
of interactions, etc. [53]. Long time dynamic properties
such as ˇ depend in addition on the small ! dependence
of J(q; !) [54].

For F less than the critical force Fc, the mean ve-
locity is v � 0. If F is adiabatically slowly increased to-
wards Fc, the system moves from one metastable config-
uration to another by a sequence of “quakes” of various
sizes. The “quakes” can be characterized by their radius R,
the d-dimensional area A which slips (by more than some
small cutoff), their potency or momentM �

R
A d

d r
u(r),
a typical displacement
u � M/A, and a duration � . The
critical force Fc marks a second order phase transition
point. Such phase transitions are typically associated with
power law scaling behavior.

In the class of earthquake models with long range in-
teractions along the fault involving the static stress trans-
fer Js(r) �

R
dtJ(r; t) � 1/r3, the equations are very sim-

ilar to those of a model for contact line depinning stud-
ied in ref. [25]. Using renormalization group methods it
was shown in [25] that for a physical two dimensional in-
terface (or “fault”) in a 3 dimensional elastic half space,
these long range interactions are so long that the scaling
behavior near Fc is correctly described by mean field the-
ory (up to logarithmic corrections, since d D 2 is the “up-
per critical dimension”). The main assumption in mean
field theory is that the spatial and temporal fluctuations
in the displacement field u(r; t) are so small that the local
displacement u(r; t) can be replaced by a time dependent
spatial average u(t), which then needs to be determined
self consistently from the behavior of the neighboring re-
gions that contribute to the stress at a chosen point r [26].
The samemean field equations are obtained when the long
range interaction is approximated to be constant in space
J(r; t) D Jm f t(t)/(LW). With this approximation Eqs. (3)

and (4) become

�@u(r; t)/@t
D F C �m f t(r; t) � fR[u(r; t); r; fu(r; t0 < t)g] (7)

where

�m f t(r; t) D
tZ

�1

dt0 Jm f t(t � t0)[u(t0) � u(r; t)] (8)

and the self consistency requirement is
Z

u(r; t)d2r/(LW) D u(t) (9)

Many scaling exponents and scaling functions can be cal-
culated exactly in mean field theory by solving these sim-
plified equations of the model. In [15,26,42], several illus-
trative examples are given for solving similar self consis-
tent mean field theories. There are various approaches that
one may use, ranging from numerical simulations to ana-
lytical expansion and scaling analysis near a phase transi-
tion point where universal power law scaling occurs. The
approach of choice to solve the mean field equations de-
pends on the quantity under consideration. To obtain ex-
act results for the scaling behavior of the frequency size
statistics of earthquake or avalanche events, a fairly simple
approach is to use a discrete version of the model in which
we treat the fault as a discrete set of dislocation patches,
coupled to a mean displacement and an external driving
force that slowly increases with time. (The stress �i at each
patch is given by Eq. (16) of Sect. “Mode–Switching” be-
low.) As shown in [17], the sequence that describes the dis-
tance from failure of the rescaled stress variables resembles
a biased random walk. The scaling behavior of the result-
ing random walk is known exactly from the literature. Us-
ing this mapping it then becomes straightforward to derive
universal scaling predictions for the mean field earthquake
frequency size distribution [17].

Furthermore, as shown in [13,25], their (and thus also
our) model have the same scaling behavior as a front prop-
agation model for a two dimensional domain wall in a soft
magnet with long range dipolar magnetic interactions,
driven by a slowly changing external field (see Sect. “Mod-
els”). A flipping spin in the magnet model corresponds to
a slipping dislocation patch in the earthquake model. The
long range elastic interactions in the earthquake model are
similar to the long range dipolar magnetic interactions in
the magnet model. The driven two dimensional magnetic
domain wall in the (three dimensional)magnetmodel cor-
responds to the driven two dimensional earthquake fault
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in a three dimensional elastic half space. Since the scaling
behavior of the earthquakemodel and that of [25] and [73]
are identical, we may simply copy their results and trans-
late them into quantities that can be extracted from seis-
mic data. Using tools from phase transitions, such as the
renormalization group (RG), near the critical force the fol-
lowing scaling results were derived by [13,25,53,54,73] and
others:


u � R� ;

A � Rd f with d f � 2 a fractal dimension ;

M � Rd fC� ;

and � � Rz :

The differential distribution P(M) of momentsM is shown
in [25,54] and [26,27] to scale as

P(M)dM � dM/M1CB�1(M/M̂) (10)

with �1 a universal scaling function which decays expo-
nentially for large argument. The cutoff M̂ for large mo-
ments is characterized by a correlation length – the largest
likely radius – � � 1/(Fc � F)� with M̂ � �d fC� .

In the same references it is shown that in mean-field
theory, B D 1/2, 1/� D 1, z D 1 and the quakes are frac-
tal with displacements of order the range of correlations
in f R(u), i. e. � D 0.

These mean-field exponents are valid for a d D 2 di-
mensional planar fault in a three dimensional elastic half
space [7], since the physical fault operates at the upper crit-
ical dimension. As usual, at the upper critical dimension,
there are logarithmic corrections to mean-field results.
Using renormalization group methods one can calculate
these corrections [27] and finds barely fractal quakes with
A � R2/ ln R so that the fraction of the area slipped de-
creases only as 1/ ln r away from the “hypocenter”. The
typical slip is
u � (ln R)1/3 so thatM � R2/(ln R)2/3. The
scaling form of P(M) is the same as Eq. (10) with themean-
field �1, although for M 
 M̂, P(M) � (lnM)1/3/M3/2

so that B will be virtually indistinguishable from 1/2 [27].
A similar form of moment distribution and exponent
value B D 1/2 were obtained also for a critical stochastic
branching model [71].

More realistic driving of a fault We now consider more
realistic drive and finite-fault-size effects. As mentioned,
driving the fault by very slow motion far away from the
fault is roughly equivalent to driving it with a weak spring,
i. e. replacing F in Eq. (3) by F(r; t) D K[vt � u(r; t)].
With v ! 0 the system must then operate with the
spring stretched to make F(r; t) . Fc at least on aver-
age, to ensure v D 0; depending on the stiffness of the

spring, it will actually operate just below Fc, as shown
below. If in constant force drive the force is increased
by a small amount 
F , the average resulting slip per
area, h
ui �

P
i 
ui /(LW) is given by the total po-

tency/moment per total areaM �
R
ddr
u(r)/(LW). The

total moment per area observed in response to a small
force increase equals the number n
F of earthquakes
per area that are triggered by the increase 
F, multiplied
with the average observed moment of a single earthquake
hMi D

R
MP(M)dM. The result is

h
ui D n
F
Z

MP(M)dM (11)

where n is the number of quakes per unit area per force
increase 
F. It has been shown that n(F) is non-singu-
lar at Fc [53], so it can be treated like a constant near Fc.
Plugging in Eq. (10) and the scaling laws written above and
below that equation, we obtain

h
ui � 
F� (2�̃C�)(1�B) � 
F� (12)

for our case where mean field results can be used for
the critical exponents. For consistency, we must have in
steady state with the spring drive, Kv
t D 
F D K
u so
that the system will operate with a correlation length �
� 1/K1/�̃ , i. e. 1/K for our case. For a fault section with
linear dimensions of order L, drive either from uniformly
moving fault boundaries or from a distance � L perpen-
dicularly away from the fault plane will be like K � 1/L
so the power-law quake distribution will extend out to
roughly the system size � � L. For smaller quakes, i. e.
R
 L, the behavior will be the same as in the infinite sys-
tem with constant F drive, but the cutoff of the distribu-
tion of moments will be like Eq. (10) with a different cutoff
function � that depends on the shape of the fault, how it is
driven, and the boundary conditions.

We have tested these conclusions numerically by sim-
ulating the BZR model, which is a discrete space, time,
and displacement version of a monotonic Eq. (3), with
quasistatic stress transfer appropriate for an elastic half
space [2,5]. The slip, u, is purely in the horizontal direc-
tion along the fault and fR[u(r)] is a series of equal height
spikes with spacings which are a random function of r.
When �(r; t) > fR[u(r; t], u(r) jumps to the next spike.
This provides a way of implementing the random stress
drops of the BZR model. The boundary conditions on the
bottom and sides are uniform creep or slip – (u D vt) with
infinitesimal v – and stress free on the top (Fig 3). The
statistics of the moments of the quakes are shown by the
triangles in Fig. 4. Although the uncertainties are appre-
ciable, relatively good agreement is found with the pre-
diction B D 1/2. One typical large quake is illustrated in
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Jerky Motion in Slowly Driven Magnetic and Earthquake Fault
Systems, Physics of, Figure 4
Histograms of moments for a simulation of a rectangular fault
with 32 x 128 cells for the discrete monotonic quasistatic model
(with arbitrary units (a.u.)). Triangles: without dynamical weak-
ening (� D 0). Diamonds: with dynamic weakening of � D 0:95.
(� is defined in Eq. (5).) The straight line indicates the predicted
slope B D 1/2 (from [27])

Fig. 5 (top); it appears almost fractal as predicted, and
tends to stay away from the bottom and sides due to the
specific loading that we chose. The ratios of the moments
of quakes to their areas have been studied and found to
grow only very slowly with the area, as predicted from
the logarithmic corrections listed below Eq. (3). This is
in striking contrast to earthquakes in conventional crack
models which are compact (Fig. 5 (bottom)) and have
u
� R (i. e. � D 1), so that M/A �

p
A. As discussed by [8],

however, the scaling M � A appears to be consistent with
observational results for small earthquakes which presum-
ably propagate and are arrested in rough stress fields.
More observational data on the scaling of the moment M
with the slipping area A for smaller earthquakes would be
highly desirable to test this prediction more precisely.

Because the system is at its critical dimension, the cut-
off function � of the moment distribution appropriate to
the boundary conditions, as well as various aspects of the
shapes and dynamics of quakes can be computed using
tools from the theory of phase transitions [26,27]. For
quasistatic stress transfer, J(r; t) � ı(t)/r3, in the infinite
system the quake durations are found to scale as � � Rz

with z D 1 for a d D 2 dimensional fault, with logarithmic
corrections [25]. (A more physical dynamics with sound-
travel-time delay has slower growth of the quakes with
z D 1 in all dimensions.) Due to the geometrical disor-
der included in the model, in either case the growth will
be very irregular – including regions starting and stop-
ping – in contrast to crack models and what is often as-

Jerky Motion in Slowly Driven Magnetic and Earthquake Fault
Systems, Physics of, Figure 5
Distribution of horizontal slip, u, along a fault with 32 x 128
cells for a single large quake event. Lighter shading represents
larger slip during the quake. Top: almost fractal quake with a to-
tal moment of 1750 (and 1691 cells failing) for the monotonic
model without any dynamical effects (� D 0). Bottom: “crack
like” quakewith a total moment of 16922 (and 2095 cells failing)
for themodel with dynamic weakening (� D 0:95). In both cases
the system is driven by horizontally creeping fault boundaries
(sides and bottom) while the top boundary is free (from [27])

sumed in seismological analysis of earthquakes on more
regular faults. Similar fractal-like quakes were simulated
by Zöller et al. [75,76], for a quasi-dynamic version of the
BZR model that includes stress redistribution with a finite
communication speed.

Moment Rate Shapes for Monotonic Models In both
magnet and earthquake models it has been shown that
there are not just universal scaling exponents but also
some experimentally accessible universal scaling func-
tions [66]. By comparing theoretical predictions for these
functions to experiments or observations, one can of-
ten test models much more accurately than by merely
comparing a finite set of discrete exponents. Two such
functions were first discovered for Barkhausen Noise in
magnets [47,66]. The analogy betweenmagnets and earth-
quakes then lead to the development of the correspond-
ing functions for earthquakes. For slowly driven magnets,
consider the time history V(t) of the number of domains
flipping per unit time (Barkhausen train). It is calledV be-
cause it is usually measured as a voltage in a pickup coil.
An example of a Barkhausen train for a single avalanche is
shown in Fig. 6.

The voltage function V(t) in magnets is the analogue
of the moment rate dm/dt(t), or the slip per unit time
for earthquakes. Recent analysis allowed researchers to ob-
tain the moment rate dm0(t)/dt, during the propagation
of earthquake rupture for hundreds of large seismic events
recorded on global networks [9,31]. The moment rates
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Jerky Motion in Slowly Driven Magnetic and Earthquake Fault
Systems, Physics of, Figure 6
Voltage train of a typical large avalanche. Note that the volt-
age fluctuates drastically and the avalanche nearly stopped sev-
eral times (from [37]). The analogous moment rate time trace for
earthquakes (though measured with lower resolution) is shown
in the right inset marked “RAW” of Fig. 8

shown below are derived from inversions of teleseismically
recorded seismograms on a global seismic network [62].
(The frequency-moment distribution, D(M0) � M�1�ˇ0
of the observed data [9] has three decades of scaling and
an exponent of ˇ D 1/2˙ 0:05, in close agreement with
the BZR model near � D 0 [46].)

For both magnets and earthquakes there are large fluc-
tuations in V(t) and dm/dt(t) respectively (Fig. 6). How-
ever averaging the signal over many avalanches, leads
to typical shapes. Figure 7 shows the average over all
avalanches of fixed duration T, hVi(T; t) obtained from
simulations of two variants of the RFIM (a), and from
three different Barkhausen noise experiments (b). Fig-
ure 8 shows hdm/dti(T; t) obtained for the BZR earth-
quake model and derived from earthquake observations
respectively. The renormalization group and scaling the-
ory [66] predict that for a self similar system at a critical
point with power law size and duration distributions for
avalanches, there are self similar average avalanche pro-
files. As shown in [46,66] one finds

hdm/dti(T; t) � Tb0 g(t/T) (13)

where the function g(x) is a universal scaling prediction
and b0 � 1/(��z) � 1 D 1 for the BZR earthquake model
(as obtained from mean field theory). The corresponding
value for b0 for magnets in three dimensions is smaller –

the values used for the corresponding collapses can be read
off for the different versions of the RFIM from the caption
of Fig. 7.

Based on universality one would expect these theoret-
ical predictions to agree with experimental results, apart
from an overall shift in time and voltage or moment rate
scales. For the moment rate of earthquakes this means

hdm/dtiobservation(T; t) D Ahdm/dtitheory(T/B; t/B) (14)

for some rescaling factors A and B, and similarly for the
average voltage hVi(t; T) in magnets. In both cases the
theory predicts a symmetric looking profile. The mean
field prediction for g(x) is in fact a parabola [46,66] – the
theoretical prediction thus is that events grow as quickly
as they decay. As seen in Figs. 7b and 8 the experimen-
tal/observational profile in both cases, however, appear
skewed – the real events tend to grow more quickly than
they decay! A similar asymmetry has also been observed in
avalanches associated with plastic deformation [39].

For magnets this apparent disagreement has been re-
solved by taking greater account of a microscopic detail
involving eddy currents that had been neglected by previ-
ous models. Eddy currents are transient current loops that
arise in conducting magnets in response to the reorien-
tation of a magnetic domain. These currents temporarily
prevent neighboring domains from being triggered to re-
align in the same direction in an avalanche of domain re-
versals. The eddy currents decay after amicroscopic time �
given by the resistance of the material. Their delay effect
thus also decays after a time � . If the avalanche duration is
large compared to � this effect is negligible and the mean
profile approaches the predicted symmetrical shape (see
Fig. 7c and d).

The source of asymmetry in the mean moment rate
profile may be similar for earthquakes [16]. It has been
suggested that triggering delays – arising from a notice-
able earthquake nucleation time, or an increase in the fail-
ure threshold during the formation of new cracks and sub-
sequent weakening as rock damage increases – could be
responsible for aftershocks that often follow large earth-
quakes [46]. On long time scales a large mainshock with
smaller aftershocks can be seen as a similar asymmetry to
that seen in magnets, possibly with a similar explanation.

There is a second scaling function that may be ex-
tracted from the same data: Fig. 9 shows the average over
all earthquakes of fixed total moment Mhdm/dti(M; t),
both for observations and the BZR model prediction. As
shown in [46,66] the theory predicts

hdm/dti(M; t) � M1/2q(t/M1/2) (15)
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Jerky Motion in Slowly Driven Magnetic and Earthquake Fault Systems, Physics of, Figure 7
a Theoretical average avalanche shape scaling functions for fixed avalanche durations T denoted with g(t/T) in the text, for the
nucleation and the front propagation RFIM [47]. The overall height is non universal, the curves for the two models are otherwise
extremely similar. The front propagationmodel has 1/�
z D 1:72 and, the nucleationmodel has 1/�
z D 1:75 in this collapse. The
inset shows the two curves rescaled to the same (non universal) height: the two curves are quantitatively different, but far more
similar one to another than either is to the experimental curve in b. b Experimental average pulse shapes from three different ex-
periments for fixed pulse duration, as measured by three different groups [21,23,47,67]. Notice that both theory curves are much
more symmetric than those of the experiments. Notice also that the three experiments do not agree. At first this result represented
a serious challenge to the idea about universality of the dynamics of crackling noise [66]. c Pulse shape asymmetry experiment [72].
Careful experiments show a weak but systematic duration dependence in the collapse of the average Barkhausen pulse shape. The
longer pulses (larger avalanches) are systematically more symmetric (approaching the theoretical prediction). d Pulse shape asym-
metry theory [72]. Incorporating the delay effects of eddy currents into the theoretical model produces a similar systematic effect.
The non-universal effects of eddy currents are in principle irrelevant for extremely large avalanches (from [64])

where the universal scaling function q(x) D Ax exp�Bx2/
2 and the universal exponents are obtained from the mean
field theory for the BZR earthquake model. A comparison
between prediction and observational results for this scal-
ing function is shown in Fig. 9.

Clearly, more data, especially for small earthquakes,
are needed to decrease the statistical error bars of the
observational data and determine the degree of agree-
ment between theory and observations. An alternative
scaling approach to moment rate data was given by [31]
and a comparison between both approaches is discussed
in [46].

Non-Monotonic Models We first consider including
weakening of the cell failure threshold by an amount � for

sections which have already slipped in a given quake. This
crudelymodels the difference in static versus dynamic fric-
tion (see Sect. “Models”, Eq. (5)). In between quakes all
thus weakened thresholds heal back to their static strength.
The effects of small weakening can be analyzed perturba-
tively.

With � D 0, consider a quake of diameter R1 (
 L or
�), with momentM1 and areaA1: i. e.A1 sites have slipped.
If a small � is turned on at the end of the quake, all slipped
sites that are within � of slipping will now slip again – this
will be Nex

2 � �A1 sites. The simplest justifiable guess is
that each of these will cause an approximately independent
secondary quake. The total moment of these secondary
quakes will be dominated by the largest one, so the ex-
tra moment will be Mex

2 � (�A1)1/B . (For a very large or
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Jerky Motion in Slowly Driven Magnetic and Earthquake Fault
Systems, Physics of, Figure 8
A collapse of averaged earthquakepulse shapes, hdm0(tjM0)/dti
with a duration of T (seconds) within 10% (given in legend), is
shown. The collapse was obtained using the mean field scaling
relation [37]: hdm0(tjT)/dti � g(t/T) . In order to obtain each col-
lapsed pulse shape, two to ten earthquakes were averaged for
each value of T. In our mean field theory the universal scaling
function is gmf (x) D Ax(1� x) with x D t/T . We plot this func-
tional form (bold curve) with A D 80. Note the apparent asym-
metry to the left in the observed data while the theoretical curve
is symmetric around its maximum. Inset: The raw data and the
averaged data (before collapsed) (from [46])

infinite fault this is obtained from 1 D Nex
2
R1
Mex

2
P(M)dM,

and inserting Eq. (10).) If Mex
2 
 M1 this process can

continue but will not increase the total moment substan-
tially. If Mex

2 � M1, however, the process can continue
with a larger area A2 and hence a larger Mex, leading to
a catastrophic runaway event. From the above exponent
relations and scaling laws we obtain B D 1/2 and A � M,
so that for any �, for large enough M1, M1 & MD � �

�2,
Mex

2 will be comparable to M1 and the quake will become
much larger (runaway). In the force driven infinite system
for F . Fc, quakes of size � will runaway and become in-
finite if � > ��1. Since � � (F � Fc)�� and 1/� D 1, this
will occur for Fc � F < Cw� with some constant Cw. This
result is very intuitive and justifies a posteriori the assump-
tions leading to it: Since on slipping, the random pinning
forces, f R in a region are reduced by order �, the effective
critical force Fc for continuous slip will have been reduced
by order �; thus if F > Fc(�) D Fc � Cw�, the mean ve-
locity v will be nonzero. A similar effect can be caused by
stress pulses associated with Eq. (6). By considering which
of the sites in a long quake with ˛ D 0 can be caused to slip
further by such stress pulses one finds that runaway will
occur for M � MD � ˛

�4 for the physical case [27]. This

Jerky Motion in Slowly Driven Magnetic and Earthquake Fault
Systems, Physics of, Figure 9
A collapse of averaged earthquake pulse shapes, hdm0(tj
M0)/dti, with the size of the moment M0 in Newton me-
ters within 10% of each size given in the legend respec-
tively. In order to obtain each collapsed moment rate shape,
five to ten earthquakes were averaged for each value of M0.
The collapse was obtained using the mean field scaling rela-
tion [27]: hdm0(tjM0)/dti/M1/2

0 � f (t/M1/2
0 ). In ourmean field the-

ory the universal scaling function is fmf (x) D Axe�Bx2/2 where
x D t/M1/2

0 . We plot this functional form (bold curve) with A D 4
and B D 4:9. Inset: The raw data and the averaged data (before
collapsed) (see [46])

has been checked in d D 1 with � D 1 and � D 0, finding
the predicted reduced critical force Fc(˛) � Fc � Cp˛

2 as
shown in Fig. 10 [27]. These 1-d simulations also reveal
a hysteretic v(F) curve in finite systems. This is expected
to also occur with the model with weakening discussed
above. Related higher dimensional systems are discussed
in [60] and in [30].

We can now understand what should happen with ei-
ther weakening or stress pulses in finite systems driven
with a weak spring or with slowly moving boundaries.
As the system is loaded, quakes of increasing size are ob-
served. If the system is small enough that it cannot sus-
tain quakes with M > MD(�; ˛), i. e. even events within
the power law scaling regime of the event size distribution,
with M � MD(�; ˛), are system spanning, then the behav-
ior will not be much different from the monotonic case
with � D ˛ D 0. In both cases there is a power law event
size distribution all the way to the largest events, that are
determined by the system size. This will occur if the domi-
nant linear system size L is less than themaximumpossible
linear extent of an earthquake that does not become a run-
away event: L < RD(�; ˛) � M1/2

D � max(C˛/˛2;C�/�)
with appropriate coefficients C˛ , C� , which will depend on
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Jerky Motion in Slowly Driven Magnetic and Earthquake Fault
Systems, Physics of, Figure 10
Mean velocity vs. force for one dimensional system with a non-
monotonic kernel J(x; t) D ı(t � x)/x2 C ˛ı0(t � x)/x for ˛ D
0:8;0:5;0. A spring or boundary loaded systemwill traverse the
hysteresis loops in the direction indicated. Inset: the threshold
force, F"

c (˛), on increasing the load;	˛ D [1 � F"

c (˛)/F
"

c (˛ D
0)]1/2 is plotted vs.˛ (from [27])

the amount of randomness in the fault. On the other hand,
if L > RD , quakes of size of order RD will runaway and
most of the system will slip, stopping only when the load
has decreased enough to make the loading forces less than
the lower end of the hysteresis loop in v(F) (as in Fig. 10).

Because of the tendency of regions that have already
slipped to slip further, and the consequent buildup of
larger stresses near the boundaries of the slipped regions,
large events in systems with dynamic weakening will be
much more crack like than in monotonic models, proba-
bly with 
u � L. Statistics of quakes with weakening, �,
reasonably large, but no stress pulses (˛ D 0) are shown
in Fig. 4 and in [2,5,6]; note the absence of quakes with in-
termediate moments. A typical large event in this case is
shown in Fig. 5b; it appears to be crack-like.

In this section we have shown that simple models of
heterogeneous faults – with the dimensionality and long-
range elastic interactions properly included – can give rise
to either power-law statistics of earthquake moments or
a distribution of small events combined with characteristic
system size events. Which behavior – or intermediate be-
havior – obtains is found to depend on a number of phys-
ical properties such as frictional weakening and dynamic
stress transfer, analogs of which should definitely exist
in real systems. In the power-law-regime the convention-
ally defined Gutenberg–Richter exponent b � 3B/2 [3] is
is found to be b D 3/4. This is close to the observed b-
value of global strike-slip earthquakes at depth less than
50 km [28].

Jerky Motion in Slowly Driven Magnetic and Earthquake Fault
Systems, Physics of, Figure 11
Phase Diagram of the BZR model, described in the text. The
range � > 0 represents dynamic weakening, while � < 0 repre-
sents strengthening. The parameter 1� c quantifies the devia-
tion from stress conservation in themean field approximation of
the model

Mode–Switching In [17] the mean field approximation
of infinite range elastic interaction in the BZR model with
N D LW (with W � L) geometrically equal cells on the
fault, is used to write the local stress �i on cell i as

�i D J/N
X

j

(uj � ui )C KL(vt � ui )

D JūC KLvt � (KL C J)ui ; (16)

where ui is the total fault offset of cell i in the horizontal
(x) direction, ū D (

P
j u j)/N , J/N is the elastic coupling

between cells in the mean-field approximation, and KL
is the effective loading stiffness of the bulk material sur-
rounding the fault patch. Instead of the loading spring
stiffness KL, a conservation parameter c � J/(KL C J) is
introduced, which equals the fraction of the stress drop
of the failing cell, that is retained in the system after the
slip. There, it is shown that for the physical loading spring
stiffness KL � 1/L, one has 1� c � O(1/

p
N). A value

c < 1 for a large system would be physically realized if
the external drive is closer to the fault than its linear ex-
tent. To be precise, mean field theory only gives the cor-
rect physical scaling behavior near the critical point at
zero weakening � ! 0 and for c! 1. In [17] it is shown,
however, that in a certain parameter regime for � > 0
and 0:5 < c < 1 indicated in the phase diagram of Fig. 11
one finds a mode switching behavior between Gutenberg–
Richter statistics and characteristic earthquake statistics.
Similar mode switching behavior has also been seen in
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a more realistic three dimensional model for coupled evo-
lution of earthquakes and faults [4,41], and in numeri-
cal simulations with the BZR model that includes elas-
tic stress transfer [76]. In the mean field BZR model, the
activity switching results from episodic global reorgani-
zation of the mode of strain energy release of the fault
system, reflected in a “configurational entropy” of stress
states on the fault [17]. This is associated with a statis-
tical competition between a tendency of a synchronized
behavior leading to clusters of large earthquakes and the
characteristic earthquake distribution, and a tendency for
disordered response leading to Gutenberg–Richter type
statistics without a preferred event size. Mode switching
happens when these two opposite tendencies are roughly
equal in strength. Some possible observational evidence
for mode switching in earthquake data are discussed in [4].

Results on Aftershocks As mentioned in Sect. “Simple
Models for Inhomogeneous Earthquake Faults”, we as-
sociate regions off the main fault segments that are in
an early deformation stage with dynamic strengthening
� < 0. To capture basic aspects of brittle deformation on
such regions in the three-dimensional volume around the
main fault (Fig. 3), we change the model as follows: when
any cell i slips during an earthquake, and thereby reduces
its stress by
�i � � f ;i � �a;i , the failure stress � f ; j of every
cell j D 1; : : : ;N is strengthened by an amount j�j
�i /N .
Once the earthquake is complete, the failure stress of each
cell is slowly lowered back to its original value. This rep-
resents in a simple way the brittle deformation that oc-
curs during an earthquake in the off-fault regions, which
are first in a strengthening regime, compared to the main
fault, and then have a weakening process. The events that
are triggered as the failure stresses are lowered in the weak-
ening period are referred to as aftershocks. The occurrence
of aftershocks in this version of the model for off-fault re-
gions is in agreementwith the observation that a large frac-
tion of observed aftershocks typically occur in off-fault re-
gions [70]. For this version of the model with � < 0, both
the primary earthquakes (i. e., mainshocks) and the trig-
gered aftershocks are distributed according to the Guten-
berg–Richter distribution, up to a cutoff moment scaling
as 1/�2. Assuming that the increased failure stress thresh-
olds � f ;i are slowly lowered with time as log(t) towards
their earlier static values �s;i , and that the stresses are dis-
tributed over a wide range of values, we show analytically
in [46] that the temporal decay of aftershock rates at long
times is proportional to 1/t, as in the modified Omori law

N/
tK/(t C c)p with p D 1 [3,69,70], where N is the
cumulative number of aftershocks, t is the time after the
mainshock, and K , c, and p are empirical constants.

Remarkably, the long length scale behavior of this
model can be shown [45] to be the same as the behavior of
the mean field BZR model given in Eq. (16) with an added
“antiferroelastic” term (�j�jJū):

�i D Jū C KLvt � (KL C J)ui � j�jJū : (17)

In Eq. (17) every time a cell fails, it slips by an amount
ui
that leads to stress loading of the other cells, lessened by
j�jJ
ui /N compared to our original model (Eq. (16)). On
the other hand, in the global strengthening model (de-
scribed above) when a cell slips the failure stresses of all
cells are strengthened by j�jJ
ui /N. On long length scales
the global strengthening of the failure stress has equivalent
effects on the earthquake statistics as the dissipation of the
redistributed stress, up to corrections of order O(1/N), so
the scaling behavior for large events of both models are the
same. Moreover, Eq. (17) can be rewritten as:

�i D J[1 � j�j][ū � ui ]C KLvt � [KL C Jj�j]ui : (18)

We can now absorb j�j by defining J0 D J(1 � j�j) and
K0L D KL C Jj�j. Rewriting Eq. (18) with the new defini-
tions, and dropping the j�j contribution in [K0L � Jj�j]vt
since v ! 0, we find:

�i D J0ū C K0Lvt � (K0L C J0)ui : (19)

Therefore we recover Eq. (16) with J ! J0 and KL ! K0L .
This amounts to changing the stress conservation param-
eter c (from reference [17]). For Eq. (19):

c D J0/(K0L C J0) D 1 � j�j (20)

where KL ! 0 since we are concerned with the adiabatic
limit. We also know (from reference [17]) that the cut-
off Scf for the Gutenberg–Richter distribution scales as Scf
� 1/(1 � c)2. Thus, from Eq. (20) we find that the cutoff
for Eq. (17) will scale as� 1/j�j2.

Mapping to Single Interface Magnet Model The mean
field version of the single interface magnet model with
infinite range antiferromagnetic interactions is given
by [22,74]:

ḣi (t) D J[h̄ � hi(t)]C H(t) � kh̄C �i(h) (21)

where hi(t) is the position of the domain wall, H(t) is the
external driving field, k is the coefficient of the antiferro-
magnetic term, and �i(h) is the pinning field. In the paper
by Fisher et al. [27] it has been shown that the scaling be-
havior on long length scales resulting from Eq. (5), with-
out the�j�jJū term, is same as that of Eq. (21) without the
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antiferromagnetic term �kh̄. Furthermore, upon inspec-
tion we see the following correspondence between the sin-
gle interface magnet model (Eq. (21)), and the mean field
earthquake model (Eq. (17)):

� kh̄()�j�jJū (22)

In other words, the coefficient of the antiferromagnetic
term k plays the same role in the magnet model (Eq. (21)),
as the coefficient of strengthening j�jJ does in the earth-
quake model (Eq. (17)).

Summary

Phase Diagram

The regimes with various statistics produced by the model
are summarized by the phase diagram given in Fig. 11. The
range � > 0 corresponds to “mature” localized faults with
a weakening rheology and characteristic earthquake statis-
tics. The value � D 0 corresponds to “immature” strongly
inhomogeneous fault zones and fault networks with power
law statistics and scale invariant rupture properties. The
range � < 0 corresponds to the fracture and fault networks
around large rupture zones, characterized by strengthen-
ing due to the creation of new structures and associated
emerging aftershocks. The right side of the diagram sum-
marizes the mean field theory results on mode switching
described in Sect. “Mode–Switching”. The left side of the
phase diagram resembles the phase diagram for avalanches
in the nucleation RFIM for magnets [65]. There, too, in-
creasing the disorder from small to large (compared to the
ferromagnetic coupling between the individual domains)
drives the system from a characteristic avalanche size dis-
tribution to a truncated power law, with a disorder in-
duced critical point separating the two regimes.

It may be surprising that the discussed simple BZR
model can capture many of the essential general features
of earthquake statistics (or other systems with avalanches,
such as drivenmagnetic domain walls). This can be under-
stood through the renormalization group [10,66], a pow-
erful mathematical tool to coarse grain a system and ex-
tract its effective behavior on long space-time scales. Many
microscopic details of a system are averaged out under
coarse graining, and universal aspects of the behavior on
long scales depend only on a few basic properties such
as symmetries, dimensions, range of interactions, weaken-
ing/strengthening, etc. When a model correctly captures
those basic features, the results provide proper predic-
tions for statistics, critical exponents, and universal scal-
ing functions near the critical point. Consequently, many
models that are in the same universality class lead to the
same statistics and exponents [10,17,27,66].

Conclusions

The phenomenology of earthquakes and avalanches in
magnets exhibit a number of power law distributions
and scale-invariant functions (Table 1). In search of basic
model ingredients that can explain these results, we have
focused onmodels that are rich enough to produce a diver-
sity of observed features, while being simple enough to al-
low analytical predictions on long spatio-temporal scales.
For the earthquake system we use the BZR model for
a heterogeneous fault with threshold dynamics and long
range stress-transfer interactions [2,5,6]. For the magnet
system we use variants of the RFIM model with thresh-
old dynamics and both short range and long range inter-
actions [37,65,66,74]. In both classes of models, changes in
the property disorder and dynamic effects lead to different
dynamic regimes (Fig. 11). For different ranges of parame-
ters, the earthquake model produces fractal and crack-like
slip functions, power law frequency-size statistics, char-
acteristic earthquake distribution, mode switching, and
aftershocks. Similar features are found with the magnet
models. We discussed two universal scaling functions of
moment rates near criticality as a stronger test of the the-
ory against observations than mere scaling exponents that
have large error bars. As in magnetic systems, we find that
our analysis for earthquakes provides a good overall agree-
ment between theory and observations, but with a poten-
tial discrepancy in one particular universal scaling func-
tion for mean moment-rate shapes at fixed duration. The
discrepancy has an interesting precedent in the context of
avalanches in magnetic systems, and has been explained
there in terms of non-universal time retardation effects
due to eddy currents. Similar retardation effects may be
due to triggering delays or strengthening effects that are
responsible for aftershocks in earthquake faults. More ob-
servational data, in particular on small earthquakes would
be needed to test some of the predictions in detail.

Future Directions

We have highlighted some interesting connections be-
tween earthquake and magnet systems with a jerky re-
sponse to a slowly varying driving force. Future useful
studies include analysis of factors controlling nucleation
processes, transitions to instabilities and final event sizes,
along with a more detailed analysis of the effects of geo-
metrical heterogeneities in the fault structure on the statis-
tics of earthquakes. Additional observational data, partic-
ularly for small earthquakes, are needed to test predictions
for the scaling of the earthquake duration and rupture area
with moment, and for accurately testing our mean field
predictions for moment rate shapes. Developing analytical
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corrections to the mean field earthquake models can pro-
vide additional important insights. Testing similar ideas
in other systems with crackling noise would improve and
deepen our understanding of universal behavior in disor-
dered nonequilibrium systems.
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Self Driven Mode Switching of Earthquake Activity on a Fault
System. Earth Planet Sci Lett 172(1–2):11–21

5. Ben-Zion Y, Rice JR (1993) Earthquake failure sequences along
a cellular fault zone in a three-dimensional elastic solid con-
taining asperity and nonasperity regions. J Geophys Res
98:14109–14131

6. Ben-Zion Y, Rice JR (1995) Slip patterns and earthquake popu-
lations along different classes of faults in elastic solids. J Geo-
phys Res 100:12959–12983

7. Ben-Zion Y, Sammis CG (2003) Characterization of Fault Zones.
Pure Appl Geophys 160:677–715

8. Ben-Zion Y, Zhu L (2002) Potency-magnitude Scaling Relations
for Southern California Earthquakes with 1:0 < ML < 7:0.
Geophys J Int 148:F1-F5

9. Bilek SL (2001) Earthquake rupture processes in circum-Pacific
subduction zones. PhD thesis, University of California

10. Binney JJ, Dowrick NJ, Fisher AJ, Newman MEJ (1993) The the-
ory of critical phenomena. Oxford University Press

11. Carlson JM, Langer JS, ShawBE (1994) Dynamics of earthquake
faults. Rev Mod Phys 66:658–70, and references therein

12. Chen K, Bak P, Obukhov SP (1991) Phys Rev A 43:625
13. Cizeau P, Zapperi S, Durin G, Stanley HE (1997) Phys Rev Lett

79:4669–4672
14. Cowie PA, Vanette C, Sornette D (1993) J Geophys Res

98:21809

15. Dahmen K (1995) Hysteresis, Avalanches, and Disorder In-
duced Critical Scaling: A Renormalization Group Approach,
PhD Thesis, Cornell University

16. Dahmen K (2005) Nature Physics 1:13–14
17. Dahmen K, Ertaş D, Ben-Zion Y (1998) Gutenberg–Richter

and Characteristic Earthquake behavior in a Simple Mean-
Field Model of Heterogeneous Faults. Phys Rev E 58:1494–
1501

18. Dahmen KA, Sethna JP (1996) Hysteresis, Avalanches, and Dis-
order Induced Critical Scaling: A Renormalization Group Ap-
proach. Phys Rev B 53:14872

19. Dieterich JH (1979) J Geophys Res 84:2161–2168
20. Dieterich JH (1981) Amer Geophys Union Monog 24:103–120
21. Durin G, Zapperi S (2000) Scaling exponents for barkhausen

avalanches in polycrystalline and amorphous ferromagnets.
Phys Rev Lett 84:4705–4708

22. Durin G, Zapperi S (2001) J Magn Mat 1085:242–245
23. DurinG, Zapperi S (2002) Low field hysteresis in disordered fer-

romagnets. Phys Rev B 65:144441
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Glossary

Disjoint measure-preserving systems The two measure-
preserving dynamical systems (X;A; �; T) and (Y ;B;
�; S) are said to be disjoint if their only joining is the
product measure �˝ �.
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Joining Let I be a finite or countable set, and for each
i 2 I, let (Xi ;Ai ; �i ; Ti ) be a measure-preserving dy-
namical system. A joining of these systems is a prob-
ability measure on the Cartesian product

Q
i2I Xi ,

which has the �i’s as marginals, and which is invari-
ant under the product transformation

N
i2I Ti .

Marginal of a probability measure on a product space
Let 
 be a probability measure on the Cartesian prod-
uct of a finite or countable collection of measurable
spaces

�Q
i2I Xi ;

N
i2IAi



, and let J D f j1; : : : ; jkg

be a finite subset of I. The k-fold marginal of 
 on
Xj1 ; : : : ; Xjk is the probability measure � defined by:

8A1 2A j1 ; : : : ;Ak 2A jk ;

�(A1 � � � � � Ak) :D 


0

@A1 � � � � � Ak �
Y

i2InJ

Xi

1

A :

Markov intertwining Let (X;A; �; T) and (Y ;B; �; S)
be two measure-preserving dynamical systems. We
call Markov intertwining of T and S any operator
P : L2(X; �)! L2(Y ; �) enjoying the following prop-
erties:

� PUT D USP, where UT and US are the unitary
operators on L2(X; �) and L2(Y ; �) associated re-
spectively to T and S (i. e. UT f (x) D f (Tx), and
US g(y) D g(Sy)).

� P1X D 1Y ,
� f � 0 implies P f � 0, and g � 0 implies P�g � 0,

where P� is the adjoint operator of P.

Minimal self-joinings Let k � 2 be an integer. The er-
godic measure-preserving dynamical system T has
k-fold minimal self-joinings if, for any ergodic joining 

of k copies of T, we can partition the set f1; : : : ; kg of
coordinates into subsets J1; : : : ; J` such that

1. For j1 and j2 belonging to the same Ji, the marginal
of 
 on the coordinates j1 and j2 is supported on the
graph of Tn for some integer n (depending on j1 and
j2);

2. For j1 2 J1; : : : ; j` 2 J`, the coordinates j1; : : : ; j`
are independent.

We say that T has minimal self-joinings if T has k-fold
minimal self-joinings for every k � 2.

Off-diagonal self-joinings Let (X;A; �; T) be a mea-
sure-preserving dynamical system, and S be an invert-
ible measure-preserving transformation of (X;A; �)
commuting with T. Then the probability measure 
S

defined on X � X by


S (A� B) :D �(A\ S�1B) (1)

is a 2-fold self-joining of T supported on the graph of S.
We call it an off-diagonal self-joining of T.

Process in a measure-preserving dynamical systems Let
(X;A; �; T) be a measure-preserving dynamical sys-
tem, and let (E;B(E)) be a measurable space (which
may be a finite or countable set, or Rd , or Cd . . . ). For
any E-valued random variable � defined on the proba-
bility space (X;A; �), we can consider the stochastic
process (�i )i2Z defined by

�i :D � ı Ti :

Since T preserves the probability measure�, (�i)i2Z is
a stationary process: For any ` and n, the distribution of
(�0; : : : ; �`) is the same as the probability distribution
of (�n ; : : : ; �nC`).

Self-joining Let T be a measure-preserving dynamical
system. A self-joining of T is a joining of a family
(Xi ;Ai ; �i ; Ti )i2I of systems where each Ti is a copy
of T. If I is finite and has cardinal k, we speak of a k-fold
self-joining of T.

Simplicity For k � 2, we say that the ergodic measure-
preserving dynamical system T is k-fold simple if, for
any ergodic joining 
 of k copies of T, we can partition
the set f1; : : : ; kg of coordinates into subsets J1; : : : ; J`
such that

1. for j1 and j2 belonging to the same Ji, the marginal
of 
 on the coordinates j1 and j2 is supported on the
graph of some S 2 C(T) (depending on j1 and j2);

2. for j1 2 J1; : : : ; j` 2 J`, the coordinates j1; : : : ; j`
are independent.

We say that T is simple if T is k-fold simple for every
k � 2.

Definition of the Subject

The word joining can be considered as the counterpart in
ergodic theory of the notion of coupling in probability the-
ory (see e. g. [48]): Given two or more processes defined
on different spaces, what are the possibilities of embedding
them together in the same space? There always exists the
solution of making them independent of each other, but
interesting cases arise when we can do this in other ways.
The notion of joining originates in ergodic theory from
pioneering works of H. Furstenberg [14], who introduced
the fundamental notion of disjointness, and D.J. Rudolph,
who laid the basis of joining theory in his article on mini-
mal self-joinings [41]. It has today become an essential tool
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in the classification of measure-preserving dynamical sys-
tems and in the study of their intrinsic properties.

Introduction

A central question in ergodic theory is to tell when two
measure-preserving dynamical systems are essentially the
same, i. e. when they are isomorphic. When this is not the
case, a finer analysis consists of asking what these two sys-
tems could share in common: For example, do there exist
stationary processes which can be observed in both sys-
tems? This latter question can also be asked in the follow-
ing equivalent way: Do these two systems have a common
factor? The arithmetical flavor of this question is not fortu-
itous: There are deep analogies between the arithmetic of
integers and the classification of measure-preserving dy-
namical systems, and these analogies were at the starting
point of the study of joinings in ergodic theory.

In the seminal paper [14] which introduced the con-
cept of joinings in ergodic theory, H. Furstenberg observed
that two operations can be done with dynamical systems:
We can consider the product of two dynamical systems,
and we can also take a factor of a given system. Like the
multiplication of integers, the product of dynamical sys-
tems is commutative, associative, it possesses a neutral el-
ement (the trivial single-point system), and the systems S
and T are both factors of their product S � T . It was then
natural to introduce the property for two measure-pre-
serving systems to be relatively prime. As far as integers are
concerned, there are two equivalent ways of characterizing
the relative primeness: First, the integers a and b are rela-
tively prime if their unique positive common factor is 1.
Second, a and b are relatively prime if, each time both a
and b are factors of an integer c, their product ab is also
a factor of c. It is a well-known theorem in number the-
ory that these two properties are equivalent, but this was
not clear for their analog in ergodic theory. Furstenberg
reckoned that the second way of defining relative prime-
ness was the most interesting property in ergodic theory,
and called it disjointness of measure-preserving systems
(we will discuss precisely in Subsect. “From Disjointness
to Isomorphy” what the correct analog is in the setting
of ergodic theory). He also asked whether the non-exis-
tence of a non-trivial common factor between two sys-
tems was equivalent to their disjointness. He was able to
prove that disjointness implies the impossibility of a non-
trivial common factor, but not the converse. And in fact,
the converse turns out to be false: In 1979, D.J. Rudolph
exhibited a counterexample in his paper introducing the
important notion of minimal self-joinings. The relation-
ships between disjointness and the lack of common fac-

tor will be presented in details in Sect. “Joinings and Fac-
tors”.

Given two measure-preserving dynamical systems S
and T, the study of their disjointness naturally leads one
to consider all the possible ways these two systems can be
both seen as factors of a third system. As we shall see, this
is precisely the study of their joinings. The concept of join-
ing turns out to be related to many important questions in
ergodic theory, and a large number of deep results can be
stated and proved inside the theory of joinings. For exam-
ple, the fact that the dynamical systems S and T are iso-
morphic is equivalent to the existence of a special joining
between S and T, and this can be used to give a joining
proof of Krieger’s finite generator theorem, as well as Orn-
stein’s isomorphism theorem (see Sect. “Joinings Proofs
of Ornstein’s and Krieger’s Theorems”). As it already ap-
pears in Furstenberg’s article, joinings provide a powerful
tool in the classification of measure-preserving dynamical
systems: Many classes of systems can be characterized in
terms of their disjointness with other systems. Joinings are
also strongly connected with difficult questions arising in
the study of the convergence almost everywhere of non-
conventional averages (see Sect. “Joinings and Pointwise
Convergence”).

Amazingly, a situation in which the study of joinings
leads to the most interesting results consists of consider-
ing two or more identical systems. We then speak of the
self-joinings of the dynamical system T. Again, the study
of self-joinings is closely related to many ergodic proper-
ties of the system: Its mixing properties, the structure of
its factors, the transformations which commute with T,
and so on. . . We alreadymentionedminimal self-joinings,
and we will see in Sect. “Minimal Self-Joinings” how this
property may be used to get many interesting examples,
such as a transformation with no root, or a process with no
non-trivial factor. In the same section we will also discuss
a very interesting generalization of minimal self-joinings:
the property of being simple.

The range of applications of joinings in ergodic the-
ory is very large; only some of them will be given in
Sect. “Some Applications and Future Directions”: The use
of joinings in proving Krieger’s and Ornstein’s theorems,
the links between joinings and some questions of point-
wise convergence, and the strong connections between the
study of self-joinings and Rohlin’s famous question on
multifold mixing, which was first posed in 1949 [39].

Joinings of Two orMore Dynamical Systems

In the following, we are given a finite or countable fam-
ily (Xi ;Ai ; �i ; Ti )i2I of measure-preserving dynamical
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systems: Ti is an invertible measure-preserving trans-
formation of the standard Borel probability space
(Xi ;Ai ; �i ). When it is not ambiguous, we shall often use
the symbol Ti to denote both the transformation and the
system.

A joining 
 of the Ti’s (see the definition in the Glos-
sary) defines a newmeasure-preserving dynamical system:
The product transformation
O

i2I

Ti : (xi)i2I 7�! (Ti xi)i2I

acting on the Cartesian product
Q

i2I Xi , and preserving
the probability measure 
. We will denote this big system
by
�N

i2I Ti


�
. Since all marginals of 
 are given by the

original probabilities�i, observing only the coordinate i in
the big system is the same as observing only the system Ti.
Thus, each system Ti is a factor of

�N
i2I Ti



�
, via the ho-

momorphism � i which maps any point in the Cartesian
product to its ith coordinate.

Conversely, if we are given a measure-preserving dy-
namical system (Z;C; �; R) admitting each Ti as a factor
via some homomorphism 'i : Z ! Xi , then we can con-
struct the map ' : Z !

Q
i2I Xi sending z to ('i (z))i2I .

We can easily check that the image of the probability mea-
sure � is then a joining of the Ti’s.

Therefore, studying the joinings of a family of mea-
sure-preserving dynamical system amounts to studying all
the possible ways these systems can be seen together as fac-
tors in another big system.

The Set of Joinings

The set of all joinings of the Ti’s will be denoted by
J(Ti ; i 2 I). Before anything else, we have to observe that
this set is never empty. Indeed, whatever the systems
are, the product measure

N
i2I �i always belongs to this

set. Note also that any convex combination of joinings is
a joining: J(Ti ; i 2 I) is a convex set.

The set of joinings is turned into a compact metrizable
space, equipped with the topology defined by the following
notion of convergence: 
n ����!n!1


 if and only if, for all
families of measurable subsets (Ai )i2I 2

Q
i2IAi , finitely

many of them being different from Xi, we have


n

 
Y

i2I

Ai

!

����!
n!1




 
Y

i2I

Ai

!

: (2)

We can easily construct a distance defining this topology
by observing that it is enough to check (2) when each of
the Ai’s is chosen in some countable algebra Ci generat-
ing the �-algebra Ai . We can also point out that, when

the Xi’s are themselves compact metric spaces, this topol-
ogy on the set of joinings is nothing but the restriction to
J(Ti ; i 2 I) of the usual weak* topology.

It is particularly interesting to study ergodic joinings of
the Ti’s, whose set will be denoted by Je(Ti ; i 2 I). Since
any factor of an ergodic system is itself ergodic, a neces-
sary condition for Je(Ti ; i 2 I) not to be empty is that all
the Ti’s be themselves ergodic. Conversely, if all the Ti’s
are ergodic, we can prove by considering the ergodic de-
composition of the product measure

N
i2I �i that ergodic

joinings do exist: Any ergodicmeasure appearing in the er-
godic decomposition of some joining has to be itself a join-
ing. This result can also be stated in the following way:

Proposition 1 If all the Ti’s are ergodic, the set of their
ergodic joinings is the set of extremal points in the compact
convex set J(Ti ; i 2 I).

From Disjointness to Isomorphy

In this section, as in many others in this article, we are fo-
cusing on the case where our family of dynamical systems
is reduced to two systems. We will then rather call them S
and T, standing for (Y ;B; �; S) and (X;A; �; T). We are
interested here in two extremal cases for the set of joinings
J(T; S). The first one occurs when the two systems are as
far as possible from each other: They have nothing to share
in common, and therefore their set of joinings is reduced
to the singleton f�˝ �g: This is called the disjointness of S
and T. The second one arises when the two systems are iso-
morphic, and we will see how this property shows through
J(T; S).

Disjointness Many situations where disjointness arises
were already given by Furstenberg in [14]. Particularly in-
teresting is the fact that classes of dynamical systems can
be characterized through disjointness properties. We list
here some of the main examples of disjoint classes of mea-
sure-preserving systems.

Theorem 2

1. T is ergodic if and only if it is disjoint from every identity
map.

2. T is weakly mixing if and only if it is disjoint from any
rotation on the circle.

3. T has zero entropy if and only if it is disjoint from any
Bernoulli shift.

4. T is a K-system if and only if it is disjoint from any zero-
entropy system.

The first result is the easiest, but is quite important, in par-
ticular when it is stated in the following form: If 
 is a join-
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ing of T and S, with T ergodic, and if 
 is invariant by
T � Id, then 
 D �˝ �.

The second, third and fourth results were originally
proved by Furstenberg. They can also be seen as corollaries
of the theorems presented in Sect. “Joinings and Factors”,
linking the non-disjointness property with the existence of
a particular factor.

Both the first and the second results can be derived
from the next theorem, giving a general spectral condition
in which disjointness arises. The proof of this theorem can
be found in [49]. It is a direct consequence of the fact that,
if f and g are square-integrable functions in a given dy-
namical system, and if their spectral measures are mutu-
ally singular, then f and g are orthogonal in L2.

Theorem 3 If the reduced maximum spectral types of T
and S are mutually singular, then T and S are disjoint.

As we already said in the introduction, disjointness was
recognized by Furstenberg as the most pertinent way to
define the analog of the arithmetic property “a and b are
relatively prime” in the context of measure-preserving dy-
namical systems. We must however point out that the
statement

(i) S and T are disjoint

is, in general, strictly stronger than the straightforward
translation of the arithmetic property:

(ii) Each time both S and T appear as factors in
a third dynamical system, then their product S � T
also appears as a factor in this system.

Indeed, contrary to the situation in ordinary arithmetic,
there exist non-trivial dynamical systems T which are iso-
morphic to T � T : For example, this is the case when T
is the product of countably many copies of a single non-
trivial system. Now, if T is such a system and if we take
S D T , then S and T do not satisfy statement (i): A non-
trivial system is never disjoint from itself, as we will see in
the next Section. However they obviously satisfy the state-
ment (ii).

A correct translation of the arithmetic property is the
following: S and T are disjoint if and only if, each time T
and S appear as factors in some dynamical system through
the respective homomorphisms �T and �S, T � S also ap-
pears as a factor through a homomorphism �T�S such that
�X ı �T�S D �T and �Y ı �T�S D �S , where �X and �Y
are the projections on the coordinates in the Cartesian
product X � Y (see the diagram below).

Joinings and Isomorphism Wefirst introduce some no-
tations: For any probability measure 
 on a measurable

space, let ‘A �
D B’ stand for ‘
(A
B) D 0’. Similarly, if C

andD are �-algebras of measurable sets, we write ‘C �
� D’

if, for any C 2 C, we can find some D 2 D such that

C �
D D, and by ‘C �

D D’ we naturally mean that both

C �
� D andD �

� C hold.
Let us assume now that our two systems S and T

are isomorphic: This means that we can find some mea-
surable one-to-one map ' : X ! Y , with T(�) D �, and
' ı T D S ı '. With such a ', we construct the measur-
able map  : X ! X � Y by setting

 (x) :D
�
(x; '(x)



:

Let 
' be the image measure of � by  . This measure is
supported on the graph of ', and is also characterized by

8A 2A ;8B 2 B ; 
' (A� B) D �(A\ '�1B) : (3)

We can easily check that, ' being an isomorphism of T
and S,
' is a joining of T and S. And this joining satisfies
very special properties:

� For any measurable A � X, A� Y
�'
D X � '(A);

� Conversely, for any measurable B � Y , X � B
�'
D

'�1(B) � Y .

Thus, in the case where S and T are isomorphic, we can
find a special joining of S and T, which is supported on
the graph of an isomorphism, and which identifies the
two �-algebras generated by the two coordinates. What is
remarkable is that the converse is true: The existence of
an isomorphism between S and T is characterized by the
existence of such a joining, and we have the following the-
orem:

Theorem 4 The measure-preserving dynamical systems S
and T are isomorphic if and only if there exists a joining 

of S and T such that

fX;;g ˝ B �
DA˝ fY ;;g : (4)
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Joinings in Ergodic Theory, Figure 1
The joining	' identifies the sets A� Y and X �'(A)

When 
 is such a joining, it is supported on the graph of an
isomorphism of T and S, and both systems are isomorphic
to the joint system (T ˝ S)�.

This theorem finds nice applications in the proof of clas-
sical isomorphism results. For example, it can be used to
prove that two discrete-spectrum systems which are spec-
trally isomorphic are isomorphic (see [49] or [6]). We
will also see in Sect.“ Joinings Proofs of Ornstein’s and
Krieger’s Theorems” how it can be applied in the proofs
of Krieger’s and Ornstein’s deep theorems.

Consider now the case were T and S are no longer iso-
morphic, but where S is only a factor of T. Then we have
a factor map � : X ! Y which has the same properties as
an isomorphism ', except that it is not one-to-one (� is
only onto). The measure
	 , constructed in the same way
as
' , is still a joining supported on the graph of � , but it
does not identify the two �-algebras generated by the two
coordinates anymore: Instead of condition (4), 
	 only
satisfies the weaker one:

fX;;g ˝ B
�

� A˝ fY ;;g : (5)

The existence of a joining satisfying (5) is a criterion
for S being a factor of T.

For more details on the results stated in this section,
we refer the reader to [6].

Joinings and Factors

The purpose of this section is to investigate the relation-
ships between the disjointness of two systems S and T,
and the lack of a common factor. The crucial fact which

was pointed out by Furstenberg is that the existence of
a common factor enables one to construct a very special
joining of S and T: The relatively independent joining over
this factor.

Let us assume that our systems S and T share a com-
mon factor (Z;C; �; R), which means that we have mea-
surable onto maps �X : X ! Z and �Y : Y ! Z, respec-
tively sending� and � to �, and satisfying �X ıT D Rı�X
and �Y ı S D R ı �Y . We can then consider the join-
ings supported on their graphs 
	X 2 J(T; R) and 
	Y

2 J(S; R), as defined in the preceding section. Next, we
construct a joining 
 of the three systems S, T and R.
Heuristically, 
 is the probability distribution of the triple
(x; y; z) when we first pick z according to the probabil-
ity distribution �, then x and y according to their con-
ditional distribution knowing z in the respective join-
ings
	X and
	Y , but independently of each other. More
precisely, 
 is defined by setting, for all A 2A, B 2 B and
C 2 C


(A � B � C) :D
Z

C
E�
X

[1x2Ajz]E�
Y [1y2Bjz]d�(z) : (6)

Observe that the two-fold marginals of 
 on X � Z and
Y � Z are respectively
	X and
	Y , whichmeans that we
have z D �X(x) D �Y (y) 
-almost surely. In other words,
we have identified in the two systems T and S the projec-
tions on their common factor R. The two-fold marginal
of 
 on X � Y is itself a joining of T and S, which we call
the relatively independent joining over the common fac-
tor R. This joining will be denoted by �˝R�. (Be careful:
The projections �X and�Y are hidden in this notation, but
we have to know them to define this joining.) From (6), we
immediately get the formula defining �˝R�:

8A 2A ;8B 2 B ; �˝R�(A� B) :D
Z

Z
E�
X

[1x2Ajz]E�
Y [1y2Bjz]d�(z) : (7)

This definition of the relatively independent joining over
a common factor can easily be extended to a finite or
countable family of systems sharing the same common
factor.

Note that �˝R� coincides with the product measure
�˝� if and only if the common factor is the trivial one-
point system. We therefore get the following result:

Theorem 5 If S and T have a non-trivial common factor,
then these systems are not disjoint.

As we already said in the introduction, Rudolph exhibited
in [41] a counterexample showing that the converse is not
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Joinings in Ergodic Theory, Figure 2
The relatively independent joining�˝R
 and its disintegration
over Z

true. There exists, however, an important result, which was
published in [20,29] allowing us to derive some informa-
tion on factors from the non-disjointness of two systems.

Theorem 6 If T and S are not disjoint, then S has a non-
trivial common factor with some joining of a countable fam-
ily of copies of T.

This result leads to the introduction of a special class of
factors when some dynamical system T is given: For any
other dynamical system S, call T-factor of S any common
factor of S with a joining of countably many copies of T.
If (Z;C; �; R) is a T-factor of S and � : Y ! Z is a factor
map, we say that the �-algebra ��1(C) is a T-factor �-al-
gebra of S. Another way to state Theorem 6 is then the fol-
lowing: If S and T are not disjoint, then S has a non-triv-
ial T-factor. In fact, an even more precise result can be de-
rived from the proof of Theorem 6: For any joining 
 of S
and T, for any bounded measurable function f on X, the
factor �-algebra of S generated by the functionE�[ f (x)jy]
is a T-factor �-algebra of S.

With the notion of T-factor, Theorem 6 has been ex-
tended in [31] in the following way, showing the existence
of a special T-factor �-algebra of S concentrating anything
in S which could lead to a non-trivial joining between T
and S.

Theorem 7 Given two measure-preserving dynamical sys-
tems (X;A; �; T) and (Y ;B; �; S), there always exists
a maximum T-factor �-algebra of S, denoted by FT.

Under any joining 
 of T and S, the �-algebras
A˝ f;;Yg and f;; Xg ˝ B are independent conditionally
to the �-algebra f;; Xg ˝ FT.

Theorem 6 gives a powerful tool to prove some impor-
tant disjointness results, such as those stated in Theorem 2.
These results involve properties of dynamical systems
which are stable under the operations of taking joinings
and factors. We will call these properties stable properties.
This is, for example, the case of the zero-entropy property:
We know that any factor of a zero-entropy system still has
zero entropy, and that any joining of zero-entropy systems
also has zero entropy. In other words, T has zero entropy
implies that any T-factor has zero entropy. But the prop-
erty of S being a K-system is precisely characterized by the
fact that any non-trivial factor of S has positive entropy.
Hence a K-system S cannot have a non-trivial T-factor
if T has zero entropy, and is therefore disjoint from T.
The converse is a consequence of Theorem 5: If S is not
a K-system, then it possesses a non-trivial zero-entropy
factor, and therefore there exists some zero-entropy sys-
tem from which it is not disjoint.

The same argument also applies to the disjointness
of discrete-spectrum systems with weakly mixing systems,
since a discrete spectrum is a stable property, and weakly
mixing systems are characterized by the fact that they do
not have any discrete-spectrum factor.

Markov Intertwinings and Composition of Joinings

There is another way of defining joinings of two measure-
preserving dynamical systems involving operators on L2

spaces, mainly put to light by Ryzhikov (see [47]): Observe
that for any joining 
 2 J(T; S), we can consider the oper-
ator P� : L2(X; �)! L2(Y ; �) defined by

P�( f ) :D E�
�
f (x)jy

�
:

It is easily checked that P� is a Markov intertwining of T
and S. Conversely, given any Markov intertwining P of T
and S, it can be shown that the measure 
P defined on
X � Y by


P(A� B) :D hP1A; 1BiL2(Y;�)

is a joining of T and S.
This reformulation of the notion of joining is use-

ful when joinings are studied in connection with spec-
tral properties of the transformations (see e. g. [22]). It
also provides us with a convenient setting to introduce the
composition of joinings: If we are given three dynamical
systems (X;A; �; T), (Y ;B; �; S) and (Z;C; �; R), a join-
ing 
 2 J(T; S) and a joining 
0 2 J(S; R), the composi-
tion of the Markov intertwinings P� and P�0 is easily seen
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to give a third Markov intertwining, which itself corre-
sponds to a joining of T and R denoted by 
 ı 
0. When
R D S D T , i. e. when we are speaking of 2-fold self-join-
ings of a single system T (cf. next section), this opera-
tion turns J(T; T) D J2(T) into a semigroup. Ahn and
Lemańczyk [1] have shown that the subset J2e (T) of ergodic
two-fold self-joinings is a sub-semigroup if and only if T is
semisimple (see Sect. “Simple Systems”).

Self-Joinings

Wenow turn to the case where themeasure-preserving dy-
namical systems we want to join together are all copies of
a single system T. For k � 2, any joining of k copies of T is
called a k-fold self-joining of T. We denote by Jk(T) the set
of all k-fold self-joinings of T, and by Jke (T) the subset of
ergodic k-fold self-joinings.

Self-Joinings and Commuting Transformations

As soon as T is not the trivial single-point system, T is
never disjoint from itself: Since T is obviously isomor-
phic to itself, we can always find a two-fold self-joining
of T which is not the product measure by considering
self-joinings supported on graphs of isomorphisms (see
Sect. “Joinings and Isomorphism”). The simplest of them
is obtained by taking the identity map as an isomorphism,
and we get that J2(T) always contains the diagonal mea-
sure
0 :D 
Id.

In general, an isomorphism of T with itself is an in-
vertiblemeasure-preserving transformation S of (X;A; �)
which commutes with T. We call commutant of T the set
of all such transformations (it is a subgroup of the group
of automorphisms of (X;A; �)), and denote it by C(T). It
always contains, at least, all the powers Tn, n 2 Z.

Each element S of C(T) gives rise to a two-fold self-
joining 
S supported on the graph of S. Such self-join-
ings are called off-diagonal self-joinings. They also belong
to Jke (T) if T is ergodic.

It follows that properties of the commutant of an er-
godic T can be seen in its ergodic joinings. As an example
of application, we can cite Ryzhikov’s proof of King’s weak
closure theorem for rank-one transformations1. Rank-one
measure-preserving transformations form a very impor-
tant class of zero-entropy, ergodic measure-preserving
transformations. They have many remarkable properties,
among which the fact that their commutant is reduced to
the weak limits of powers of T. In other words, if T is rank
one, for any S 2 C(T) there exists a subsequence of inte-

1An introduction to finite-rank transformations can be found e. g.
in [32]; we also refer the reader to the quite complete survey [12].

gers (nk) such that,

8A 2A ; �
�
T�nk A
S�1A



����!
k!1

0 : (8)

King proved this result in 1986 [26], using a very intricate
coding argument. Observing that (8) was equivalent to the
convergence, in J2(T), of 
Tnk to 
S, Ryzhikov showed
in [45] that King’s theorem could be seen as a consequence
of the following general result concerning two-fold self-
joinings of rank-one systems:

Theorem 8 Let T be a rank-onemeasure-preserving trans-
formation, and 
 2 J2e (T). Then there exist t � 1/2, a sub-
sequence of integers (nk) and another two-fold self-join-
ing 
0 of T such that


Tnk ����!
k!1

t
C (1 � t)
0 :

Minimal Self-Joinings

For any measure-preserving dynamical system T, the
set of two-fold self-joinings of T contains at least the
product measure �˝ �, the off-diagonal joinings 
Tn

for each n 2 Z, and any convex combination of these.
Rudolph [41] discovered in 1979 that we can find systems
for which there are no other two-fold self-joinings than
these obvious ones.When this is the case, we say that T has
2-fold-minimal self-joinings, or for short: T 2 MSJ(2). It
can be shown (see e. g. [42]) that, as soon as the underly-
ing probability space is not atomic (which we henceforth
assume), two-fold minimal self-joinings implies that T is
weakly mixing, and therefore that�˝ � and
Tn , n 2 Z,
are ergodic two-fold self-joinings of T. That is why two-
fold minimal self-joinings are often defined by the follow-
ing:

T 2 MSJ(2)

() J2e (T) D f�˝ �g [ f
Tn ; n 2 Zg : (9)

Systems with two-fold minimal self-joinings have very
interesting properties. First, since for any S in C(T), 
S
belongs to J2e (T), we immediately see that the commu-
tant of T is reduced to the powers of T. In particular, it
is impossible to find a square root of T, i. e. a measure-
preserving S such that S ı S D T . Second, the existence of
a non-trivial factor �-algebra of T would lead, via the rel-
atively independent self-joining over this factor, to some
ergodic two-fold self-joining of T which is not in the list
prescribed by (9). Therefore, any factor �-algebra of a sys-
tem with two-fold minimal self-joinings must be either the
trivial �-algebra f;; Xg or the whole �-algebra A. This
has the remarkable consequence that if � is any random
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variable on the underlying probability space which is not
almost-surely constant, then the process (� ı Tn)n2Z al-
ways generates the whole �-algebra A. This also implies
that T has zero entropy, since positive-entropy systems
have many non-trivial factors.

The notion of two-fold minimal self-joinings extends
for any integer k � 2 to k-fold minimal self-joinings, which
roughly means that there are no other k-fold ergodic self-
joinings than the “obvious” ones: Those for which the k co-
ordinates are either independent or just translated by some
power of T (see the Glossary for amore precise definition).
We denote in this case: T 2 MSJ(k). If T has k-fold min-
imal self-joinings for all k � 2, we simply say that T has
minimal self joinings.

Rudolph’s construction of a systemwith two-fold min-
imal self-joinings [41] was inspired by a famous work of
Ornstein [35], giving the first example of a transforma-
tion with no roots. It turned out that Ornstein’s example
is a mixing rank-one system, and all mixing rank-one sys-
tems were later proved by J. King [27] to have 2-fold mini-
mal self-joinings. This can also be viewed as a consequence
of Ryzhikov’s Theorem 8. Indeed, in the language of join-
ings, the mixing property of T translates as follows:

T is mixing() 
Tn �����!
jnj!1

�˝ � : (10)

Therefore, if in Theorem 8 we further assume that T is
mixing, then either the sequence (nk ) we get in the con-
clusion is bounded, and then 
 is some 
Tn , or it is un-
bounded and then 
 D �˝ �.

T 2 MSJ(k) obviously implies T 2 MSJ(k0) for any
2 � k0 � k, but the converse is not known. The ques-
tion whether two-fold minimal self-joinings implies
k-fold minimal self-joinings for all k is related to the im-
portant open problem of pairwise independent joinings
(see Sect. “Pairwise-Independent Joinings”). But the lat-
ter problem is solved for some special classes of systems,
in particular in the category of mixing rank-one trans-
formations. It follows that, if T is mixing and rank one,
then T has minimal self-joinings.

In 1980, Del Junco, Rahe and Swanson proved
that Chacon’s transformation also has minimal self-join-
ings [9]. This well-known transformation is also a rank-
one system, but it is not mixing (it had been introduced
by R.V. Chacon in 1969 [4] as the first explicit example of
a weakly mixing transformation which is not mixing). For
another example of a transformation with two-fold mini-
mal self-joinings, constructed as an exchangemap on three
intervals, we refer to [7].

The existence of a transformation with minimal self-
joinings has been used by Rudolph as a wonderful tool to

construct a large variety of striking counterexamples, such
as

� A transformation T which has no roots, while T2 has
roots of any order,

� A transformation with a cubic root but no square root,
� Two measure-preserving dynamical systems which are

weakly isomorphic (each one is a factor of the other)
but not isomorphic. . .

Let us now sketch the argument showing that we can find
two systems with no common factor but which are not
disjoint: We start with a system T with minimal self-join-
ings. Consider the direct product ofT with an independent
copy T0 of itself, and take the symmetric factor S of T ˝ T 0,
that is to say the factor we get if we only look at the non-or-
dered pair of coordinates fx; x0g in the Cartesian product.
Then S is surely not disjoint from T, since the pair fx; x0g is
not independent of x. However, if S and T had a non-triv-
ial common factor, then this factor should be isomorphic
to T itself (because T has minimal self-joinings). There-
fore we could find in the direct product T ˝ T 0 a third
copy T̃ of T, which is measurable with respect to the sym-
metric factor. In particular, T̃ is invariant by the flip map
(x; x0) 7! (x0; x), and this prevents T̃ from being mea-
surable with respect to only one coordinate. Then, since
T 2 MSJ(3), the systems T, T0 and T̃ have no choice but
being independent. But this contradicts the fact that T̃ is
measurable with respect to the �-algebra generated by x
and x0. Hence,T and S have no non-trivial common factor.

We can also cite the example given by Glasner and
Weiss [21] of a pair of horocycle transformations which
have no nontrivial common factor, yet are not disjoint.
Their construction relies on the deep work by Ratner [38],
which describes the structure of joinings of horocycle
flows.

Simple Systems

An important generalization of two-fold minimal self-
joinings has been proposed by William A. Veech in
1982 [51]. We say that the measure-preserving dynami-
cal system T is two-fold simple if it has no other ergodic
two-fold self-joinings than the product measure f�˝ �g
and joinings supported on the graph of a transforma-
tion S 2 C(T). (The difference with MSJ(2) lies in the
fact that C(T) may contain other transformations than the
powers of T.) It turns out that simple systems may have
non-trivial factors, but the structure of these factors can be
explicitly described: They are always associated with some
compact subgroup of C(T). More precisely, if K is a com-
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pact subgroup of C(T), we can consider the factor �-alge-
bra

FK :D fA 2A : 8S 2 K ;AD S(A)g ;

and the corresponding factor transformation TjFK (called
a group factor). Then Veech proved the following theorem
concerning the structure of factors of a two-fold simple
system.

Theorem 9 If the dynamical system T is two-fold simple,
and if F �A is a non-trivial factor �-algebra of T, then
there exists a compact subgroup K of the group C(T) such
that F D FK.

There is a natural generalization of Veech’s property to the
case of k-fold self-joinings, which has been introduced by
A. Del Junco and D.J. Rudolph in 1987 [10] (see the pre-
cise definition of simple systems in the Glossary). In their
work, important results concerning the structure of factors
and joinings of simple systems are proved. In particular,
they are able to completely describe the structure of the
ergodic joinings between a given simple system and any
ergodic system (see also [18,49]). Recall that, for any r � 1,
the symmetric factor of T˝r is the system we get if we ob-
serve the r coordinates of the point in Xr and forget their
order. This is a special case of group factor, associated with
the subgroup of C(T˝r ) consisting of all permutations of
the coordinates. We denote this symmetric factor by Thri.

Theorem 10 Let T be a simple system and S an ergodic
system. Assume that 
 is an ergodic joining of T and S
which is different from the product measure. Then there ex-
ists a compact subgroup K of C(T) and an integer r � 1
such that

� (TjFK )
hri is a factor of S,

� 
 is the projection on X � Y of the relatively indepen-
dent joining of T˝r and S over their common factor
(TjFK )

hri.

If we further assume that the second system is also simple,
then in the conclusion we can take r D 1. In other words,
ergodic joinings of simple systems S and T are either the
product measure or relatively independent joinings over
a common group factor. This leads to the following corol-
lary:

Theorem 11 Simple systems without non-trivial common
factor are disjoint.

As for minimal self-joining, it is not known in general
whether two-fold simplicity implies k-fold simplicity for
all k. This question is studied in [19], where sufficient spec-
tral conditions are given for this implication to hold. It

is also proved that any three-fold simple weakly mixing
transformation is simple of all order.

Relative Properties with Respect to a Factor

In fact, Veech also introduced a weaker, “relativized”, ver-
sion of the two-fold simplicity. If F �A is a non-trivial
factor �-algebra of T, let us denote by J2(T;F) the two-
fold self-joinings of T which are “constructed over F”,
which means that their restriction to the product �-alge-
braF ˝F coincides with the diagonal measure. (The rel-
atively-independent joining overF is the canonical exam-
ple of such a joining.) For the conclusion of Theorem 9
to hold, it is enough to assume only that the ergodic ele-
ments of J2(T;F) be supported on the graph of a transfor-
mation S 2 C(T). This is an important situation where the
study of J2(T;F) gives strong information on the wayF is
embedded in the whole system T, or, in other words, on
the relative properties of T with respect to the factor TjF .
A simple example of such a relative property is the relative
weak mixing with respect to F , which is characterized by
the ergodicity of the relatively-independent joining overF
(recall that weak-mixing is itself characterized by the er-
godicity of the direct product T ˝ T).

For more details on this subject, we refer the reader
to [30]. We also wish to mention the generalization of
simplicity called semisimplicity proposed by Del Junco,
Lemańczyk and Mentzen in [8], which is precisely char-
acterized by the fact that, for any 
 2 J2e (T), the system
(T ˝ T)� is a relatively weakly mixing extension of T.

Some Applications and Future Directions

Joinings Proofs of Ornstein’s and Krieger’s Theorems

We have already seen that joinings could be used to prove
isomorphisms between systems. This fact found a nice ap-
plication in the proofs of two major theorems in ergodic
theory: Ornstein’s isomorphism theorem [34], stating that
two Bernoulli shifts with the same entropy are isomor-
phic, and Krierger’s finite generator theorem [28], which
says that any dynamical system with finite entropy is iso-
morphic to the shift transformation on a finite-valued sta-
tionary process. The idea of this joining approach to the
proofs of Krieger’s and Ornstein’s theorems was originally
due to Burton and Rothstein, who circulated a preliminary
report on the subject which was never published [3]. The
first published and fully detailed exposition of these proofs
can be found in Rudolph’s book [42] (see also in Glasner’s
book [18]).

In fact, Ornstein’s theorem goes far more beyond the
isomorphism of two given Bernoulli shifts: It also gives
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a powerful tool for showing that a specific dynamical sys-
tem is isomorphic to a Bernoulli shift. In particular, Orn-
stein introduced the property for an ergodic stationary
process to be finitely determined. We shall not give here
the precise definition of this property (for a complete ex-
position of Ornstein’s theory, we refer the reader to [36]),
but simply point out that Bernoulli shifts and mixing
Markov chains are examples of finitely determined pro-
cesses. Rudolph’s argument to show Ornstein’s theorem
via joinings makes use of Theorem 4, and of the topology
of J(T; S).

Theorem 12 (Ornstein’s Isomorphism Theorem) Let T
and S be two ergodic dynamical systems with the same en-
tropy, and both generated by finitely determined station-
ary processes. Then the set of joinings of T and S which are
supported on graphs of isomorphisms forms a dense Gı in
Je(T; S).

Krieger’s theorem is not as easily stated in terms of join-
ings, because it does not refer to the isomorphism of two
specific systems, but rather to the isomorphism of one
given system with some other system which has to be
found. We have therefore to introduce a larger set of join-
ings: Given an integer n, we denote byYn the set of double-
sided sequences taking values in f1; : : : ; ng. We consider
on Yn the shift transformation S, but we do not determine
yet the invariant measure. Now, for a specific measure-
preserving dynamical system T, consider the set J(n; T)
of all possible joinings of T with some system (Yn ; �; S),
when � ranges over all possible shift-invariant probability
measures on Yn. J(n; T) can also be equipped with a topol-
ogy which turns it into a compact convexmetric space, and
as soon as T is ergodic, the set Je(n; T) of ergodic elements
of J(n; T) is not empty. In this setting, Krieger’s theorem
can be stated as follows:

Theorem 13 (Krieger’s Finite Generator Theorem)
Let T be an ergodic dynamical system with entropy
h(T) < log2 n. Then the set of 
 2 J(n; T) which are sup-
ported on graphs of isomorphisms between T and some sys-
tem (Yn ; �; S) forms a dense Gı in Je(n; T).

Since any system of the form (Yn ; �; S) obviously has
an n-valued generating process, we obtain as a corollary
that T itself is generated by an n-valued process.

Joinings and Pointwise Convergence

The study of joinings is also involved in questions con-
cerning pointwise convergence of (non-conventional)
ergodic averages. As an example, we present here the
relationships between disjointness and the following well-
known open problem: Given two commuting measure-

preserving transformations S and T acting on the same
probability space (X;A; �), is it true that for any f and g
in L2(�), the sequence

 
1
n

n�1X

kD0

f (Tkx)g(Sk x)

!

n>0

(11)

converges �-almost surely?
It turns out that disjointness of T and S is a sufficient

condition for this almost-sure convergence to hold. In-
deed, let us first consider the case where T and S are de-
fined on a priori different spaces (X;A; �) and (Y ;B; �)
respectively, and consider the ergodic average in the prod-
uct

1
n

n�1X

kD0

f (Tkx)g(Sk y) ; (12)

which can be viewed as the integral of the function f ˝ g
with respect to the empirical distribution

ın(x; y) :D 1
n

n�1X

kD0

ı(Tk x;Sk y) :

We can always assume that T and S are continuous trans-
formations of compact metric spaces (indeed, any mea-
sure-preserving dynamical system is isomorphic to such
a transformation on a compact metric space; see e. g. [15]).
Then the set of probability measures on X � Y equipped
with the topology of weak convergence is metric com-
pact. Now, here is the crucial point where joinings ap-
pear: If T and S are ergodic, we can easily find subsets
X0 � X and Y0 � Y with �(X0) D �(Y0) D 1, such that
for all (x; y) 2 X0 � Y0, any cluster point of the sequence
(ın(x; y))n>0 is automatically a joining of T and S. (We
just have to pick x and y among the “good points” for the
ergodic theorem in their respective spaces.) When T and S
are disjoint, there is therefore only one possible cluster
point to the sequence ın(x; y) which is �˝ �. This en-
sures that, for continuous f and g, (12) converges to the
product of the integrals of f and g as soon as (x; y) is
picked in X0 � Y0. The subspace of continuous functions
being dense in L2, the classical ergodic maximal inequality
(see [17]) ensures that, for any f and g in L2(�), (12) con-
verges for any (x; y) in a rectangle of full measure X0 � Y0.

Coming back to the original question where the spaces
on which T and S act are identified, we observe that with
probability one, x belongs both toX0 andY0, and therefore
the sequence (11) converges.

The existence of a rectangle of full measure in which
the sequence of empirical distributions (ın(x; y))n>0 al-
ways converges to some joining has been studied in [31] as
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a natural generalization of the notion of disjointness. This
property was called weak disjointness of S and T, and it is
indeed strictly weaker than disjointness, since there are ex-
amples of transformations which are weakly disjoint from
themselves.

There are other situations in which joinings can be
used in the study of everywhere convergence, among
which we can cite Rudolph’s joinings proof of Bourgain’s
return time theorem [43].

Joinings and Rohlin’s Multifold Mixing Question

We have already seen that the property of T being mix-
ing could be expressed in terms of two-fold self-joinings
of T (see (10)). Rohlin proposed in 1949 [39] a general-
ization of this property, calledmultifold mixing: The mea-
sure-preserving transformation T is said to be k-fold mix-
ing if 8A1;A2; : : : ;Ak 2A,

lim
n2;n3;:::;nk!1

�(A1\T�n2A2 \ � � �

\ T�(n2C���Cnk )Ak) D
kY

iD1

�(Ai ) :

Again, this definition can easily be translated into the
language of joinings: T is k-fold mixing when the se-
quence (
Tn2 ;:::;Tn2C���Cnk ) converges in Jk(T) to �˝k

as n2; : : : ; nk go to infinity, where (
Tn2 ;:::;Tn2C���Cnk ) is
the obvious generalization of 
Tn to the case of k-fold
self-joinings. The classical notion of mixing corresponds
in this setting to two-fold mixing. (We must point out
that Rohlin’s original definition of k-fold mixing involved
k C 1 sets, thus the classical mixing property was called
1-fold mixing. However it seems that the convention we
adopt here is now used by most authors, and we find it
more coherent when translated in the language of multi-
fold self-joinings.)

Obviously, 3-fold mixing is stronger than 2-fold mix-
ing, and Rohlin asked in his article whether the converse is
true. This question is still open today, even though many
important works have dealt with it and supplied partial an-
swers. Most of these works directly involve self-joinings
via the argument exposed in the following section.

Pairwise-Independent Joinings Let T be a two-fold
mixing dynamical system. If T is not three-fold mixing,
(
Tn ;TnCm ) does not converge to the product measure
as n and m go to 1. By compactness of J3(T), we can
find subsequences (nk) and (mk ) such that (
Tnk ;TnkCmk )
converges to a cluster point 
 ¤ �˝ �˝ �. However, by
two-fold mixing, the three coordinates must be pairwise
independent under 
. We therefore get a three-fold self-

joining 
with the unusual property that 
 has pairwise in-
dependent coordinates, but 
 is not the product measure.

In fact, systems with this kind of pairwise-indepen-
dent but non-independent three-fold self-joining are easy
to find (see e. g. [6]), but the examples we know so far are
either periodic transformations (which cannot be coun-
terexamples to Rohlin’s question since they are not mix-
ing!), or transformations with positive entropy. But us-
ing an argument provided by Thouvenot, we can prove
that, if there exists a two-fold mixing T which is not three-
fold mixing, then we can find such a T in the category of
zero-entropy dynamical systems (see e. g. [5]). Therefore,
a negative answer to the following question would solve
Rohlin’s multifold mixing problem:

Question 14 Does there exist a zero-entropy, weakly
mixing dynamical system T with a self-joining 
 2 J3(T)
for which the coordinates are pairwise independent but
which is different from �˝ �˝ �?

(non) existence of such pairwise-independent joinings is
also related to the question of whether MSJ(2) implies
MSJ(3), or whether two-fold simplicity implies three-fold
simplicity. Indeed, any counter-example to one of these
implication would necessarily be of zero entropy, and
would possess a pairwise-independent three-fold self-join-
ing which is not the product measure.

Question 14 has been answered by B. Host and
V. Ryzhikov for some special classes of zero-entropy dy-
namical systems.

Host’s and Ryzhikov’s Theorems The following theo-
rem, proved in 1991 by B. Host [23] (see also [18,33]),
establishes a spectacular connection between the spectral
properties of a finite family of dynamical systems and the
non-existence of a pairwise-independent, non-indepen-
dent joining:

Theorem 15 (Host’s Theorem on Singular Spectrum)
Let (Xi ;Ai ; �i ; Ti )1�i�r be a finite family of measure-pre-
serving dynamical systems with purely singular spectrum.
Then any pairwise-independent joining 
 2 J(T1; : : : ; Tr )
is the product measure �1 ˝ � � � ˝ �r .

Corollary 16 If a dynamical system with singular spec-
trum is two-fold mixing, then it is k-fold mixing for any
k � 2.

Themultifold-mixing problem for rank-one measure-pre-
serving systems was solved in 1984 by S. Kalikow [25], us-
ing arguments which do not involve the theory of joinings.
In 1993, V. Ryzhikov [46] extended Kalikow’s result to fi-
nite-rank systems, by giving a negative answer to Ques-
tion 14 in the category of finite-rank mixing systems:
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Theorem 17 (Ryzhikov’s Theorem for Finite Rank Sys-
tems) Let T be a finite-rank mixing transformation, and
k � 2. Then the only pairwise-independent k-fold self-join-
ing of T is the product measure.

Corollary 18 If a finite-rank transformation is two-fold
mixing, then it is k-fold mixing for any k � 2.

Future Directions

A lot of important open questions in ergodic theory in-
volve joinings, and we already have cited several of them:
Joinings are a natural tool when we want to deal with
some problems of pointwise convergence involving several
transformations (see Sect. “Joinings and Pointwise Con-
vergence”). Their use is also fundamental in the study of
Rohlin’s question on multifold mixing. As far as this latter
problem is concerned, we may mention a recent approach
to Question 14: Start with a transformation for which
some special pairwise-independent self-joining exists, and
see what this assumption entails. In particular, we can ask
under which conditions there exists a pairwise-indepen-
dent three-fold self-joining of T under which the third co-
ordinate is a function of the two others. It has already been
proven in [24] that if this function is sufficiently regular
(continuous for some topology), then T is periodic or has
positive entropy. And there is strong evidence leading to
the conjecture that, when T is weakly mixing, such a situ-
ation can only arise when T is a Bernoulli shift of entropy
log n for some integer n � 2. A question in the same spirit
was raised by Ryzhikov, who asked in [44] under which
conditions we can find a factor of the direct product T � T
which is independent of both coordinates.

There is also a lot of work to do with joinings in or-
der to understand the structure of factors of some dynam-
ical systems, and how different classes of systems are re-
lated. An example of such a work is given in the class of
Gaussian dynamical systems, i. e. dynamical systems con-
structed from the shift on a stationary Gaussian process:
For some of them (which are called GAG, from the French
Gaussien à Autocouplages Gaussiens), it can be proven
that any ergodic self-joining is itself a Gaussian system
(see [29,50]), and this gives a complete description of the
structure of their factors. This kind of analysis is expected
to be applicable to other classes of dynamical systems. In
particular, Gaussian joinings find a nice generalization in
the notion of infinitely divisible joinings, studied by Roy
in [40]). These ID joinings concern awider class of dynam-
ical systems of probabilistic origin, among which we can
also find Poisson suspensions. The counterpart of Gaus-
sian joinings in this latter class are Poisson joinings, which
have been introduced by Derriennic, Frączek, Lemańczyk

and Parreau in [11]. As far as Poisson suspensions are
concerned, the analog of the GAG property in the Gaus-
sian class can also be considered, and a family of Pois-
son suspension for which the only ergodic self-joinings are
Poisson joinings has been given recently by Parreau and
Roy [37]. In [11], a general joining property is described:T
satisfies the ELF property (from the French: Ergodicité des
Limites Faibles) if any joining which can be obtained as
a limit of off-diagonal joinings 
Tnk is automatically er-
godic. It turns out that this property is satisfied by any sys-
tem arising from an infinitely divisible stationary process
(see [11,40]). It is proven in [11] that ELF property implies
disjointness with any system which is two-fold simple and
weakly mixing but not mixing. ELF property is expected to
give a useful tool to prove disjointness between dynamical
systems of probabilistic origin and other classes of systems
(see e. g. [13] in the case of R-action for disjointness be-
tween ELF systems and a class of special flows over irra-
tional rotations).

Many other questions involving joinings have not been
mentioned here. We should at least cite filtering prob-
lems, which were one of the motivations presented by
Furstenberg for the introduction of the disjointness prop-
erty in [14]. Suppose we are given two real-valued sta-
tionary processes (Xn) and (Yn), with their joint distri-
bution also stationary. We can interpret (Xn) as a sig-
nal, perturbed by a noise (Yn), and the question posed by
Furstenberg is: Under which condition can we recover the
original signal (Xn) from the observation of (Xn C Yn)?
Furstenberg proved that it is always possible if the two
processes (Xn) and (Yn) are integrable, and if the two
measure-preserving dynamical systems constructed as the
shift of the two processes are disjoint. Furstenberg also ob-
served that the integrability assumption can be removed
if a stronger disjointness property is satisfied: A perfect
filtering exists if the system T generated by (Xn) is dou-
bly disjoint from the system S generated by (Yn), in the
sense that T is disjoint from any ergodic self-joining of S.
Several generalizations have been studied (see [2,16]), but
the question of whether the integrability assumption of the
processes can be removed is still open.
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30. Lemańczyk M, Thouvenot J-P, Weiss B (2002) Relative discrete
spectrum and joinings. Monatsh Math 137(1):57–75

31. Lesigne E, Rittaud B, and de la Rue T (2003) Weak disjointness
of measure-preserving dynamical systems. Ergod Theory Dy-
nam Syst 23(4):1173–1198

32. Nadkarni MG (1998) Basic ergodic theory. In: Birkhäuser Ad-
vanced Texts: Basler Lehrbücher, 2nd edn. Birkhäuser, Basel

33. Nadkarni MG (1998) Spectral theory of dynamical systems.
In: Birkhäuser Advanced Texts: Basler Lehrbücher. Birkhäuser,
Basel

34. Ornstein DS (1970) Bernoulli shifts with the same entropy are
isomorphic. Adv Math 4:337–352

35. Ornstein DS (1972) On the root problem in ergodic theory.
In: Proceedings of the Sixth Berkeley Symposium on Math-
ematical Statistics and Probability, Univ. California, Berkeley,
1970/1971, vol II: Probability theory. Univ California Press,
Berkeley, pp 347–356

36. Ornstein DS (1974) Ergodic theory, randomness, and dynami-
cal systems. In: James K Whittemore Lectures in Mathematics
given at Yale University, YaleMathematical Monographs, vol 5.
Yale University Press, New Haven

37. Parreau F, Roy E (2007) Poisson joinings of Poisson suspension.
Preprint

38. Ratner M (1983) Horocycle flows, joinings and rigidity of prod-
ucts. Ann of Math 118(2):277–313

39. Rohlin VA (1949) On endomorphisms of compact commuta-
tive groups. Izvestiya Akad Nauk SSSR Ser Mat 13:329–340

40. Roy E (2007) Poisson suspensions and infinite ergodic theory.
Ergod Theory Dynam Syst(to appear)

41. Rudolph DJ (1979) An example of a measure preserving
map with minimal self-joinings, and applications. J Anal Math
35:97–122

42. RudolphDJ (1990) The title is Fundamentals ofMeasurable Dy-
namics: Ergodic Theory on Lebesgue Spaces. Oxford University
Press, New York

43. Rudolph DJ (1994) A joinings proof of Bourgain’s return time
theorem. Ergod Theory Dynam Syst 14(1):197–203

44. Ryzhikov VV (1992) Stochastic wreath products and joinings of
dynamical systems. Mat Zametki 52(3):130–140, 160

45. Ryzhikov VV (1992) Mixing, rank andminimal self-joining of ac-
tions with invariant measure. Mat Sb 183(3):133–160

46. Ryzhikov VV (1993) Joinings andmultiplemixing of the actions
of finite rank. Funktsional Anal Prilozhen 27(2):63–78, 96

47. Ryzhikov VV (1993) Joinings, wreath products, factors andmix-
ing properties of dynamical systems. Izv Ross Akad Nauk Ser
Mat 57(1):102–128

48. Thorisson H (2000) Coupling, stationarity, and regeneration. In:
Probability and its Applications (NewYork). Springer, NewYork

49. Thouvenot J-P (1995) Some properties and applications of
joinings in ergodic theory. In: Ergodic theory and its connec-
tions with harmonic analysis, Alexandria, 1993. London Math
Soc Lecture Note Ser, vol 205. Cambridge Univ Press, Cam-
bridge, pp 207–235

50. Thouvenot J-P (1987) The metrical structure of some Gaussian
processes. In: Proceedings of the conference on ergodic theory
and related topics, II, Georgenthal, 1986. Teubner-Texte Math,
vol 94. Teubner, Leipzig, pp 195–198

51. VeechWA (1982) A criterion for a process to beprime.Monatsh
Math 94(4):335–341



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




