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Glossary

Bifurcation In parametrized dynamical systems a bifur-
cation occurs when a qualitative change is invoked by
a change of parameters. In models such a qualitative
change corresponds to transition between dynamical
regimes. In the generic theory a finite list of cases is ob-
tained, containing elements like ‘saddle-node’, ‘period
doubling’, ‘Hopf bifurcation’ and many others.

Cantor set, Cantor dust, Cantor family, Cantor strati-
fication Cantor dust is a separable locally compact space

that is perfect, i. e. every point is in the closure of its
complement, and totally disconnected. This deter-
mines Cantor dust up to homeomorphisms. The term
Cantor set (originally reserved for the specific form of
Cantor dust obtained by repeatedly deleting the mid-

dle third from a closed interval) designates topological
spaces that locally have the structureRn � Cantor dust
for some n 2 N . Cantor families are parametrized by
such Cantor sets. On the real line R one can define
Cantor dust of positive measure by excluding around
each rational number p/q an interval of size

2�
q�
; � > 0 ; � > 2 :

Similar Diophantine conditions define Cantor sets
in Rn . Since these Cantor sets have positive measure
their Hausdorff dimension is n. Where the unper-
turbed system is stratified according to the co-dimen-
sion of occurring (bifurcating) tori, this leads to a Can-
tor stratification.

Chaos An evolution of a dynamical system is chaotic if its
future is badly predictable from its past. Examples of
non-chaotic evolutions are periodic or multi-periodic.
A system is called chaotic when many of its evolutions
are. One criterion for chaoticity is the fact that one of
the Lyapunov exponents is positive.

Diophantine condition, Diophantine frequency vector
A frequency vector ! 2 Rn is called Diophantine if
there are constants � > 0 and � > n � 1 with

jhk; !ij �
�

jkj�
for all k 2 Znnf0g :

TheDiophantine frequency vectors satisfying this con-
dition for fixed � and � form a Cantor set of half lines.
As the Diophantine parameter � tends to zero (while �
remains fixed), these half lines extend to the origin.
The complement in any compact set of frequency vec-
tors satisfying a Diophantine condition with fixed �
has a measure of order O(� ) as � # 0.

Integrable system A Hamiltonian system with n degrees
of freedom is (Liouville)-integrable if it has n func-
tionally independent commuting integrals of motion.
Locally this implies the existence of a torus action,
a feature that can be generalized to dissipative sys-
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tems. In particular a mapping is integrable if it can be
interpolated to become the stroboscopic mapping of
a flow.

KAM theory Kolmogorov–Arnold–Moser theory is the
perturbation theory of (Diophantine) quasi-periodic
tori for nearly integrable Hamiltonian systems. In the
format of quasi-periodic stability, the unperturbed and
perturbed system, restricted to a Diophantine Cantor
set, are smoothly conjugated in the sense of Whitney.
This theory extends to the world of reversible, volume-
preserving or general dissipative systems. In the latter
KAM theory gives rise to families of quasi-periodic at-
tractors. KAM theory also applies to torus bundles, in
which case a global Whitney smooth conjugation can
be proven to exist, that keeps track of the geometry. In
an appropriate sense invariants like monodromy and
Chern classes thus also can be defined in the nearly
integrable case. Also compare with � Kolmogorov–
Arnold–Moser (KAM) Theory.

Nearly integrable system In the setting of perturbation
theory, a nearly integrable system is a perturbation of
an integrable one. The latter then is an integrable ap-
proximation of the former. See an above item.

Normal form truncation Consider a dynamical system
in the neighborhood of an equilibrium point, a fixed or
periodic point, or a quasi-periodic torus, reducible to
Floquet form. Then Taylor expansions (and their ana-
logues) can be changed gradually into normal forms,
that usually reflect the dynamics better. Often these
display a (formal) torus symmetry, such that the nor-
mal form truncation becomes an integrable approxi-
mation, thus yielding a perturbation theory setting. See
above items. Also compare with � Normal Forms in
Perturbation Theory.

Persistent property In the setting of perturbation theory,
a property is persistent whenever it is inherited from
the unperturbed to the perturbed system. Often the
perturbation is taken in an appropriate topology on the
space of systems, like the Whitney Ck-topology [72].

Perturbation problem In perturbation theory the unper-
turbed systems usually are transparent regarding their
dynamics. Examples are integrable systems or normal
form truncations. In a perturbation problem things are
arranged in such a way that the original system is well-
approximated by such an unperturbed one. This ar-
rangement usually involves both changes of variables
and scalings.

Resonance If the frequencies of an invariant torus with
multi- or conditionally periodic flow are rationally
dependent, this torus divides into invariant sub-tori.
Such resonances hh; !i D 0, h 2 Zk , define hyper-

planes in !-space and, by means of the frequency
mapping, also in phase space. The smallest number
jhj D jh1j C � � � C jhk j is the order of the resonance.
Diophantine conditions describe a measure-theoret-
ically large complement of a neighborhood of the
(dense!) set of all resonances.

Separatrices Consider a hyperbolic equilibrium, fixed or
periodic point or invariant torus. If the stable and un-
stable manifolds of such hyperbolic elements are codi-
mension one immersedmanifolds, then they are called
separatrices, since they separate domains of phase
space, for instance, basins of attraction.

Singularity theory A function H : Rn �! R has a crit-
ical point z 2 Rn where DH(z) vanishes. In lo-
cal coordinates we may arrange z D 0 (and simi-
larly that it is mapped to zero as well). Two germs
K : (Rn ; 0) �! (R; 0) and N : (Rn ; 0) �! (R; 0) rep-
resent the same functionH locally around z if and only
if there is a diffeomorphism � onRn satisfying

N D K ı � :

The corresponding equivalence class is called a singu-
larity.

Structurally stable A system is structurally stable if it is
topologically equivalent to all nearby systems, where
‘nearby’ is measured in an appropriate topology on the
space of systems, like the Whitney Ck-topology [72].
A family is structurally stable if for every nearby family
there is a re-parametrization such that all correspond-
ing systems are topologically equivalent.

Definition of the Subject

The fundamental problem ofmechanics is to studyHamil-
tonian systems that are small perturbations of integrable
systems. Also, perturbations that destroy the Hamiltonian
character are important, be it to study the effect of a small
amount of friction, or to further the theory of dissipa-
tive systems themselves which surprisingly often revolves
around certain well-chosen Hamiltonian systems. Fur-
thermore there are approaches like KAM theory that his-
torically were first applied to Hamiltonian systems. Typi-
cally perturbation theory explains only part of the dynam-
ics, and in the resulting gaps the orderly unperturbed mo-
tion is replaced by random or chaotic motion.

Introduction

We outline perturbation theory from a general point of
view, illustrated by a few examples.
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The Perturbation Problem

The aim of perturbation theory is to approximate a given
dynamical system by a more familiar one, regarding the
former as a perturbation of the latter. The problem then
is to deduce certain dynamical properties from the unper-
turbed to the perturbed case.

What is familiar may or may not be a matter of taste, at
least it depends a lot on the dynamical properties of one’s
interest. Still the most frequently used unperturbed sys-
tems are:

� Linear systems
� Integrable Hamiltonian systems, compare with � Dy-

namics of Hamiltonian Systems and references therein
� Normal form truncations, compare with � Normal

Forms in Perturbation Theory and references therein
� Etc.

To some extent the second category can be seen as a special
case of the third. To avoid technicalities in this section we
assume all systems to be sufficiently smooth, say of class
C1 or real analytic. Moreover in our considerations " will
be a real parameter. The unperturbed case always corre-
sponds to " D 0 and the perturbed one to " ¤ 0 or " > 0.

Examples of Perturbation Problems To begin with
consider the autonomous differential equation

ẍ C "ẋ C
dV
dx

(x) D 0 ;

modeling an oscillator with small damping. Rewriting this
equation of motion as a planar vector field

ẋ D y

ẏ D �"y �
dV
dx

(x) ;

we consider the energy H(x; y) D 1
2 y

2 C V(x). For " D 0
the system is Hamiltonian with Hamiltonian function H.
Indeed, generally we have Ḣ(x; y) D �"y2, implying that
for " > 0 there is dissipation of energy. Evidently for " ¤ 0
the system is no longer Hamiltonian.

The reader is invited to compare the phase portraits of
the cases " D 0 and " > 0 for V (x) D � cos x (the pendu-
lum) or V(x) D 1

2x
2 C 1

24bx
4 (Duffing).

Another type of example is provided by the non-au-
tonomous equation

ẍ C
dV
dx

(x) D " f (x; ẋ; t) ;

which can be regarded as the equation of motion of an
oscillator with small external forcing. Again rewriting as

a vector field, we obtain

ṫ D 1
ẋ D y

ẏ D �
dV
dx

(x)C " f (x; y; t) ;

now on the generalized phase space R3 D ft; x; yg. In
the case where the t-dependence is periodic, we can take
S1 �R2 for (generalized) phase space.

Remark

� A small variation of the above driven system concerns
a parametrically forced oscillator like

ẍ C (!2 C " cos t) sin x D 0 ;

which happens to be entirely in the world of Hamilto-
nian systems.

� It may be useful to study the Poincaré or period map-
ping of such time periodic systems, which happens to
be a mapping of the plane. We recall that in the Hamil-
tonian cases this mapping preserves area. For general
reference in this direction see, e. g., [6,7,27,66].

There are lots of variations and generalizations. One ex-
ample is the solar system, where the unperturbed case con-
sists of a number of uncoupled two-body problems con-
cerning the Sun and each of the planets, and where the in-
teraction between the planets is considered as small [6,9,
107,108].

Remark

� One variation is a restriction to fewer bodies, for
example only three. Examples of this are systems
like Sun–Jupiter–Saturn, Earth–Moon–Sun or Earth–
Moon–Satellite.

� Often Sun, Moon and planets are considered as point
masses, in which case the dynamics usually are mod-
eled as a Hamiltonian system. It is also possible to ex-
tend this approach taking tidal effects into account,
which have a non-conservative nature.

� The Solar System is close to resonance, which makes
application of KAM theory problematic. There exist,
however, other integrable approximations that take
resonance into account [3,63].

Quite another perturbation setting is local, e. g., near an
equilibrium point. To fix thoughts consider

ẋ D Ax C f (x) ; x 2 Rn
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with A 2 gl(n;R), f (0) D 0 and Dx f (0) D 0. By the scal-
ing x D "x̄ we rewrite the system to

˙̄x D Ax̄ C "g(x̄) :

So, here we take the linear part as an unperturbed sys-
tem. Observe that for small " the perturbation is small on
a compact neighborhood of x̄ D 0.

This setting also has many variations. In fact, any
normal form approximation may be treated in this
way � Normal Forms in Perturbation Theory. Then the
normalized truncation forms the unperturbed part and the
higher order terms the perturbation.

Remark In the above we took the classical viewpoint
which involves a perturbation parameter controlling the
size of the perturbation. Often one can generalize this by
considering a suitable topology (like the Whitney topolo-
gies) on the corresponding class of systems [72]. Also
compare with � Normal Forms in Perturbation Theory,
�Kolmogorov–Arnold–Moser (KAM) Theory and�Dy-
namics of Hamiltonian Systems.

Questions of Persistence

What are the kind of questions perturbation theory asks?
A large class of questions concerns the persistence of cer-
tain dynamical properties as known for the unperturbed
case. To fix thoughts we give a few examples.

To begin with consider equilibria and periodic orbits.
So we put

ẋ D f (x; ") ; x 2 Rn ; " 2 R ; (1)

for a map f : RnC1 ! Rn . Recall that equilibria are given
by the equation f (x; ") D 0. The following theorem that
continues equilibria in the unperturbed system for " ¤ 0,
is a direct consequence of the implicit function theorem.

Theorem 1 (Persistence of equilibria) Suppose that
f (x0; 0) D 0 and that

Dx f (x0; 0) has maximal rank :

Then there exists a local arc " 7! x(") with x(0) D x0 such
that

f (x("); ") � 0 :

Periodic orbits can be approximated in a similar way. In-
deed, let the system (1) for � D 0 have a periodic orbit � 0.
Let˙ be a local transversal section of � 0 and P0 : ˙ ! ˙

the corresponding Poincaré map. Then P0 has a fixed

point x0 2 ˙ \ �0. By transversality, for j"j small, a local
Poincaré map P" : ˙ ! ˙ is well-defined for (1). Observe
that fixed points x" of P" correspond to periodic orbits �"
of (1). We now have, again as another direct consequence
of the implicit function theorem.

Theorem 2 (Persistence of periodic orbits) In the above
assume that

P0(x0) D x0 and Dx P0(x0) has no eigenvalue 1 :

Then there exists a local arc " 7! x(") with x(0) D x0 such
that

P"(x(")) � x" :

Remark

� Often the conditions of Theorem 2 are not easy to ver-
ify. Sometimes it is useful here to use Floquet Theory,
see [97]. In fact, if T0 is the period of � 0 and ˝0 its
Floquet matrix, then Dx P0(x0) D exp(T0˝0).

� The format of the Theorems 1 and 2 with the pertur-
bation parameter " directly allows for algorithmic ap-
proaches. One way to proceed is by perturbation series,
leading to asymptotic formulae that in the real analytic
setting have positive radius of convergence. In the latter
case the names of Poincaré and Lindstedt are associated
with the method, cf. [10].
Also numerical continuation programmes exist based
on the Newton method.

� The Theorems 1 and 2 can be seen as special cases of
a a general theorem for normally hyperbolic invariant
manifolds [73], Theorem 4.1. In all cases a contraction
principle on a suitable Banach space of graphs leads to
persistence of the invariant dynamical object.

This method in particular yields existence and persis-
tence of stable and unstable manifolds [53,54].

Another type of dynamics subject to perturbation theory
is quasi-periodic. We emphasize that persistence of (Dio-
phantine) quasi-periodic invariant tori occurs both in the
conservative setting and in many others, like in the re-
versible and the general (dissipative) setting. In the latter
case this leads to persistent occurrence of families of quasi-
periodic attractors [125]. These results are in the domain
of Kolmogorov–Arnold–Moser (KAM) theory. For details
we refer to Sect. “KAM Theory: An Overview” below or
to [24], � Kolmogorov–Arnold–Moser (KAM) Theory,
the former reference containing more than 400 references
in this area.
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Remark

� Concerning the Solar System, KAM theory always has
aimed at proving that it contains many quasi-periodic
motions, in the sense of positive Liouville measure.
This would imply that there is positive probability that
a given initial condition lies on such a stable quasi-pe-
riodic motion [3,63], however, also see [85].

� Another type of result in this direction compares the
distance of certain individual solutions of the perturbed
and the unperturbed system, with coinciding initial
conditions over time scales that are long in terms of ".
Compare with [24].

Apart from persistence properties related to invariant
manifolds or individual solutions, the aim can also be
to obtain a more global persistence result. As an exam-
ple of this we mention the Hartman–Grobman Theorem,
e. g., [7,116,123]. Here the setting once more is

ẋ D Ax C f (x) ; x 2 Rn ;

with A 2 gl(n;R), f (0) D 0 and Dx f (0) D 0. Now we as-
sume A to be hyperbolic (i. e., with no purely imaginary
eigenvalues). In that case the full system, near the origin,
is topologically conjugated to the linear system ẋ D Ax.
Therefore all global, qualitative properties of the unper-
turbed (linear) system are persistent under perturbation to
the full system. For details on these notions see the above
references, also compare with, e. g., [30].

It is said that the hyperbolic linear system ẋ D Ax is
(locally) structurally stable. This kind of thinking was in-
troduced to the dynamical systems area by Thom [133],
with a first, successful application to catastrophe theory.
For further details, see [7,30,69,116].

General Dynamics

We give a few remarks on the general dynamics in a neigh-
borhood of Hamiltonian KAM tori. In particular this con-
cerns so-called superexponential stickiness of the KAM tori
and adiabatic stability of the action variables, involving the
so-called Nekhoroshev estimate.

To begin with, emphasize the following difference be-
tween the cases n D 2 and n � 3 in the classical KAM the-
orem of Subsect. “Classical KAM Theory”. For n D 2 the
level surfaces of the Hamiltonian are three-dimensional,
while the Lagrangian tori have dimension two and hence
codimension one in the energy hypersurfaces. This means
that for open sets of initial conditions, the evolution curves
are forever trapped in between KAM tori, as these tori foli-
ate over nowhere dense sets of positive measure. This im-

plies perpetual adiabatic stability of the action variables.
In contrast, for n � 3 the Lagrangian tori have codimen-
sion n � 1 > 1 in the energy hypersurfaces and evolution
curves may escape.

This actually occurs in the case of so-called Arnold
diffusion. The literature on this subject is immense, and
we here just quote [5,9,93,109], for many more references
see [24].

Next we consider the motion in a neighborhood of
the KAM tori, in the case where the systems are real ana-
lytic or at least Gevrey smooth. For a definition of Gevrey
regularity see [136]. First we mention that, measured in
terms of the distance to the KAM torus, nearby evolution
curves generically stay nearby over a superexponentially
long time [102,103]. This property often is referred to as
superexponential stickiness of the KAM tori, see [24] for
more references.

Second, nearly integrable Hamiltonian systems, in
terms of the perturbation size, generically exhibit expo-
nentially long adiabatic stability of the action variables, see
e. g. [15,88,89,90,93,103,109,110,113,120],�Nekhoroshev
Theory and many others, for more references see [24].
This property is referred to as the Nekhoroshev estimate
or the Nekhoroshev theorem. For related work on pertur-
bations of so-called superintegrable systems, also see [24]
and references therein.

Chaos

In the previous subsection we discussed persistent and
some non-persistent features of dynamical systems un-
der small perturbations. Here we discuss properties re-
lated to splitting of separatrices, caused by generic pertur-
bations.

A first example was met earlier, when comparing the
pendulum with and without (small) damping. The unper-
turbed system is the undamped one and this is a Hamil-
tonian system. The perturbation however no longer is
Hamiltonian. We see that the equilibria are persistent, as
they should be according to Theorem 1, but that none of
the periodic orbits survives the perturbation. Such quali-
tative changes go with perturbing away from the Hamilto-
nian setting.

Similar examples concern the breaking of a certain
symmetry by the perturbation. The latter often occurs in
the case of normal form approximations. Then the nor-
malized truncation is viewed as the unperturbed system,
which is perturbed by the higher order terms. The trunca-
tion often displays a reasonable amount of symmetry (e. g.,
toroidal symmetry), which generically is forbidden for the
class of systems under consideration, e. g. see [25].
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Hamiltonian Perturbation Theory (and Transition to Chaos), Figure 1
Chaos in the parametrically forced pendulum. Left: Poincaré map P!;" near the 1 : 2 resonance! D 1

2 and for " > 0 not too small.
Right: A dissipative analogue

To fix thoughts we reconsider the conservative ex-
ample

ẍ C (!2 C " cos t) sin x D 0

of the previous section. The corresponding (time depen-
dent, Hamiltonian [6]) vector field reads

ṫ D 1
ẋ D y

ẏ D �(!2 C " cos t) sin x :

Let P!;" : R2 ! R2 be the corresponding (area-preserv-
ing) Poincaré map. Let us consider the unperturbed map
P!;0 which is just the flow over time 2� of the free
pendulum ẍ C !2 sin x D 0. Such a map is called inte-
grable, since it is the stroboscopic map of a two-dimen-
sional vector field, hence displaying the R-symmetry of
a flow.When perturbed to the nearly integrable case " ¤ 0,
this symmetry generically is broken. We list a few of the
generic properties for such maps [123]:

� The homoclinic and heteroclinic points occur at
transversal intersections of the corresponding stable
and unstable manifolds.

� The periodic points of period less than a given bound
are isolated.

This means generically that the separatrices split and that
the resonant invariant circles filled with periodic points
with the same (rational) rotation number fall apart. In
any concrete example the issue remains whether or not
it satisfies appropriate genericity conditions. One method
to check this is due to Melnikov, compare [66,137], for

more sophisticated tools see [65]. Often this leads to el-
liptic (Abelian) integrals.

In nearly integrable systems chaos can occur. This
fact is at the heart of the celebrated non-integrability of
the three-body problem as addressed by Poincaré [12,59,
107,108,118]. A long standing open conjecture is that the
clouds of points as visible in Fig. 1, left, densely fill sets of
positive area, thereby leading to ergodicity [9].

In the case of dissipation, see Fig. 1, right, we con-
jecture the occurrence of a Hénon-like strange attrac-
tor [14,22,126].

Remark

� The persistent occurrence of periodic points of a given
rotation number follows from the Poincaré–Birkhoff
fixed point theorem [74,96,107], i. e., on topological
grounds.

� The above arguments are not restricted to the conser-
vative setting, although quite a number of unperturbed
systems come from this world. Again see Fig. 1.

One Degree of Freedom

Planar Hamiltonian systems are always integrable and the
orbits are given by the level sets of the Hamiltonian func-
tion. This still leaves room for a perturbation theory. The
recurrent dynamics consists of periodic orbits, equilibria
and asymptotic trajectories forming the (un)stable man-
ifolds of unstable equilibria. The equilibria organize the
phase portrait, and generically all equilibria are elliptic
(purely imaginary eigenvalues) or hyperbolic (real eigen-
values), i. e. there is no equilibriumwith a vanishing eigen-
value. If the system depends on a parameter such van-
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ishing eigenvalues may be unavoidable and it becomes
possible that the corresponding dynamics persist under
perturbations.

Perturbations may also destroy the Hamiltonian char-
acter of the flow. This happens especially where the start-
ing point is a dissipative planar system and e. g. a scaling
leads for " D 0 to a limiting Hamiltonian flow. The per-
turbation problem then becomes twofold. Equilibria still
persist by Theorem 1 and hyperbolic equilibria moreover
persist as such, with the sum of eigenvalues of order O(").
Also for elliptic eigenvalues the sum of eigenvalues is of
order O(") after the perturbation, but here this number
measures the dissipation whence the equilibrium becomes
(weakly) attractive for negative values and (weakly) unsta-
ble for positive values. The one-parameter families of pe-
riodic orbits of a Hamiltonian system do not persist under
dissipative perturbations, the very fact that they form fam-
ilies imposes the corresponding fixed point of the Poincaré
mapping to have an eigenvalue one and Theorem 2 does
not apply. Typically only finitely many periodic orbits sur-
vive a dissipative perturbation and it is already a difficult
task to determine their number.

Hamiltonian Perturbations

The Duffing oscillator has the Hamiltonian function

H(x; y) D
1
2
y2 C

1
24

bx4 C
1
2
x2 (2)

where b is a constant distinguishing the two cases b D ˙1
and  is a parameter. Under variation of the parameter the
equations of motion

ẋ D y

ẏ D �
1
6
bx3 � x

display a Hamiltonian pitchfork bifurcation, supercritical
for positive b and subcritical in case b is negative. Corre-
spondingly, the linearization at the equilibrium x D 0 of
the anharmonic oscillator  D 0 is given by the matrix

�
0 1
0 0

�

whence this equilibrium is parabolic.
The typical way in which a parabolic equilibrium bi-

furcates is the center-saddle bifurcation. Here the Hamil-
tonian reads

H(x; y) D
1
2
ay2 C

1
6
bx3 C cx (3)

where a; b; c 2 R are nonzero constants, for instance
a D b D c D 1. Note that this is a completely different un-
folding of the parabolic equilibrium at the origin. A closer
look at the phase portraits and in particular at the Hamil-
tonian function of the Hamiltonian pitchfork bifurcation
reveals the symmetry x 7! �x of the Duffing oscillator.
This suggests the addition of the non-symmetric term �x.
The resulting two-parameter family

H�;�(x; y) D
1
2
y2 C

1
24

bx4 C
1
2
x2 C �x

of Hamiltonian systems is indeed structurally stable. This
implies not only that all equilibria of a Hamiltonian per-
turbation of the Duffing oscillator have a local flow equiv-
alent to the local flow near a suitable equilibrium in this
two-parameter family, but that every one-parameter fam-
ily of Z2-symmetric Hamiltonian systems that is a pertur-
bation of (2) has equivalent dynamics. For more details
see [36] and references therein.

This approach applies mutatis mutandis to every non-
degenerate planar singularity, cf. [69,130]. At an equilib-
rium all partial derivatives of the Hamiltonian vanish and
the resulting singularity is called non-degenerate if it has
finite multiplicity, which implies that it admits a versal un-
folding H� with finitely many parameters. The family of
Hamiltonian systems defined by this versal unfolding con-
tains all possible (local) dynamics that the initial equilib-
rium may be perturbed to. Imposing additional discrete
symmetries is immediate, the necessary symmetric versal
unfolding is obtained by averaging

HG
� D

1
jGj

X

g2G

H� ı g

along the orbits of the symmetry group G.

Dissipative Perturbations

In a generic dissipative system all equilibria are hyperbolic.
Qualitatively, i. e. up to topological equivalence, the lo-
cal dynamics is completely determined by the number of
eigenvalues with positive real part. Those hyperbolic equi-
libria that can appear in Hamiltonian systems (the eigen-
values forming pairs ˙�) do not play an important role.
Rather, planar Hamiltonian systems become important as
a tool to understand certain bifurcations triggered off by
non-hyperbolic equilibria. Again this requires the system
to depend on external parameters.

The simplest example is the Hopf bifurcation, a co-di-
mension one bifurcation where an equilibrium loses sta-
bility as the pair of eigenvalues crosses the imaginary axis,
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say at ˙i. At the bifurcation the linearization is a Hamil-
tonian system with an elliptic equilibrium (the co-dimen-
sion one bifurcations where a single eigenvalue crosses the
imaginary axis through 0 do not have a Hamiltonian lin-
earization). This limiting Hamiltonian system has a one-
parameter family of periodic orbits around the equilib-
rium, and the non-linear terms determine the fate of these
periodic orbits. The normal form of order three reads

ẋ D �y
�
1C b(x2 C y2)


C x

�
C a(x2 C y2)



ẋ D x
�
1C b(x2 C y2)


C y

�
C a(x2 C y2)



and is Hamiltonian if and only if (; a) D (0; 0). The sign
of the coefficient distinguishes between the supercritical
case a > 0, in which there are no periodic orbits coexisting
with the attractive equilibria (i. e. when  < 0) and one at-
tracting periodic orbit for each  > 0 (coexisting with the
unstable equilibrium), and the subcritical case a < 0, in
which the family of periodic orbits is unstable and coexists
with the attractive equilibria (with no periodic orbits for
parameters  > 0). As ! 0 the family of periodic orbits
shrinks down to the origin, so also this Hamiltonian fea-
ture is preserved.

Equilibria with a double eigenvalue 0 need two param-
eters to persistently occur in families of dissipative sys-
tems. The generic case is the Takens–Bogdanov bifurca-
tion. Here the linear part is too degenerate to be helpful,
but the nonlinear Hamiltonian system defined by (3) with
a D 1 D c and b D �3 provides the periodic and hetero-
clinic orbit(s) that constitute the nontrivial part of the bi-
furcation diagram.Where discrete symmetries are present,
e. g. for equilibria in dissipative systems originating from
other generic bifurcations, the limiting Hamiltonian sys-
tem exhibits that same discrete symmetry. Formore details
see [54,66,82] and references therein.

The continuation of certain periodic orbits from an
unperturbed Hamiltonian system under dissipative per-
turbation can be based on Melnikov-like methods, again
see [66,137]. As above, this often leads to Abelian integrals,
for instance to count the number of periodic orbits that
branch off.

Reversible Perturbations

A dynamical system that admits a reflection symmetry R
mapping trajectories '(t; z0) to trajectories '(�t; R(z0)) is
called reversible. In the planar case we may restrict to the
reversing reflection

R : R2 �! R2

(x; y) 7! (x;�y) : (4)

All Hamiltonian functions H D 1
2 y

2 C V(x) which have
an interpretation “kinetic C potential energy” are re-
versible, and in general the class of reversible systems is
positioned between the class of Hamiltonian systems and
the class of dissipative systems. A guiding example is the
perturbed Duffing oscillator (with the roles of x and y ex-
changed so that (4) remains the reversing symmetry)

ẋ D �
1
6
y3 � y C "xy

ẏ D x

that combines the Hamiltonian character of the equilib-
rium at the origin with the dissipative character of the two
other equilibria. Note that all orbits outside the homoclinic
loop are periodic.

There are two ways in which the reversing symme-
try (4) imposes a Hamiltonian character on the dynamics.
An equilibrium that lies on the symmetry line fy D 0g has
a linearization that is itself a reversible system and conse-
quently the eigenvalues are subject to the same constraints
as in theHamiltonian case. (For equilibria z0 that do not lie
on the symmetry line the reflection R(z0) is also an equi-
librium, and it is to the union of their eigenvalues that
these constraints still apply.) Furthermore, every orbit that
crosses fy D 0gmore than once is automatically periodic,
and these periodic orbits form one-parameter families. In
particular, elliptic equilibria are still surrounded by peri-
odic orbits.

The dissipative character of a reversible system is most
obvious for orbits that do not cross the symmetry line.
Here R merely maps the orbit to a reflected counterpart.
The above perturbed Duffing oscillator exemplifies that
the character of an orbit crossing fy D 0g exactly once is
undetermined. While the homoclinic orbit of the saddle
at the origin has a Hamiltonian character, the heteroclinic
orbits between the other two equilibria behave like in a dis-
sipative system.

Perturbations of Periodic Orbits

The perturbation of a one-degree-of-freedom system by
a periodic forcing is a perturbation that changes the phase
space. Treating the time variable t as a phase space vari-
able leads to the extended phase space S1 �R2 and equi-
libria of the unperturbed system become periodic orbits,
inheriting the normal behavior. Furthermore introducing
an action conjugate to the “angle” t yields a Hamiltonian
system in two degrees of freedom.

While the one-parameter families of periodic orbits
merely provide the typical recurrent motion in one degree
of freedom, they form special solutions in two or more de-
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grees of freedom. Arcs of elliptic periodic orbits are partic-
ularly instructive. Note that these occur generically in both
the Hamiltonian and the reversible context.

Conservative Perturbations

Along the family of elliptic periodic orbits a pair e˙i˝ of
Floquetmultipliers passes regularly through roots of unity.
Generically this happens on a dense set of parameter val-
ues, but for fixed denominator q in e˙i˝ D e˙2	 ip/q the
corresponding energy values are isolated. The most im-
portant of such resonances are those with small denomi-
nators q.

For q D 1 generically a periodic center-saddle bifurca-
tion takes place where an elliptic and a hyperbolic periodic
orbit meet at a parabolic periodic orbit. No periodic orbit
remains under further variation of a suitable parameter.

The generic bifurcation for q D 2 is the period-dou-
bling bifurcation where an elliptic periodic orbit turns hy-
perbolic (or vice versa) when passing through a parabolic
periodic orbit with Floquet multipliers � 1. Furthermore,
a family of periodic orbits with twice the period emerges
from the parabolic periodic orbit, inheriting the normal
linear behavior from the initial periodic orbit.

In case q D 3, and possibly also for q D 4, generically
two arcs of hyperbolic periodic orbits emerge, both with
three (resp. four) times the period. One of these extends
for lower and the other for higher parameter values. The
initial elliptic periodic orbit momentarily loses its stability
due to these approaching unstable orbits.

Denominators q � 5 (and also the second possibility
for q D 4) lead to a pair of subharmonic periodic orbits
of q times the period emerging either for lower or for
higher parameter values. This is (especially for large q)
comparable to the behavior at Diophantine e˙i˝ where
a family of invariant tori emerges, cf. Sect. “Invariant
Curves of Planar Diffeomorphisms” below.

For a single pair e˙i˝ of Floquet multipliers this
behavior is traditionally studied for the (iso-energetic)
Poincaré-mapping, cf. [92] and references therein. How-
ever, the above description remains true in higher dimen-
sions, where additionally multiple pairs of Floquet mul-
tipliers may interact. An instructive example is the La-
grange top, the sleeping motion of which is gyroscopically
stabilized after a periodic Hamiltonian Hopf bifurcation;
see [56] for more details.

Dissipative Perturbations

There exists a large class of local bifurcations in the dis-
sipative setting, that can be arranged in a perturbation
theory setting, where the unperturbed system is Hamil-

tonian. The arrangement consists of changes of vari-
ables and rescaling. An early example of this is the Bog-
danov–Takens bifurcation [131,132]. For other examples
regarding nilpotent singularities, see [23,40] and refer-
ences therein.

To fix thoughts, consider families of planar maps and
let the unperturbed Hamiltonian part contain a center
(possibly surrounded by a homoclinic loop). The question
then is which of these persist when adding the dissipative
perturbation.

Usually only a definite finite number persists. As in
Subsect. “Chaos”, a Melnikov function can be invoked
here, possibly again leading to elliptic (Abelian) integrals,
Picard Fuchs equations, etc. For details see [61,124] and
references therein.

Invariant Curves of Planar Diffeomorphisms

This section starts with general considerations on cir-
cle diffeomorphisms, in particular focusing on persistence
properties of quasi-periodic dynamics. Our main refer-
ences are [2,24,29,31,70,71,139,140]. For a definition of ro-
tation number, see [58]. After this we turn to area preserv-
ing maps of an annulus where we discuss Moser’s twist
map theorem [104], also see [24,29,31]. The section is con-
cluded by a description of the holomorphic linearization of
a fixed point in a planar map [7,101,141,142].

Our main perspective will be perturbative, where we
consider circle maps near a rigid rotation. It turns out that
generally parameters are needed for persistence of quasi-
periodicity under perturbations. In the area preserving set-
ting we consider perturbations of a pure twist map.

Circle Maps

We start with the following general problem. Given a two-
parameter family

P˛;" : T 1 ! T 1; x 7! x C 2�˛ C "a(x; ˛; ")

of circle maps of class C1 . It turns out to be convenient to
view this two-parameter family as a one-parameter family
of maps

P" : T 1 � [0; 1]! T 1 � [0; 1];
(x; ˛) 7! (x C 2�˛ C "a(x; ˛; "); ˛)

of the cylinder. Note that the unperturbed system P0 is
a family of rigid circle rotations, viewed as a cylinder map,
where the individual map P˛;0 has rotation number ˛. The
question now is what will be the fate of this rigid dynamics
for 0 ¤ j"j 
 1.
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The classical way to address this question is to look for
a conjugation ˚", that makes the following diagram com-
mute

T 1 � [0; 1]
P"
�! T 1 � [0; 1]

" ˚" " ˚"

T 1 � [0; 1]
P0
�! T 1 � [0; 1] ;

i. e., such that

P" ı ˚" D ˚" ı P0 :

Due to the format of P" we take ˚" as a skew map

˚"(x; ˛) D (x C "U(x; ˛; "); ˛ C "�(˛; ")) ;

which leads to the nonlinear equation

U(x C 2�˛; ˛; ") � U(x; ˛; ")
D 2��(˛; ")C a (x C "U(x; ˛; "); ˛ C "�(˛; "); ")

in the unknown maps U and � . Expanding in powers of "
and comparing at lowest order yields the linear equation

U0(x C 2�˛; ˛) � U0(x; ˛) D 2��0(˛)C a0(x; ˛)

which can be directly solved by Fourier series. Indeed,
writing

a0(x; ˛) D
X

k2Z

a0k(˛)eikx ;

U0(x; ˛) D
X

k2Z

U0k(˛)eikx

we find �0 D �1/(2�)a00 and

U0k(˛) D
a0k(˛)

e2	 ik˛ � 1
:

It follows that in general a formal solution exists if and
only if ˛ 2 R nQ. Still, the accumulation of e2	 ik˛ � 1
on 0 leads to the celebrated small divisors [9,108], also
see [24,29,31,55].

The classical solution considers the following Dio-
phantine non-resonance conditions. Fixing � > 2 and
� > 0 consider ˛ 2 [0; 1] such that for all rationals p/q

ˇ̌
ˇ
ˇ˛ �

p
q

ˇ̌
ˇ
ˇ � �q

�� : (5)

This subset of such ˛s is denoted by [0; 1]�;� and is well-
known to be nowhere dense but of large measure as � > 0
gets small [115]. Note that Diophantine numbers are
irrational.

Hamiltonian Perturbation Theory (and Transition to Chaos),
Figure 2
Skew cylindermap, conjugating (Diophantine) quasi-periodic in-
variant circles of P0 and P"

Theorem 3 (Circle Map Theorem) For � sufficiently
small and for the perturbation "a sufficiently small
in the C1-topology, there exists a C1 transformation
˚" : T 1 � [0; 1]! T 1 � [0; 1], conjugating the restriction
P0j[0;1]�;� to a subsystem of P".

Theorem 3 in the present structural stability formula-
tion (compare with Fig. 2) is a special case of the results
in [29,31]. We here speak of quasi-periodic stability. For
earlier versions see [2,9].

Remark

� Rotation numbers are preserved by the map ˚" and ir-
rational rotation numbers correspond to quasi-period-
icity. Theorem 3 thus ensures that typically quasi-peri-
odicity occurs with positive measure in the parameter
space. Note that since Cantor sets are perfect, quasi-pe-
riodicity typically has a non-isolated occurrence.

� Themap˚" has no dynamical meaning inside the gaps.
The gap dynamics in the case of circle maps can be il-
lustrated by the Arnold family of circle maps [2,7,58],
given by

P˛;"(x) D x C 2�˛ C " sin x

which exhibits a countable union of open resonance
tongues where the dynamics is periodic, see Fig. 3. Note
that this map only is a diffeomorphism for j"j < 1.
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Hamiltonian Perturbation Theory (and Transition to Chaos),
Figure 3
Arnold resonance tongues; for " � 1 themaps are endomorphic

� We like to mention that non-perturbative versions of
Theorem 3 have been proven in [70,71,139].

� For simplicity we formulated Theorem 3 under
C1-regularity, noting that there exist many ways to
generalize this. On the one hand there existCk-versions
for finite k and on the other hand there exist fine tun-
ings in terms of real-analytic andGevrey regularity. For
details we refer to [24,31] and references therein. This
same remark applies to other results in this section and
in Sect. “KAM Theory: An Overview” on KAM theory.

A possible application of Theorem 3 runs as follows. Con-
sider a system of weakly coupled Van der Pol oscillators

ÿ1 C c1 ẏ1 C a1y1 C f1(y1; ẏ1) D "g1(y1; y2; ẏ1; ẏ2)
ÿ2 C c2 ẏ2 C a2y2 C f2(y2; ẏ2) D "g2(y1; y2; ẏ1; ẏ2) :

Writing ẏ j D z j; j D 1; 2, one obtains a vector field in
the four-dimensional phase space R2 � R2 D f(y1; z1);
(y2; z2)g. For " D 0 this vector field has an invariant
two-torus, which is the product of the periodic motions
of the individual Van der Pol oscillations. This two-
torus is normally hyperbolic and therefore persistent for
j"j 
 1 [73]. In fact the torus is an attractor andwe can de-
fine a Poincaré returnmapwithin this torus attractor. If we
include some of the coefficients of the equations as param-
eters, Theorem 3 is directly applicable. The above state-
ments on quasi-periodic circle maps then directly translate
to the case of quasi-periodic invariant two-tori. Concern-
ing the resonant cases, generically a tongue structure like
in Fig. 3 occurs; for the dynamics corresponding to param-
eter values inside such a tongue one speaks of phase lock.

Remark

� The celebrated synchronization ofHuygens’ clocks [77]
is related to a 1 : 1 resonance, meaning that the cor-
responding Poincaré map would have its parameters
in the main tongue with rotation number 0. Compare
with Fig. 3.

� There exist direct generalizations to cases with n-oscil-
lators (n 2 N), leading to families of invariant n-tori
carrying quasi-periodic flow, forming a nowhere dense
set of positive measure. An alteration with resonance
occurs as roughly sketched in Fig. 3. In higher dimen-
sion the gap dynamics, apart from periodicity, also can
contain strange attractors [112,126]. We shall come
back to this subject in a later section.

Area-Preserving Maps

The above setting historically was preceded by an area pre-
serving analogue [104] that has its origin in the Hamilto-
nian dynamics of frictionless mechanics.

Let � � R2 n f(0; 0)g be an annulus, with sympectic
polar coordinates ('; I) 2 T 1 � K, where K is an interval.
Moreover, let � D d' ^ dI be the area form on �.

We consider a �-preserving smooth map P" : �! �

of the form

P"('; I) D (' C 2�˛(I); I)C O(") ;

where we assume that the map I 7! ˛(I) is a (local) diffeo-
morphism. This assumption is known as the twist condi-
tion and P" is called a twist map. For the unperturbed case
" D 0 we are dealing with a pure twist map and its dynam-
ics are comparable to the unperturbed family of cylinder
maps as met in Subsect. “Circle Maps”. Indeed it is again
a family of rigid rotations, parametrized by I and where
P0(:; I) has rotation number ˛(I). In this case the ques-
tion is what will be the fate of this family of invariant cir-
cles, as well as with the corresponding rigidly rotational
dynamics.

Regarding the rotation number we again introduce
Diophantine conditions. Indeed, for � > 2 and � > 0 the
subset [0; 1]�;� is defined as in (5), i. e., it contains all
˛ 2 [0; 1], such that for all rationals p/q
ˇ̌
ˇ
ˇ˛ �

p
q

ˇ̌
ˇ
ˇ � �q

�� :

Pulling back [0; 1]�;� along the map ˛ we obtain a subset
��;� � �.

Theorem 4 (Twist Map Theorem [104]) For � suffi-
ciently small, and for the perturbation O(") sufficiently
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small in C1-topology, there exists a C1 transformation
˚" : �! �, conjugating the restriction P0j#�;� to a sub-
system of P".

As in the case of Theorem 3 again we chose the formula-
tion of [29,31]. Largely the remarks following Theorem 3
also apply here.

Remark

� Compare the format of the Theorems 3 and 4 and ob-
serve that in the latter case the role of the parameter ˛
has been taken by the action variable I. Theorem 4 im-
plies that typically quasi-periodicity occurs with posi-
tive measure in phase space.

� In the gaps typically we have coexistence of periodicity,
quasi-periodicity and chaos [6,9,35,107,108,123,137].
The latter follows from transversality of homo- and
heteroclinic connections that give rise to positive topo-
logical entropy. Open problems are whether the corre-
sponding Lyapunov exponents also are positive, com-
pare with the discussion at the end of the intro-
duction.

Similar to the applications of Theorem 3 given at the end
of Subsect. “Circle Maps”, here direct applications are pos-
sible in the conservative setting. Indeed, consider a system
of weakly coupled pendula

ÿ1 C ˛21 sin y1 D "
@U
@y1

(y1; y2)

ÿ2 C ˛22 sin y2 D "
@U
@y2

(y1; y2) :

Writing ẏ j D z j , j D 1; 2 as before, we again get a vec-
tor field in the four-dimensional phase space R2 � R2 D

f(y1; y2); (z1; z2)g. In this case the energy

H"(y1; y2; z1; z2)

D
1
2
z21 C

1
2
z22 � ˛

2
1 cos y1 � ˛

2
2 cos y2 C "U(y1; y2)

is a constant of motion. Restricting to a three-dimensional
energy surface H�1" D const:, the iso-energetic Poincaré
map P" is a twist map and application of Theorem 4 yields
the conclusion of quasi-periodicity (on invariant two-tori)
occurring with positive measure in the energy surfaces
of H".

Remark As in the dissipative case this example directly
generalizes to cases with n oscillators (n 2 N), again lead-
ing to invariant n-tori with quasi-periodic flow. We shall
return to this subject in a later section.

Linearization of Complex Maps

The Subsects. “Circle Maps” and “Area-Preserving Maps”
both deal with smooth circle maps that are conjugated to
rigid rotations. Presently the concern is with planar holo-
morphic maps that are conjugated to a rigid rotation on an
open subset of the plane. Historically this is the first time
that a small divisor problem was solved [7,101,141,142]
and� Perturbative Expansions, Convergence of.

Complex Linearization Given is a holomorphic germ
F : (C; 0)! (C; 0) of the form F(z) D z C f (z), with
f (0) D f 0(0) D 0. The problem is to find a biholomorphic
germ ˚ : (C; 0)! (C; 0) such that

˚ ı F D  � ˚ :

Such a diffeomorphism ˚ is called a linearization of F
near 0.

We begin with the formal approach. Given the series
f (z) D

P
j�2 f jz j , we look for ˚(z) D z C

P
j�2 � jz j . It

turns out that a solution always exists whenever  ¤ 0 is
not a root of unity. Indeed, direct computation reveals the
following set of equations that can be solved recursively:
For j D 2 get the equation (1 � )�2 D f2
For j D 3 get the equation (1 � 2)�3 D f3 C 2 f2�2
For j D n get the equation (1 � n�1)�n D fnCknown.
The question now reduces to whether this formal solution
has a positive radius of convergence.

The hyperbolic case 0 < jj ¤ 1 was already solved by
Poincaré, for a description see [7]. The elliptic case jj D 1
again has small divisors and was solved by Siegel when for
some � > 0 and � > 2 we have the Diophantine non-res-
onance condition

j � e2	 i
p
q j � � jqj�� :

The corresponding set of  constitutes a set of full measure
in T 1 D fg.

Yoccoz [141] completely solved the elliptic case using
the Bruno-condition. If

 D e2	 i˛ and when
pn
qn

is the nth convergent in the continued fraction expansion
of ˛ then the Bruno-condition reads

X

n

log(qnC1)
qn

<1 :

This condition turns out to be necessary and sufficient
for ˚ having positive radius of convergence [141,142].
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Cremer’s Example inHerman’s Version As an example
consider the map

F(z) D z C z2 ;

where  2 T 1 is not a root of unity.
Observe that a point z 2 C is a periodic point of F with

period q if and only if Fq(z) D z, where obviously

Fq(z) D qz C � � � C z2
q
:

Writing

Fq(z) � z D z


q � 1C � � � C z2

q�1
�
;

the period q periodic points exactly are the roots of the
right hand side polynomial. Abbreviating N D 2q � 1, it
directly follows that, if z1; z2; : : : ; zN are the nontrivial
roots, then for their product we have

z1 � z2 � : : : � zN D q � 1 :

It follows that there exists a nontrivial root within radius

jq � 1j1/N

of z D 0.
Now consider the set of � � T 1 defined as follows:

 2 � whenever

lim inf
q!1

jq � 1j1/N D 0 :

It can be directly shown that � is residual, again compare
with [115]. It also follows that for  2 � linearization is
impossible. Indeed, since the rotation is irrational, the ex-
istence of periodic points in any neighborhood of z D 0
implies zero radius of convergence.

Remark

� Notice that the residual set � is in the complement of
the full measure set of all Diophantine numbers, again
see [115].

� Considering  2 T 1 as a parameter, we see a certain
analogy of these results on complex linearization with
the Theorems 3 and 4. Indeed, in this case for a full
measure set of s on a neighborhood of z D 0 the map
F D F� is conjugated to a rigid irrational rotation.
Such a domain in the z-plane often is referred to as
a Siegel disc. For a more general discussion of these and
of Herman rings, see [101].

KAM Theory: An Overview

In Sect. “Invariant Curves of Planar Diffeomorphisms” we
described the persistent occurrence of quasi-periodicity in
the setting of diffeomorphisms of the circle or the plane.
The general perturbation theory of quasi-periodic motions
is known under the nameKolmogorov–Arnold–Moser (or
KAM) theory and discussed extensively elsewhere in this
encyclopedia�Kolmogorov–Arnold–Moser (KAM) The-
ory. Presently we briefly summarize parts of this KAM
theory in broad terms, as this fits in our considerations,
thereby largely referring to [4,80,81,119,121,143,144], also
see [20,24,55].

In general quasi-periodicity is defined by a smooth
conjugation. First on the n-torus T n D Rn/(2�Z)n con-
sider the vector field

X! D
nX

jD1

! j
@

@' j
;

where !1; !2; : : : ; !n are called frequencies [43,106].
Now, given a smooth (say, of class C1) vector field X
on a manifold M, with T � M an invariant n-torus,
we say that the restriction XjT is parallel if there exists
! 2 Rn and a smooth diffeomorphism ˚ : T ! T n ,
such that ˚�(XjT) D X! . We say that XjT is quasi-pe-
riodic if the frequencies !1; !2; : : : ; !n are independent
overQ.

A quasi-periodic vector field XjT leads to an integer
affine structure on the torus T. In fact, since each orbit is
dense, it follows that the self conjugations of X! exactly
are the translations of T n , which completely determine
the affine structure of T n . Then, given ˚ : T ! T n with
˚�(XjT ) D X! , it follows that the self conjugations of XjT
determines a natural affine structure on the torus T. Note
that the conjugation ˚ is unique modulo translations in T
and T n .

Note that the composition of ˚ by a translation of
T n does not change the frequency vector !. However,
the composition by a linear invertible map S 2 GL(n;Z)
yields S�X! D XS! . We here speak of an integer affine
structure [43].

Remark

� The transition maps of an integer affine structure are
translations and elements of GL(n;Z).

� The current construction is compatible with the inte-
grable affine structure on the Liouville tori of an inte-
grable Hamiltonian system [6]. Note that in that case
the structure extends to all parallel tori.
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Classical KAM Theory

The classical KAM theory deals with smooth, nearly inte-
grable Hamiltonian systems of the form

'̇ D !(I)C " f (I; '; ")
İ D "g(I; '; ") ;

(6)

where I varies over an open subset of Rn and ' over the
standard torus T n . Note that for " D 0 the phase space as
an open subset of Rn � T n is foliated by invariant tori,
parametrized by I. Each of the tori is parametrized by '
and the corresponding motion is parallel (or multi- peri-
odic or conditionally periodic) with frequency vector!(I).

Perturbation theory asks for persistence of the invari-
ant n-tori and the parallelity of their motion for small
values of j"j. The answer that KAM theory gives needs
two essential ingredients. The first ingredient is that of
Kolmogorov non-degeneracy which states that the map
I 2 Rn 7! !(I) 2 Rn is a (local) diffeomorphism. Com-
pare with the twist condition of Sect. “Invariant Curves of
Planar Diffeomorphisms”. The second ingredient general-
izes the Diophantine conditions (5) of that section as fol-
lows: for � > n � 1 and � > 0 consider the set

Rn
�;� D f! 2 Rn j jh!; kij � � jkj�� ; k 2 Zn nf0gg : (7)

The following properties are more or less direct. First
Rn
�;� has a closed half line geometry in the sense that

if ! 2 Rn
�;� and s � 1 then also s! 2 Rn

�;� . Moreover,
the intersection Sn�1 \Rn

�;� is a Cantor set of measure
Sn�1 nRn

�;� D O(� ) as � # 0, see Fig. 4.
Completely in the spirit of Theorem 4, the classi-

cal KAM theorem roughly states that a Kolmogorov non-
degenerate nearly integrable system (6)", for j"j 
 1 is
smoothly conjugated to the unperturbed version (6)0, pro-
vided that the frequency map! is co-restricted to the Dio-
phantine set Rn

�;� . In this formulation smoothness has to
be taken in the sense of Whitney [119,136], also compare
with [20,24,29,31,55,121].

As a consequence we may say that in Hamiltonian sys-
tems of n degrees of freedom typically quasi-periodic in-
variant (Lagrangian) n-tori occur with positive measure in
phase space. It should be said that also an iso-energetic
version of this classical result exists, implying a similar
conclusion restricted to energy hypersurfaces [6,9,21,24].
The Twist Map Theorem 4 is closely related to the iso-en-
ergetic KAM Theorem.

Remark

� We chose the quasi-periodic stability format as in
Sect. “Invariant Curves of Planar Diffeomorphisms”.

Hamiltonian Perturbation Theory (and Transition to Chaos),
Figure 4
The Diophantine set Rn

�;� has the closed half line geometry
and the intersection Sn�1 \Rn

�;� is a Cantor set of measure
Sn�1 nRn

�;� D O(�) as � # 0

For regularity issues compare with a remark following
Theorem 3.

� For applications we largely refer to the introduction
and to [24,31] and references therein.

� Continuing the discussion on affine structures at the
beginning of this section, we mention that by means
of the symplectic form, the domain of the I-variables in
Rn inherits an affine structure [60], also see [91] and
references therein.

Statistical Mechanics deals with particle systems that
are large, often infinitely large. The Ergodic Hypothesis
roughly says that in a bounded energy hypersurface, the
dynamics are ergodic, meaning that any evolution in the
energy level set comes near every point of this set.

The taking of limits as the number of particles tends
to infinity is a notoriously difficult subject. Here we dis-
cuss a few direct consequences of classical KAM theory
for many degrees of freedom. This discussion starts with
Kolmogorov’s papers [80,81], which we now present in
a slightly rephrased form. First, we recall that for Hamil-
tonian systems (say, with n degrees of freedom), typically
the union of Diophantine quasi-periodic Lagrangian in-
variant n-tori fills up positive measure in the phase space
and also in the energy hypersurfaces. Second, such a col-
lection of KAM tori immediately gives rise to non-ergodic-
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ity, since it clearly implies the existence of distinct invari-
ant sets of positive measure. For background on Ergodic
Theory, see e. g. [9,27] and [24] for more references. Ap-
parently the KAM tori form an obstruction to ergodicity,
and a question is how bad this obstruction is as n!1.
Results in [5,78] indicate that this KAM theory obstruction
is not too bad as the size of the system tends to infinity.
In general the role of the Ergodic Hypothesis in Statistical
Mechanics has turned out to be much more subtle than
was expected, see e. g. [18,64].

Dissipative KAM Theory

As already noted by Moser [105,106], KAM theory extends
outside the world of Hamiltonian systems, like to volume
preserving systems, or to equivariant or reversible systems.
This also holds for the class of general smooth systems,
often called dissipative. In fact, the KAM theorem allows
for a Lie algebra proof, that can be used to cover all these
special cases [24,29,31,45]. It turns out that in many cases
parameters are needed for persistent occurrence of (Dio-
phantine) quasi-periodic tori.

As an example we now consider the dissipative setting,
where we discuss a parametrized systemwith normally hy-
perbolic invariant n-tori carrying quasi-periodic motion.
From [73] it follows that this is a persistent situation and
that, up to a smooth (in this case of class Ck for large k)
diffeomorphism, we can restrict to the case where T n is
the phase space. To fix thoughts we consider the smooth
system

'̇ D !(�)C " f (';�; ")
�̇ D 0 ;

(8)

where � 2 Rn is a multi-parameter. The results of the
classical KAM theorem regarding (6)" largely carry over
to (8)�;".

Now, for " D 0 the product of phase space and param-
eter space as an open subset of T n �Rn is completely fo-
liated by invariant n-tori and since the perturbation does
not concern the �̇-equation, this foliation is persistent.
The interest is with the dynamics on the resulting invariant
tori that remains parallel after the perturbation; compare
with the setting of Theorem 3. As just stated, KAM the-
ory here gives a solution similar to the Hamiltonian case.
The analogue of the Kolmogorov non-degeneracy condi-
tion here is that the frequency map � 7! !(�) is a (local)
diffeomorphism. Then, in the spirit of Theorem 3, we state
that the system (8)�;" is smoothly conjugated to (8)�;0,
as before, provided that the map ! is co-restricted to the
Diophantine set Rn

�;� . Again the smoothness has to be

taken in the sense of Whitney [29,119,136,143,144], also
see [20,24,31,55].

It follows that the occurrence of normally hyperbolic
invariant tori carrying (Diophantine) quasi-periodic flow
is typical for families of systems with sufficiently many
parameters, where this occurrence has positive measure
in parameter space. In fact, if the number of parameters
equals the dimension of the tori, the geometry as sketched
in Fig. 4 carries over in a diffeomorphic way.

Remark

� Many remarks following Subsect. “Classical KAMThe-
ory” and Theorem 3 also hold here.

� In cases where the system is degenerate, for instance
because there is a lack of parameters, a path formalism
can be invoked, where the parameter path is required to
be a generic subfamily of the Diophantine setRn

�;� , see
Fig. 4. This amounts to the Rüssmann non-degeneracy,
that still gives positive measure of quasi-periodicity in
the parameter space, compare with [24,31] and refer-
ences therein.

� In the dissipative case the KAM theorem gives rise to
families of quasi-periodic attractors in a typical way.
This is of importance in center manifold reductions of
infinite dimensional dynamics as, e. g., in fluidmechan-
ics [125,126]. In Sect. “Transition to Chaos and Turbu-
lence” we shall return to this subject.

Lower Dimensional Tori

We extend the above approach to the case of lower di-
mensional tori, i. e., where the dynamics transversal to the
tori is also taken into account. We largely follow the set-
up of [29,45] that follows Moser [106]. Also see [24,31]
and references therein. Changing notation a little, we now
consider the phase space T n �Rm D fx(mod 2�); yg,
as well a parameter space f�g D P � Rs . We consider
a C1-family of vector fields X(x; y; �) as before, having
T n � f0g � T n �Rm as an invariant n-torus for � D
�0 2 P.

ẋ D !(�)C f (y; �)
ẏ D ˝(�) y C g(y; �)
�̇ D 0 ;

(9)

with f (y; �0) D O(jyj) and g(y; �0) D O(jyj2), so we as-
sume the invariant torus to be of Floquet type.

The system X D X(x; y; �) is integrable in the sense
that it is T n-symmetric, i. e., x-independent [29]. The in-
terest is with the fate of the invariant torus T n � f0g and
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its parallel dynamics under small perturbation to a system
X̃ D X̃(x; y; �) that no longer needs to be integrable.

Consider the smooth mappings ! : P ! Rn and
˝ : P! gl(m;R). To begin with we restrict to the case
where all eigenvalues of˝(�0) are simple and nonzero. In
general for such a matrix ˝ 2 gl(m;R), let the eigenval-
ues be given by ˛1 ˙ iˇ1; : : : ; ˛N1 ˙ iˇN1 and ı1; : : : ; ıN2 ,
where all ˛ j; ˇ j and ıj are real and hence m D 2N1 C N2.
Also consider the map spec : gl(m;R)! R2N1CN2 , given
by ˝ 7! (˛; ˇ; ı). Next to the internal frequency vector
! 2 Rn , we also have the vector ˇ 2 RN1 of normal fre-
quencies.

The present analogue of Kolmogorov non-degener-
acy is the Broer–Huitema–Takens (BHT) non-degeneracy
condition [29,127], which requires that the product map
! � (spec) ı˝ : P! Rn � gl(m;R) at� D �0 has a sur-
jective derivative and hence is a local submersion [72].

Furthermore, we need Diophantine conditions on
both the internal and the normal frequencies, generaliz-
ing (7). Given � > n � 1 and � > 0, it is required for all
k 2 Zn n f0g and all ` 2 ZN1 with j`j � 2 that

jhk; !i C h`; ˇij � � jkj�� : (10)

Inside Rn �RN1 D f!; ˇg this yields a Cantor set as be-
fore (compare Fig. 4). This set has to be pulled back along
the submersion ! � (spec) ı˝ , for examples see Sub-
sects. “(n � 1)-Tori” and “Quasi-periodic Bifurcations”
below.

The KAM theorem for this setting is quasi-periodic sta-
bility of the n-tori under consideration, as in Subsect. “Dis-
sipative KAM Theory”, yielding typical examples where
quasi-periodicity has positive measure in parameter space.
In fact, we get a little more here, since the normal linear
behavior of the n-tori is preserved by the Whitney smooth
conjugations. This is expressed as normal linear stability,
which is of importance for quasi-periodic bifurcations, see
Subsect. “Quasi-periodic Bifurcations” below.

Remark

� A more general set-up of the normal stability the-
ory [45] adapts the above to the case of non-sim-
ple (multiple) eigenvalues. Here the BHT non-degen-
eracy condition is formulated in terms of versal un-
folding of the matrix ˝(�0) [7]. For possible condi-
tions under which vanishing eigenvalues are admissible
see [29,42,69] and references therein.

� This general set-up allows for a structure preserv-
ing formulation as mentioned earlier, thereby includ-
ing the Hamiltonian and volume preserving case, as
well as equivariant and reversible cases. This allows

us, for example, to deal with quasi-periodic versions
of the Hamiltonian and the reversible Hopf bifurca-
tion [38,41,42,44].

� The Parameterized KAM Theory discussed here a pri-
ori needs many parameters. In many cases the pa-
rameters are distinguished in the sense that they are
given by action variables, etc. For an example see Sub-
sect. “(n � 1)-Tori” on Hamiltonian (n � 1)-tori Also
see [127] and [24,31] where the case of Rüssmann non-
degeneracy is included. This generalizes a remark at the
end of Subsect. “Dissipative KAM Theory”.

Global KAM Theory

We stay in the Hamiltonian setting, considering La-
grangian invariant n-tori as these occur in a Liouville in-
tegrable system with n degrees of freedom. The union of
these tori forms a smooth T n-bundle f : M ! B (where
we leave out all singular fibers). It is known that this bun-
dle can be non-trivial [56,60] as can be measured by mon-
odromy and Chern class. In this case global action angle
variables are not defined. This non-triviality, among other
things, is of importance for semi-classical versions of the
classical system at hand, in particular for certain spectrum
defects [57,62,134,135], for more references also see [24].

Restricting to the classical case, the problem is what
happens to the (non-trivial) T n-bundle f under small,
non-integrable perturbation. From the classical KAM the-
ory, see Subsect. “Classical KAMTheory” we already know
that on trivializing charts of f Diophantine quasi-periodic
n-tori persist. In fact, at this level, a Whitney smooth con-
jugation exists between the integrable system and its per-
turbation, which is even Gevrey regular [136]. It turns out
that these local KAM conjugations can be glued together
so to obtain a global conjugation at the level of quasi-pe-
riodic tori, thereby implying global quasi-periodic stabil-
ity [43]. Here we need unicity of KAM tori, i. e., indepen-
dence of the action-angle chart used in the classical KAM
theorem [26]. The proof uses the integer affine structure
on the quasi-periodic tori, which enables taking convex
combinations of the local conjugations subjected to a suit-
able partition of unity [72,129]. In this way the geometry
of the integrable bundle can be carried over to the nearly-
integrable one.

The classical example of a Liouville integrable sys-
tem with non-trivial monodromy [56,60] is the spher-
ical pendulum, which we now briefly revisit. The
configuration space is S2 D fq 2 R3 j hq; qi D 1g and
the phase space T�S2 Š f(q; p) 2 R6 j hq; qi D 1 and
hq; pi D 0g. The two integrals I D q1p2 � q2p1 (angu-
lar momentum) and E D 1

2 hp; pi C q3 (energy) lead to
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Hamiltonian Perturbation Theory (and Transition to Chaos),
Figure 5
Rangeof the energy-momentummap of the spherical pendulum

an energy momentum map EM : T�S2 ! R2, given by
(q; p) 7! (I; E) D

�
q1p2 � q2p1; 12 hp; pi C q3


. In Fig. 5

we show the image of the map EM. The shaded area B
consists of regular values, the fiber above which is a La-
grangian two-torus; the union of these gives rise to a bun-
dle f : M ! B as described before, where f D EMjM .
The motion in the two-tori is a superposition of Huy-
gens’ rotations and pendulum-like swinging, and the non-
existence of global action angle variables reflects that the
three interpretations of ‘rotating oscillation’, ‘oscillating
rotation’ and ‘rotating rotation’ cannot be reconciled in
a consistent way. The singularities of the fibration include
the equilibria (q; p) D ((0; 0;˙1); (0; 0; 0)) 7! (I; E) D
(0;˙1). The boundary of this image also consists of sin-
gular points, where the fiber is a circle that corresponds
to Huygens’ horizontal rotations of the pendulum. The
fiber above the upper equilibrium point (I; E) D (0; 1) is
a pinched torus [56], leading to non-trivial monodromy,
in a suitable bases of the period lattices, given by

�
1 �1
0 1

�
2 GL(2;R) :

The question here is what remains of the bundle f when
the system is perturbed. Here we observe that locally Kol-
mogorov non-degeneracy is implied by the non-trivial
monodromy [114,122]. From [43,122] it follows that the
non-trivial monodromy can be extended in the perturbed
case.

Remark

� The case where this perturbation remains integrable is
covered in [95], but presently the interest is with the

nearly integrable case, so where the axial symmetry is
broken. Also compare [24] and many of its references.

� The global conjugations of [43] are Whitney smooth
(even Gevrey regular [136]) and near the identity map
in the C1-topology [72]. Geometrically speaking these
diffeomorphisms also are T n-bundle isomorphisms
between the unperturbed and the perturbed bundle, the
basis of which is a Cantor set of positive measure.

Splitting of Separatrices

KAM theory does not predict the fate of close-to-resonant
tori under perturbations. For fully resonant tori the phe-
nomenon of frequency locking leads to the destruction
of the torus under (sufficiently rich) perturbations, and
other resonant tori disintegrate as well. In the case of a sin-
gle resonance between otherwise Diophantine frequencies
the perturbation leads to quasi-periodic bifurcations, cf.
Sect. “Transition to Chaos and Turbulence”.

While KAM theory concerns the fate of most trajecto-
ries and for all times, a complementary theorem has been
obtained in [93,109,110,113]. It concerns all trajectories
and states that they stay close to the unperturbed tori for
long times that are exponential in the inverse of the per-
turbation strength. For trajectories starting close to sur-
viving tori the diffusion is even superexponentially slow,
cf. [102,103]. Here a form of smoothness exceeding the
mere existence of infinitely many derivatives of the Hamil-
tonian is a necessary ingredient, for finitely differentiable
Hamiltonians one only obtains polynomial times.

Solenoids, which cannot be present in integrable sys-
tems, are constructed for generic Hamiltonian systems
in [16,94,98], yielding the simultaneous existence of rep-
resentatives of all homeomorphy-classes of solenoids. Hy-
perbolic tori form the core of a construction proposed
in [5] of trajectories that venture off to distant points of
the phase space. In the unperturbed system the union
of a family of hyperbolic tori, parametrized by the ac-
tions conjugate to the toral angles, form a normally hy-
perbolic manifold. The latter is persistent under pertur-
bations, cf. [73,100], and carries a Hamiltonian flow with
fewer degrees of freedom. Themain difference between in-
tegrable and non-integrable systems already occurs for pe-
riodic orbits.

Periodic Orbits

A sharp difference to dissipative systems is that it is generic
for hyperbolic periodic orbits on compact energy shells in
Hamiltonian systems to have homoclinic orbits, cf. [1] and
references therein. For integrable systems these form to-



4532 H Hamiltonian Perturbation Theory (and Transition to Chaos)

gether a pinched torus, but under generic perturbations
the stable and unstable manifold of a hyperbolic periodic
orbit intersect transversely. It is a nontrivial task to ac-
tually check this genericity condition for a given non-in-
tegrable perturbation, a first-order condition going back
to Poincaré requires the computation of the so-called
Mel’nikov integral, see [66,137] for more details. In two
degrees of freedom normalization leads to approxima-
tions that are integrable to all orders, which implies that
the Melnikov integral is a flat function. In the real ana-
lytic case the Melnikov criterion is still decisive in many
examples [65].

Genericity conditions are traditionally formulated in
the universe of smooth vector fields, and this makes the
whole class of analytic vector fields appear to be non-
generic. This is an overly pessimistic view as the conditions
defining a certain class of generic vector fields may cer-
tainly be satisfied by a given analytic system. In this respect
it is interesting that the generic properties may also be for-
mulated in the universe of analytic vector fields, see [28]
for more details.

(n � 1)-Tori

The (n � 1)-parameter families of invariant (n � 1)-tori
organize the dynamics of an integrable Hamiltonian sys-
tem in n degrees of freedom, and under small pertur-
bations the parameter space of persisting analytic tori is
Cantorized. This still allows for a global understanding of
a substantial part of the dynamics, but also leads to addi-
tional questions.

A hyperbolic invariant torus T n�1 has its Floquet ex-
ponents off the imaginary axis. Note that T n�1 is not
a normally hyperbolic manifold. Indeed, the normal linear
behavior involves the n � 1 zero eigenvalues in the direc-
tion of the parametrizing actions as well; similar to (9) the
format

ẋ D !(y)C O(y)C O(z2)

ẏ D O(y)C O(z3)

ż D ˝(y)z C O(z2)

in Floquet coordinates yields an x-independent matrix ˝
that describes the symplectic normal linear behavior,
cf. [29]. The union fz D 0g over the family of (n � 1)-tori
is a normally hyperbolic manifold and constitutes the cen-
ter manifold of T n�1. Separatrices splitting yields the di-
viding surfaces in the sense of Wiggins et al. [138].

The persistence of elliptic tori under perturbation
from an integrable system involves not only the internal
frequencies ofT n�1, but also the normal frequencies. Next

to the internal resonances the necessary Diophantine con-
ditions (10) exclude the normal-internal resonances

hk; !i D ˛ j (11)

hk; !i D 2˛ j (12)

hk; !i D ˛i C ˛ j (13)

hk; !i D ˛i � ˛ j : (14)

The first three resonances lead to the quasi-periodic
center-saddle bifurcation studied in Sect. “Transition to
Chaos and Turbulence”, the frequency-halving (or quasi-
periodic period doubling) bifurcation and the quasi-peri-
odic Hamiltonian Hopf bifurcation, respectively. The res-
onance (14) generalizes an equilibrium in 1 : 1 resonance
whence T n�1 persists and remains elliptic, cf. [78]. When
passing through resonances (12) and (13) the lower-di-
mensional tori lose ellipticity and acquire hyperbolic Flo-
quet exponents. Elliptic (n � 1)-tori have a single normal
frequency whence (11) and (12) are the only normal-in-
ternal resonances. See [35] for a thorough treatment of the
ensuing possibilities.

The restriction to a single normal-internal resonance
is dictated by our present possibilities. Indeed, already the
bifurcation of equilibria with a fourfold zero eigenvalue
leads to unfoldings that simultaneously contain all possi-
ble normal resonances. Thus, a satisfactory study of such
tori which alreadymay form one-parameter families in in-
tegrable Hamiltonian systems with five degrees of freedom
has to await further progress in local bifurcation theory.

Transition to Chaos and Turbulence

One of the main interests over the second half of the twen-
tieth century has been the transition between orderly and
complicated forms of dynamics upon variation of either
initial states or of system parameters. By ‘orderly’ we here
mean equilibrium and periodic dynamics and by compli-
cated quasi-periodic and chaotic dynamics, although we
note that only chaotic dynamics is associated to unpre-
dictability, e. g. see [27]. As already discussed in the in-
troduction systems like a forced nonlinear oscillator or the
planar three-body problem exhibit coexistence of periodic,
quasi-periodic and chaotic dynamics, also compare with
Fig. 1.

Similar remarks go for the onset of turbulence in fluid
dynamics. Around 1950 this led to the scenario of Hopf–
Landau–Lifschitz [75,76,83,84], which roughly amounts
to the following. Stationary fluid motion corresponds to
an equilibrium point in an 1-dimensional state space
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of velocity fields. The first transition is a Hopf bifurca-
tion [66,75,82], where a periodic solution branches off.
In a second transition of similar nature a quasi-periodic
two-torus branches off, then a quasi-periodic three-torus,
etc. The idea is that the motion picks up more and more
frequencies and thus obtains an increasingly complicated
power spectrum. In the early 1970s this idea was modified
in the Ruelle–Takens route to turbulence, based on the ob-
servation that, for flows, a three-torus can carry chaotic
(or strange) attractors [112,126], giving rise to a broad
band power spectrum. By the quasi-periodic bifurcation
theory [24,29,31] as sketched below these two approaches
are unified in a generic way, keeping track of measure the-
oretic aspects. For general background in dynamical sys-
tems theory we refer to [27,79].

Another transition to chaos was detected in the
quadratic family of interval maps

f�(x) D �x(1 � x) ;

see [58,99,101], also for a holomorphic version. This tran-
sition consists of an infinite sequence of period doubling
bifurcations ending up in chaos; it has several universal
aspects and occurs persistently in families of dynamical
systems. In many of these cases also homoclinic bifurca-
tions show up, where sometimes the transition to chaos
is immediate when parameters cross a certain boundary,
for general theory see [13,14,30,117]. There exist quite
a number of case studies where all three of the above sce-
narios play a role, e. g., see [32,33,46] and many of their
references.

Quasi-periodic Bifurcations

For the classical bifurcations of equilibria and periodic
orbits, the bifurcation sets and diagrams are generally
determined by a classical geometry in the product of
phase space and parameter space as already established
by, e. g., [8,133], often using singularity theory. Quasi-pe-
riodic bifurcation theory concerns the extension of these
bifurcations to invariant tori in nearly-integrable systems,
e. g., when the tori lose their normal hyperbolicity or when
certain (strong) resonances occur. In that case the dense
set of resonances, also responsible for the small divisors,
leads to a Cantorization of the classical geometries ob-
tained from Singularity Theory [29,35,37,38,39,41,44,45,
48,49,67,68,69], also see [24,31,52,55]. Broadly speaking,
one could say that in these cases the Preparation Theo-
rem [133] is partly replaced by KAM theory. Since the KAM
theory has been developed in several settings with or with-
out preservation of structure, see Sect. “KAM Theory: An

Overview”, for the ensuing quasi-periodic bifurcation the-
ory the same holds.

Hamiltonian Cases To fix thoughts we start with an ex-
ample in the Hamiltonian setting, where a robust model
for the quasi-periodic center-saddle bifurcation is given by

H!1;!2;�;"(I; '; p; q)

D !1I1 C !2I2 C
1
2
p2 C V�(q)C " f (I; '; p; q)

(15)

with V�(q) D 1
3 q

3 � �q, compare with [67,69]. The un-
perturbed (or integrable) case " D 0, by factoring out the
T 2-symmetry, boils down to a standard center-saddle bi-
furcation, involving the fold catastrophe [133] in the po-
tential function V D V�(q). This results in the existence
of two invariant two-tori, one elliptic and the other hyper-
bolic. For 0 ¤ j"j 
 1 the dense set of resonances compli-
cates this scenario, as sketched in Fig. 6, determined by the
Diophantine conditions

jhk; !ij � � jkj�� ; for q < 0 ;
jhk; !i C `ˇ(q)j � � jkj�� ; for q > 0

(16)

for all k 2 Zn n f0g and for all ` 2 Z with j`j � 2. Here
ˇ(q) D

p
2q is the normal frequency of the elliptic torus

given by q D p� for � > 0. As before, (cf. Sects. “Invari-
ant Curves of Planar Diffeomorphisms”, “KAM Theory:
An Overview”), this gives a Cantor set of positive mea-
sure [24,29,31,45,69,105,106].

For 0 < j"j 
 1 Fig. 6 will be distorted by a near-
identity diffeomorphism; compare with the formulations
of the Theorems 3 and 4. On the Diophantine Cantor set
the dynamics is quasi-periodic, while in the gaps generi-
cally there is coexistence of periodicity and chaos, roughly
comparable with Fig. 1, at left. The gaps at the border fur-
thermore lead to the phenomenon of parabolic resonance,
cf. [86].

Similar programs exist for all cuspoid and umbilic
catastrophes [37,39,68] as well as for the Hamiltonian
Hopf bifurcation [38,44]. For applications of this approach
see [35]. For a reversible analogue see [41]. As so often
within the gaps generically there is an infinite regress of
smaller gaps [11,35]. For theoretical background we refer
to [29,45,106], for more references also see [24].

Dissipative Cases In the general dissipative case we ba-
sically follow the same strategy. Given the standard bifur-
cations of equilibria and periodic orbits, we get more com-
plex situations when invariant tori are involved as well.
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Hamiltonian Perturbation Theory (and Transition to Chaos),
Figure 6
Sketch of the Cantorized Fold, as the bifurcation set of the quasi-
periodic center-saddle bifurcation for n D 2 [67], where the hor-
izontal axis indicates the frequency ratio !2 : !1, cf. (15). The
lower part of the figure corresponds to hyperbolic tori and the
upper part to elliptic ones. See the text for further interpreta-
tions

The simplest examples are the quasi-periodic saddle-node
and quasi-periodic period doubling [29] also see [24,31].

To illustrate the whole approach let us start from
the Hopf bifurcation of an equilibrium point of a vec-
tor field [66,75,82,116] where a hyperbolic point attrac-
tor loses stability and branches off a periodic solution,
cf. Subsect. “Dissipative Perturbations”. A topological nor-
mal form is given by
�

ẏ1
ẏ2

�
D

�
˛ �ˇ

ˇ ˛

��
y1
y2

�
�
�
y21 C y22

 � y1
y2

�

(17)

where y D (y1; y2) 2 R2, ranging near (0; 0). In this rep-
resentation usually one fixes ˇ D 1 and lets ˛ D � (near
0) serve as a (bifurcation) parameter, classifying modulo
topological equivalence. In polar coordinates (17) so gets
the form

'̇ D 1 ;

ṙ D �r � r3 :

Figure 7 shows an amplitude response diagram (often
called the bifurcation diagram). Observe the occurrence
of the attracting periodic solution for � > 0 of amplitude
p
�.
Let us briefly consider the Hopf bifurcation for fixed

points of diffeomorphisms. A simple example has the form

P(y) D e2	(˛Ciˇ )y C O(jyj2) ; (18)

y 2 C Š R2, near 0. To start with ˇ is considered a con-
stant, such that ˇ is not rational with denominator less

Hamiltonian Perturbation Theory (and Transition to Chaos),
Figure 7
Bifurcation diagram of the Hopf bifurcation

than five, see [7,132], and where O(jyj2) should contain
generic third order terms. As before, we let ˛ D � serve
as a bifurcation parameter, varying near 0. On one side of
the bifurcation value� D 0, this system has by normal hy-
perbolicity and [73], an invariant circle. Here, due to the
invariance of the rotation numbers of the invariant circles,
no topological stability can be obtained [111]. Still this bi-
furcation can be characterized by many persistent prop-
erties. Indeed, in a generic two-parameter family (18), say
with both ˛ and ˇ as parameters, the periodicity in the pa-
rameter plane is organized in resonance tongues [7,34,82].
(The tongue structure is hardly visible when only one pa-
rameter, like ˛, is used.) If the diffeomorphism is the re-
turn map of a periodic orbit for flows, this bifurcation pro-
duces an invariant two-torus. Usually this counterpart for
flows is called Neı̆mark–Sacker bifurcation. The period-
icity as it occurs in the resonance tongues, for the vector
field is related to phase lock. The tongues are contained in
gaps of a Cantor set of quasi-periodic tori with Diophan-
tine frequencies. Compare the discussion in Subsect. “Cir-
cle Maps”, in particular also regarding the Arnold family
and Fig. 3. Also see Sect. “KAMTheory: AnOverview” and
again compare with [115].

Quasi-periodic versions exist for the saddle-node, the
period doubling and the Hopf bifurcation. Returning to
the setting with T n �Rm as the phase space, we remark
that the quasi-periodic saddle-node and period doubling
already occur for m D 1, or in an analogous center man-
ifold. The quasi-periodic Hopf bifurcation needs m � 2.
We shall illustrate our results on the latter of these cases,
compare with [19,31]. For earlier results in this direction
see [52]. Our phase space is T n �R2 D fx(mod 2�); yg,
where we are dealing with the parallel invariant torus
T n � f0g. In the integrable case, by T n-symmetry we can
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reduce to R2 D fyg and consider the bifurcations of rela-
tive equilibria. The present interest is with small non-inte-
grable perturbations of such integrable models.

We now discuss the quasi-periodic Hopf bifurca-
tion [17,29], largely following [55]. The unperturbed, in-
tegrable family X D X�(x; y) on T n �R2 has the form

X�(x; y)
D [!(�)C f (y; �)]@x C [˝(�)y C g(y; �)]@y ;

(19)

were f D O(jyj) and g D O(jyj2) as before. Moreover
� 2 P is a multi-parameter and ! : P! Rn and˝ : P!
gl(2;R) are smooth maps. Here we take

˝(�) D
�
˛(�) �ˇ(�)
ˇ(�) ˛(�)

�
;

which makes the @y component of (19) compatible with
the planar Hopf family (17). The present form of Kol-
mogorov non-degeneracy is Broer–Huitema–Takens sta-
bility [29,42,45], requiring that there is a subset � � P on
which the map

� 2 P 7! (!(�);˝(�)) 2 Rn � gl(2;R)

is a submersion. For simplicity we even assume that � is
replaced by

(!; (˛; ˇ)) 2 Rn �R2 :

Observe that if the non-linearity g satisfies the well-known
Hopf non-degeneracy conditions, e. g., compare [66,82],
then the relative equilibrium y D 0 undergoes a standard
planar Hopf bifurcation as described before. Here ˛ again
plays the role of bifurcation parameter and a closed or-
bit branches off at ˛ D 0. To fix thoughts we assume that
y D 0 is attracting for ˛ < 0. and that the closed orbit oc-
curs for ˛ > 0, and is attracting as well. For the integrable
family X, qualitatively we have to multiply this planar sce-
nario with T n , by which all equilibria turn into invariant
attracting or repelling n-tori and the periodic attractor into
an attracting invariant (n C 1)-torus. Presently the ques-
tion is what happens to both the n- and the (nC 1)-tori,
when we apply a small near-integrable perturbation.

The story runs much like before. Apart from the BHT
non-degeneracy condition we require Diophantine condi-
tions (10), defining the Cantor set

� (2)
�;� D f(!; (˛; ˇ)) 2 � j jhk; !i C `ˇj � � jkj

�� ;

8k 2 Zn n f0g ;8` 2 Z with j`j � 2g ; (20)

In Fig. 8 we sketch the intersection of � (2)
�;� � Rn �R2

Hamiltonian Perturbation Theory (and Transition to Chaos),
Figure 8
Planar section of the Cantor set� (2)

�;�

with a plane f!g �R2 for a Diophantine (internal) fre-
quency vector !, cf. (7).

From [17,29] it now follows that for any family X̃
on T n �R2 � P, sufficiently near X in the C1-topology
a near-identity C1-diffeomorphism ˚ : T n �R2 � � !

T n�R2�� exists, defined nearT n � f0g � � , that conju-
gates X to X̃ when further restricting to T n � f0g � � (2)

�;� .
So this means that the Diophantine quasi-periodic invari-
ant n-tori are persistent on a diffeomorphic image of the
Cantor set � (2)

�;� , compare with the formulations of the
Theorems 3 and 4.

Similarly we can find invariant (nC 1)-tori. We first
have to develop a T nC1 symmetric normal form approxi-
mation [17,29] and�Normal Forms in Perturbation The-
ory. For this purpose we extend the Diophantine condi-
tions (20) by requiring that the inequality holds for all
j`j � N for N D 7. We thus find another large Cantor set,
again see Fig. 8, where Diophantine quasi-periodic invari-
ant (nC 1)-tori are persistent. Here we have to restrict to
˛ > 0 for our choice of the sign of the normal form coeffi-
cient, compare with Fig. 7.

In both the cases of n-tori and of (n C 1)-tori, the
nowhere dense subset of the parameter space containing
the tori can be fattened by normal hyperbolicity to open
subsets. Indeed, the quasi-periodic n- and (nC 1)-tori are
infinitely normally hyperbolic [73]. Exploiting the normal
form theory [17,29] and�Normal Forms in Perturbation
Theory to the utmost and using a more or less standard
contraction argument [17,53], a fattening of the parameter
domain with invariant tori can be obtained that leaves out
only small ‘bubbles’ around the resonances, as sketched
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Hamiltonian Perturbation Theory (and Transition to Chaos),
Figure 9
Fattening by normal hyperbolicity of a nowhere dense parame-
ter set with invariant n-tori in the perturbed system. The curve
H is the Whitney smooth (even Gevrey regular [136]) image
of the ˇ-axis in Fig. 8. H interpolates the Cantor set Hc
that contains the non-hyperbolic Diophantine quasi-periodic in-
variant n-tori, corresponding to � (2)

�;� , see (20). To the points
�1;2 2Hc discs A1;2 are attached where we find attracting
normally hyperbolic n-tori and similarly in the discs R1;2 re-
pelling ones. The contact between the disc boundaries andH
is infinitely flat [17,29]

and explained in Fig. 9 for the n-tori. For earlier results in
the same spirit in a case study of the quasi-periodic saddle-
node bifurcation see [49,50,51], also compare with [11].

A Scenario for the Onset of Turbulence

Generally speaking, in many settings quasi-periodicity
constitutes the order in between chaos [31]. In the Hopf–
Landau–Lifschitz–Ruelle–Takens scenario [76,83,84,126]
we may consider a sequence of typical transitions as
given by quasi-periodic Hopf bifurcations, starting with
the standard Hopf or Hopf–Neı̆mark–Sacker bifurcation
as described before. In the gaps of the Diophantine Can-
tor sets generically there will be coexistence of periodic-
ity, quasi-periodicity and chaos in infinite regress. As said
earlier, period doubling sequences and homoclinic bifur-
cations may accompany this.

As an example consider a family of maps that under-
goes a generic quasi-periodic Hopf bifurcation from cir-
cle to two-torus. It turns out that here the Cantorized fold
of Fig. 6 is relevant, where now the vertical coordinate is
a bifurcation parameter. Moreover compare with Fig. 3,
where also variation of " is taken into account. The Cantor
set contains the quasi-periodic dynamics, while in the gaps
we can have chaos, e. g., in the form of Hénon like strange
attractors [46,112]. A fattening process as explained above,
also can be carried out here.

Future Directions

One important general issue is the mathematical charac-
terization of chaos and ergodicity in dynamical systems,
in conservative, dissipative and in other settings. This is
a tough problem as can already be seen when considering
two-dimensional diffeomorphisms. In particular we refer
to the still unproven ergodicity conjecture of [9] and to the
conjectures around Hénon like attractors and the princi-
ple ‘Hénon everywhere’, compare with [22,32]. For a dis-
cussion see Subsect. “A Scenario for the Onset of Turbu-
lence”. In higher dimension this problem is even harder to
handle, e. g., compare with [46,47] and references therein.
In the conservative case a related problem concerns a bet-
ter understanding of Arnold diffusion.

Somewhat related to this is the analysis of dynamical
systems without an explicit perturbation setting. Here nu-
merical and symbolic tools are expected to become useful
to develop computer assisted proofs in extended perturba-
tion settings, diagrams of Lyapunov exponents, symbolic
dynamics, etc. Compare with [128]. Also see [46,47] for
applications and further reference. This part of the theory
is important for understanding concrete models, that of-
ten are not given in perturbation format.

Regarding nearly-integrable Hamiltonian systems,
several problems have to be considered. Continuing the
above line of thought, one interest is the development of
Hamiltonian bifurcation theory without integrable normal
form and, likewise, of KAM theory without action angle co-
ordinates [87]. One big related issue also is to develop KAM
theory outside the perturbation format.

The previous section addressed persistence of Dio-
phantine tori involved in a bifurcation. Similar to Cre-
mer’s example in Subsect. “Cremer’s Example in Her-
man’s Version” the dynamics in the gaps between persis-
tent tori displays new phenomena. A first step has been
made in [86] where internally resonant parabolic tori in-
volved in a quasi-periodic Hamiltonian pitchfork bifur-
cation are considered. The resulting large dynamical in-
stabilities may be further amplified for tangent (or flat)
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parabolic resonances, which fail to satisfy the iso-energetic
non-degeneracy condition.

The construction of solenoids in [16,94] uses ellip-
tic periodic orbits as starting points, the simplest exam-
ple being the result of a period-doubling sequence. This
construction should carry over to elliptic tori, where nor-
mal-internal resonances lead to encircling tori of the same
dimension, while internal resonances lead to elliptic tori
of smaller dimension and excitation of normal modes in-
creases the torus dimension. In this way one might be able
to construct solenoid-type invariant sets that are limits of
tori with varying dimension.

Concerning the global theory of nearly-integrable
torus bundles [43], it is of interest to understand the ef-
fects of quasi-periodic bifurcations on the geometry and
its invariants. Also it is of interest to extend the results
of [134] when passing to semi-classical approximations. In
that case two small parameters play a role, namely Planck’s
constant as well as the distance away from integrability.
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Glossary

Hamilton–Jacobi equations This class of first-order par-
tial differential equations has a central relevance in sev-
eral branches of mathematics, both from a theoreti-
cal and an application point of view. It is of primary
importance in classical mechanics, Hamiltonian dy-
namics, Riemannian and Finsler geometry, and opti-
mal control theory, as well. It furthermore appears in
the classical limit of the Schrödinger equation. A con-
nection with Hamilton’s equations, in the case where
the Hamiltonian has sufficient regularity, is provided
by the classical Hamilton–Jacobi method which shows
that the graph of the differential of any regular, say C1,
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global solution to the equation is an invariant subset
for the corresponding Hamiltonian flow. The draw-
back of this approach is that such regular solutions do
not exist in general, even for very regular Hamiltoni-
ans. See the next paragraph for more comments on this
issue.

Viscosity solutions As already pointed out, Hamilton–
Jacobi equations do not have in general global classi-
cal solutions, i. e. everywhere differentiable functions
satisfying the equation pointwise. The method of char-
acteristics just yields local classical solutions. This ex-
plains the need of introducing weak solutions. The
idea for defining those of viscosity type is to con-
sider C1 functions whose graph, up to an additive con-
stant, touches that of the candidate solution at a point
and then stay locally above (resp. below) it. These
are the viscosity test functions, and it is required that
the Hamiltonian satisfies suitable inequalities when its
first-order argument is set equal to the differential of
them at the first coordinate of the point of contact.
Similarly it is defined the notion of viscosity sub, su-
persolution. Clearly a viscosity solution satisfies point-
wise the equation at any differentiability points. A pe-
culiarity of the definition is that a viscosity solution
can admit no test function at some point, while the
nonemptiness of both classes of test functions is equiv-
alent to the solution being differentiable at the point.
Nevertheless powerful existence, uniqueness and sta-
bility results hold in the framework of viscosity solu-
tion theory. The notion of viscosity solutions was in-
troduced by Crandall and Lions at the beginning of
the 1980s.We refer to Bardi and Capuzzo Dolcetta [2],
Barles [3], Koike [24] for a comprehensive treatment
of this topic.

Semiconcave and semiconvex functions These are the
appropriate regularity notions when working with vis-
cosity solution techniques. The definition is given by
requiring some inequalities, involving convex combi-
nations of points, to hold. These functions possess vis-
cosity test functions of one of the two types at any
point. When the Hamiltonian enjoys coercivity prop-
erties ensuring that any viscosity solution is locally
Lipschitz-continuous then a semiconcave or semicon-
cave function is the solution if and only if it is classi-
cal solution almost everywhere, i. e. up to a set of zero
Lebesgue measure.

Metric approach This method applies to stationary
Hamilton–Jacobi equations with the Hamiltonian only
depending on the state and momentum variable. This
consists of defining a length functional, on the set
of Lipschitz-continuous curves, related to the corre-

sponding sublevels of the Hamiltonian. The associ-
ated length distance, obtained by performing the in-
fimum of the intrinsic length of curves joining two
given points, plays a crucial role in the analysis of the
equation and, in particular, enters in representation
formulae for any viscosity solution. One important
consequence is that only the sublevels of the Hamil-
tonian matter for determining such solutions. Accord-
ingly the convexity condition on the Hamiltonian can
be relaxed, just requiring quasiconvexity, i. e. convex-
ity of sublevels. Note that in this case the metric is of
Finsler type and the sublevels are the unit cotangent
balls of it.

Critical equations To any Hamiltonian is associated
a one-parameter family of Hamilton–Jacobi equa-
tions obtained by fixing a constant level of Hamilto-
nian. When studying such a family, one comes across
a threshold value underwhich no subsolutions may ex-
ist. This is called the critical value and the same name is
conferred to the corresponding equation. If the ground
space is compact then the critical equation is unique
among those of the family for which viscosity solutions
do exist. When, in particular, the underlying space is
a torus or, in other terms, the Hamiltonian is ZN -
periodic then such functions play the role of correctors
in related homogenization problems.

Aubry set The analysis of the critical equation shows that
the obstruction for getting subsolutions at subcritical
levels is concentrated on a special set of the ground
space, in the sense that no critical subsolution can
be strict around it. This is precisely the Aubry set.
This is somehow compensated by the fact that critical
subsolutions enjoy extra regularity properties on the
Aubry set.

Definition of the Subject

The article aims to illustrate some applications of weak
KAM theory to the analysis of Hamilton–Jacobi equations.
The presentation focuses on two specific problems, namely
the existence of C1 classical subsolutions for a class of sta-
tionary (i. e. independent of the time) Hamilton–Jacobi
equations, and the long-time behavior of viscosity solu-
tions of an evolutive version of it.

The Hamiltonian is assumed to satisfy mild regular-
ity conditions, under which the corresponding Hamil-
ton equations cannot be written. Consequently PDE tech-
niques will be solely employed in the analysis, since
the powerful tools of the Hamiltonian dynamics are not
available.
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Introduction

Given a continuous or more regular Hamiltonian H(x; p)
defined on the cotangent bundle of a boundaryless man-
ifold M, where x and p are the state and the momentum
variable, respectively, and satisfying suitable convexity and
coercivity assumptions, is considered the family of Hamil-
ton–Jacobi equations

H(x;Du) D a x 2 M ; (1)

with a a real parameter, as well as the time-dependent
version

wt C H(x;Dw) D 0 x 2 M ; t 2 (0;C1) ; (2)

where Du and ut stand for the derivative with respect
to state and time variable, respectively. As a matter of
fact, it will be set, for the sake of simplicity, to either
M D RN (noncompact case) orM D TN (compact case),
where TN indicates the flat torus endowed with the Eu-
clidean metric and with the cotangent bundle identified to
TN �RN .

The main scope of this article is to study the existence
of the C1 classical subsolution to (1), and the long-time be-
havior of viscosity solutions to (2) by essentially employing
tools issued from weak KAM theory.

Some of the results that will be outlined are valid with
the additional assumption of compactness for the under-
lying manifold, in particular those concerning the asymp-
totics of solutions to (2).

For both issues it is crucial to perform a qualitative
analysis of (1) for a known value of the parameter a, qual-
ified as critical; accordingly Eq. (1) is called critical when a
is equal to the critical value. This analysis leads to detec-
tion of a special closed subset of the ground space, named
after Aubry, where any locally Lipschitz-continuous sub-
solution to (1) enjoys some additional regularity proper-
ties, and behaves in a peculiar way. This will have a central
role in the presentation.

The requirements on H will be strengthened to obtain
some theorems, but we remain in a setting where the cor-
responding Hamilton equations cannot be written. Con-
sequently PDE techniques will be solely employed in the
analysis, since the powerful tools of Hamiltonian dynam-
ics are not available.

Actually the notion of critical value was independently
introduced by RicardoMañé at the beginning of the 1980s,
in connection with the analysis of integral curves of the
Euler–Lagrange flow enjoying some global minimizing
properties, and by P.L. Lions, S.R.S. Varadhan and G. Pa-
panicolaou [25] in 1987 in the framework of viscosity so-

lutions theory, for studying the periodic homogenization
of Hamilton–Jacobi equations.

The Aubry set was determined and analyzed by Serge
Aubry, in a pure dynamical way, as the union of the sup-
ports of integral curves of Euler–Lagrange flow possess-
ing suitable minimality properties. John Mather defined
(1986), in a more general framework, a set, contained in
the Aubry set, starting from special probability measures
invariant with respect to the flow. See Contreras and Itur-
riaga, [9], for an account on this theory.

The first author to point out the link between Aubry–
Mather theory and weak solutions to the critical Hamil-
ton–Jacobi equation was Albert Fathi, see [16,17], with the
so-called weak KAM theory (1996); he thoroughly inves-
tigated the PDE counterpart of the dynamical phenom-
ena occurring at the critical level. However, his investi-
gation is still within the framework of the dynamical sys-
tems theory, requires the Hamiltonian to be at least C2,
and requires the existence of associated Hamiltonian flow
as well.

The work of Fathi and Siconolfi (2005) [19,20], com-
pletely bypassed such assumptions and provided a geo-
metrical analysis of the critical equation independent of
the flow, which made it possible to deal with nonregu-
lar Hamiltonians. The new idea being the introduction
of a length functional, intrinsically related to H, for any
curve, and of the related distance, as well. The notion
of the Aubry set was suitably generalized to this broader
setting.

Other important contributions in bridging the gap be-
tween PDE and the dynamical viewpoint have been made
by Evans and Gomes [14,15].

The material herein is organized as follows: the
Sects. “Subsolutions”, “Solutions” are of introductory na-
ture and illustrate the notions of viscosity (sub)solution
with their basic properties. Some fundamental techniques
used in this framework are introduced as well. Sec-
tion “First Regularity Results for Subsolutions” deals with
issues concerning regularity of subsolutions to (1). The
key notion of the Aubry set is introduced in Sect. “Crit-
ical Equation and Aubry Set” in connection with the in-
vestigation of the critical equation, and a qualitative analy-
sis of it, specially devoted to looking into metric and dy-
namical properties, is performed in Sects. “An Intrinsic
Metric”, “Dynamical Properties of the Aubry Set”. Sec-
tions “Long-Time Behavior of Solutions to the Time-De-
pendent Equation”, “Main Regularity Result” present the
main results relative to the long-time behavior of solutions
to (2) and the existence of C1 subsolutions to (1). Finally,
Sect. “Future Directions” gives some ideas of possible de-
velopments in the topic.
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Subsolutions

First I will detail the basic conditions postulated through-
out the paper for H. Additional properties required for
obtaining some particular result, will be introduced when
needed. The Hamiltonian is assumed to be

continuous in both variables ; (3)

to satisfy the coercivity assumption

f(x; p) : H(y; p) � ag is compact for any a (4)

and the following quasiconvexity conditions for any x 2
M, a 2 R

fp : H(x; p) � ag is convex (5)

@fp : H(x; p) � ag D fp : H(x; p) D ag (6)

where @, in the above formula, indicates the boundary.
The a-sublevel of the Hamiltonian appearing in (5) will
be denoted by Za(x). It is a consequence of the coer-
civeness and convexity assumptions on H that the set-
valued map x 7! Za(x) possesses convex compact values
and, in force of (3), is upper semicontinuous; it is in addi-
tion continuous at any point x where int Za(x) ¤ ;. Here
(semi)continuous must be understood with respect to the
Hausdorff metric.

Next will be given four different definitions of weak
subsolutions to Eq. (1) and their equivalence will be
proved. From this it can be seen that the family of func-
tions so detected is intrinsically related to the equation. As
a matter of fact, it will be proved, under more stringent
assumptions, that this family is the closure of the classical
(i. e. C1) subsolutions in the locally uniform topology.

Some notations and definitions must be preliminarily
introduced. Given two continuous functions u and v, it is
said that v is a (strict) supertangent to u at some point x0
if such point is a (strict) local maximizer of u � v. The no-
tion of subtangent is obtained by replacing a maximizer
with a minimizer. Since (sub, super)tangents are involved
in the definition of viscosity solution, they will be called in
the sequel viscosity test functions. It is necessary to check:

Proposition 1 Let u be a continuous function possessing
both C1 supertangents and subtangents at a point x0, then u
is differentiable at x0.

Recall that by Rademacher Theorem a locally Lipschitz
function is differentiable almost everywhere (for short
a.e.), with respect to the Lebesgue measure. For such
a function w the (Clarke) generalized gradient at any

point x is defined by

@w(x) D cofp D lim
i
D w(xi ) : xi

differentiability point of u ; lim
i
xi D xg ;

where co denotes the convex hull.

Remark 2 Record for later use that this set of weak deriva-
tives can be retrieved even if the differentiability points are
taken not in the whole ground space, but just outside a set
of vanishing Lebesgue measure.

The generalized gradient is nonempty at any point; if it
reduces to a singleton at some x, then the function w is
strictly differentiable at x, i. e. it is differentiable and Du is
continuous at x. The set-valued function x 7! @w(x) pos-
sesses convex compact values and is upper semicontinu-
ous. The following variational property holds:

0 2 @w(x) at any local minimizer or maximizer of w ;
(7)

furthermore, if  is C1 then

@(w �  )(x) D @w(x) � D (x) : (8)

First definition of weak subsolution A function u is said
to be an a.e. subsolution to (1) if it is locally Lipschitz-con-
tinuous and satisfies

H(x;Du(x)) � a
for x in a subset ofM with full measure :

Second definition of weak subsolution A function u is
said to be a viscosity subsolution of first type to (1) if it is
continuous and

H(x0;D (x0)) � a ;

or equivalently

D (x0) 2 Za(x0) ;

for any x0 2 M, any C1 supertangent  to u at x0.

The previous definition can be equivalently rephrased by
taking test functions of class Ck, 1 < k � C1, or simply
differentiable, instead of C1.

Third definition of weak subsolution A function u is
a viscosity subsolution of second type if it satisfies the pre-
vious definition with subtangent in place of supertangent.
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Fourth definition of weak subsolution A function u is
a subsolution in the sense of Clarke if

@u(x) � Za(x) for all x 2 M :

Note that this last definition is unique based on a condition
holding at any point ofM, and not just at the differentiabil-
ity points of u or at points where some test function exists.
This fact will be exploited in the forthcoming definition of
strict subsolution.

Proposition 3 The previous four definitions are equiva-
lent.

We first show that the viscosity subsolutions of both types
are locally Lipschitz-continuous. It is exploited thatZa , be-
ing upper semicontinuous, is also locally bounded, namely
for any bounded subset B ofM there is a positive r with

Za(x) � B(0; r) for x 2 B ; (9)

where B(0; r) is the Euclidean ball centered at 0 with ra-
dius r. The minimum r for which (9) holds true will be
indicated by jZaj1;B . The argument is given for a viscos-
ity subsolution of first type, say u; the proof for the others
is similar.

Assume by contradiction that there is an open
bounded domain B1 where u is not Lipschitz-continuous,
then consider an open bounded domain B2 containing B1
such that

˛ :D inffjx � yj ; x 2 B1 ; y 2 @B2g > 0 ;

and choose an l0 such that

jZaj1;B2 < l0 (10)

sup
B2

u � inf
B1

u � l0˛ < 0 (11)

Since u is not Lipschitz-continuous on B1, a pair of points
x0, x1 in B1 can be found satisfying

u(x1) � u(x0) > l0jx1 � x0j ; (12)

which shows that the function x 7! u(x)� u(x0)� l0jx �
x0j), has a positive supremum in B2. On the other hand
such a function is negative on @B2 by (11), and so it attains
its maximum in B2 at a point x 2 B2, or, in other terms,
x 7! u(x0)C l0jx � x0j) is supertangent to u at x ¤ x0.
Consequently

l0
x1 � x0
jx1 � x0j

2 Za(x1) ;

in contradiction with (10).

Since at every differentiability point u can be taken as
a test function of itself, then any viscosity subsolution of
both types is also an a.e. subsolution. The a.e. subsolutions,
in turn, satisfy the fourth definition above, thanks to the
definition of generalized gradient, Remark 2, and the fact
that H is convex in p and continuous in both arguments.

Finally, exploit (7) and (8) to see that the differential
of any viscosity test function to u at some point x0 is con-
tained in @u(x0). This shows that any subsolution in the
Clarke sense is also a viscosity subsolution of the first and
second type.

In view of Proposition 3, from now on any element of
this class of functions will be called a subsolution of (1)
without any further specification, similarly the notion of
a subsolution in an open subset of M can be given. Note
that for any subsolution u, any bounded open domain B,
the quantity jZaj1;B is a Lipschitz constant in B for every
subsolution, consequently the family of all subsolutions
to (1) is locally equiLipschitz-continuous.

A conjugate Hamiltonian Ȟ can be associated to H, it
is defined by

Ȟ(x; p) D H(x;�p) for any x, p : (13)

Note that Ȟ satisfies, as H does, assumptions (3)–(5). The
two corresponding conjugate Hamilton–Jacobi equations
have the same family of subsolutions, up to a change of
sign, as is apparent looking at the first definition of subso-
lution.

Next we will have a closer look at the family of subso-
lutions to (1), denoted from now on by Sa ; the properties
deduced will be exploited in the next sections. Advantage
is taken of this to illustrate a couple of basic arguments
coming from viscosity solutions theory.

Proposition 4 The family Sa is stable with respect to the
local uniform convergence.

The key point in the proof of this result is to use the same
C1 function, at different points, for testing the limit as well
as the approximating functions. This is indeed the primary
trick to obtaining stability properties in the framework of
viscosity solutions theory.

Let un be a sequence in Sa and un ! u locally uni-
formly in M. Let  be a supertangent to u at some point
x0, it can be assumed, without loss of generality, that  
is a strict subtangent, by adding a suitable quadratic term.
Therefore, there is a compact neighborhoodU of x0 where
x0 itself is the unique maximizer of u �  . Any sequence
xn of maximizers of un �  inU converges to amaximizer
of u �  , and so xn ! x0, and consequently lies in the in-
terior of U for n large enough. In other terms  is super-
tangent to un at xn, when n is sufficiently large.
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Consequently H(xn;D (xn) � a, which implies, ex-
ploiting the continuity of the Hamiltonian and passing at
the limit, H(x0;D (x0)) � a, as desired.

Take into account the equiLipschitz character of sub-
solutions to (1), and the fact that the subsolution prop-
erty is not affected by addition of a constant, to obtain
by slightly adjusting the previous argument, and using the
Ascoli Theorem:

Proposition 5 Let un 2 San , with an converging to some a.
Then the sequence un converges to u 2 Sa , up to addition of
constants and extraction of a subsequence.

Before ending the section, a notion which will have some
relevance in what follows will be introduced.

A subsolution u is said to be strict in some open subset
˝ � M if

@u(x) � int Za(x) for any x 2 ˝ ;

where int stands for interior. Since the multivalued map
x 7! @u(x) is upper semicontinuous, this is equivalent to

ess sup˝0H(x;Du(x)) < a
for any˝ 0 compactly contained in˝ ;

where the expression compactly contained means that the
closure of ˝ 0 is compact and is contained in ˝ . Ac-
cordingly, the maximal (possibly empty) open subset Wu
where u is strict is given by the formula

Wu :D fx : @u(x) � int Za(x)g : (14)

Solutions

Unfortunately the relevant stability properties pointed out
in the previous section for the family of subsolutions, do
not hold for the a.e. solutions, namely the locally Lipschitz-
continuous functions satisfying the equation up to a sub-
set of M with vanishing measure. Take, for instance, the
sequence un in T 1, obtained by linear interpolation of

un
�

k
2n

�
D 0 for k even, 0 � k � 2n

un
�

k
2n

�
D

1
2n

for k odd, 0 � k � 2n ;

then it comprises a.e. solutions of (1), with H(x; p) D jpj
and a D 1. But its uniform limit is the null function, which
is an a.e. subsolution of the same equation, according to
Proposition 4, but fails to be an a.e. solution. This lack of
stability motivates the search for a stronger notion of weak

solution. The idea is to look at the properties of Sa with
respect to the operations of sup and inf.

Proposition 6 Let S̃ � Sa be a family of locally equi-
bounded functions, then the function defined as the point-
wise supremum, or infimum, of the elements of S̃ is a subso-
lution to (1).

Set u(x) D inffv(x) : v 2 S̃g. Let  , un be a C1 subtangent
to u at a point x0, and a sequence of functions in S̃ with
un(x0)! u(x0), respectively.

Since the sequence un is made up of locally equi-
bounded and locally equiLipschitz-continuous functions,
it locally uniformly converges, up to a subsequence,
by Ascoli Theorem, to a function w which belongs, in
force of Proposition 4, to Sa . In addition w(x0) D u(x0),
and w is supertangent to u at x0 by the very definition
of u. Therefore,  is also subtangent to v at x0 and so
H(x0;D (x0)) � a, which shows the assertion. The same
proof, with obvious adaptations, allows us to handle the
case of the pointwise supremum.

Encouraged by the previous result, consider the subso-
lutions of (1) enjoying some extremality properties. A def-
inition is preliminary. A family S̃ of locally equibounded
subsolutions to (1) is said to be complete at some point x0
if there exists "x0 such that if two subsolutions u1, u2 agree
outside some neighborhood of x0 with radius less than "x0
and u1 2 S̃ then u2 2 S̃.

The interesting point in the next proposition is that the
subsolutions which are extremalwith respect to a complete
family, possess an additional property involving the vis-
cosity test functions.

Proposition 7 Let u be the pointwise supremum (infi-
mum) of a locally equibounded family S̃ � Sa complete at
a point x0, and let be a C1 subtangent (supertangent) to u
at x0. Then H(x0;D (x0)) D a.

Only the case where u is a pointwise supremum will be
discussed. The proof is based on a push up method that
will be again used in the sequel.

If, in fact, the assertion were not true, there should
be a C1 strict subtangent  at x0, with  (x0) D u(x0),
such that H(x0;D (x0)) < a. The function  , being C1,
is a (classical) subsolution of (1) in a neighborhood U of
x0. Push up a bit the test function to define

v D

(
maxf C " ; ug in B(x0; ")
u otherwise

(15)

with the positive constant " chosen so that B(x0; ") � U
and " < "x0 , where "x0 is the quantity appearing in the def-
inition of a complete family of subsolutions at x0. By the
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Proposition 6, the function v belongs to Sa , and is equal to
u 2 S̃ outside B(x0; "). Therefore, v 2 S̃, which is in con-
trast with the maximality of u because v(x0) > u(x0).

Proposition 7 suggests the following two definitions of
weak solution in the viscosity sense, or viscosity solutions
for Eq. (1).

The function u is a viscosity solution of the first type if it
is a subsolution and for any x0, anyC1 subtangent to u at x0
one has H(x0;D (x0)) D a. The viscosity solutions of the
second type are definite by replacing the subtangent with
supertangent. Such functions are clearly a.e. solutions.

The same proof of Proposition 4, applied toC1 subtan-
gents as well as supertangents, gives:

Proposition 8 The family of viscosity solutions (of both
types) to (1) is stable with respect the local uniform conver-
gence.

Moreover, the argument of Proposition 6, with obvious
adaptations, shows:

Proposition 9 The pointwise infimum (supremum) of
a family of locally equibounded viscosity solutions of the
first (second) type is a viscosity solution of the first (second)
type to (1).

Morally, it can be said that the solutions of the first type
enjoy some maximality properties, and some minimality
properties hold for the others. Using the notion of the
strict subsolution, introduced in the previous section, the
following partial converse of Proposition 7 can be ob-
tained:

Proposition 10 Let ˝ , u, ' be a bounded open subset
of M, a viscosity solution to (1) of the first (second) type,
and a strict subsolution in ˝ coincident with u on @˝ , re-
spectively. Then u � ' (u � ') in˝ .

The proof rests on a regularization procedure of ' by mol-
lification. Assume that u is a viscosity solution of the first
type, the other case can be treated similarly. The argu-
ment is by contradiction, then admit that the minimizers
of u � ' in˝ (the closure of˝) are in an open subset˝ 0

compactly contained in˝ . Define for x 2 ˝ 0, ı > 0,

'ı (x) D
Z
�ı (y � x)'(y) dy ;

where �ı is a standard C1 mollifier supported in B(0; ı).
By using the convex character of the Hamiltonian and
Jensen Lemma, it can be found

H(x;D'ı (x)) �
Z
�ı (y � x)H(x;D'(y)) dy:

Therefore, taking into account the stability of the set of
minimizers under the uniform convergence, and that '

is a strict subsolution, ı can be chosen so small that 'ı
is a C1 strict subsolution of (1) in ˝ 0 and, in addition,
is subtangent to u at some point of ˝ 0. This is in con-
trast with the very definition of viscosity solution of the
first type. The above argument will be used again, and ex-
plained with some more detail, in the next section.

The family of viscosity solutions of first and second
type coincide for conjugate Hamilton–Jacobi equations,
with Hamiltonian H and Ȟ, up to a change of sign. More
precisely:

Proposition 11 A function u is a viscosity solution of the
first (second) type to

Ȟ(x;Du) D a in M (16)

if and only if �u is a viscosity solution of the second (first)
type to (1).

In fact, if u,  are a viscosity solution of the first type
to (16) and a C1 supertangent to �u at a point x0, respec-
tively, then�u is a subsolution to (1), and� is supertan-
gent to u at x0 so that

a D Ȟ(x0;�D (x0)) D H(x0;�D (x0)) ;

which shows that �u is indeed a viscosity solution of the
second type to (1). The other implications can be derived
analogously.

The choice between the two types of viscosity solutions
is just a matter of taste, since they give rise to two com-
pletely equivalent theories. In this article those of the first
type are selected, and they are referred to from now on as
(viscosity) solutions, without any further specification.

Next a notion of regularity is introduced, called semi-
concavity (semiconvexity), which fits the viscosity solu-
tions framework, and that will be used in a crucial way
in Sect. “Main Regularity Result”. The starting remark is
that even if the notion of viscosity solution of the first (sec-
ond) type is more stringent than that of the a.e. solution, as
proved above, the two notions are nevertheless equivalent
for concave (convex) functions. In fact a function of this
type, say u, which is locally Lipschitz-continuous, satisfies
the inequality

u(y) � (�) u(x0)C p (y � x) ;

for any x0, y, p 2 @u(x0). It is therefore apparent that it
admits (global) linear supertangents (subtangents) at any
point x0. If there were also aC1 subtangent (supertangent),
say , at x0, then u should be differentiable at x0 by Propo-
sition 1, and Du(x0) D D (x0), so that if u were an a.e.
solution then H(x0;D (x0)) D a, as announced.
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In the above argument the concave (convex) charac-
ter of u was not exploited to its full extent, but it was
just used to show the existence of C1 super(sub)tangents
at any point x and that the differentials of such test func-
tions make up @u. Clearly such a property is still valid for
a larger class of functions. This is the case for the family
of so-called strongly semiconcave (semiconvex) functions,
which are concave (convex) up to the subtraction (ad-
dition) of a quadratic term. This point will now be out-
lined for strongly semiconcave functions, a parallel analy-
sis could be performed in the strongly semiconvex case.

A function u is said to be strongly semiconcave if
u(x) � kjx � x0j2 is concave for some positive constant k,
some x0 2 M. Starting from the inequality

u(x1 C (1 � )x2) � kjx1 C (1 � )x2 � x0j2 �

(u(x1)� kjx1� x0j2)C (1�)(u(x2)� kjx2� x0j2)

which holds for any x1, x2,  2 [0; 1], it is derived through
straightforward calculations

u(x1 C (1 � )x2) � u(x1) � (1 � )u(x2)

� �k(1 � )jx1 � x2j2 ; (17)

which is actually a property equivalent to strong semicon-
cavity. This shows that for such functions the subtraction
of kjx � x0j2, for any x0 2 M, yields the concavity prop-
erty. Therefore, given any x0, and taking into account (8),
one has

u(x) � kjx � x0j2 � u(x0)C p(x � x0) ;

for any x, any p 2 @u(x0) which proves that the general-
ized gradient of u at x0 is made up by the differentials of
the C1 supertangents to u at x0. The outcome of the previ-
ous discussion is summarized in the following statement.

Proposition 12 Let u be a strongly semiconcave (semi-
convex) function. For any x, p 2 @u(x) if and only if it is
the differential of a C1 supertangent (subtangent) to u at x.
Consequently, the notions of a.e. solution to (1) and viscos-
ity solution of the first (second) type coincide for this class of
functions.

In Sect. “Main Regularity Result” a weaker notion of
semiconcavity will be introduced, obtained by requiring
a milder version of (17), which will be crucial to proving
the existence of C1 subsolutions to (1).

Even if the previous analysis, and in particular the part
about the equivalent notions of subsolutions, is only valid
for (1), one can define a notion of viscosity solution for
a wider class of Hamilton–Jacobi equations than (1), and

even for some second-order equations. To be more pre-
cise, given a Hamilton–Jacobi equation G(x; u; ;Du) D 0,
with G nondecreasing with respect to the second argu-
ment, a continuous function u is called the viscosity solu-
tion of it, if for any x0, any C1 supertangent (subtangent)
 to u at x0 the inequality

G(x0; u(x0);D (x0)) � (�) 0

holds true.
Loosely speaking the existence of comparison prin-

ciples in this context is related to the strict monotonic-
ity properties of the Hamiltonian with respect to u or
the presence in the equation of the time derivative of the
unknown. For instance such principles hold for (2), see
Sect. “Long-Time Behavior of Solutions to the Time-De-
pendent Equation”.

Obtaining uniqueness properties for viscosity solu-
tions to (1) is a more delicate matter. Such properties are
actually related to the existence of strict subsolutions, since
this, in turn, allows one to slightly perturb any solution ob-
taining a strict subsolution. To exemplify this issue, Propo-
sition 10 is exploited to show:

Proposition 13 Let˝ , g be an open-bounded subset of M
and a continuous function defined on @˝ , respectively. As-
sume that there is a strict subsolution ' to (1) in ˝ . Then
there is at most one viscosity solution to (1) in˝ taking the
datum g on the boundary.

Assume by contradiction the existence of two viscosity so-
lutions u and vwith v > u C " at some point of˝ , where "
is a positive constant. The function v� :D ' C (1 � )v
is a strict subsolution to (1) for any  2]0; 1], by the con-
vexity assumption on H. Further,  can be taken so small
that the points of˝ for which v� > u C "

2 make up a non-
empty set, say ˝ 0, are compactly contained in ˝ . This
goes against Proposition 10, because u and v� C "

2 agree
on @˝ 0 and the strict subsolution v� C "

2 exceeds u in˝ 0.

First Regularity Results for Subsolutions

A natural question is when does a classical subsolution
to (1) exist? The surprising answer is that it happens when-
ever there is a (locally Lipschitz) subsolution, provided the
assumptions on H introduced in the previous section are
strengthened a little. Furthermore, any subsolution can be
approximated by regular subsolutions in the topology of
locally uniform convergence.

This theorem is postponed to Sect. “Main Regularity
Result”. Some preliminary results of regularity for subso-
lution, holding under the assumptions (3)–(6), are pre-
sented below.
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Firstly the discussion concerns the existence of sub-
solutions to (1) that are regular, say C1, at least on some
distinguished subset of M. More precisely an attempt is
made to determine when such functions can be obtained
by mollification of subsolutions. The essential output is
that this smoothing technique works if the subsolution one
starts from is strict, so that, loosely speaking, some room
is left to perturb it locally, still obtaining a subsolution.
A similar argument has already been used in the proof of
Proposition 10.

In this analysis it is relevant the critical level of the
Hamiltonian which is defined as the one for which the cor-
responding Hamilton–Jacobi equation possesses a subso-
lution, but none of them are strict on the whole ground
space. It is also important subset ofM, named after Aubry
and indicated byA, made up of points around which no
critical subsolution (i. e. subsolution to (1) with a D c) is
strict.

According to what was previously outlined, to smooth
up a critical subsolution around the Aubry set, seems par-
ticulary hard, if not hopeless. This difficulty will be over-
come by performing a detailed qualitative study of the be-
havior of critical subsolutions onA.

The simple setting to be first examined is when there is
a strict subsolution, say u, to (1) satisfying

H(x;Du(x)) � a� " for a.e. x 2 M, and some " > 0 ;
(18)

and, in addition, H is uniformly continuous on M � B �
T�M, whenever B is a bounded subset of RN . In this case
the mollification procedure plainly works to supply a reg-
ular subsolution. The argument of Proposition 10 can be
adapted to show this. Define, for any x, any ı > 0

uı (x) D
Z
�ı (y � x)u(y) dy ;

where �ı is a standard C1 mollifier supported in B(0; ı),
and by using the convex character of the Hamiltonian and
Jensen Lemma, get

H(x;Duı (x)) �
Z
�ı (y � x)H(x;Du(y)) dy ;

so that if o(�) is a continuity modulus of H in M � B(0; r),
with r denoting a Lipschitz constant for u, a ı can be se-
lected in such a way that o(ı) � "

2 , and consequently uı
is the desired smooth subsolution, and is, in addition, still
strict onM.

Even if condition (18) does not hold on the whole un-
derlying space, the previous argument can be applied lo-
cally, to provide a smoothing of any subsolution u, at least

in the open subset Wu where it is strict (see (14) for the
definition of this set), by introducing countable open cov-
erings and associated C1 partition of the unity. The uni-
form continuity assumption onH as well as the global Lip-
schitz-continuity of u can be bypassed as well. It can be
proved:

Proposition 14 Given u 2 Sa with Wu nonempty, there
exists v 2 Sa , which is strict and of class C1 on Wu.

Note that the function v appearing in the statement is re-
quired to be a subsolution on the wholeM. In the proof of
Proposition 14 an extension principle for subsolutions will
be used that will be explained later.

Extension principle Let v and C be a subsolution to (1)
and a closed subset of M, respectively. Any continuous ex-
tension of vjC which is a subsolution on M n C is also a sub-
solution in the whole M.

The argument for showing Proposition 14 will also
provide the proof, with some adjustments, of themain reg-
ularity result, i. e. Theorem 35 in Sect. “Main Regularity
Result”.

By the very definition of Wu an open neighborhood
U 0x , compactly contained in Wu , can be found, for all
x 2 Wu , in such a way that

H(y;Du(y)) < a�"x for a.e. y 2 U 0x and some "x > 0:
(19)

Through regularization of u by means of a C1 mollifier
�ı supported in B(0; ı), for ı > 0 suitably small, a smooth
function can be then constructed still satisfying (19) in
a neighborhood of x slightly smaller than U 0x , say Ux. The
next step is to extract from fUxg, x 2Wu , a countable lo-
cally finite cover ofWu, say fUxi g, i 2 N. In the sequel the
notations Ui, "i are adopted in place of Uxi , "xi , respec-
tively. The regularized function is denoted by ui.

Note that such functions are not, in general, subsolu-
tions to (1) on M, since their behavior outside Ui cannot
be controlled. To overcome this difficulty a C1 partition
of the unity ˇi subordinated to Ui is introduced.

The crucial point here is that the mollification param-
eters, denoted by ıi, can be adjusted in such a way that the
uniform distance ju � ui j1;Ui is as small as desired. This
quantity, more precisely, is required to be small with re-
spect to 1

jDˇi j1
, 1
2i and the "j corresponding to indices j

such that Uj \ Ui ¤ ;. In place of 1
2i one could take the

terms of any positive convergent series with sum 1. De-
fine v via the formula

v D

(P
ˇiui in Wu

u otherwise :
(20)



Hamilton–Jacobi Equations andWeak KAM Theory H 4549

Note that a finite number of terms are involved in the sum
defining v inWu since the cover fUig is locally finite. It can
be surprising at first sight that the quantity

P
ˇiui , with

ui subsolution in Ui and ˇi supported in Ui, represents
a subsolution to (1), since, by differentiating, one gets

D

X

ˇiui
�
D
X

ˇi Dui C
X

Dˇiui ;

and the latter term does not seem easy to handle. The trick
is to express it through the formula

X
Dˇiui D

X
Dˇi(ui � u) ; (21)

which holds true because
P
ˇi � 1, by the very definition

of partition of unity, and so
P

Dˇi � 0. From (21) deduce
ˇ̌
ˇ
X

Dˇiui
ˇ̌
ˇ �

X
jDˇi j1 ju � ui j1;Ui ;

and consequently, recalling that ju � ui j1;Ui is small with
respect to 1

jDˇi j1

D

X

ˇiui
�
�
X

ˇi Dui :

Since the Hamiltonian is convex in p, ˇi is supported inUi
and ui is a strict subsolution to (1) inUi, we finally discover
that v, defined by (20), is a strict subsolution inWu.

Taking into account the extension principle for subso-
lutions, it is left to show, for proving Proposition 14, that v
is continuous. For this, first observe that for any n 2 N the
set

[i�nUi

is compact and disjoint from @Wu , and consequently

minfi : x 2 Uig ! C1

when x 2 Wu approaches @Wu :

This, in turn, implies, since ju � ui j1;Ui is small com-
pared to 1

2i ,

ˇ̌
ˇ
X

ˇi(x)ui (x) � u(x)
ˇ̌
ˇ �

X

fi : x2Uig

ˇi (x)ju � ui j1;Ui

�
X

fi : x2Uig

ˇi (x)
1
2i
! 0 ;

whenever x 2Wu approaches @Wu . This shows the asser-
tion.

The next step is to look for subsolutions that are strict
in a subset of M as large as possible. In particular a strict

subsolution to (1) on the wholeM does apparently exist at
any level a of the Hamiltonian with

a > inffb : H(x;Du) D b has a subsolutiong : (22)

The infimum on the right-hand side of the previous for-
mula is the critical value of H; it will be denoted from now
on by c. Accordingly the values a > c (resp. a < c) will be
qualified as supercritical (resp. subcritical). The inf in (22)
is actually a minimum in view of Proposition 5. By the co-
ercivity properties ofH, the quantity minp H(x; p) is finite
for any x, and clearly

c � sup
x

min
p

H(x; p) ;

which shows that c > �1, but it can be equal toC1 ifM
is noncompact. In this case no subsolutions to (1) should
exist for any a. In what follows it is assumed that c is fi-
nite. Note that the critical value for the conjugate Hamil-
tonian Ȟ does not change, since, as already noticed in
Sect. “Subsolutions”, the family of subsolutions of the two
corresponding Hamilton–Jacobi equations are equal up to
a change of sign.

From Proposition 14 can be derived:

Theorem 15 There exists a smooth strict subsolution to (1)
for any supercritical value a.

Critical Equation and Aubry Set

Here the attention is focused on the critical equation

H(x;Du) D c : (23)

A significant progress in the analysis is achieved by show-
ing that there is a critical subsolution v with Wv, see (14)
for the definition, enjoying a maximality property. More
precisely the following statement holds:

Proposition 16 There exists v 2 Sc with

Wv D W0 :D
[
fWu : u is a critical subsolutiong :

This result, combined with Proposition 14, gives the

Proposition 17 There exists a subsolution to (23) that is
strict and of class C1 on W0.

To construct v appearing in the statement of Proposi-
tion 16 a covering technique to W0, as in Proposition 14,
is applied and then the convex character of H is exploited.
Since no regularity issues are involved, there is no need to
introduce smoothing procedures and partitions of unity,
so the argument is altogether quite simple.
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Any point y 2W0 possesses a neighborhoodUy where
some critical subsolution vy satisfies

H(x;Dvy(x) � c�"y for a.e. x 2 Uy , some positive "y :

A locally finite countable subcover fUyi g, i 2 N , can be
extracted, the notations Ui, vi, "i are used in place of Uyi ,
vyi , "yi . The function v is defined as an infinite convex
combination of ui, more precisely v D

P 1
2i vi .

To show that v has the properties asserted in the
statement, note that the functions vi are locally equiLip-
schitz-continuous, being critical subsolutions, and can be
taken, in addition, locally equibounded, up to addition of
a constant. The series

P
i ui ,

P
i Dui are therefore lo-

cally uniformly convergent by theWeierstrassM-test. This
shows that the function v is well defined and is Lipschitz-
continuous, in addition

Dv(x) D
X

i Dui (x) for a.e. x :

If x belongs to the full measure set where v and all the vi
are differentiable, one finds, by exploiting the convex char-
acter of H

H

0

@x;
X

i�n

i Dui (x)

1

A �
X

i�n

iH(x;Dui (x))

C

0

@1 �
X

i�n

i

1

AH(x; 0) ;

for any fixed n. This implies, passing to the limit for n !
C1

H(x;Dv(x)) D H

 

x;
1X

iD1

i Dui (x)

!

�

1X

iD1

iH(x;Dui (x)) :

The function v is thus a critical subsolution, and, in addi-
tion, one has

H(x;Dv(x)) �
X

i¤ j

H(x;Dvi(x))C  jH(x;Dvj(x))

� c �  j" j ;

(24)

for any j and a.e. x 2 Uj . This yields Proposition 16 since
fUjg, j 2 N , is a locally finite open cover of W0, and so it
comes from (24) that the essential sup of v, on any open
set compactly contained inW0, is strictly less that c.

The Aubry set A is defined as M nW0. According to
Propositions 14, 16 it is made up by the bad points around

which no function of Sc can be regularized through mol-
lification still remaining a critical subsolution. The points
ofA are actually characterized by the fact that no critical
subsolution is strict around them. Note that a local as well
as a global aspect is involved in such a property, for the
subsolutions under investigation must be subsolutions on
the whole space. Note further thatA is also the Aubry set
for the conjugate critical equation with Hamiltonian Ȟ.

A qualitative analysis ofA is the main subject of what
follows. Notice that the Aubry set must be nonempty ifM
is compact, since, otherwise, one could repeat the argu-
ment used for the proof of Proposition 16 to get a finite
open cover fUig ofM and a finite family ui of critical sub-
solutions satisfying

H(x;Dui (x) � c�"i for a.e. x 2 Ui and some "i > 0;

and to have for a finite convex combination u D
P

i i ui

H(x;Du(x)) � c �min
i
fi"ig ;

in contrast with the very definition of critical value. If, on
the contrary,M is noncompact Hamiltonian such that the
corresponding Aubry set is empty, then it can be easily ex-
hibited.

One example is given by H(x; p) D jpj � f (x), in the
case where the potential f has no minimizers. It is eas-
ily seen that the critical level is given by � infM f , since,
for a less than this value, the sublevels Za(�) are empty at
some x 2 M and consequently the corresponding Hamil-
ton–Jacobi equation does not have any subsolution; on the
other side

H(x; 0) D � f (x) < � inf
M

f ;

which shows that any constant function is a strict criti-
cal subsolution onM. This, in turn, implies the emptiness
ofA.

In view of Proposition 14, one has:

Proposition 18 Assume that M is noncompact and the
Aubry set is empty, then there exists a smooth strict criti-
cal subsolution.

The points y ofA are divided into two categories accord-
ing to whether the sublevel Zc(y) has an empty or non-
empty interior. It is clear that a point y with int Zc(y) D ;
must belong toA because for such a point

H(y; p) D c for all p 2 Zc(y) ; (25)

and, since any critical subsolution u must satisfy
@u(y) � Zc(y), it cannot be strict around y. These points
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are called equilibria, and E indicates the set of all equi-
libria. The reason for this terminology is that if the
regularity assumptions on H are enough to write the
Hamilton’s equations on T�M, then (y; p0) is an equilib-
rium of the related flow with H(y; p0) D c if and only if
y 2 E and Zc(y) D fp0g. This point of viewwill not be de-
veloped further herein. From now on the subscript c will
be omitted to ease notations.

Next the behavior of viscosity test functions of any crit-
ical subsolution at points belonging to the Aubry set is in-
vestigated. The following assertion holds true:

Proposition 19 Let u, y,  be a critical subsolution,
a point of the Aubry set and a viscosity test function to u
at y, respectively. Then H(y;D (y)) D c.

Note that the content of the proposition is an immediate
consequence of (25) if, in addition, y is an equilibrium. In
the general case it is not restrictive to prove the statement
when  is a strict subtangent. Actually, if the inequality
H(y;D (y)) < c takes place, a contradiction is reached by
constructing a subsolution v strict around y by means of
the push-up argument introduced in Sect. “Subsolutions”
for proving Proposition 7.

By using the previous proposition, the issue of the ex-
istence of (viscosity) solutions to (23) or, more generally,
to (1) can be tackled. The starting idea is to fix a point y
inM, to consider the family

S̃ya D fu 2 Sa : u(y) D 0g ; (26)

and to define

wy
a (x) D sup

S̃ ya
u(x) ; (27)

Since S̃ya is complete (this terminology was introduced in
Sect. “Solutions”) at any x ¤ y, the function wy

a is a sub-
solution to (1) on M, and a viscosity solution to M n fyg,
by Propositions 6, 7.

If a D c, and the point y belongs toA then, in view of
Proposition 19, wy

c is a critical solution on the whole M.
On the contrary, the fact that y 62A i. e. y 2W0, prevents
this function from being a global solution. In fact in this
case, according to Propositions 14, 16, there is a critical
subsolution ', which is smooth and strict around y, and
it can be also assumed, without any loss of generality, to
vanish at y. Therefore, ' is subtangent to wy

c at y for the
maximality property of wy

c and H(y;D'(y)) < c. A char-
acterization of the Aubry set then follows:

First characterization of A A point y belongs to the
Aubry set if and only if the function wy

c , defined in (27)with
a D c, is a critical solution on the whole M.

IfA ¤ ;, which is true when M is compact, then the ex-
istence of a critical solution can be derived. Actually in
the compact case the critical level is the unique one for
which a viscosity solution to (1) does exist. If, in fact a > c,
then, by Theorem 15, the equation possesses a smooth
strict critical subsolution, say ', which is subtangent to
any other function f defined on M at the minimizers of
f � u, which do exist since M is assumed to be compact.
This rules out the possibility of having a solution of (1)
since H(x;D'(x)) < a for any x.

Next is discussed the issue that in the noncompact case
a solution does exist at the critical as well as at any super-
critical level.

Let a be supercritical. The idea is to exploit the non-
compact setting, and to throw away the points where the
property of being a solution fails, by letting them go to in-
finity.

Let wn :D wyn
a be a sequence of subsolutions given

by (27), with jyn j ! C1. The wn are equiLipschitz-
continuous, being subsolutions to (1), and locally equi-
bounded, up to the addition of a constant. One then gets,
using Ascoli Theorem and arguing along subsequences,
a limit function w. Since the wn are solutions around any
fixed point, for n suitably large, then, in view of the stabil-
ity properties of viscosity solutions, see Proposition 8, w
is a solution to (1) around any point of M, which means
that w is a viscosity solution on the whole M, as an-
nounced. The above outlined properties are summarized
in the next statement.

Proposition 20

(i) If M is compact then a solution to (1) does exist if and
only if a D c.

(ii) If M is noncompact then (1) can be solved in the viscos-
ity sense if and only if a � c.

An Intrinsic Metric

Formula (27) gives rise to a nonsymmetric semidistance
Sa(�; �) by simply putting

Sa(y; x) D wy
a (x) :

This metric viewpoint will allow us to attain a deeper in-
sight into the structure of the subsolutions to (1) as well as
of the geometric properties of the Aubry set.

It is clear that Sa satisfies the triangle inequality and
Sa(y; y) D 0 for any y. It fails, in general to be symmetric
and non-negative. It will be nevertheless called, from now
on, distance to ease terminology.

An important point to be discussed is that Sa is a length
distance, in the sense that a suitable length functional `a
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can be introduced in the class of Lipschitz-continuous
curves of M in such a way that, for any pairs of points x
and y, Sa(y; x) is the infimum of the lengths of curves
joining them. Such a length, will be qualified from now
on as intrinsic to distinguish it from the natural length on
the ground space, denoted by `. It only depends on the
corresponding sublevels of the Hamiltonian. More pre-
cisely one defines for a (Lipschitz-continuous) curve �
parametrized in an interval I

`a(�) D
Z

I
�a(�; �̇) dt ; (28)

where �a stands for the support function of the a-sublevel
of H. More precisely, the function �a is defined, for any
(x; q) 2 TM as

�a(x; q) D maxfp q : p 2 Za(x)g ;

it is accordingly convex and positively homogeneous in p,
upper semicontinuous in x, and, in addition, continuous
at any point possessing a sublevel with a nonempty inte-
rior. The positive homogeneity property implies that the
line integral in (28) is invariant under change of param-
eter preserving the orientation. The intrinsic length `a is
moreover lower semicontinuous for the uniform conver-
gence of a equiLipschitz-continuous sequence of curves,
by standard variational argument, see [7]. Let Sa denote
the length distance associated to `a , namely

Sa(y; x) D inff`a(�) : � connects y to xg :

The following result holds true:

Proposition 21 Sa and Sa coincide.

Note that by the coercivity of the Hamiltonian
`a(�) � r`(�) for some positive r. Taking into account
that the Euclidean segment is an admissible junction be-
tween any pair of points, deduce the inequality

jSa(y; x)j � rjy � xj for any y, x ;

which, combined with the triangle inequality, implies that
the function x 7! Sa(y; x) is locally Lipschitz-continuous,
for any fixed y. Let y0, x0 be a pair of points in M. Since
u :D Sa(y0; �) is locally Lipschitz-continuous, one has

Sa(y0; x0) D u(x0) � u(y0) D
Z

I

d
dt

u(�(t) dt

for any curve � connecting y0 to x0, defined in some inter-
val I. It is well known from [8] that

d
dt

u(�(t)) D p(t) �̇(t)

for a.e. t 2 I, some p(t) 2 @u(�(t)) ;

and, since @u(x) � Za(x) for any x, derive

Sa(y0; x0) � `a(�) for all every curve � joining y0 to x0;

which, in turn, yields the inequality Sa(y0; x0) � Sa(x0;
y0). The converse inequality is obtained by showing
that the function w :D Sa(y0; �) is a subsolution to (1),
see [20,29].

From now on the subscript from Za, Sa and �a will be
omitted in the case where a D c.

It is clear that, in general, the intrinsic length of curves
can have any sign. However, if the curve is a cycle such
a length must be non-negative, according to Proposi-
tion 21, otherwise going several times through the same
loop the identity Sa � �1 would be obtained. This re-
mark will have some relevance in what follows.

Proposition 21 allows us to determine the intrinsic
metric related to the a-sublevel of the conjugate Hamil-
tonian Ȟ, denoted by Ža(�). Since Ža(x) D �Za(x), for
any x, because of the very definition of Ȟ, the correspond-
ing support function �̌ satisfies

�̌a(x; q) D �a(x;�q) for any x, q :

Therefore, the intrinsic lengths `a and ˇ̀a coincide up to
a change of orientation. In fact, given � , defined in [0; 1],
and denoted by � (s) D �(1 � s) the curve with opposite
orientation, one has

ˇ̀a(�) D
Z 1

0
�a(�;��̇) ds ;

and using r D 1 � t as a new integration variable one
obtains
Z 1

0
�a(�;��̇) ds D

Z 1

0
�a(�; �̇ ) dr D `a(� ):

This yields

Ša(x; y) D Sa(y; x) for any x, y ;

where Ša stands for the conjugate distance. The function
Sa(�; y) is thus the pointwise supremum of the family

fv : v is a subsolution to (16) and v(y) D 0g ;

and accordingly �Sa(�; y) the pointwise infimum of fu 2
Sa : u(y) D 0g. Summing up:

Proposition 22 Given u 2 Sa , y 2 M, the functions
Sa(y; �),�Sa(�; y) are supertangent and subtangent, respec-
tively, to u at y.

The Extension Principle for subsolutions can now be
proved. Preliminarily the fifth characterization of the fam-
ily of subsolutions is given.
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Proposition 23 A continuous function u is a subsolution
to (1) if and only if

u(x) � u(y) � Sa(y; x) for any x, y : (29)

It is an immediate consequence that any subsolution sat-
isfies the inequality in the statement. Conversely, let  be
aC1 subtangent to u at some point y. By the inequality (29)
the subsolution x 7! Sa(y; x) is supertangent to u at y,
for any y. Therefore,  is subtangent to x 7! Sa(y; x) at
the same point, and so one has H(y;D (y)) � a, which
shows the assertion taking into account the third defini-
tion of subsolution given in Sect. “Subsolutions”.

To prove the Extension Lemma, one has to show that
a function w coincident with some subsolution to (1) on
a closed set C, and being a subsolution on M n C, is a sub-
solution on the whole M. The intrinsic length will play
a main role here. Two facts are exploited:

(i) if a curve connects two points belonging to C then the
corresponding variation of u is estimated from above
by the its intrinsic length because of Proposition 23,
and since u coincides with a subsolution to (1) on C,

(ii) the same estimate holds true for any pair of points if
the curve joining them lies outside C in force of the
property that u is a subsolution in M n C.

Let " be a positive constant, x, y a pair of points and �
a curve joining them, whose intrinsic length approximates
Sa(y; x) up to ". The interval of definition of � can be par-
titioned in such a way that the portion of the curve corre-
sponding to each subinterval satisfies the setting of one of
the previous items (i) and (ii). By exploiting the additivity
of the intrinsic length one finds

u(x) � u(y) � `a(�) � Sa(y; x)C " ;

and the conclusion is reached taking into account the
characterization of a subsolution given by Proposition 23,
and the fact that " is arbitrary.

To carry on the analysis, it is in order to discuss
an apparent contradiction regarding the Aubry set. Let
y0 2A n E and p0 2 int Z(y), then p0 is also in the in-
terior of the c-sublevels at points suitably close to y, say
belonging to a neighborhood U of y, since Z is continuous
at y. This implies

p (x � y0) � `c(�) ; (30)

for any x 2 U , any curve � joining y to X and lying in U.
However, this inequality does not imply by any means that
the function x 7! p(x � y) is subtangent to x 7! S(y; x)

at y. This, in fact, should go against Proposition 19, since
H(y; p0) < c.

The unique way to overcome the contradiction is to
admit that, even for points very close to y, the critical dis-
tance from y is realized by the intrinsic lengths of curves
going out of U. In this way one could not deduce from the
inequality (30) the previously indicated subtangency prop-
erty. This means that S is not localizable with respect to the
natural distance, and the behavior of the Hamiltonian in
points far from y in the Euclidean sense can affect it.

There thus exist a sequence of points xn converging
to y and a sequence of curves joining y to xn with intrinsic
length approximating S(y; xn) up to 1

n and going out U.
By juxtaposition of �n and the Euclidean segment from xn
to y, a sequence of cycles �n can be constructed based on y
(i. e. passing through y) satisfying

`c(�n)! 0 ; inf
n
`(�n) > 0 : (31)

This is a threshold situation, since the critical length of any
cycle must be non-negative. Next it is shown that (31) is
indeed a metric characterization of the Aubry set.

Metric characterization of the Aubry set A point y be-
longs to A if and only if there is a sequence �n of cycles
based on y and satisfying (31).

What remains is to prove that the condition (31) holds at
any equilibrium point and, conversely, that if it is true at
some y, then such a point belongs toA.

If y 2 E then this can be directly proved exploiting
that int Z(y) is empty and, consequently the sublevel, be-
ing convex, is contained in the orthogonal of some ele-
ment, see [20].

Conversely, let y 2 M nA, according to Proposi-
tion 17, there is a critical subsolution u which is of class
C1 and strict in a neighborhood U of y. One can there-
fore find a positive constant ı such that

Du(x) q � �(x; q)�ı for any x 2 U , any unit vector q:
(32)

Let now � be a cycle based on y and parametrized by the
Euclidean arc-length in [0; `(�)], then �(t) 2 U , for t be-
longing to an interval that can be assumed without loss
of generality of the form [0; t1] for some t1 � dist(y; @U)
(where dist indicates the Euclidean distance of a point
from a set). This implies, taking into account (32) and
that � is a cycle

`c(�) D `c


�
ˇ̌
[0;t1]

�
C `c



�
ˇ̌
[t1;T]

�

� (u(�(t1) � u(�(0))C ıt1 C (u(�(T) � u(�(t1))
� ı dist(y; @U))) :
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This shows that the condition (31) cannot hold for se-
quences of cycles passing through y. By slightly adapting
the previous argument, a further property of the intrinsic
critical length, to be used later in Sect. “Long-Time Behav-
ior of Solutions to the Time-Dependent Equation”, can be
deduced.

Proposition 24 Let M be compact. Given ı > 0, there are
two positive constants ˛, ˇ such that any curve � lying at
a distance greater than ı fromA satisfies

`c(�) � �˛ C ˇ`(�) :

An important property of the Aubry set is that it is
a uniqueness set for the critical equation, at least when the
ground space is compact. This means that two critical so-
lutions coinciding on A must coincide on M. More pre-
cisely it holds:

Proposition 25 Let M be compact. Given an admissible
trace g onA, i. e. satisfying the compatibility condition

g(y2) � g(y1) � S(y1; y2) ;

the unique viscosity solution taking the value g on A is
given by

minfg(y)C S(y; �) : y 2Ag :

The representation formula yields indeed a critical solu-
tion thanks to the first characterization of the Aubry set
and Proposition 9. The uniqueness can be obtained tak-
ing into account that there is a critical subsolution which
is strict and C1 in the complement of A (see Proposi-
tion 17), and arguing as in Proposition 13.

Some information on the Aubry set in the one-dimen-
sional case can be deduced from both the characterizations
ofA
Proposition 26 Assume M to have dimension 1, then

(i) if M is compact then eitherA D E orA D M,
(ii) if M is noncompact then A D E, and, in particular,

A D ; if E D ;.

In the one-dimensional case the c-sublevels are compact
intervals. Set Z(x) D [˛(x); ˇ(x)] with ˛, ˇ continuous,
and consider the Hamiltonian

H(x; p) D H(x; p � ˛(x)) :

It is apparent that u is a critical (sub)solution for H if
and only if u C F, where F is any antiderivative of ˛, is

a (sub)solution to H D c, and in addition, u is strict as
a subsolution in some˝ � M if and only if u C F is strict
in the same subset. This proves that c is also the critical
value for H.

Further, u 2 S̃yc for some y, with S̃yc defined as in (26),
if and only if u C F0, where F0 is the antiderivative of ˛
vanishing at y, is in the corresponding family of subsolu-
tions to H D c. Bearing in mind the first characterization
ofA, it comes that the Aubry sets of the two Hamiltoni-
ans H and H coincide.

The advantage of using H is that the corresponding
critical sublevels Z(x) equal [0; ˇ(x) � ˛(x)], for any x,
and accordingly the support function, denoted by � ,
satisfies

�(x; q) D
�

q (ˇ(x) � ˛(x)) if q > 0
0 if q � 0

for any x, q. This implies that the intrinsic critical length
related to H, say `c , is non-negative for all curves. Now,
assumeM to be noncompact and take y 62 E, the claim is
that y 62A. In fact, let " > 0 be such that

m :D inffˇ(x)� ˛(x) : x 2 I" :D]y � "; y C "[ g > 0 ;

given a cycle � based on y, there are two possibilities: ei-
ther � intersects @I" or is entirely contained in I". In the
first case

`c(�) � m " ; (33)

in the second case � can be assumed, without loosing gen-
erality, to be parametrized by the Euclidean arc-length;
since it is a cycle one has

Z `(�)

0
�̇ ds D 0 ;

so that �̇(t) D 1 for t belonging to a set of one-dimensional
measure `(�)2 . One therefore has

`c(�) � m
`(�)
2
: (34)

Inequalities (33), (34) show that `c(�) cannot be infinites-
imal unless `(�) is infinitesimal. Hence item (ii) of Propo-
sition 26 is proved. The rest of the assertion is obtained by
suitably adapting the previous argument.

Dynamical Properties of the Aubry Set

In this section the convexity and the coercivity assump-
tions on H are strengthened and it is required, in addition
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to (3),

H is convex in p (35)

lim
jpj!C1

H(x; p)
jpj

D C1 uniformly in x: (36)

The Lagrangian L can be therefore defined through the
formula

L(x; q) D maxfp q � H(x; p) : p 2 RNg :

A curve � , defined in some interval I, is said to be crit-
ical provided that

S(� (t1); � (t2)) D
Z t2

t1
L(�; �̇ )C c ds D �S(� (t2); � (t1)) ;

(37)

for any t1, t2 in I. It comes from the metric characteriza-
tion of A, given in the previous section, that any critical
curve is contained inA. In fact if such a curve is supported
on a point, say x0, then L(x0; 0) D �c and, consequently,
the critical value is the minimum of p 7! H(x; p). This, in
turn, implies, in view of (35), that the sublevel Z(x0) has
an empty interior so that x0 2 E �A.

If, on the contrary, a critical curve is nonconstant and
x1, x2 are a pair of different points lying in its support, then
S(x1; x2)C S(x2; x1) D 0 and there exist two sequences of
curves, �n and �n whose intrinsic length approximates the
S(x1; x2) and S(x2; x1), respectively. Hence the trajecto-
ries obtained through juxtaposition of �n and �n are cycles
with critical length infinitesimal and natural length esti-
mated from below by a positive constant, since they con-
tain x1 and x2, with x1 ¤ x2. This at last implies that such
points, and so the whole support of the critical curve, are
contained in the Aubry set.

Next the feature of the parametrization of a critical
curve � is investigated, since it apparently matters for
a curve to be critical. For this purpose let x0, q0 ¤ 0, and
p0 2 Z(x0) with �(x0; q0) D p0 q0, it comes from the def-
inition of the Lagrangian

�(x0; q0) � c D p0 q0 � H(x0; p0) � L(x0; q0) ;

by combining this formula with (37), and recalling the re-
lationship between intrinsic length and distance, one gets

L(�; �̇ )C c D �(�; �̇ ) for a.e. t : (38)

A parametrization is called Lagrangian if it satisfies the
above equality. As a matter of fact it is possible to prove
that any curve �, which stays far from E, can be endowed
with such a parametrization, see [10].

A relevant result to be discussed next is that the Aubry
set is fully covered by critical curves. This property allows
us to obtain precious information on the behavior of criti-
cal subsolution onA, and will be exploited in the next sec-
tions in the study of long-time behavior of solutions to (2).
More precisely the following result can be shown:

Theorem 27 Given y0 2A, there is a critical curve, de-
fined inR, taking the value y0 at t D 0.

If y0 2 E then the constant curve �(t) � y0 is critical, as
pointed out above. It can therefore be assumed y0 62 E . It
is first shown that a critical curve taking the value y0 at 0,
and defined in a bounded interval can be constructed.

For this purpose start from a sequence of cycles �n,
based on y0, satisfying the properties involved in the
metric characterization of A, and parametrized by (Eu-
clidean) arc length in [0; Tn], with Tn D `(�n). By exploit-
ing Ascoli Theorem, and arguing along subsequences, one
obtains a uniform limit curve � of the �n, with �(0) D y0,
in an interval [0; T], where T is strictly less than infn Tn . It
is moreover possible to show that � is nonconstant.

A new sequence of cycles �n can be defined through
juxtaposition of � , the Euclidean segment joining �(T) to
�n(T) and �n

ˇ̌
[T;Tn]

. By the lower semicontinuity of the in-
trinsic length, the fact that �n(T) converges to �(T), and
consequently the segment between them has infinitesimal
critical length, one gets

lim
n
`c(�n) D 0 : (39)

The important thing is that all the �n coincide with � in
[0; T], so that if t1 < t2 < T , S(�(t1); �(t2)) is estimated
from above by

`c



�
ˇ
ˇ
[t1;t2]

�
D `c

�
�n j[t1;t2]


;

and S(�(t2); �(t1)) by the intrinsic length of the portion of
�n joining �(t2) to �(t1). Taking into account (39) one gets

0 D lim
n
`c(�n) � S(�(t1); �(t2))C S(�(t2); �(t1)) ;

which yields the crucial identity

S(�(t2); �(t1)) D �S(�(t1); �(t2)) : (40)

In addition the previous two formulae imply that �
ˇ
ˇ
[t1;t2]

is a minimal geodesic whose intrinsic length realizes
S(�(t1; �(t2)), so that (40) can be completed as follows:

S(�(t2); �(t1)) D
Z t2

t1
�(�; �̇) ds D �S(�(t1); �(t2)) : (41)
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Finally, � has a Lagrangian parametrization, up to a change
of parameter, so that it is obtained in the end

Z t2

t1
�(�; �̇) ds D

Z t2

t1
(L(�; �̇)C c) ds :

This shows that � is a critical curve. By applying Zorn
lemma � can be extended to a critical curve defined in R,
which concludes the proof of Theorem 27.

As a consequence a first, perhaps surprising, result on
the behavior of a critical subsolution on the Aubry set is
obtained.

Proposition 28 All critical subsolutions coincide on any
critical curve, up to an additive constant.

If u is such a subsolution and � any curve, one has

S(�(t1); �(t2)) � u(�(t2))�u(�(t1)) � �S(�(t2); �(t1)) ;

by Proposition 22. If in addition � is critical then the pre-
vious formula holds with equality, which proves Proposi-
tion 28.

Next is presented a further result on the behavior of
critical subsolutions onA. From this it appears that, even
in the broad setting presently under investigation (the
Hamiltonian is supposed to be just continuous), such sub-
solutions enjoy some extra regularity properties onA.

Proposition 29 Let � be a critical curve, there is a negli-
gible set E in R such that, for any critical subsolution u the
function u ı � is differentiable whenever inR n E and

d
dt

u(�(t)) D �(�(t); �̇(t)) :

More precisely E is the complement in R of the set of
Lebesgue points of �(�; �̇) where, in addition, � is differ-
entiable. E has a vanishing measure thanks to Rademacher
and Lebesgue differentiability theorem. See [10] for a com-
plete proof of the proposition.

The section ends with the statement of a result, that
will be used for proving the forthcoming Theorem 34.
The proof can be obtained by performing Lagrangian
reparametrizations.

Proposition 30 Let � be a curve defined in [0; 1]. Denote
by � the set of curves obtained through reparametrization
of � in intervals with right endpoint 0, and for � 2 � indi-
cate by [0; T(� )] its interval of definition. One has

`c(�) D inf

(Z T(�)

0
(L(�; �̇ )C c) ds : � 2 �

)

:

Long-Time Behavior of Solutions
to the Time-Dependent Equation

In this section it is assumed, in addition to (3), (36),

M is compact (42)

H is strictly convex in p : (43)

A solution of the time-dependent Eq. (2) is said to be sta-
tionary if it has the variable-separated form

u0(x)� at ; (44)

for some constant a. Note that if  is a supertangent (sub-
tangent) to u0 at some point x0, then  � at is supertan-
gent (subtangent) to u0 � at at (x0; t) for any t, so that the
inequality

�aC H(x0;D (x0)) � (�) 0

holds true. Therefore, u0 is a solution to (1) in M. Since
such a solution does exist only when a D c, see Proposi-
tion 20, it is the case that in (44) u0 is a critical solution
and a is equal to c. The scope of this section is to show that
any solution to the time-dependent equation uniformly
converge to a stationary solution, as t goes toC1.

In our setting there is a comparison principle for (2),
stating that two solutions v, w, issued from initial data v0,
w0, with v0 � w0, satisfies v � w, from any x 2 M, t > 0.
In addition there exists a viscosity solution v, for any con-
tinuous initial datum v0, which is, accordingly, unique,
and is given by the Lax–Oleinik representation formula:

v(x; t) D inf
�
v0(�(0))C

Z t

0
L(�; �̇) ds :

� is a curve with �(t) D x
�
: (45)

This shows that Eq. (2) enjoys the semigroup property,
namely if w and v are two solutions with w(�; 0) D v(�; t0),
for some t0 > 0, then

w(x; t) D v(x; t0 C t) :

It is clear that the solution of (2), taking a critical solu-
tion u0 as initial datum, is stationary and is given by (44).
For any continuous initial datum v0 it can be found, since
the underlying manifold is compact, a critical solution u0
and a pair of constants ˛ > ˇ such that

u0 C ˛ > v0 > u0 C ˇ ;

and consequently by the comparison principle for (2)

u0 C ˛ > v(�; t)C ct > u0 C ˇ for any t :
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This shows that the family of functions x 7! v(x; t)C ct,
for t � 0, is equibounded. It can also be proved, see [10],
that it is also equicontinuous, so that, by Ascoli Theorem,
every sequence v(�; tn)C ctn , for tn !C1, is uniformly
convergent in M, up to extraction of a subsequence. The
limits obtained in this way will be called !-limit of v C ct.
The first step of the analysis is to show:

Proposition 31 Let v be a solution to (2). The pointwise
supremum and infimum of the !-limit of v C ct are critical
subsolutions.

The trick is to introduce a parameter " small and consider
the functions

v"(x; t) D v(x; t/") for " > 0 :

Arguing as above, it can be seen that the family v" C ct is
equibounded, moreover v" C ct is apparently the solution
to

"wt C H(x;Dw) D c ;

for any ". Hence, we exploit the stability properties that
have been illustrated in Sects “Subsolutions”, “Solutions”,
to prove the claim.

The following inequality will be used

L(x; q)C c � �(x; q) for any x, q;

which yields, by performing a line integration

Z t

0
(L(�; �̇ )C c) ds � `c(� ) ; (46)

for any t > 0, any curve � defined in [0; t], moreover, tak-
ing into account Lax–Oleinik formula and that M is as-
sumed in this section to be compact

v(x; t)C c t � v0(y)C S(y; x)
for some y depending on x ; (47)

for a solution v of (2) taking a function v0 as initial datum.
If, in addition, v0 is a critical subsolution, invoke Proposi-
tion 23 to derive from (47)

v(x; t) � v0(x)� c t for any x, t : (48)

A crucial point to be exploited, is that, for such a v0, the
evolution induced by (2) on the Aubry set takes place on
the critical curves. Given t > 0 and x 2A, pick a critical
curve � with �(t) D x0, whose existence is guaranteed by
Theorem 27, and then employ Proposition 29, about the

behavior of the subsolution to (23) on critical curves, to
obtain

v0(x) � c t D v0(�(0))C
Z t

0
L(�; �̇) ds � v(x; t) : (49)

By combining (49) and (48), one finally has

v(x; t) D v0(�(0))C
Z t

0
L(�; �̇) ds D v0(x) � c t ;

which actually shows the announced optimal character of
critical curves with respect to the Lax–Oleinik formula,
and, at the same time, the following

Proposition 32 Let v be a solution to (2) taking a critical
subsolution v0 as initial datum at t D 0. Then

v(x; t) D v0(x) � c t for any x 2A :

Summing up: stationary solutions are derived by taking as
initial datum solutions to (23); more generally, solutions
issued from a critical subsolution are stationary at least on
the Aubry set. The next step is to examine the long-time
behavior of such solutions on the wholeM.

Proposition 33 Let v be a solution to (2) taking a critical
subsolution v0 as initial datum at t D 0. One has

lim
t!C1

v(x; t)C c t D u0(x) uniformly in x;

where u0 is the critical solution with trace v0 onA.

The starting remark for getting the assertion is that, for
any given x0, an "-optimal curve for v(x0; t0), say � , must
be close toA for some t 2 [0; t0], provided " is sufficiently
small and t0 large enough.

If in fact � stayed far from A for any t 2 [0; t0] then
L(�(s); 0)C c could be estimated from below by a positive
constant, since E �A, and the same should hold true,
by continuity, for L(�(s); q)C c if jqj is small. One should
then deduce that `(�), and consequently (in view of Propo-
sition 24) `c(�) were large. On the other side

u0(x0) � v(x0; t0)C c t0 � v0(�(0))C `c(�) � " ; (50)

by (46) and the comparison principle for (2), which shows
that the critical length of � is bounded from above, yielding
a contradiction.

It can be therefore assumed that, up to a slight modi-
fication, the curve � intersectsA at a time s0 2 [0; t0] and
satisfies

v(x0; t0) � v0(�(0))C
Z t0

0
L(�; �̇) ds � "

� v(�(s0); s0))C
Z t0

s0
L(�; �̇) ds � " :
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It is known from Proposition 32 that v(�(s0); s0)) D
v0(�(s0)) � c s0, so we have from the previous inequality,
in view of (46)

v(x0; t0) � v0(�(s0)) � c t0 C `c


�
ˇ̌
[s0;t0]

�
� "

� v0(�(s0)) � c t0 C S(�(s0); x0) � " :

Bearing in mind the representation formula for u0 given
in Proposition 25, we obtain in the end

v(x0; t0) � u0(x0)� c t0 � " ;

and conclude exploiting u0 � v0 and the comparison prin-
ciple for (2).

The previous statement can be suitably generalized by
removing the requirement of v0 being a critical subsolu-
tion. One more precisely has:

Theorem 34 Let v be a viscosity solution to (2) taking
a continuous function v0 as initial datum for t D 0, then

lim
t!C1

v(x; t)C c t D u0(x) uniformly in x;

where u0 is the critical solution given by the formula

u0(x) D inf
y2A

inf
z2M

�
v0(z)C S(z; y)C S(y; x)


: (51)

The claim is that u0, as defined in (51), is the critical solu-
tion with trace

w0 :D inf
z2M

v0(z)C S(z; �) (52)

on the Aubry set. This can indeed be deduced from the
representation formula given in Proposition 25, once it is
proved that w0 is a critical subsolution. This property, in
turn, comes from the characterization of critical subsolu-
tions in terms of critical distance, presented in Proposi-
tion 23, the triangle inequality for S, and the inequalities

w0(x1) � w0(x2)
� v0(z2)CS(z2; x1)�v0(z2)�S(z2; x2) � S(x2; x1) ;

which hold true if z2 is a point realizing the infimum for
w0(x2). If, in particular, v0 itself is a critical subsolution,
then it coincides with w0, so that, as announced, Theo-
rem 34 includes Proposition 33.

In the general case, it is apparent that w0 � v0, more-
over if z 2 M andw0 is a critical subsolution withw0 � v0,
one deduces from Proposition 23

w0(x) � v0(z)C S(z; x) for any z;

which tells that w0 � w0, therefore w0 is the maximal crit-
ical subsolution not exceeding v0.

A complete proof of Theorem 34 is beyond the scope
of this presentation. To give an idea, we consider the sim-
plified case where the equilibria set E is a uniqueness set
for the critical equation.

Given x0 2 E, " > 0, take a z0 realizing the infimum
for w0(x0), and a curve �, connecting z0 to x0, whose in-
trinsic length approximates S(z0; x0) up to ". By invoking
Proposition 30 one deduces that, up to a change of the pa-
rameter, such a curve, defined in [0; T], for some T > 0,
satisfies
Z T

0
(L(�; �̇)C c) ds < `c(�)C " :

Therefore, taking into account the Lax–Oleinik formula,
one discovers

w0(x0) � v0(z0)C
Z T

0
(L(�; �̇)C c) ds � 2"

� v(x0; T)C cT � 2" :
(53)

Since L(x0; 0)C c D 0, by the very definition of equilib-
rium, it can be further derived from Lax–Oleinik formula
that t 7! v(x0; t) is nonincreasing, so that the inequal-
ity (53) still holds if T is replaced by every t > T . This, to-
gether with the fact that " in (53) is taken arbitrarily, shows
in the end, that any !-limit  of v C ct satisfies

w0(x0) �  (x0) for any x0 2 E : (54)

On the other side, the initial datum v0 is greater than or
equal to w0, and the solution to (2) with initial datum w0,
say w, has as unique !-limit the critical solution u0 with
trace w0 on E [recall that E is assumed to be a uniqueness
set for (23)]. Consequently, by the comparison principle
for (2), one obtains

u0 �  inM ; (55)

which, combined with (54), implies that  and w0 coin-
cide on E. Further, by Proposition 31, the maximal and
minimal  are critical subsolutions, and u0 is the maxi-
mal critical subsolution taking the value w0 on E. This fi-
nally yields  D u0 for any  , and proves the assertion of
Theorem 34.

In the general case the property of the set of !-lim-
its of critical curves (i. e. limit points for t !C1) of be-
ing a uniqueness set for the critical equation must be ex-
ploited. In this setting the strict convexity ofH is essential,
in [4,10] there are examples showing that Theorem34 does
not hold for H just convex in p.
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Main Regularity Result

This section is devoted to the discussion of

Theorem 35 If the Eq. (1) has a subsolution then it also
admits a C1 subsolution. Moreover, the C1 subsolutions are
dense in Sa with respect to the local uniform convergence.

Just to sum up: it is known that a C1 subsolution does exist
when a is supercritical, see Theorem 15, and if the Aubry
set is empty, see Proposition 18. So the case where a D c
andA ¤ ; is left. The starting point is the investigation of
the regularity properties of any critical subsolution onA.

For this, and for proving Theorem 35 condi-
tions (43), (35) on H are assumed, and (3) is strengthened
by requiring

H is locally Lipschitz-continuous in both arguments.
(56)

This regularity condition seems unavoidable to show
that the functions Sa(y; �) and Ša(y; �) D Sa(�; y) enjoy
a weak form of semiconcavity inM n fyg, for all y, namely,
if v is any function of this family, x1, x2 are different from y
and  2 [0; 1], then

v(x1 C (1 � )x2) � v(x1) � (1 � )v(x2)

can be estimated from below by a quantity of the same
type as that appearing on the right-hand side of (17), with
jx1 � x2j2 replaced by a more general term which is still
infinitesimal for jx1 � x2j ! 0. Of course the fundamen-
tal property of possessing C1 supertangents at any point
different from y and that the set made up by their differen-
tials coincides with the generalized gradient is maintained
in this setting.

To show the validity of this semiconcavity property,
say for Sa(y; �), at some point x it is crucial that for any
neighborhood U of x suitably small there are curves join-
ing y to x and approximating Sa(y; x) which stays in U for
a (natural) length greater than a fixed constant depending
on U. This is clearly true if x ¤ y and explains the rea-
son why the initial point y has been excluded. However,
if a D c and y 2A, exploiting the metric characterization
of the Aubry set, it appears that this restriction on y can be
removed, so that the following holds:

Proposition 36 Let y 2A, then the functions S(y; �) and
S(�; y) are semiconcave (in the sense roughly explained
above) on the wholeM. This, in particular, implies that both
functions possess C1 supertangents at y and their differen-
tials comprise the generalized gradient.

From this the main regularity property of critical subsolu-
tions on A are deduced. This reinforces the results given
in Propositions 28, 29 under less stringent assumptions.

Theorem 37 Every critical subsolution is differentiable
on A. All have the same differential, denoted by p(y), at
any point y 2A, and

H(y; p(y)) D c :

Furthermore, the function y 7! p(y) is continuous onA.

It is known from Proposition 22 that S(y; �), �S(�; y) are
supertangent and subtangent, respectively, to every critical
subsolution u at any y. If, in particular, y 2A then S(y; �)
and �S(�; y) admit C1 supertangents and subtangents, re-
spectively, thanks to Proposition 36. This, in turn, implies
that u is differentiable at y by Proposition 1 and, in addi-
tion, that all the differentials of supertangents to S(y; �) co-
incide with Du(y), which shows that its generalized gradi-
ent reduces to a singleton and so S(y; �) is strictly differen-
tiable at y by Proposition 36. If p(y) denotes the differential
of S(y; �) at y, then Du(y) D p(y) for any critical subsolu-
tion and, in addition, H(y; p(y)) D c by Proposition 19.
Finally, the strict differentiability of S(y; �) at y gives that
p(�) is continuous onA.

The first application of Theorem 37 is relative to criti-
cal curves, and confirm their nature of generalized charac-
teristics. If � is such a curve (contained inA by the results
of Sect. “Dynamical Properties of the Aubry Set”) and u
a critical subsolution, it is known from Proposition 29 that

d
dt

u(�(t) D p(�(t)) �̇(t) D �(�(t); �̇(t))

D L(�(t); �̇(t))C c ;

for a.e. t 2 R. Bearing in mind the definition of L, it is
deduced that p(�(t)) is a maximizer of p 7! p �̇(t) �
H(�(t); p), then by invoking (7) one obtains:

Proposition 38 Any critical curve � satisfies the differen-
tial inclusion

�̇ 2 @pH(�; p(�)) for a.e. t 2 R :

In the statement @p denotes the generalized gradient with
respect to the variable p.

The proof of Theorem 35 is now attacked. Combining
Proposition 17 and Theorem 37, it is shown that there ex-
ists a critical subsolution, say w, differentiable at any point
ofM, strict and of class C1 outside the Aubry set, and with
Dw

ˇ̌
A D p(�) continuous. The problem is therefore to ad-

just the proof of Proposition 14 in order to have continuity
of the differential on the wholeM.

The first step is to show a stronger version of the
Proposition 16 asserting that it is possible to find a critical
subsolution u, which is not only strict on W0 D M nA,
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but also strictly differentiable onA. Recall that this means
that if y 2A and xn are differentiability points of u with
xn ! y, then Du(xn)! Du(y) D p(y). This implies that
if p(�) is a continuous extension of p(�) inM, then p(x) and
Du(x) are close at every differentiability point of u close
toA.

Starting from a subsolution u enjoying the previous
property, the idea is then to use for defining the sought C1

subsolution, say v, the same formula (20) given in Propo-
sition 14, i. e.

v D

(P
ˇiui inW0

u inA

where ˇi is a C1 partition of unity subordinated to
a countable locally finite open covering Ui of W0, and
the ui are obtained from u through suitable regularization
in Ui by mollification. Look at the sketch of the proof of
Proposition 16 for the precise properties of these objects.
It must be shown

D

X

ˇiui (xn)
�
! Du(y) D p(y) ;

for any sequence xn of elements of W0 converging to
y 2A, or equivalently
ˇ
ˇ̌p(xn) � D


X
ˇiui (xn)

�ˇˇ̌
! 0 :

One has

ˇ
ˇ̌p(xn) � D


X
ˇiui (xn)

�ˇˇ̌
�
X

i

ˇi(xn)jDui (xn)

� p(xn)jDˇi(xn)jui (xn) � u(xn)j :

The estimates given in the proof of Proposition 14 show
that the second term of the right-hand side of the formula
is small. To estimate the first term calculate

jDui(xn) � p(xn)j �
Z
�ıi (z � xn)

�
jDu(z) � p(z)j

C jp(z) � p(xn)j

dz ;

and observe first that jDu(z) � p(z)j is small, as previously
explained, since xn ! y 2A and z is close to xn, second,
that the mollification parameter ıi can be chosen in such
a way that jp(z) � p(xn)j is also small.

What is left is to discuss the density issue of the C1 sub-
solutions. This is done still assuming a D c and A non-
empty. The proof in the other cases is simpler and goes
along the same lines.

It is clear from what was previously outlined that the
initial subsolution u and v obtained as a result of the reg-
ularization procedure are close in the local uniform topol-
ogy. It is then enough to show that any critical subsolu-
tion w can be approximated in the same topology by a sub-
solution enjoying the same property of u, namely being
strict inW0 and strictly differentiable on the Aubry set.

The first property is easy to obtain by simply perform-
ing a convex combination ofwwith aC1 subsolution, strict
in W0, whose existence has been proved above. It can be,
in turn, suitably modified in a neighborhood ofA in order
to obtain the strict differentiability property, see [20].

Future Directions

This line of research seems still capable of relevant devel-
opments. In particular to provide exact and approximate
correctors for the homogenization of Hamilton–Jacobi
equations in a stationary ergodic environment, see Lions
and Souganidis [26] and Davini and Siconolfi [11,12], or
in the direction of extending the results about long-time
behavior of solutions of time-dependent problems to the
noncompact setting, see Ishii [22,23]. Another promising
field of utilization is in mass transportation theory, see
Bernard [5], Bernard and Buffoni [6], and Villani [30]. The
generalization of the model in the case where the Hamil-
tonian presents singularities should also make it possible
to tackle through these techniques the N-body problem.
With regard to applications, the theory outlined in the pa-
per could be useful for dealing with topics such as the anal-
ysis of dielectric breakdown aswell as othermodels in frac-
ture mechanics.
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This paper describes the application of system dynamics
to health and social care in Europe.

Systems thinking and the simulation tool set of sys-
tem dynamics are introduced together with an overview
of current strategic health issues and responses in the UK
and Europe. A case study is then presented to demonstrate
how effective and apposite system dynamics studies can
be. This is followed by a pan-European review of applica-
tions of system dynamics in epidemiology and in health
treatment and diagnosis in different sectors of health and
social care, based on an extensive bibliography. Reference
is also made to health workforce planning studies. Lastly,
a review of future directions is described.

The knowledge base of this paper is located in pub-
lished work by internal and external consultants and Uni-
versities, but it should also be said that there is far more
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work in system dynamics in health than is referred to in
these sources. Many internal and external consultancies
undertake studies which remain unpublished.

The description of the subject and the applications de-
scribed are comprehensive, but the review is a personal in-
terpretation of the current state of a fast-moving field by
the author and apologies are made in advance for any un-
intended omissions.

The case study in Sect. “A Case Study: Using System
Dynamics to Influence Health and Social Care Policy Na-
tionally in the UK – Delayed Hospital Discharges” is ex-
tracted from material published by Springer-Verlag, US
and published with their permission.

Glossary

System dynamics
System A collection of elements brought together for

a purpose and whose sum is greater than the parts.
Systems thinking The process of interpreting the world

as a complex, self regulating and adaptive system.
System dynamics A method based on quantitative com-

puter simulation to enhance learning and policy design
in complex systems.

Qualitative system dynamics The application of systems
thinking and system dynamics principles, without for-
mal simulation.

Dynamic complexity The number of interacting ele-
ments contained in a system and the consequences of
their interactions over time.

Human activity system Any system created and regu-
lated by human intervention.

Reductionism The opposite of systemic – seeing the
world only in its constituent parts.

Feedback Feedback refers to the interaction of the ele-
ments of the system where a system element, X, affects
another system element, Y, and Y in turn affects X per-
haps through a chain of causes and effects. Feedback
thus controls the performance of the system. Feedback
can be either natural or behavioral (created by human
intervention) (System Dynamics Society).

Unintended consequences Undesirable consequences
arising well intended action – or vice versa.

Continuous simulation The aggregate method of com-
puter simulation used in system dynamics based on
a continuous time analogy with fluid dynamics and
used to test out patterns of behavior over time.

System structure The term used in system dynamics to
refer to the total structure of a system (composing
processes, organization boundaries, information feed-
back, policy and delays).

System behavior The term used in system dynamics to
refer to the behavior over time of a particular struc-
ture.

Reference mode of behavior An observed past trend and
future projected trends used to assist defining model
scope and time frame.

Discrete entity simulation A method of simulation
based on the movement of individual entities through
systems over time either as processes or as interactions
between entities.

Health and Social Care
Epidemiology The study of factors affecting the health

and the incidence and prevalence of illness of popu-
lations.

Health treatment The application of drugs, therapies,
and medical/surgical interventions to treat illness.

National health service (NHS) The organization in the
UK responsible for the delivery of health care.

Primary care trusts (PCTs) The local operating agencies
of the NHS, which both commission (buy) and deliver
health services.

General practitioners (GPs) Locally-based general clini-
cians who deliver primary care services and control ac-
cess to specialist health services.

Social services In England, care services which provide
non-health related care, mainly for children and older
people, located within local government in the UK.

Nursing/residential home care In England, private and
public residential establishments for the care of older
people.

Domiciliary care In England, care for older people in
their own homes.

Acute hospitals Hospital dealing with short term condi-
tions requiring mainly one-off treatment.

Outliers Patients located in hospital in wards not related
to their condition, due to bed capacity issues.

Intermediate care Short term care to expedite the treat-
ment of non-complex conditions.

Definition of the Subject

All too often complexity issues are ignored in decision
making simply because they are just too difficult to rep-
resent. Managers feel that to expand the boundaries of the
decision domain to include intricate, cross-boundary in-
terconnections and feedback will detract from the clar-
ity of the issue at stake. This is particularly true when
the interconnections are behavioral and hard to quantify.
Hence, the focus of decision making is either very sub-
jective or based on simple, linear, easy to quantify com-
ponents. However, such a reductionist stance, which ig-
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nores information feedback (for example, the effects of
health supply on health demand management) and mul-
tiple-ownership of issues can result in unsustainable, short
term benefits with major unintended consequences.

System dynamics is a particular way of thinking
and analyzing situations, which makes visible the dy-
namic complexity of human activity systems for decision
support.

It is particularly important in the health and social care
field where there are major issues of complexity associ-
ated with the incidence and prevalence of disease, an ag-
ing population, a profusion of new technologies and mul-
tiple agencies responsible for the prevention and treatment
of illness along very long patient pathways. Health is also
linked at every stage to all facets of life and health policy
has a strong political dimension in most countries.

Introduction

This paper describes and reviews work in applying system
dynamics to issues of health and social care in the UK and
Europe. Although the fundamental issues in health and
social care and many of the strategies adopted are sim-
ilar the world over, there are differences in culture, op-
erational policies and funding even over short geograph-
ical distances. Additionally, the health field can be dis-
sected in many different ways both internally and between
countries.

There is, moreover, a fundamental dilemma at the cen-
ter of health that determines both its structure and em-
phasis. Although the real long term and systemic solution
to better health lies in the prevention of illness, the health
field focuses on the study of the incidence and prevalence
of disease (Epidemiology) and on the ‘health service’ is-
sues of how to manage ill health (Health Diagnosis and
Treatment).

There are many reasons for this, not the least being
that illness prevention is in fact the province of a field
much bigger than health, which includes economics, so-
cial deprivation, drugs, poverty, power and politics.

The field of system dynamics in health reflects this
dilemma. Whilst all studies would conclude that preven-
tion is better than the cure, the majority of applications
focus on illness. Whilst more studies are required on the
truly systemic goal of moving attention away from the
status quo, for example, modeling the German system of
health care and drug addicts [52], the major focus and im-
pact of system dynamics in Europe in recent years has been
in terms of Epidemiology and Health Treatment. Hence, it
is these categories that will be the focus of this paper. How-
ever, work often transcends the two and models often in-

clude both disease and treatment states. For example, work
on AIDS covers both prevalence and drug treatment and
work on long term conditions, particularly mental health
conditions, covers condition progression as well as alter-
native therapies.

It is important to emphasize what this paper does not
cover. By definition system dynamics is a strategic ap-
proach aimed at assisting with the understanding of high
level feedback effects at work in organizations. It is there-
fore separate from the many applications of spreadsheets
and discrete entity simulation methods applied to answer
short term operational level issues in health [9,21,29].

It is also important to note where the knowledge base
of this paper is located. System dynamics applications in
health in Europe began in the 1980s and are expanding
rapidly. However, as will be seen from the bibliography to
this paper, much of the work is applied by internal and
external consultants and Universities for health care man-
agers and reported in management, operational research
and system dynamics journals. Little of the work so far
has been addressed directly at clinicians or published in
the health literature. It should also be said that there is far
more work in system dynamics in health than is referred
to in this publication. Many internal and external consul-
tancies undertake studies which remain unpublished.

Initially the fundamentals of system dynamics will be
described followed by an overview of current health is-
sues and responses in the UK and Europe. This is followed
by a case study to demonstrate how effective and apposite
system dynamics studies can be. There then follows a re-
view of applications in epidemiology and in both physi-
cal and mental health diagnosis and treatment. Mention
is also made of health workforce planning studies. Lastly,
a review of future directions is described.

The History of System Dynamics

System dynamics was conceived at MIT, Boston in the late
60s and has now grown into a major discipline [25,47]
which was formally celebrated and reviewed in 2008 [48].
It is widely used in the private business sector in produc-
tion, marketing, oil, asset management, financial services,
pharmaceuticals and consultancy. It is also used in the
public sector in defense, health and criminal justice.

System dynamics has a long history in the UK and Eu-
rope. The first formal university group was established at
the University of Bradford in England 1970. Today there
are at least a dozen university departments and business
schools offering courses in system dynamics and numer-
ous consultancies of all types using the method in one
form or another. Thousands of people have attended pri-
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vate and university courses in system dynamics and, ad-
ditionally, there are almost one hundred UK members of
the System Dynamics Society, which is the largest national
grouping outside the US.

The Need for System Dynamics

Most private and public organizations are large and com-
plex. They exhibit both ‘detailed’ complexity (the number
of elements they contain), butmore importantly ‘dynamic’
complexity (the number of interconnections and interac-
tions they embrace). They have long processes which tran-
scend many sectors, each with their own accounting and
performance measures. In the case of health and social
care organizations this translates into long patient path-
ways across many agencies. Complexity and decisionmak-
ing in the public sector is also compounded by a multitude
of planning time horizons and the political dimension.

Long processes mean that there are many opportuni-
ties for intervention, but that the best levers for overall im-
provement are often well away from symptoms of prob-
lems. Such interventions may benefit sectors other than
those making the investments and require an open ap-
proach to improving patient outcomes, rather than single
agency advantage.

The management of complex organizations is compli-
cated by the fact that human beings have limited cognitive
ability to understand interconnections and consequently
have limited mental models about the structure and dy-
namics of organizations.

A characteristic of complex organizations is a tendency
for management to be risk averse, policy resistant and
quick to blame. This usually means they prefer to stick
to traditional solutions and reactive, short term gains. In
doing this managers ignore the response of other sectors
and levels of the organization. In particular, they underes-
timate the role and effect of behavioral feedback.

Such oversight can result in unintended consequences
in the medium term that undermine well-intended ac-
tions. Self organizing and adaptive responses in organiza-
tions can lead to many types of informal coping actions,
which in turn, inhibit the realization of improvement at-
tempts and distort data. A good example of these phe-
nomena, arising from studies described here, is the use of
‘length of stay’ in health and social care services as a policy
lever to compensate for capacity shortages.

Planning within complex organization reflects the
above characteristics. The core of current planning tends
to be static in nature, sector-based and reliant on data
and financial spreadsheets with limited transparency of as-
sumptions. For example the planning of new acute hos-

pitals can quickly progress to detailed levels without as-
sessment of trends in primary and post acute care; that is,
where hospital patients come from and go to.

In contrast, sustainable solutions to problems in com-
plex organizations often require novel and balanced inter-
ventions over whole processes, which seem to defy logic
and may even be counterintuitive.

However, in order to realize such solutions requires
a leap beyond both the thinking and planning tools com-
monly used today. In order to make significant changes in
complex organizations it is necessary to think differently
and test ideas before use. System dynamics provides such
a method.

The Components of SystemDynamics

System dynamics is based on the idea of resisting the temp-
tation to be over reactive to events, learning instead to view
patterns of behavior in organizations and ground these in
the structure (operational processes and policies) of orga-
nizations. It uses purpose-built software to map processes
and policies at a strategic level, to populate thesemapswith
data and to simulate the evolution of the processes under
transparent assumptions, polices and scenarios.

System dynamics is founded upon:

� Non linear dynamics and feedback control developed
in mathematics, physics and engineering,

� Human, group and organizational behavior developed
in cognitive and social psychology and economics,

� Problem solving and facilitation developed in opera-
tional research and statistics.

System dynamics provides a set of thinking skills and a set
of modeling tools which underpin the current trend of
‘whole systems thinking’ in health and social care.

System Dynamics Thinking Skills for the Management
of Complex Organizations

In order to understand and operate in complex organi-
zations it is necessary to develop a wide range of think-
ing skills [45]. The following are summarized after Rich-
mond [42].

� Dynamic thinking – The ability to conceptualize how
organizations behave over time and how we would like
them to behave.

� System-as-cause thinking – The ability to determine
plausible explanations for the behavior of the organiza-
tion over time in terms of past actions.

� Forest thinking – The ability to see the “big picture”
(transcending organizational boundaries).
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� Operational thinking – The ability to analyze the con-
tribution made to the overall behavior by the interac-
tion of processes, information feedback, delays and or-
ganizational boundaries.

� Closed-loop thinking – The ability to analyze feedback
loops, including the way that results can feedback to in-
fluence causes.

� Quantitative thinking – The ability to determine the
mathematical relationships needed to model cause and
effect.

� Scientific thinking – The ability to construct and test
hypotheses through modeling.

System Dynamics Modeling Tools for Planning
in Complex Organizations

A useful way to appreciate the tool set of system dynamics
is by a brief comparison with other computer based man-
agement tools for decision support.

System dynamics is, by definition, a strategic rather
than operational tool. It can be used in a detailed opera-
tional role, but is first and foremost a strategic tool aimed at
integrating policies across organizations, where behavioral
feedback is important. It is unique in its ability to address
the strategic domain and this places it apart frommore op-

Health Care in the United Kingdom and Europe, System Dynamics Applications to, Figure 1
The systems thinking/system dynamics method

erational toolsets such as process mapping, spreadsheets,
data analysis, discrete entity simulation and agent-based
simulation.

System dynamics is based on representing process
flows by ‘stock’ and ‘rate’ variables. Stocks are important
measurable accumulations of physical (and non-physical)
resources in the world. They are built and depleted over
time as input and output rates to them change under the
influence of feedback from the stocks and outside factors.
Recognizing the difference between stocks and rates is fun-
damental to understanding the world as a system. The su-
perimposition of organizational sectors and boundaries on
the processes is also fundamental to understanding the im-
pact of culture and power on the flows. System dynam-
ics also makes extensive use of causal maps to both help
conceptualize models and to highlight feedback processes
within models.

Applying System Dynamics with Management Teams

However, the success of system dynamics lies as much
in its process of application as in the tool set and hence
demands greater skill in conceptualization and use than
spreadsheets.
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Figure 1 shows the overall process of applying system
dynamics. A key starting point is the definition of an ini-
tial significant issue of managerial concern and the estab-
lishment of a set of committed and consistent manage-
ment teams from all agencies involved in the issue. An-
other requirement is a set of facilitators experienced in
both conceptualizing and formulating system dynamics
models. The models created must be shared extensions of
the mental models of the management teams, not the fa-
cilitators and, importantly owned by the team.

The next step is the analysis of existing trends in ma-
jor performancemeasures of the organizations and of their
future trajectories, desired and undesired. This is referred
to as the reference model of behavior of the issue and helps
with the establishment of the time scale of the analysis.
The key contribution of system dynamics is then to for-
mulate a high level process map, at an appropriate level of
aggregation, linking operations across organizations and
to populate this with the best data available. Once vali-
dated against past data, the mental models of the manage-
ment team and shown capable of reproducing the refer-
ence mode of behavior of the issue (‘what is’), the model
is used to design policies to realize desired futures (‘what
might be’). Maps and models are constructed in relatively
inexpensive purpose-built software (for example ithink,
Vensim and Powersim) with very transparent graphical
interfaces.

The key is to produce the simplest model possible con-
sistent with maintaining its transparency and having con-
fidence in its ability to cast new light on the issue of con-
cern. This means keeping the resolution of the model at
the highest possible level and this distinguishes it from
most spreadsheets and process maps.

AnOverview of Health and Social Care
in the UK and Europe

Ensuring that all residents have access to health and social
care services is an important goal in all EU countries and
all have universal or almost universal health care coverage
(European Observatory ‘Healthcare in Transition’ profiles
and OECD Health Data 2004). Even in the Netherlands,
where only 65% of the population are covered by a com-
pulsory scheme, with voluntary private insurance available
to the remainder, only 1.6% of the population are without
health insurance.

At the present time, most care in the EU is publicly
financed, with taxation and social insurance provide the
main sources of funding. Taxation is collected at either the
national level or local level, or both and social insurance
contributions are generally made by both employees and

employers. The role of private insurance varies between
countries and generally private insurance is as a supple-
ment to, rather than as a substitute for, the main care sys-
tem. The exceptions to this are Germany and the Nether-
lands. Further, people are increasingly required to pay part
of the cost of medical care.

The delivery of health and social care is a mixture of
public and private with only 10 countries not having any
private delivery sector at all.

This paper is primarily concerned with health and so-
cial care supply issues. Although the structure and termi-
nology associated with supply varies across the EU the
underlying issues tend to be similar between countries.
Hence the major issues will be described for England.

Health in England is primarily managed and delivered
by the National Health Service (NHS) and is at the cen-
ter of a modernization agenda, whereby the government
sets out a program of change and targets against which the
public may judge improved services.

A major mechanism for reform tends to be via fre-
quent changes to organizational structure. The current
structure consist of large primary care trusts (PCTs),
which both deliver services such as General Practitioner
Services (GPs), but also purchase (commission) more spe-
cialist services from other agencies, both public and pri-
vate. A key driver of structural change is to enhance pri-
mary care and to take the pressure off acute hospitals
(acute is a word used to differentiate short term hospi-
tals from long stay ones). Initiatives here center on pro-
viding new services, such as diagnostic and treatment cen-
ters and shorter term ‘intermediate’ care. Emphasis is on
bringing the services to the users, patient choice, payment
by results (rather than through block contracts) and ser-
vice efficiency, the latter being driven by target setting and
achievement. The government has made reform of pub-
lic services a key plank in its legislative program and pres-
sure to achieve a broad range of often conflicting targets is
therefore immense. However, despite continual increases
in funding new initiatives are slow to take effect and the
performance and viability of the service is problematic
with money often being used to clear deficits rather than
generate new solutions.

Social care in England is delivered both by a public sec-
tor located with Local Government Social Services Direc-
torates and a private sector. It consists of numerous ser-
vices to support children and older people. The latter con-
sisting of care homes, nursing homes and domiciliary (at
home) care.

Many patient processes, particularly for older people,
transcend health and social care boundaries and hence
create a serious conflict of process structure and organi-
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zational structure, where the relative power of the differ-
ent agencies is a major determinant of resource alloca-
tion [64]. Consequently, emphasis in this paper will be on
joint health and social care work.

A Case Study: Using System Dynamics to Influence
Health and Social Care Policy Nationally
in the UK – Delayed Hospital Discharges

In order to give a flavor of the relevance and impact of
applying system dynamics to health and social care issues
a concise case study will be presented [65,67,70].

Issue

Delayed hospital discharge was an issue which first came
onto the UK legislative agenda in late 2001. The ‘reference
mode’ of behavior over time for this situation was that of
increasing numbers of patients occupying hospital beds,
although they had been declared “medically fit”. In March
2002, 4,258 people were “stuck” in hospital and some were
staying a long time, pushing up the number of bed days
and constituting significant lost capacity.

The government’s approach to this issue was to find
out who was supposed to “get the patients out” of acute
hospitals and threaten them with ‘fines’ if they did not im-
prove performance. This organization proved to be social
services for older people, who are located within the lo-
cal government sector and who are responsible for a small,
but significant, number of older people needing ex-hospi-
tal (‘post-acute’) care packages. Such patients are assessed
and packages organized by hospital social workers. There
was also pressure on the government from hospitals claim-
ing that some of the problem was due to lack of hospital
capacity.

The idea of fines was challenged by the Local Govern-
ment Association (LGA), which represents the interests of
all local government agencies at the national level) who
suggested that a ‘system’ approach should be undertaken
to look at the complex interaction of factors affecting de-
layed hospital discharges. This organization, together with
the NHS Confederation (the partner organization repre-
senting the interests of the National Health Service orga-
nizations at a national level) then commissioned a system
dynamics study to support their stance.

The remit was for consultants working with the rep-
resentatives of the two organizations to create a system
dynamics model of the ‘whole patient pathway’ extending
upstream and downstream from the stock of people de-
layed in hospital, to identify and test other interventions
affecting the issue.

Model

A system dynamics model was developed interactively
with managers from the LGA and NHS, using national
data to simulate pressures in a sample health economy
covering primary, acute and post acute care over a 3 year
period. The model was driven by variable demand in-
cluding three winter pressure “peaks” when capacity in
each sector was stretched to the limit. Figure 2 shows an
overview of the sectors of the model.

The patient flows through the model were broken
down into medical flows and surgical with access to the
medical and surgical stocks of beds being constrained by
bed capacity. The medical flows were mainly emergen-
cies patients and the surgical flows mainly non-emergency
‘elective’ patients, who came via referral processes andwait
lists.

Further, medical patients were broken down into ‘fast’
and ‘slow’ streams. The former were the normal patients
who had a short stay in hospital and needed few post acute
services and the latter the more complex cases (mainly
older people), who require a longer stay and hospital and
complex onward care packages from social services. This
split was because although the slow patients were few in
number they constituted most of the people who caused
delayed discharges.

The post hospital health and social care services of in-
termediate care, nursing/residential home care, and domi-
ciliary care were included in the model and were also ca-
pacity constrained in terms of the number of care packages
they could provide.

The model incorporated a number of mechanisms by
which hospitals coped during periods of high demand,
for example, moving medical patients to surgical beds
(outliers) and early discharges with allowance for read-
missions.

Configuration of the Model

The model was set up to simulate a typical sample health
economy over a 3 year period when driven by a variable
demand (including three winter “peaks”). The capacity
constrained sectors of the model were given barely suf-
ficient capacity to cope. This situation was designed to
create shocks against which to test alternative policies for
performance improvement. Major performance measures
in use in the various agencies were incorporated. These
included:

1. Cumulative episodes of elective surgery.
2. Elective wait list size and wait time.
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An overview of the sectors of the delayed dischargemodel

3. Numbers of patients in hospital having completed
treatment and assessment, but not yet discharged (de-
layed discharges).

4. Number of ‘outliers’.

The model was initially set up with a number of fixed ex-
periments, to introduce people to the range of experiments
that yielded useful insights into the behavior of the whole
system. From there, they were encouraged to devise their
own experiments and develop their own theories of useful
interventions and commissioning strategies.

The three main polices tested in the fixed runs were:

1. Adding additional acute hospital bed capacity. This is
the classic response used over many years by govern-
ments throughout the world to solve any patient path-
way capacity problems and was a favorite ‘solution’
here.

2. Adding additional post acute capacity, both nursing
and residential home beds but also more domiciliary
capacity.

3. Diverting more people away from hospital admission
by use of pre-hospital intermediate capacity and also
expansion of treatment in primary care GP surgeries.

Example Results
from the Delayed Hospital Discharge Model

Figures 3, 4 and 5 show some typical outputs for the de-
layed hospital discharge model. Figure 3 captures the way

capacity utilization was displayed (actual beds occupied v
total available for both medical and surgical sectors of the
hospital) and shows the occurrence of ‘outliers’ (transfers
of patients from medical to surgical beds) whenever med-
ical capacity was reached.

Figures 4 and 5 show comparative graphs of 3 policy
runs for 2 major performance measures for 2 sectors of the
patient pathway – delayed discharges for post acute social
services and cumulative elective procedures for acute hos-
pitals. In each case the base run is line 1. Line 2 shows the
effect of increasing hospital beds by 10% and line 3 shows
the effect of increasing post acute capacity by 10%.

The interesting feature of this example output is that
the cheaper option of increasing post acute capacity gives
lower delayed discharges and higher elective operations
whereas the more expensive option of increasing acute
hospital beds benefits the hospital but makes delayed dis-
charges worse. The key to this counter intuitive effect is
that increasing post acute capacity results in higher hospi-
tal discharges which in turn reduces the need for the ‘out-
lier’ coping policy in the hospital, hence freeing up surgical
capacity for elective operations.

Outcomes

Common Sense Solutions Can Be Misleading The ob-
vious unilateral solution of adding more acute capacity
was shown to exacerbate the delayed discharge situation.
Increasing hospital capacity means facilitating more hos-
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Medical and surgical bed utilization’s in hospital and ‘outliers’

Health Care in the United Kingdom and Europe, System Dynamics Applications to, Figure 4
Delayed hospital discharges for 3 policy runs of the model

pital admissions, but with no corresponding increase in
hospital discharges. Hence, the new capacity will simply
fill up and then more early discharges and outliers will be
needed.

Fines May Have Unintended Consequences This solu-
tion was shown to depend on where the money raised by
fines was spent. If the money levied from social services
was given to the acute sector to finance additional capacity
it was clearly demonstrated that this would make delayed
discharges worse. It would be worse still if it causes the
post-acute sector to cut services. The effects of service cuts

may also then spill over into other areas of local govern-
ment including housing and education.

It was demonstrated that there were some interventions
that could help:

1. Increasing post acute capacity gives a win-win solu-
tion to both health and social care because it increases
all acute and post acute sector performance measures.
Such action allows hospital discharges to directly in-
crease, and eliminates the need for the hospitals to ap-
ply coping policies, which in turn increases elective
operations and reduces elective wait times. Further,
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Cumulative elective operations for 3 policy runs of the model

counter intuitively, increasing medical capacity in hos-
pital is more effective than increasing surgical capacity
for reducing elective wait times.

2. Reducing assessment times and lengths of stay in all
sectors is beneficial to all performance measures, as
is reducing variation in flows, particularly reinforcing
feedback loops like re-admission rates.

3. Increasing diversion from hospitals into pre-admission
intermediate care was almost as beneficial as increasing
post acute capacity.

4. If fines are levied they need to be re-invested from
a whole systems perspective. This means re-balancing
resources across all the sectors (NOT just adding to
hospital capacity).

5. In general the model showed that keeping people out
of hospital is more effective than trying to get them out
faster. This is compounded by the fact that in-patients
are more prone to infections so the longer patients are
in hospital, the longer they will be in hospital.

6. Improving the quality of data was shown to be
paramount to realizing the benefits of all policies. This
is an interesting conclusion associated with many sys-
tem dynamics studies, where explicit representation of
the structure of the organization can lead to a review
and redesign of the information needed systems to re-
ally manage the organization.

An interesting generalization of the findings was that in-
creasing stock variables where demand is rising (such as
adding capacity) is an expensive and unsustainable solu-
tion. Whereas increasing rate variables, by reducing delays
and lengths of stay, is cheaper and sustainable.

Impact

This model was shown at the Political Conferences of 2002
and generated considerable interest. It was instrumental
in causing re-thinking of the intended legislation, so that
social services was provided with investment funding to
address capacity issues, and the implementation of fines
was delayed for a year. Reference to the model was made
in the House of Lords.

Moving the main amendment, Liberal Democrat
health spokesperson Lord Clement-Jones asked the
House to agree that the Bill failed to tackle the causes
of delayed discharges and would create perverse in-
centives which would undermine joint working be-
tween local authorities and the NHS and distort pri-
orities for care of elderly people by placing the re-
quirement to meet discharge targets ahead of mea-
sures to avoid hospital admission . . . He referred
to “ithink”, the whole systems approach being put
forward by the Local Government Association,
health service managers and social services direc-
tors involving joint local protocols and local ac-
tion plans prepared in co-operation.

Postscript

This case study demonstrates the ability of system dynam-
ics to be applied quickly and purposefully to shed rigor
and insight on an important issue. The study enabled the
development of a very articulate and compelling case for
the government to move from a reactive position of blam-
ing social services to one of understanding and acting on
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a systemic basis. The whole project including modeling
and communication of the outcomes was completed in 6
weeks.

Review of SystemDynamics Studies
in Epidemiology in Europe

The potential for system dynamics in population health
and disease control began in the UK in the late eight-
ies/early nineties with the extensive studies carried out
on AIDS modeling. The majority of these studies were by
Prof. Brian Dangerfield and Carole Roberts and were on-
going until 2000 [14,15,16,17,18,19,20].

The earlier studies [16] used a transition model to por-
tray the nature of the disease and to better specify the types
of data collection required for further developments of the
model. The model was then developed further over the
years [18,19] and was fed with time-series data of actual
cases. This enabled projections of future occurrence to be
forecast. The latter models were more concerned with ex-
amining the resource and cost implications of treatments
given to HIV positive individuals and at their varying
stages up until the ensuing onset of AIDS.

A recent study by Dangerfield et al. [20] saw further
development of the original model with parameter opti-
mization and recent data on the spread of AIDS in the
UK was also integrated. The rationale for the update of
the model was to investigate the recent dramatic decrease
in diagnosed Aids cases in the West. The model assesses
the effects of relatively new emergent triple antiretroviral
therapy given to HIV patients causing this reduction and
examines the possibility of continuity of the effectiveness
of this therapy.

Dangerfield explains some of the reasons [13] why sys-
tem dynamics acts as an excellent tool for epidemiologi-
cal modeling. The positive and negative feed-back loops
help imitate the natural disposition of the spread and con-
tainment of diseases amongst the general population. Fur-
ther, system dynamics allows delays associated with the
incubation predisposition of infectious diseases to be ac-
curately and easily modeled without the need for compli-
cated mathematical representation.

The work in the UK was complemented by work in
Holland on simulation as a tool in the decision-mak-
ing process to prevent HIV incidence among homosex-
ual men [23] and on models for analysis and evaluation
of strategies for preventing AIDS [32]. Further epidemi-
ological studies in system dynamics in the UK related to
the outbreak out of BSE and the subsequent infection of
humans with its human form nvCJD [12].

These models are all characterized by modeling the
flow of people through different stocks over time repre-
senting the different stages of the disease progression. The
purpose of the model is then to test the effects of inter-
ventions aimed at slowing down the rate of progression of
the condition or indeed moving people ‘upstream’ to less
severe states of the condition.

Review of SystemDynamics Studies in Health
and Social Care Management in Europe

By far the greatest number of studies and publications in
the use of system dynamics in health and social care is as-
sociated with patient flow modeling for health care plan-
ning. That is, the flow of patients through multiple ser-
vice delivery channels. Patient pathway definition has been
an area of health modernization and these pathways lend
themselves to representation as stock/flow resource flows
in system dynamics. The purpose of this type of modeling
is to identify bottlenecks, plan capacity, reduce wait lists,
improve the efficiency of patient assessments and times
and the design of alternative pathways with shorter treat-
ment times, (for example, intermediate care facilities both
pre and post hospital treatment).

A characteristic of patient flows is that they are long
and pass through multiple agencies and hence confront
the major health issues of working across boundaries and
designing integrated policies. Studies in this area have ex-
amined the flow of many different populations of patients
and often resulted in arrayed models to represent the flow
of different ‘populations’ or ‘needs groups’ through several
parallel service channels.

The studies have covered both physical and mental
conditions and have sometimes combined both the dy-
namic progression of people through undiagnosed and
untreated disease states and the dynamic progression of
diagnosed people through treatment pathways.

The Modeling of the Diagnosis and Treatment
of Physical Conditions

Here the most common set of models are associated with
the flow of patients from primary care, through acute hos-
pitals and onwards into post acute care such as social ser-
vices provisions for home care, nursing care and residen-
tial care. The populations have often been split between
the simple everyday cases and the complex cases associated
with older people needing greater degrees of care. They
have also involves medical and surgical splits. There are
a number of review papers which supplement the work de-
scribed below [1,18,19].
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In addition to work in the 1990s on the interface
between health and social care [59,60,61] and the na-
tional level UK work on older people flows through hos-
pitals [65,67,71,72], Wolstenholme has reported that sys-
tem dynamics applications are currently underway by the
authors in 10 local health communities around the UK
with the objectives of modeling patient flows across agency
boundaries to provide a visual and quantitative stimulus to
strategic multi-agency planning [65].

Lane has reported work in Accident and Emergency
Departments [33] and in mapping acute patient flows [34]
whilst Royston worked with the NHS to help develop and
implement policies and programs in health care in Eng-
land [43]. Taylor has undertaken award winning mod-
eling of the feedback effects of reconfiguring health ser-
vices [49,50,51], whilst Lacey has reported numerous UK
studies to support the strategic and performance manage-
ment roles of health service management, including pro-
vision of intermediate care and reduction of delayed hos-
pital discharges [31]. Other intermediate care and social
care delivery studies are described by Bayer [6,7] and fur-
ther hospital capacity studies by Coyle [11]. Elsewhere,
there have been specific studies on bed-blocking [24] and
screening [37].

In Norway system dynamics-based studies have fo-
cused on mapping the flows of patients in elderly non-
acute care settings [10]. The purpose of this study accord-
ing to Chen is to differentiate between acute and non-acute
settings and thereby increase understanding of the com-
plexity and dynamics caused by influencing elements in
the system. Also it is to provide a tool for local communi-
ties in Norway for their long term budget planning in the
non-acute health sector for the elderly.

Work on reducing waiting lists has been reported in
Holland [30,53,54,57]). Also in Holland Vennix has re-
ported comprehensive work onmodeling a regional Dutch
health care system [56].

Work has been undertaken to balance capacities in
individual hospitals in Italy [44] and in Norway [38,41].
Whist normally the realm of more operational types of
simulation system dynamics has proved very effective
here. There has also been work to assess the impact on
health and social care of technological innovation, par-
ticularly telecare [5,8]. Additionally, system thinking has
been undertaken by doctors to examine the European time
directive [40].

Given the similar nature of a lot of these studies fur-
ther detail here will focus on the work of Vennix in par-
ticipative model building andWolstenholme in extracting
insights from numerous studies.

Participative Model Building

A characteristic of all Vennix’s work has been groupmodel
building [55]. The main objectives of this [27] are com-
munication and learning and integration of multiple per-
spectives where the process of model building is frequently
more important than the resulting model itself [56]. Ven-
nix brought together strategic managers and important
stakeholders to participate in the process of building a sys-
tem dynamics model of the Dutch healthcare system. The
policy problem which is modeled in Vennix’s 1992 study
is related to the gradual, but persistent, rise in health care
costs in the Netherlands. Vennix [56] attempts to find the
underlying causes of those increases that emanate from
within the health care system itself rather than focusing
on exogenous factors. By doing so Vennix stands to iden-
tify potential levers within the health care system that can
be practically and appropriately be adjusted to reduce cost
increases.

Vennix attempts to extract important assumptions
from the key players by posing three straight forward ques-
tions;

a) What factors have been responsible for the increase in
health care costs?

b) How will health care costs develop in the future?
c) What are the potential effects of several policy options

to reduce these costs?

Participants are asked if they agreed or disagreed with the
statements and why they thought the statements were true
or not. The most frequently given reasons for the verbal
statements were then incorporated in to the statements
to create causal arguments from the participant’s mental
models.

Similar methods were adopted to identify policies
which represent the aggregate of many individual actions.
For example, why a GP may decide on such matters as
frequency of patients appointments, drugs choice, referral
to other medical specialist or a combination of all these.
Vennix’s model was subsequently formalized and quanti-
fied and converted into a computer-based learning envi-
ronment for use by a wider range of health personnel.

The idea of using system dynamics as a means of par-
ticipative modeling for learning is also inherent in other
work [35].

Offering Insights into Managing
the Demand for Health Care

Wolstenholme reports the insights from many applica-
tions of his own and other work. He suggests a hypothesis
that the ‘normal’ mode of operation for many health and
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social care organizations today is often well beyond their
safe design capacity. This situation arises from having to
cope with whatever demand arrives at their door irrespec-
tive of their supply capability. Risk levels can be high in
these organizations and the consequences could be catas-
trophic for patients [71,72].

Evidence for the hypothesis has emerged at many
points along patient pathways in health and social care
from a number of studies carried out using system dynam-
ics simulation to identify and promote systemic practice
in local health communities. The rigor involved in knowl-
edge-capture and quantitative simulation model construc-
tion and running has identified mismatches between how
managers claim their organizations work and the observed
data and behavior. The discrepancies can only be ex-
plained by surfacing informal coping policies. For exam-
ple, transferring medical emergency patients to surgical
wards, resulting in canceled elective procedures, also re-
ported by Lane [35]. Indeed, the data itself becomes ques-
tionable as it reflects more the actions of managers than
the true characteristics of patients.

The result of capacity pressure can mean that man-
agers are unable, physically and financially, to break out
from a fire-fighting mode to implement better resource in-
vestment and development policies for systemic and sus-
tainable improvement. The insights reported are impor-
tant for Health and Social Care management, the mean-
ing of data and for modeling. The key message here is that
much-needed systemic solutions and whole system think-
ing can never be successfully implemented until organiza-
tions are allowed to articulate and dismantle their worst
coping strategies and return to working within best prac-
tice capacities.

TheModeling of the Treatment of Mental Health
Diagnosis and Treatments in the UK

Modeling to assist mental health reform has recently de-
veloped as a separate strand of health work in the UK [46,
69,72].

Mental health services in the UK over the past 50
years have undergone numerous major reforms. The
National Institute for Clinical Excellence [36] has re-
cently published extensive research-based guidelines on
the way stepped care might be best achieved. These in-
volved moves towards a balanced, mixed community/
institutional provision of services set within a range of sig-
nificant reforms to the National Health Service. The latest
and perhaps most significant reform is that associatedwith
the introduction of ‘stepped care’. Stepped care is aimed
at bringing help to more patients more cheaply by devel-

oping intermediate staff, services and treatments between
GPs and the specialist health hospitals.

Having decided on the new treatments at each step and
having designed the basic patient pathways, modeling has
been used in the NorthWest of England to help with com-
munication of the benefits and to overcome anticipated
problems with resource reallocation issues [69]. Further
work in Lincolnshire UK [58] reports the increasing use
of ‘matrix’ modeling in mental health to capture the dy-
namics of both patient needs and treatments. This work
also demonstrates the dangers of over-investment in sit-
uations where much demand is in accrued backlogs and
incidence is reducing due to better and more successful
interventions.

The depression work has also led to work at the De-
partment of Health in the UK to help analyze the national
impact of stepped services for mental health on the totality
of the labor market and unemployment [72]. This work
is an example of the value that system dynamics can add
to conventional cost benefit analysis. A static cost benefit
analysis was developed into a system dynamics model. By
developing a bigger picture of the issue, both upstream to
where patients go after treatment and downstream from
where patients originate in the labor market, and by sim-
ulation of the enhanced vision, the dynamic cost benefit
analysis is shown to advance understanding of the issue
and plans.

The work questions the magnitude of the potential
benefits, introduces phasing issues, surfaces structural in-
sights, takes account of the dynamics of the lab-our mar-
ket and forces linkages between the plan and other ini-
tiatives to get people back to work. The paper suggests
that cost benefit analysis and system dynamics are very
complementary and should be used together in strategic
planning.

Other mental health capacity planning studies have
been carried out for individualmental health hospitals and
trusts. One such study [71] describes the application of
system dynamics to assist decision making in the reallo-
cation of resources within a specialist mental health trust
in south London. Mental health service providers in the
UK are under increasing pressure to both reduce their own
costs and tomove resources upstream in mental health pa-
tient pathways to facilitate treatingmore people, whilst not
compromising service quality.

The investigation here focused on the consequences of
converting an existing specialist service ward in a mental
health hospital into a ‘triage’ ward, where patients are as-
sessed and prioritized during a short stay for either dis-
charge or onward admission to a normal ward. Various
policies for the transition were studied together with the
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implications for those patients needing post hospital ser-
vices and relocation within the community. The model
suggested that the introduction of a triage ward couldmeet
the strategic requirement of a 10% shift away from insti-
tutional care and into community services. The paper in-
cludes a number of statements from themanagement team
involved on the benefits of system dynamics and the im-
pact of its application on their thinking.

System DynamicsWorkforce PlanningModels
to Support HealthManagement

It is also important to mention that work has been car-
ried out in a number of countries in the field of work-
force planning related to health. In the UK the NHS has
deployed sophisticated workforce planning models to de-
termine the training and staffing needs associated with
numerous alternative service configurations. In the Span-
ish Health system modeling has been used to determine
the number of doctors required for a number of special-
ists services and to attempt to explore solutions for the
current imbalance among supply and demand of physi-
cians [2,4,5]. Elsewhere the factors affecting staff retention
has been studied [28] and in the Netherlands, an advisory
body of the Dutch government was given the responsibil-
ity of implying a new standard for the number of rheuma-
tologists [39]. One of the main factors that were studied in
the scenario analysis stage was the influences of changing
demographics on the demand of manpower in the health
system. Other studies have covered time reduction legisla-
tion on doctor training [22].

Future Directions

System dynamics has already made a significant impact
on health and social care thinking across the EU. Many
policy insights have been generated and the organizations
are increasingly being recognized as complex adaptive sys-
tems. However, true understanding and implementation
of the messages requires much more work and too many
organizations are still locked into a pattern of short-ter-
mism which leads them to focus on the things they feel
able to control – usually variables within their own indi-
vidual spheres of control. There are also some aspects of
system reform in some countries that are producing per-
verse incentives which encourage organizations to apply
short-term policies.

Wider communication of existing studies and further
studies are necessary to demonstrate the advantages of
sustainable, systemic solutions. The key challenge lies in
demonstrating to a wider audience of managers and clin-
icians that they can add value to the whole whilst remain-

ing autonomous. An important element is to train more
people capable of modeling and facilitating studies and to
simplify the process and software of system dynamics.
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Glossary

Chronic illness A disease or adverse health state that per-
sists over time and cannot in general be cured, al-
though its symptoms may be treatable.

Stock An accumulation or state variable, such as the size
of a population.

Flow A rate-of-change variable affecting a stock, such as
births flowing into a population or deaths flowing out.

Feedback loop A closed loop of causality that acts to
counterbalance or reinforce prior change in a system
state.

Definition of the Subject

Health care involves a complex system of interactions
among patients, providers, payers, and other stakeholders.
This system is difficult to manage in the United States be-
cause of its free market approach and relative lack of reg-
ulation. System Dynamics simulation modeling is an ef-
fective method for understanding and explaining causes
of dysfunction in U.S. health care and for suggesting ap-
proaches to improving health outcomes and slowing rising
costs. Applications since the 1970s have covered diverse
areas in health care including the epidemiology of diseases
and substance abuse, as well as the dynamics of health care
capacity and delivery and their impacts on health. Many of
these applications have dealt with the mounting burden of
chronic illnesses, such as diabetes. In this article four such
applications are described.

Introduction

Despite remarkable successes in some areas, the health en-
terprise in the United States faces difficult challenges in
meeting its primary goal of reducing the burden of disease
and injury. These challenges include the growth of the un-
derinsured population, epidemics of obesity and asthma,
the rise of drug-resistant infectious diseases, ineffective
management of chronic illness [33], long-standing racial
and ethnic health disparities [32], and an overall decline in
the health-related quality of life [64]. Many of these com-
plex problems have persisted for decades, often proving re-
sistant to attempts to solve them [36].

It has been argued that these interventions fail because
they are made in piecemeal fashion, rather than compre-
hensively and from a whole-system perspective [15]. This
compartmentalized approach is engrained in the financial
structures, intervention designs, and evaluation methods
of most health agencies. Conventional analytic methods
are generally unable to satisfactorily address situations in
which population needs change over time (often in re-

sponse to the interventions themselves), and in which risk
factors, diseases, and health resources are in a continuous
state of interaction and flux [52].

The term dynamic complexity has been used to de-
scribe such evolving situations [56]. Dynamically complex
problems are often characterized by long delays between
causes and effects, and by multiple goals and interests that
may in some ways conflict with one another. In such situ-
ations, it is difficult to know how, where, and when to in-
tervene, because most interventions will have unintended
consequences and will tend to be resisted or undermined
by opposing interests or as a result of limited resources or
capacities.

The systems modeling methodology of System Dy-
namics (SD) is well suited to addressing the challenges
of dynamic complexity in public health. The methodol-
ogy involves the development of causal diagrams and pol-
icy-oriented computer simulation models that are unique
to each problem setting. The approach was developed by
computer pioneer Jay W. Forrester in the mid-1950s and
first described at length in his book Industrial Dynam-
ics [11] with some additional principles presented in later
works [8,9,10,12]. The International System Dynamics So-
ciety was established in 1983, and within the Society a spe-
cial interest group on health issues was organized in 2003.

SD modeling has been applied to health and health
care issues in the U.S. since the 1970s. Topic areas have
included:

� Disease epidemiology including work in heart dis-
ease [24,40], diabetes [24,34,43], obesity [25], HIV/
AIDS [29], polio [57] and drug-resistant pneumococ-
cal infections [28];

� Substance abuse epidemiology covering heroin addic-
tion [37], cocaine prevalence [30], and tobacco reduc-
tion policy [50,58];

� Health care capacity and delivery in such areas as pop-
ulation-based HMO planning [21], dental care [20,38],
and mental health [38], and as affected by natural dis-
asters or terrorist acts [16,22,41]; and

� Interactions between health care or public health ca-
pacity and disease epidemiology [17,18,19,23,27].

Most of these modeling efforts have been done with the
close involvement of clinicians and policymakers who
have a direct stake in the problem being modeled. Estab-
lished SD techniques for group model building [60] can
help to harness the insights and involvement of those who
deal with public health problems on a day-to-day basis.

It is useful to consider how SD models compare with
those of other simulation methods that have been ap-
plied to public health issues, particularly in epidemio-
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logical modeling. One may characterize any population
health model in terms of its degree of aggregation, that
is, the extent to which individuals in the population are
combined together in categories of disease, risk, or age
and other demographic attributes. At the most aggre-
gate end of the scale are lumped contagion models [3,35];
more disaggregated areMarkovmodels [13,31,44]; and the
most disaggregated are microsimulations at the level of
individuals [14,51,63].

The great majority of SD population health models are
high or moderately high in aggregation. This is related to
the fact that most SD models have a broad model bound-
ary sufficient to include a variety of realistic causal factors,
policy levers, and feedback loops. Although it is possible to
build models that are both broad in scope and highly dis-
aggregated, experience suggests that such very large mod-
els nearly always suffer in terms of their ability to be easily
and fully tested, understood, and maintained. In choosing
between broader scope and finer disaggregation, SD mod-
elers tend to opt for the former, because a broad scope is
generally needed for diagnosing and finding effective solu-
tions to dynamically complex problems [55,56].

The remainder of this article describes four of the Sys-
tem Dynamics modeling applications cited above, with
a focus on issues related to chronic illnesses and their
care and prevention. The U.S. Centers for Disease Con-
trol and Prevention (CDC) estimates that chronic illness
is responsible for 70% of all deaths and 75% of all health
care costs in the U.S. [5]. The applications discussed below
address:

� Diabetes and heart failure management at the commu-
nity level;

� Diabetes prevention and management from an epi-
demiological perspective;

� General chronic illness care and prevention at a com-
munity level; and

� General chronic illness care and prevention at the na-
tional level.

The article concludes with a discussion of promising areas
for future work.

Four Applications

Diabetes and Heart Failure Management
at the Community Level

Two hours north of Seattle in the state of Washington
lies Whatcom County, with a population of about 170
thousand. The county embarked on a major effort to ad-
dress chronic illness care and was selected by the Robert
Wood Johnson Foundation as one of seven sites in a larger

chronic care program called Pursuing Perfection [24]. The
program initially concentrated on two chronic illnesses
as prototypes for improved care: diabetes and congestive
heart failure. Both of these illnesses affect millions of peo-
ple in the U.S. and other countries and exact a heavy toll
in terms of direct medical expenditures as well as indirect
costs due to disability and premature mortality [2,45,47].
The prevalence of both diseases is growing rapidly as the
numbers of people above age 65 increase, and also due to
the epidemic rise in obesity, which is a risk factor for both
diabetes and heart disease [7,46].

Leaders of the Whatcom County program had two
critical needs for making decisions about potential inter-
ventions for improving the care of chronic illnesses such as
diabetes and heart failure. First, they wanted to get a sense
of the overall impact of these interventions on incidence
and prevalence of diabetes and heart failure, health care
utilization and cost, and mortality and disability rates in
the community. Second, they wanted to understand the
impact of the various interventions on individual health
care providers in the community and on those who pay for
care—insurers, employers, and patients themselves. There
was a concern that the costs and benefits of the program
be shared equitably and that providers who helped pro-
duce savings should not suffer a resulting loss of revenue
to their businesses.

These analytic needs could not be met with spread-
sheet and other models that project impacts in a simple,
linear fashion. Interventions in chronic illness do not have
simple direct impacts. The aging of the population, inci-
dence of new cases, progression of disease, deaths, and the
interventions themselves all create a constantly changing
situation. Interventions ideally reduce mortality rates, but
this leaves more people with the disease alive and requir-
ing care for years to come.

Figure 1 presents a simplified view of the stock-and-
flow structure used in modeling non-insulin-dependent
(Type 2) diabetes. The actual model has two separate
structures like those shown in Fig. 1, one for the 18-to-64
age group and one for the 65-and-older age group, which
are linked by flows of patients turning 65. The model also
calculates an inflow of population turning 18, death out-
flows from each stock based on patient age and stage of
illness, and flows of migration into and out of the county.
The rectangular boxes in Fig. 1 represent sub-populations
with particular characteristics. The arrows signify flows of
people from one population group to another (e. g., from
uncontrolled to controlled diabetes at a particular stage).
Lines from ovals (programmatic interventions such as dis-
ease management) to population flows indicate control of
or influence on those flows.
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Disease stages and intervention points in the Whatcom County Diabetes Model

The three stages of diabetes portrayed in this fig-
ure were identified through discussions with clinicians in
Whatcom County. The population At Risk includes those
with family history, the obese, and, most directly, those
with a condition of moderate blood sugar known as pre-
diabetes. Further increases in blood sugar lead to Stage
1 diabetes, in which blood vessels suffer degradation, but
there is not yet any damage to organs of the body, nor typi-
cally any symptoms of the encroaching disease. More than
half of Stage 1 diabetics are undiagnosed. If Stage 1 diabet-
ics go untreated, most will eventually progress to Stage 2,
marked by organ disease. In Stage 2 diabetes, blood flow
disturbances impair the functioning of organ systems and
potentially lead to irreversible damage. A patient who has
suffered irreversible organ damage, or organ failure, is said
to be in Stage 3; this would include diabetics who suffer
heart attacks, strokes, blindness, amputations, or endstage
renal disease. These patients are at the greatest risk of fur-
ther complications leading to death.

Several studies have demonstrated that the inci-
dence, progression, complications, and costs of diabetes
can be reduced significantly through concerted interven-
tion [1,4,6,59,61]. Such intervention may include primary
prevention or disease management. As indicated in Fig. 1,

primary prevention would consist of efforts to screen the
at-risk population and educate them about the diet and
activity changes they need to prevent progression to dia-
betes. Disease management, on the other hand, addresses
existing diabetics. A comprehensive disease management
approach, such as that employed by the Whatcom County
program, can increase the fraction of patients who are able
to keep their blood sugar under effective control from the
40% or less typically seen without a program up to perhaps
80% or more.

The SD model of diabetes in Whatcom County was
first used to produce a 20-year status quo or baseline pro-
jection, which assumes that no intervention program is
implemented. In this projection, the prevalence of diabetes
among all adults gradually increases from 6.5% to 7.5%,
because of a growing elderly population; the prevalence
of diabetes among the elderly is 17%, compared with 5%
among the non-elderly. Total costs of diabetes, including
direct costs for health care and pharmaceuticals and indi-
rect economic losses due to disability, grow substantially
in this baseline projection.

The next step was to use the model to examine the im-
pact of various program options. These included: (1) a par-
tial approach enhancing disease management but not pri-
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mary prevention, (2) a full implementation approach com-
bining enhancement of both diseasemanagement and pri-
mary prevention, and (3) an approach that goes beyond
full implementation by also providing greater financial as-
sistance to the elderly for purchasing drugs needed for the
control of diabetes.

Simulations of these options projected results in terms
of various outcome variables, including deaths from com-
plications of diabetes and total costs of diabetes. Figure 2
shows typical simulation results obtained by projecting
these options, in this case, the numbers of deaths over time
that might be expected due to complications of diabetes.
“Full VCTIS” refers to the complete program of primary
prevention and diseasemanagement.Under the status quo
projection, the number of diabetes-related deaths grows
continuously along with the size of the diabetic popula-
tion. The partial (disease management only) approach is
effective at reducing deaths early on, but becomes increas-
ingly less effective over time. The full program approach
(including primary prevention) overcomes this shortcom-
ing and by the end of the 20 year simulation reduces dia-
betes-related deaths by 40% relative to the status quo. Ad-
dition of a drug purchase plan for the elderly does even
better, facilitating greater disease control and thereby re-
ducing diabetes related deaths by 54% relative to the status
quo.

With regard to total costs of diabetes, the simulations
indicate that the full program approach can achieve net
savings only two years after the program is launched. Four
years after program launch, a drug plan for the elderly gen-
erates further reductions in disability costs beyond those
provided by the program absent such a plan. The partial
program approach, in contrast, achieves rapid net savings
initially, but gives back most of these savings over time as
diabetes prevalence grows. By the end of 20 years, the full
program approach results in a net savings amounting to
7% of the status quo costs, two-thirds of that savings com-
ing from reduction in disability-related costs. The model
suggests that these anticipated net savings are the result of
keeping people in the less severe stages of the diseases for
a longer period of time and reducing the number of dia-
betes-related hospitalizations.

The simulations provided important information and
ideas to theWhatcomCounty program planners, as well as
supporting detailed discussions of how various costs and
benefits could be equitably distributed among the partic-
ipants. This helped to reassure participants that none of
them would be unfairly affected by the proposed chronic
illness program. Perhaps the most important contribution
of modeling to the program planning process was its abil-
ity to demonstrate that the program, if implemented in its

full form, would likely reduce total costs, even though it
would extend the longevity of many diabetics requiring
costly care. Given the sensitivity of payers who were al-
ready bearing high costs, this finding helped to motivate
their continued participation in the program.

Diabetes Prevention and Management
from an Epidemiological Perspective

Another SDmodel of diabetes in the population was devel-
oped for the CDC’s Division of Diabetes Translation [34].
This model, a structural overview of which is presented in
Fig. 3, builds upon the Whatcom County work but looks
more closely at the drivers of diabetes onset, including
the roles of prediabetes and obesity. The core of the CDC
model is a chain of population stocks and flows portray-
ing the movement of people among the stages of normal
blood glucose, prediabetes, uncomplicated diabetes, and
complicated diabetes. The prediabetes and diabetes stages
are further divided among stocks of people whose condi-
tions are diagnosed or undiagnosed. Also shown in Fig. 3
are the potentially modifiable influences in the model that
affect the rates of population flow. These flow-rate drivers
include obesity and the detection and management of pre-
diabetes and of diabetes.

The model’s parameters were calibrated based on his-
torical data available for the U.S. adult population, as well
as estimates from the scientific literature. The model is
able to reproduce historical time series, some going as far
back as 1980, on diagnosed diabetes prevalence, the di-
agnosed fraction of diabetes, prediabetes prevalence, the
obese fractions of people with prediabetes and diabetes,
and the health burden (specifically, the mortality, morbid-
ity, and costs) attributable to diabetes. The model suggests
that two forces worked in opposition to affect the diabetes
health burden from 1980 to 2004. The first force is a rise
in the prevalence of obesity, which led to a greater inci-
dence and prevalence of prediabetes and diabetes through
the chain of causation seen in Fig. 3. The second and op-
posing force is a significant improvement in the control
of diabetes, achieved through greater efforts to detect and
manage the disease. The second force managed to hold the
health burden of diabetes more or less flat during 1980
to 2004.

Looking toward the future, a baseline scenario assumes
that no further changes occur in obesity prevalence af-
ter 2006, and that inputs affecting the detection and man-
agement of prediabetes and diabetes remain fixed at their
2004 values through 2050. This fixed-inputs assumption
for the baseline scenario is not meant to represent a fore-
cast of what is most likely to in the future but does pro-
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Typical results from policy simulations with Whatcom County Diabetes Model

Health Care in the United States, System Dynamics Applications to, Figure 3
Structure of the CDC Diabetes Model

vide a useful and easily-understood starting point for pol-
icy analysis.

The baseline simulation indicates a future for diabetes
burden outcomes for the period 2004–2050 quite different
from the past. With obesity prevalence fixed, by assump-
tion, at a high point of 37% from 2006 onward, the dia-
betes onset rate remains at a high point as well, and dia-
betes prevalence consequently continues to grow through
2050, becoming more level (after about 2025) only when
the outflow of deaths starts to catch up with the inflow of
onset.

The CDC model has been used to examine a va-
riety of future scenarios involving policy interventions
(singly or in combination) intended to limit growth in
the burden of diabetes. These include scenarios improv-
ing the management of diabetes, increasing the manage-
ment of prediabetes, or reducing the prevalence of gen-
eral population obesity over time. Enhanced diabetesman-
agement can significantly reduce the burden of diabetes
in the short term, but does not prevent the growth of
greater burden in the longer term due to the growth of
diabetes prevalence. Indeed, the effect of enhanced dia-
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betes management on diabetes prevalence is not to de-
crease it at all, but rather to increase it somewhat by in-
creasing the longevity of people with diabetes. Increased
management of prediabetes does, in contrast, reduce dia-
betes onset and the growth of diabetes prevalence. How-
ever, it does not have as much impact as one might expect;
this is because many people with prediabetes are not di-
agnosed, and also because the policy does nothing to re-
duce the growth of prediabetes prevalence due to obesity
in the general population. A reduction in prediabetes can
be achieved only by reducing population obesity. Signifi-
cant obesity reduction may take 20 years or more to ac-
complish fully, but the model suggests that such a policy
can be quite a powerful one in halting the growth of di-
abetes prevalence and burden even before those 20 years
are through.

Overall, the CDCmodel suggests that no single type of
intervention is sufficient to limit the growth of the diabetes
burden in both the short term and the long term. Rather,
what is needed is a combination of disease management
for the short term and primary prevention for the longer
term. The model also suggests that effective primary pre-
vention may require obesity reduction in the general pop-
ulation a focus on managing diagnosed prediabetes.

At the state and regional level, the CDC model has be-
come the basis for a model-basedworkshop called the “Di-
abetes Action Lab”. Participants have included state and
local public health officials along with non-governmen-
tal stakeholders including health care professionals, lead-
ers of not-for-profit agencies, and advocates for people liv-
ing with diabetes. The workshops have helped the partic-
ipants improve their intervention strategies and goals and
become more hopeful and determined about seeing their
actions yield positive results in the future.

The CDC diabetes model has led to other SD mod-
eling efforts at the CDC emphasizing disease prevention,
including studies of obesity [25] and cardiovascular risk.
The obesity study involved the careful analysis of popula-
tion survey data to identify patterns of weight gain over the
entire course of life from childhood to old age. It explored
likely impacts decades into the future of interventions to
reduce or prevent obesity that may be targeted at specific
age categories. Tentative findings included (1) that obesity
in the U.S. should be expected to grow at a much slower
pace in the future than it did in the 1980s and 1990s; (2)
that the average amount of caloric reduction necessary to
reverse the growth of obesity in the population is less than
100 calories per day; (3) that the current trend of focus-
ing intervention efforts on school-age children will likely
have only a small impact on future obesity in the adult
population; and (4) that it may take decades to see the full

impacts of interventions to reduce obesity in the overall
population.

General Health Care and Illness Prevention
at a Community Level

Hirsch and Immediato [19] describe a comprehensive
view of health at the level of a community. Their “Health
Care Microworld”, depicted in highly simplified form in
Fig. 4, simulates the health status and health care delivery
for people in the community. TheMicroworld was created
for a consortium of health care providers who were fac-
ing a wide range of changes in the mid-1990s and needed
a means for their staffs to understand the implications of
those changes for how they managed. The underlying SD
model consists of many hundreds of equations and was
designed to reflect with realistic detail a typical Ameri-
can community and its providers, with data taken from
public sources as well as proprietary surveys. Users of the
Microworld have a wide array of options for expanding
the capacity and performance of the community’s health
care delivery system such as adding personnel and facili-
ties, investing in clinical information systems, and process
redesign. They have a similar range of alternatives for im-
proving health status and changing the demand for care
including screening for and enhanced maintenance care
of people with chronic illnesses, programs to reduce be-
havioral risks such as smoking and alcohol abuse, environ-
mental protection, and longer-term risk reduction strate-
gies such as providing social services, remedial education,
and job training.

TheMicroworld’s comprehensive view of health status
and health care delivery can provide insights not available
from approaches that focus on one component of the sys-
tem at a time. For example, users can play roles of different
providers in the community and get a better understand-
ing of why many attempts at creating integrated delivery
systems have failed because participating providers care
more about their own bottom lines and prerogatives than
about creating a viable system. When examining strate-
gies for improving health status, users can get a better
sense of how a focus on enhanced care of people with
chronic illnesses provides short-term benefits in terms of
reduced deaths, hospital admissions, and costs, but how
better long-term results can be obtained by also investing
in programs that reduce social and behavioral health risks.

General Health Care and Illness Prevention
at the National Level

Despite rapid growth in health care spending in the U.S. in
recent decades, the health of Americans has not noticeably
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Overview of the Health Care Microworld

improved. A recent SD model [23] addresses the question
of why the U.S. has not beenmore successful in preventing
and controlling chronic illness. This model can faithfully
reproduce patterns of change in disease prevalence and
mortality in the U.S., but its structure is a generic one and
should be applicable to other countries. The model exam-
ines the growing prevalence of disease and responses to it,
responses which include the treatment of complications as
well as disease management activities designed to slow the
progression of illness and reduce the occurrence of future
complications. The model shows how progress in com-
plications treatment and disease management has slowed
since 1980 in the U.S., largely due to a behavioral tug-of-
war between health care payers and providers that has re-
sulted in price inflation and an unstable climate for health
care investments. The model is also used to demonstrate
the impact ofmoving “upstream” bymanaging known risk
factors to prevent illness onset, and moving even further
upstream by addressing adverse behaviors and living con-
ditions linked to the development of these risk factors in
the first place.

An overview of the model’s causal structure is pre-
sented in Fig. 5. The population stock of disease preva-
lence is increased by disease incidence and decreased by
deaths. The death rate can be reduced by a greater extent
of disease care, including urgent care and disease manage-
ment. Disease incidence draws from a stock of risk preva-
lence, where risk refers to physical or psychological con-
ditions or individual behaviors that may lead to disease.
Effective risk management can reduce the flow of peo-
ple from risk to disease, and may also in some cases al-
low people to return to a condition of being no longer
at risk. Such management may include changes in nutri-
tion or physical activity, stress management, or the use
of medications. The risk prevalence stock is increased by
adverse behaviors and living conditions. Adverse behav-
iors may include poor diet, lack of physical activity, or
substance abuse. Adverse living conditions can encompass
many factors, including crime, lack of access to healthy
foods, inadequate regulation of smoking, weak social net-
works, substandard housing, poverty, or poor educational
opportunities.
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Overview of a National-Level Model of Health Care and Illness Prevention. Key to feedback loops (“R” denotes self-reinforcing, “B”
denotes counterbalancing):
R1 Health care revenues are reinvested for further growth
B1 Disease management reduces need for urgent care
R2 Disease care prolongs life and further increases need for care
B2 Reimbursement restriction limits spending growth
B3 Insurance denial limits spending growth
R3 Providers circumvent reimbursement restrictions, leading to a tug-of-war with payers
B4 Risk management proportional to downstream spending can help limit it
B5 Health protection proportional to downstream spending can help limit it
B6 Health protection (via sin taxes) proportional to risk prevalence can help limit it

The extent of care is explained in the model by two
key factors: the abundance of health care assets, and in-
surance coverage. Health care assets are the structures and
fixed equipment used directly for health care or for the
production of health care products, as well as the human
capital of personnel involved. Insurance coverage refers to
the fraction of the population with some form of health
care insurance, either with a private insurer or through
a government plan. The uninsured are less likely than the
insured to receive health care services, especially disease
management services, something which most of the unin-
sured cannot afford whereas in most cases they can get ur-
gent care at a hospital emergency department.

The stock of assets is increased by investments, which
may be viewed as the reinvestment of some fraction of
health care revenues. Such reinvestment drives further
growth of care and revenue, and the resulting exponen-
tial growth process is identified as loop R1 in Fig. 5.

The data indicate, however, that the reinvestment pro-
cess has slowed significantly since 1980. It is hypothe-
sized that this decline in the reinvestment rate has been
the response by potential investors to various forms of
cost control, including the restriction of insurance re-
imbursements, which affect the providers of health care
goods and services. With increasing controls and restric-
tions, these potential investors face greater risk and un-
certainty about the future return on their investments,
and the result is a greater reluctance to build a new
hospital wing, or to purchase an expensive new piece
of equipment, or even, at an individual level, to devote
a decade or more of one’s life to the hardship of med-
ical education and training. Health care costs and cost
controls have also led to elimination of private health in-
surance coverage by some employers, although some of
the lost coverage has been replaced by publicly-funded
insurance.
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One additional part of the downstream health care
story portrayed in Fig. 5 is the growth of health care prices.
Health care prices are measured in terms of a medical care
consumer price index (CPI), which since 1980 has grown
much more rapidly than the general CPI for the overall
economy. For the period 1980–2004, inflation in medical
care prices averaged 6.1% versus general inflation of 3.5%.
Why has health care inflation exceeded that of the general
economy? Several different phenomena have contributed
to health care inflation, but not all have contributed with
sufficient magnitude or with the timing necessary to ex-
plain the historical pattern. One phenomenon that does
appear to have such explanatory power is shown in Fig. 5
as “provider adaptation”. This is the idea that, in response
to cost containment efforts, providers may “increase fees,
prescribe more services, prescribe more complex services
(or simply bill for them), order more follow-up visits, or
do a combination of these. . . ” [49] Many tests and proce-
dures are performed that contribute little or no diagnostic
or therapeutic value, thereby inflating the cost per quality
of care delivered. By one estimate, unnecessary and infla-
tionary expense may have represented 29% of all personal
health care spending in the year 1989 [23].

The dynamics involving the extent of disease care are
portrayed in Fig. 5 in the feedback loops labeled R1, B1,
R2, B2, B3, and R3. Taken together, one may view these
loops—with the exception of Loop R3—as the story of
a “rational” downstream health care system that favors
growth and investment until the resulting costs get to
a point where further increases are perceived to be no
longer worth the expected incremental improvements in
health and productivity. Loop R3, however, introduces
dysfunction into this otherwise rational system. The loop
describes a tug-of-war between payers restricting reim-
bursement in response to high health care costs, and
providers adapting to these restrictions by effectively rais-
ing health care prices in an attempt to circumvent the re-
strictions and maintain their incomes. Because this loop
persistently drives up health care costs, it ends up hurting
health care investments and insurance coverage (through
Loops B2 and B3, respectively), thus dampening growth in
the extent of care.

Simulations of the model suggest that there are no easy
downstream fixes to the problem of an underperform-
ing and expensive health care system in the U.S. mold.
The simulations seem to suggest—perhaps counterintu-
itively—that health insurance should be stable and non-
restrictive in its reimbursements, so as to avoid behavioral
backlashes that can trigger health care inflation and under-
investment. Although a broad mandate of this sort would
likely be politically infeasible in the U.S., movement in this

direction could perhaps start with the government’s own
Medicare andMedicaid insurance programs, and then dif-
fuse naturally to private insurers over time. It is interest-
ing to consider whether a more generous and stable ap-
proach to reimbursement could not only combat illness
better than the current restrictive approach, but do it more
efficiently and perhaps even at lower cost.

The model also includes structure for evaluating the
upstream prevention of disease incidence. There are two
broad categories of such efforts described in the literature:
Risk management for people already at risk, and health
protection for the population at large to change adverse
behaviors and mitigate unhealthy living conditions. While
spending on population-based health protection and risk
management programs has grown somewhat, it still repre-
sents a small fraction of total U.S. health care spending, on
the order of 5% in 2004 [23].

Figure 5 includes three balancing loops to indicate
how, in general terms, efforts in risk management and
health protection might be funded or resourced more sys-
tematically and in proportion to indicators of capability or
relative need. Loop B4 suggests that funding for programs
promoting risk management could be made proportional
to spending on downstream care, so that when down-
stream care grows funding for risk management would
grow as well. Loop B5 suggests something similar for
health protection, supposing that government budgets and
philanthropic investments for health protection could be
set in proportion to recent health care spending. Loop B6
takes a different approach to the funding of health pro-
tection, linking it not to health care spending but to risk
prevalence, the stock which health protection most di-
rectly seeks to reduce. The linkage to risk prevalence can
be made fiscally through “sin taxes” on unhealthy items,
such as cigarettes (already taxed throughout the U.S. to
varying extents [39]) and fatty foods [42]. In theory, the
optimal magnitude of such taxes may be rather large in
some cases, as the taxes can be used both to discourage
unhealthy activities and promote healthier ones [48].

Simulations of the model suggest that whether the ap-
proach to upstream action is risk management or health
protection, such actions can reduce illness prevalence and
ultimately save money. However, the payback time, in
terms of reduced downstream health care costs, may be
a relatively long one, perhaps on the order of 20 years.
It should be noted, however, that the model does not in-
clude losses in productivity to employers and society at
large. The Whatcom County models described above sug-
gest that when these losses are taken into account, the pay-
back on upstream action may shrink to a much shorter
time period that may be acceptable to the public as well
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as to those decision makers in a position to put upstream
efforts into effect [24].

Future Directions

As long as there are dynamically complex health issues in
search of answers, the SD approach will have a place in the
analytic armamentarium. There is still much to be learned
about the population dynamics of individual chronic con-
ditions like hypertension and risk factors like obesity. SD
models could also address multiple interacting diseases
and risks, giving a more realistic picture of their overall
epidemiology and policy implications, particularly where
the diseases and risks are mutually reinforcing. For exam-
ple, it has been found that substance abuse, violence, and
AIDS often cluster in the same urban subpopulations, and
that such “syndemics” are resistant to narrow policy in-
terventions [53,54,62]. This idea could also be extended to
the case of mental depression, which is often exacerbated
by other chronic illnesses, and may, in turn, interfere with
the proper management of those illnesses. An exploratory
simulation model has indicated that SD can usefully ad-
dress the concept of syndemics [26].

There is also more to be learned about health care de-
livery systems and capacities, with the inclusion of charac-
teristics specific to selected real-world cases. Models com-
bining delivery systems and risk and disease epidemiology
could help policymakers and health care providers under-
stand the nature of coordination required to put ambi-
tious public health and risk reduction programs in place
without overwhelming delivery capacities. Such models
could reach beyond the health care delivery system per se
to examine the potential roles of other delivery systems,
such as schools and social service agencies, in health risk
reduction.

The more complete view of population health dynam-
ics advocated here may also be extended to address per-
sistent challenges in the U.S. that will likely require policy
changes at a national and state level, and not only at the
level of local communities. Examples include the large un-
derinsured population, persistent racial and ethnic health
disparities, and the persistent shortage of nurses. SD mod-
eling can help to identify the feedback structures respon-
sible for these problems, and point the way to policies that
can make a lasting difference.
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Glossary

In this section some definitions and results that are im-
portant as background for the later exposition are sum-
marized. Out of necessity the definitions are very short
and the reader might want to consult standard textbooks
on the subjects. This is especially true in the section on
group theory, which is dense and only meant to recapitu-
late main results to a reader already familiar with the ba-
sics of the subject. It would have been appropriate to also
include a brief background on differential geometry. Un-
fortunately this subject is so large that even a minimal in-
troduction must span several pages. The reader is advised
to consult a standard book on differential geometry and
Lie group theory, e. g. [4], to find the necessary definitions
and results.

Liouville’s Theorem, Conservative
and Dissipative Systems

Consider a dynamical system ẋ D f (x) with a phase space
x 2 Rn . Let �(t; x) be a probability density on the phase
space, defined so that �(t; x)dn x is the probability of
finding the system in the phase space volume dnx at
time t. Given an initial value, the differential equation has
a unique solution. This observation results in the following
continuity equation

@�

@t
C
X

i

@( fi�)
@xi

D 0 ; (1)

for the density under the flow f . In general, we may write
the time evolution of a probability density as

@�

@t
D �

X

i

@( fi�)
@xi

D �L� ; (2)

where L is called the Liouville operator. In quantum me-
chanics the convention @�

@t D �iL� is often used to ensure
thatL is a Hermitian operator. We do not use this conven-
tion here. The evolution of the probability density along
a trajectory is given by the total time derivative:

d�
dt
D
@�

@t
C
X

i

fi
@�

@xi
D �(r � f )� ; (3)

where Eq. (1) is used in the last step. The factor r � f mea-
sures the phase space contraction under the flow of the
dynamical system. If the system is Hamiltonian, then the
degrees of freedom are given by xi and pi and there exist
a function H(x; p; t) (the Hamiltonian) such that the dy-
namics can be written on the form:

ẋi D fi(x; p) D �
@H
@pi

; ṗi D fiCd(x; p) D
@H
@xi

;

i D 1; : : : ; d. It then follows that

r � f D
dX

iD1

@ fi
@xi
C

dX

iD1

@ fiCd

@pi

D �

dX

iD1

@2H
@xi@pi

C

dX

iD1

@2H
@pi@xi

D 0 :

We conclude that d�
dt D 0 for a Hamiltonian system, i. e.

the phase space volume is conserved. This result is called
Liouville’s theorem and it is valid for closed Hamiltonian
systems. We also note that, with the standard scalar prod-
uct ( f ; g) D

R
dx f (x)g(x), the Liouville operator is anti-

symmetric (L� D �L) for Hamiltonian systems.
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If r � f < 0 in some region of the phase space the
phase space volume is contracting, we say that the sys-
tem is dissipative. A consequence of a contracting phase
space is that there exists an attractor. An attractor is a sub-
set to which trajectories from some regions of initial values
evolve asymptotically. For chaotic dissipative systems, the
attractor is usually not smooth and can have non-integer
Hausdorff dimension. By contrast, a conservative system
do not have any attractors.

The Langevin and Fokker–Planck Equations

One of the simplest stochastic differential equations is the
Langevin equation

v̇ D ��vC �(t) ; (4)

where �(t) represents white noise with zero mean
h�(t)it D 0 and variance defined as h�(t)�(t C dt)it D
2Bı(dt) (ı denotes a Dirac delta function). The first mo-
ments of v can be shown to be [55]:

hv(t)i D 0 hv(t)2i D B/� :

If v is interpreted as velocity, then by the definition of
temperature hv(t)2i D kBT (assuming unit mass) and the
fluctuation-dissipation theorem follows from the variance:

B D � kBT : (5)

For a deterministic dynamical system, the time evolution
of a probability density on the phase space is given by Li-
ouville’s equation (2). For a stochastic differential equa-
tion, such as the Langevin equation, the time evolution of
a probability density is given by a Fokker–Planck equation:

@�

@t
D ��r � �C B�� :

Note that the stochastic part of the dynamics shows up
as a diffusion term. In general, for a stochastic differential
equation on the form

ẋi D fi(x)C �i(t) ; (6)

with h�i (t)i D 0 and

h�i(t1)� j(t2)i D 2Bi j(x)ı(t1 � t2) ;

the corresponding Fokker–Planck equation reads

@�

@t
D �

X

i

@

@xi
( fi�)C

X

i j

�
@

@xi
Bi j

@

@x j

�
� : (7)

It is important to be aware of subtleties with the interpreta-
tion of stochastic differential equations. The fundamental
problem lies in the ambiguous representation of the noise
�(t), which is not a regular function (it is not even contin-
uous). There are essentially two different interpretations
of (6), called Itō and Stratonovich. They lead to differ-
ent forms of the diffusion term in Eq. (7). This issue are
not of central concern to the current presentation and we
do not discuss it further. The interested reader is recom-
mended to read two standard references on the Fokker–
Planck equation: Risken & Frank and Gardiner [13,41].

Ergodicity andMixing

Let (X; ˙;�) be a probability space, where X is the space
(or set), ˙ is a �-algebra, and � is a probability mea-
sure on ˙ . Consider a map T that is measure preserving,
�(T�1(E)) D �(E) for any E 2 ˙ . The map T is called er-
godic if, for almost all x 2 X and any Lebegue measurable
function f ,

lim
n!1

1
n

n�1X

iD0

f (Tix) D
Z

f d� ;

where � is an invariant measure. Alternatively one may
define ergodic as follows: whenever T(E) D E, i. e. E is an
invariant measure, then it follows that either �(E) D 0 or
�(E) D 1. Intuitively ergodicity means that we can study
the map’s properties by looking at a single trajectory. The
definition of ergodicity for continuous dynamical system
is analogous.

A measure preserving map T is called (strongly) mix-
ing if

lim
n!1

�
�
Tn(A) \ B


D �(A)�(B);

where A, B are measurable sets. Intuitively, mixing means
that different sets of initial distributions become inter-
twined with each other as the system evolves. The generic
metaphor is a drop of dye in a glass of water. Mixing sys-
tems are always ergodic but the converse is not necessarily
true. For example, an irrational flow on a torus is ergodic
but not mixing. Themixing property is strongly connected
with chaotic motion. The exponential stretching and fold-
ing of the phase space associated with nonzero Lyapo-
nov exponents results in a mixing behavior for chaotic
dynamics.

Some Concepts from Group Theory

Group A group is a set G endowed with a binary op-
eration  : G � G ! G. We often denote the group
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by (G;), or if there is no risk for confusion just G.
The operator  fulfills three group axioms: Associa-
tivity a  (b  c) D (a  b)  c; Identity element,
there exist a unique element e 2 G such that 8a 2
G a  e D e  a D a; Inverse, for each element
a 2 G there exist a unique element a�1 2 G such that
a  a�1 D a�1  a D e.

Subgroup A subset H of G is called a subgroup if it is
closed under the group operation (8a; b 2 H it follows
that a  b 2 H), and ifH is a group in itself (e 2 H and
8a 2 H it follows that a�1 2 H).

Classes We say that a and a0 are said to be conjugates
if 9b 2 G such that a0 D b�1  a  b. Conjugacy is an
equivalence relation and each element a 2 G belong to
exactly one class. We call the resulting group a direct
product of G1 and G2, denoted by G1 ˝ G2. Note that
G1 and G2 are both normal subgroups of G1 ˝ G2.

Normal subgroup If N is a subgroup of G and further-
more8b 2 N and8a 2 G it is true that a  b D b0  a
for some b0 2 N, then N is called a normal subgroup
ofG. A normal subgroup can be identifiedwith a union
of classes.

Direct product Let (G1;) and (G2; �) be two groups. We
can form ordered pairs (a1; a2) where a1 2 G1 and
a2 2 G2. We can then define a group product on the
ordered pair as (a1; a2) ı (a01; a

0
2) D (a1  a01; a2 � a

0
2).

Coset and quotient group If H is a subgroup of G,
a left (right) coset of an element a 2 G is defined
as aH D fa  b : b 2 Hg(Ha D fb  a : b 2 Hg). The
collection of aH(Ha)8a 2 G are called the left (right)
cosets of H in G. The left and right cosets of H in G
coincide (aH D Ha) if and only if H is a normal sub-
group of G. In fact the importance of normal sub-
groups comes from a possibility to define a quotient
group (or factor group) G/N. The elements in the
quotient group G/N can be identified with the cosets
of N in G. The group operation � on G/N is defined
as (aN) � (bN) :D (a  b)N (note that this definition
makes sense since Nb D bN).

Homomorphism, isomorphism, and automorphism
Let (G;) and (F; �) be two groups. A map � : G ! F
is called a homomorphism if �(a  b) D �(a) � �(b)
for all a; b 2 G. It follows directly that �(eG) D eF
and �(a�1) D �(a)�1. If the map � is also bijek-
tive, it is called an isomorphism and in this case G
and F are considered “essentially the same”, denoted
G ' F. If � : G ! G is an isomorphism from G to
itself, then � it is called an automorphism. The ker-
nel of an homomorphism � : G ! F, denoted ker(�)
is defined as the pre-image of the identity element
in F, i. e. ker(� D fa 2 G : �(a) D eFg. In general, the

pre-image of any subgroup in F is a subgroup in G.
The pre-image of the trivial subgroup eF, i. e. ker(�),
is also a normal subgroup in G (this follows from
a 2 ker(�) gives�(bab�1) D �(b)��(a)��(b�1) D
�(b) � eF � �(b�1) D �(eG) D eF). With these def-
initions we can state the fundamental theorem of
isomorphisms: �(G) ' G/ ker(�).

Semi-direct product Let (N;) and (H; �) be groups and
˚ : H! Aut(N) map from H to the set of automor-
phisms on N, we use the notation � (h)(�) :D �h(�).
A semi-direct product of N and H with respect to � ,
denoted N Ì� H, is defined by the set of pairs (n, h)
where n 2 N and h 2 H, and the group operator de-
fined by (n1; h1) ı (n2; h2) D (n1  �h1 (n2); h1 � h2).
N is a normal subgroup of N Ì� H (if H is also
a normal subgroup then N Ì� H ' N ˝ H). Con-
versely, if N is a normal subgroup and H a sub-
group of G such that for each g 2 G, g D n ı h for
some n 2 N and h 2 H and N \ H D eG , then G '
N Ì� H with �hn D h ı n ı h�1. The normal sub-
group can be eliminated by the quotient group con-
struction (N Ì� H)/N ' H.

Semigroup A semigroup is a set S with an associative bi-
nary operation ı. A semigroup can trivially always be
extended with an identity element e by considering
e [ S, and let e ı a D a ı e D a8a 2 S. It is the ab-
sence of inverse elements that makes semigroups fun-
damentally different from groups. A dynamical system
can be viewed as a transformation semigroup acting
on a state space (see below). semigroups are also im-
portant in the study of finite automata (e. g. Krohn–
Rhodes decomposability theorem [24]) and theoretical
computer science in general.

Lie group and Lie algebra A Lie group is a d dimensional
differentiable manifold with a group structure. Both
the group operation  : G � G ! G and the inver-
sion map i : G ! G, i(a) D a�1 are smooth maps be-
tween manifolds. The vector fields spanning the tan-
gent space at the identity element in a Lie group
spans an algebra, called a Lie algebra g ' TGje . The
vector fields in the Lie algebra are characterized by
their invariance under group multiplication (from the
right or left). The Lie algebra is then a vector space
together with a bilinear operator g � g! g, called
the Lie bracket. The Lie bracket is defined as the
commutator of two vector fields [v;w] D v(w)� w(v).
It is clear that the Lie algebra is closed under the
Lie bracket since the vector fields span a tangent
space (they must form an involution). Any group
element g 2 G, connected to the identity element,
can be expressed in terms of a finite succession of
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exponentials of the vector fields in the Lie algebra
g D e�1vi1 e�2vi2 � � � e�dvid , for some � j . We therefore
view the Lie algebra as a generator of the Lie group.
Most properties of the Lie group can be analyzed
in terms of the Lie algebra. These concepts are sim-
ilar in spirit to how all global information about
an analytic function is contained in a local Taylor
expansion.

Transformation group A group G with an action  such
that G can act on a set M,  : G �M ! M is called
a transformation group. Examples of transformation
groups are rotations acting on Rn. Let a; b 2 G and
x 2 M. A transformation group action then fulfills the
following properties:  (a;  (b; x)) D  (a  b; x) and
 (e; x) D x. An orbit of a point x 2 M is a set in M
that is invariant under the action  . Let O denote an
orbit then if x 2 O it follows that (a; x) 2 O8a 2 G.
It is clear that an element x 2 M belongs to exactly
one orbit, i. e. the orbits form a partition ofM through
their associated equivalence classes. A group action is
called transitive if there is only one orbit covering the
entire set M. The set of all orbits is defined as a quo-
tient set (or quotient manifold ifM is a manifold), de-
noted by M/G. In the case when G is a Lie group and
M is a smooth manifold, the regularity of the quotient
manifold M/G is not guaranteed unless the following
extra conditions are assumed for the group action: is
regular. Semi-regular means that all orbits have the
same dimension as submanifolds inM. Regular means
that the action is semi-regular, and in addition for
each x 2 M there exists a neighborhood U of x such
that each orbit intersecting U is a pathwise connected
subset.

Finite state automata A finite state automaton is de-
fined as a triplet A D (A; X; ı) where A is a finite
(nonempty) state set, X is an input alphabet, and
ı : X � A! A is a transition function. There is an
optional output alphabet but this could be identified
with A. The transition function can be extended to
act on words: ı(uv; a) D ı(v; ı(u; a)) etc. The set of
all words formed out of the alphabet X is denoted
by X�, and the set of nonempty finite words are de-
noted by X+. There is a natural equivalence defined on
X� : U � V if ı(U; a) D ı(V ; a) for all a 2 A (where
U;V 2 X�). The equivalence classes XC/ � together
with the concatenation operation form the character-
istic semigroup of the automaton S(A). The charac-
teristic semigroup S(A) acting on A with the action ı
defines a transformation semigroup. In this way any
finite automaton can be analyzed as a transformation
semigroup.

Definition

The concept of hierarchies is often used in our descrip-
tions of the world. Sometimes the hierarchical structure
is primarily a construct of our mind, and can therefore
be considered subjective. Examples are the Linnean tax-
onomy, Chomsky’s linguistic hierarchies, hierarchies in
object oriented programming, and hierarchical structures
within human organizations. In other situations, one may
argue that the physical world, external to the humanmind
(as far as something of that nature actually exists), is ob-
jectively organized in a hierarchical way. Examples of the
latter situation can be physical hierarchies of particles and
length/time scales, evolutionary taxonomies in biology, hi-
erarchical organization within organisms (cells versus or-
gans), ecosystems (food chains), and computational com-
plexity classes in theoretical computer science. The dis-
tinction between subjective and objective is provocative.
Not only is it unclear if the distinction actually makes
sense in all relevant cases, it is in fact problematic to argue
sharply in any of the examples given. The Linnean taxon-
omy can, for example, be argued for as objective since it
is based on important morphological differences and sim-
ilarities between the organisms. The characteristics used
are also central for the function, which is often reproduc-
tion. Is it then fair to to say that the result is just a reflec-
tion of the human visual cortex combined with higher cog-
nitive functions in the human brain? On the other side,
is not our description of the universe in terms of phys-
ical law, expressed as mathematical relations, subjective
in absurdum? However, the important difference between
the subjective and objective hierarchies listed above lies in
whether or not the hierarchical structure is pre-assumed
a priori to the model building, and included as a central
part of the description of the system; or, as in the hierar-
chies listed as objective, a posteriori result derived from
a model of reality that does not pre-assume the existence
of a hierarchical organization (we may say that the discov-
ery of a hierarchy includes some element of surprise).

While the idea of using hierarchies to describe the
world goes back to Aristotle, Simon was one of the first
to discuss hierarchical organization as a key ingredient in
evolvable and/or controllable complex systems [51]. The
important insight was to acknowledge how hard it is to
make a complex system robust and adaptable if it is not
organized hierarchically. For a system to remain robust as
the overall complexity increases, the internal complexity
must be confined by recursively “hiding” internal degrees
of freedom into modules. The modules then communicate
with each other only through narrow channels. In this way,
a combinatorial explosion of complexity stemming from
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“everyone talking to everyone about everything” can be
avoided. In conclusion, hierarchies through modularity is
a central theme when trying to combine complexity with
robustness, controllability, and evolvability.

Understanding hierarchal organization in dynamical
systems may also lead to insights into mechanisms behind
emergence in systems that are, at least in principle, reduc-
tionistic. Emergence is one of the central themes in com-
plex systems science. Methods and ideas used for analyz-
ing hierarchical dynamics are likely to play a central role
in any theoretical framework addressing emergence. Fi-
nally, many of the techniques that we discuss in the context
of hierarchical dynamics originated in the related fields of
model reduction and multi-scale simulation. In model re-
duction one typically seeks systematic methods for reduc-
ing the complexity of a specific model, or a class of models,
thereby making them more manageable in terms of simu-
lation or analytic studies. As we will see, this is a special
case of hierarchical dynamics (a case of great practical and
conceptual importance).

Introduction

Technically, a definition of a hierarchy must contain some
measure that defines the levels, i. e. the objects in the hi-
erarchy must be ordered according to their complexity, or
some other measure that defines the hierarchy. In this pre-
sentation we focus on hierarchies in dynamical systems.
The most natural measure to form a hierarchy around in
this case is the dimensionality of the phase space, or in
the discrete case the cardinality of the state space. Fur-
thermore, it is natural to assume an upward causality on
the hierarchy based on projections from a higher dimen-
sional phase space (or if the system is discrete state space
of higher cardinality) to a lower dimensional phase space
(state space of lower cardinality). An interesting exception
is the renormalizing projections used to analyze critical
phenomena. It builds a self-similar hierarchy without re-
ducing the cardinality of the state space. This is possible in
an infinite system (the thermodynamic limit) since the car-
dinality of e. g. the natural numbers does not change when
half of the states are eliminated. Returning to the discus-
sion on projections that do reduce the dimensionality of
the phase space. To avoid arbitrary projections from defin-
ing new hierarchical levels, wemust also require the result-
ing dynamics to be closed. Closure means that the dynam-
ics on the higher level (lower dimensionality) is self-con-
tained, i. e. the evolution of the system can be effectively
described using only its internal degrees of freedom, not
information from the lower levels in the hierarchy. How-
ever, this definition is still not strict enough. We must also

require that the resulting system is a first order ordinary
differential equation (it it is a continuous time system) and
Markovian, which means that the future evolution of the
system depends only on the current state, not on the his-
tory of the system. To demonstrate the importance of the
Markov requirement, we consider a dynamical system on
the form

ẋ D f (x; y)
ẏ D g(x)y :

Formally we can solve the second equation for y and put
the result into the first equation. The result reads

@x
@t
D f



x; y0e

R t
0 ds g(x(s))

�
:

We end up with a one-dimensional equation but with an
infinite memory term. This reduction corresponds to us-
ing the projection �(x; y) D x (detailed explanation of the
meaning of this projection is given in Sect. “Structural Hi-
erarchies: Foliations”). The exact form of the right hand
side of ẏ was chosen for simplicity and clarity. In princi-
ple the result generalizes, at least locally, to generic func-
tional forms ẏ D g(x; y). The projection in this example
was arbitrary and did not reflect any structure in the dy-
namical system. It is clear that such projections are not
interesting when defining a hierarchy. By requiring the
projected system to be Markovian we restrict attention to
projections that do reflect hierarchical organization of the
dynamics.

The fact that no information is lost by a generic pro-
jection of a dynamical system is useful in practice. Delay-
time embedding for attractor reconstruction is for exam-
ple based on this observation [38,45,53]. In our context
we are interested in projections that actually do hide some
information on the lower levels in the hierarchy. Takens’
embedding theorem states that such projections, if they
exist, constitute singular (with regards to a some natural
measure) points in the space of all possible projections.
The purpose here is to identify the constraints that have
these singular projections as solutions. We conclude the
introduction by repeating the central theme that will be
our guide throughout this presentation:

Definition 1 Each level in a hierarchy should be a self-
contained Markovian dynamical system.

For a more extensive discussion on objectivity in hierar-
chical dynamics and the Markov property see [49].

Overview

There are mainly two types of hierarchies in dynamical
systems: structural and temporal hierarchies. Temporal hi-
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erarchies are defined by separation of time scales between
the different levels. The local nature of physical interac-
tions connects time scales to length scales. As a conse-
quence, the levels in temporal hierarchies are also often
associated with separation in length scales. One may turn
the argument around and claim that our choice of met-
ric is a reflection of how the interactions between ob-
jects in the universe behave. In any case the result is the
same, there is a tight coupling between time and length
scales. Structural hierarchies are derived from geomet-
ric properties of the dynamics. These geometric proper-
ties stems from decomposability, or skew-product decom-
posability (to be defined later), of the vector field defin-
ing the flow. Simple examples of structural hierarchies are
non-interacting subsystems or systems with constants of
motion.

Temporal hierarchies are discussed extensively in the
literature. The mechanisms behind structural hierarchies
are also very carefully analyzed in the context of classi-
cal mechanics and quantum mechanics. In classical me-
chanics, the connection between symmetries of the Hamil-
tonian and invariants of the motion was clarified by
Noether’s theorem. In quantum mechanics one is often
interested in the result of composing multiple particles
with certain symmetries into a single object with a larger
symmetry group. The general mathematical setting for
modern gauge theory is fiber bundles. As we discuss in
Sect. “Structural Hierarchies: Foliations” this is also the
natural framework for working with structural hierarchies.
In this presentation however, our aim is not to clarify the
connection between modern theoretical physics and hier-
archical dynamics, but rather to show the connection be-
tween temporal and structural hierarchies in dynamical
systems. This connection is usually not emphasized in the
literature.

Temporal Hierarchies: Separation of Time Scales

Dynamical systems with high dimensionality often display
dynamics on vastly different time scales. As a consequence,
when the system is analyzed at a specific time scale, some
degrees of freedom evolve so slowly that they can effec-
tively be treated as (adiabatic) constants, while other de-
grees of freedom evolve very fast compared to the time
scale of interest. We wish to systematically eliminate both
the very fast and the very slow degrees of freedom. The
fast dynamics must be treated differently depending on its
characteristics: it can be represented by its average influ-
ence; it can be treated as white or colored noise; or its
dynamics is dissipative and the dynamics quickly relaxes
to an adiabatic fixed point. For a review on model reduc-

tion in dynamical systems with time scale separation, see
Givon et al. [14].

Elimination of Slaved Degrees of Freedom

Self-organization can be defined as the tendency for a sys-
tem to increase internal order without influence from the
outside. From a more technical perspective, self-organiza-
tion is a result of a collapse of the phase space volume.
As a result the effective dimensionality of the system’s
phase space is reduced. As was discussed in Sect. “Liou-
ville’s Theorem, Conservative and Dissipative Systems”,
a shrinking volume of phase space elements in the Liou-
ville equation is a result of energy dissipation, or “friction”.
It is clear that a closed physical system cannot be self-or-
ganizing since this would break the first and second law
of thermodynamics, as well as Liouville’ theorem that en-
sures conserved phase space volume for Hamiltonian sys-
tems. Self-organizing systems are open, and often kept in
a out-of-equilibrium, but stationary, state by external en-
ergetic driving. A simple example of a driven dissipative
systems is a forced damped pendulum:

�̈ C ��̇ C sin(�) D A sin(! t C �) : (8)

If we re-write this system as a first order differential equa-
tion we can show that r � f D �� . Equation (3) then im-
plies that the phase space volume shrinks exponentially.
The attractor for Eq. (8) is a limit cycle. Note that the
shrinking of the phase space volume only depend on the
dissipation, not on the driving on the right hand side.
Naively one could have expected that the driving would
tend to expand the phase space volume, but this is not
the case. Liouville’s theorem holds true also for mechan-
ical systems with time dependent Hamiltonians.

A generic feature of driven dissipative systems is that
fast degrees of freedom, due to large negative exponent
associated with dissipation, often relaxes to an adiabatic
fixed point, i. e. a point in the phase space that appears ef-
fectively fixed on the time scale of the fast dynamics but
that changes on the time scale set by the slow degrees
of freedom. The overall dynamics is therefore slaved to
a slow positively invariant, or inertial, manifold (or more
correctly attractor) and the resulting dimensionality is re-
duced. It should be noted that the geometry of the reduced
system is often very complicated, taking e. g. the form of
a strange attractor [42]. This picture of self-organization
has been advanced by Haken in his work on synerget-
ics [18]. Lately the same idea has also been revitalized in
the turbulence community, primarily by a proof of exis-
tence of inertial manifolds in a class of hyperbolic dynami-
cal systems [11]. Positive invariant manifolds are also used
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in model reduction schemes in chemical kinetics [17]. In
general it is hard to strictly prove the existence of global
inertial manifolds even though it is often suspected that
they exist and lead to spontaneous dimensional reduction
in driven dissipative systems.

We now present the generic setup for inertial mani-
folds. Consider a dissipative dynamical system for a func-
tion u(t, x) on the form

u̇ D Au C F(u) ; (9)

where A is a symmetric linear operator with compact re-
solvent, defined on a Hilbert space H and F is a nonlin-
ear function. The operator A contains a spatial coupling
through space derivatives. The operator F is nonlinear but
contains no derivatives (sometimes F is also defined to in-
clude derivatives of lower order than A, but here we as-
sume that this is not the case). For systems of the type (9)
the main result is [29]:

Theorem 2 Assume that F is Lipschitz continuous with
constant c. If there is a gap in the spectrum of A such that
jn � nC1j > c, then Eq. (9) then has an inertial manifold
of dimension n.

Consider the special case when the operatorA is the Lapla-
cian (AD �). Common examples of this situation are
reaction-diffusion equations [28]. If AD � in d-dimen-
sions, the spectrum scales as k � �k2/d , and it follows
that

k � k�1 � k d D 1
k � k�1 � 1 d D 2 :

We conclude that the spectral gap becomes arbitrarily
large for d D 1, which shows that inertial manifolds do
exist. For d D 2 the spectral gap is constant so the exis-
tence of an inertial manifold is not clear from the general
scaling argument. However, in d D 2 on finite domains
there are more advanced arguments showing that under
certain general conditions the spectral gap can still become
large [28]. Reaction-diffusion equations in two dimensions
do possess inertial manifolds.

Now let us assume the existence of an inertial manifold
of dimension n. We proceed by defining a spectral projec-
tion operator P onto the first n eigenfunctions of A

Pu D
nX

iD1

(u; vi )vi ;

where vi are normalized eigenfunctions of A and (�; �) de-
notes a scalar product on H. The operator P is idempo-
tent, i. e. P2 D P, and the complementQ D I � P is also

a projection operator and PQ D 0. Furthermore, P com-
mutes with A,PAD AP. We split the Eq. (9) according to

@Pu
@t
D PAPu C PF(PuCQu) (10)

@Qu
@t
D QAQuCQF(PuCQu) : (11)

The inertial manifold can be expressed implicitly as
a graph ˚ : PH ! QH. Inserting Qu D ˚(Pu) into
Eq. (10) gives

@Pu
@t
D PAPu C PF(PuC ˚(Pu)) ;

which is a closed evolution equation for the slow dynam-
ics Pu. The problem is to calculate ˚ . The crudest ap-
proximation is to set ˚ D 0. This is referred to as the lin-
ear Galerkin method. In contrast, there are many numeri-
cal schemes for nonlinear Galerkin methods that provides
more nontrivial approximations of ˚ , see e. g. [10,39].
In general one assumes that the fast dynamics relaxes on
a time scale � and use some method for solving Eq. (11)
under this condition. Implicit Euler gives ˚(Pu) as a so-
lution to the fixed point map

Qu! ��(I C �AQ)�1QF(PuCQu) : (12)

This map is a contraction for small enough � . Due to the
time scale separation we can chose � � �1nC1. In [10] the
fixed point is approximated by one application of (12) on
the initial linear Galerkin guessQu D 0.

There exist many methods for calculating invariant
manifolds in dissipative systems on more general forms
than Eq. (9). Chemical kinetics and transport theory have
been especially active areas [17].

Example 1 As a simple explicit example of slavingwe look
at the system (from [14])

ẋ1 D �x2 � x3
ẋ2 D x1 C x2/5
ẋ3 D 1/5� 5x3 C y

ẏ D ��1(x1x3 � y) ;

where �
 1 defines the spectral gap (jx � y j � �
�1).

We assume that the y variable has time to relax to its adia-
batic fixed point ẏ D O(�). The graph that defines the in-
ertial manifold is in this case given by˚(y) D x1x3CO(�).
The resulting reduced equations read

Ẋ1 D �X2 � X3

Ẋ2 D X1 C X2/5

Ẋ3 D 1/5� 5X3 C X1X3 ;

which is recognized as the Rössler system.
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Averaging

Averaging is a phenomenon whose effect is reminiscent of
the slaving described in the last section. However, in an
averaging system the fast degrees of freedom typically do
not evolve to an adiabatic fixed point. They stay active and
continue to evolve on the fast time scales. Their effect on
the slow degrees of freedom can be described by their av-
erage influence. As a result it is possible to derive closed
equations for the slow degrees of freedom, while only tak-
ing the average affect of the fast dynamics into account. As
an example, consider a system on the form

ẋ D f (x; y)

ẏ D ��1g(x; y) ;
(13)

where �
 1 and f and g are assumed to be of order unity.
If, for a fixed x the y-dynamics is ergodic, Anasov’s theo-
rem states that the slow dynamics will on some finite time
interval converge uniformly to an average equation ([44]):

Ẋ D F(X) ;

where

F(�) D lim
T!1

1
T

Z T

0
d� f (�; �[�; y; x])

D

Z
f (�; y)��(dy) ;

where �[� /�; y; x] is the solution to the differential equa-
tion (fast dynamics with x fixed and initial value y, which
will not matter asymptotically due to ergodicity):

@�[�; y; x]
@�

D ��1g(x; �[�; y; x]) �[� D 0; y; x] D y ;

(14)

and �� is the invariant ergodic measure of y for a fixed
x D � . The main result is that jx(t)� X(t)j is of order
O(�) for �
 1. In practice, the time average is taken over
an interval proportional to the separation in time scale, i. e.
(using a slight abuse of notation) �
 T 
 1. There are
also many results on averaging in situations when the er-
godicity assumption is not valid, see [14] and references
therein. For extensive expositions on averaging and sys-
tematic perturbation methods see [25,44]. At the end of
the next section we return to the issue of averaging as
a limiting case of a noise approximation of the fast degrees
of freedom.

White Noise Reduction: Mori–Zwanzig Projections

In non-equilibrium statistical physics dimensional reduc-
tion often means going from a deterministic high dimen-

sional model to a reduced Langevin-type model that in-
cludes noise. The randomness stems from fast motion that,
on the time scale of the relevant (slow) degrees of freedom,
can be approximated as white noise. The result is aMarko-
vian dynamics for the slow degrees of freedom. This idea
was first formalized by Zwanzig [54] and has later ma-
tured into the general framework described e. g. in [13,41].
The classic example of bulk degrees of freedom behaving
like noise is a heath bath in contact with a heavy parti-
cle, see e. g. [55] for details. More modern studies are of-
ten focused on low dimensional chaotic fast subsystems as
noise generators [3,8,43]. In the current presentation we
review some of the later findings. Many of the results in
this section are based on a series of papers by Just et al.,
e. g. [21,22,40].

Assume we have a dynamical system whose corre-
sponding Liouville equation reads

@�t

@t
D �L�t : (15)

We like to project away some part of the system (the fast
degrees of freedom). To this end we define a projection
operator P, which splits the phase space density accord-
ing to �t D P�t CQ�t , where Q D 1 � P and P� is the
subsystem we are interested in (the slow dynamics). The
projection operator is idempotent, i. e.P2 D P, which also
implies that PQ D 0. Equation (15) splits into

@P�t
@t
D �PL(P�t CQ�t) (16)

@Q�t
@t
D �QL(P�t CQ�t) : (17)

(Compare these equations to Eqs. (10)–(11).) We want to
find a closed equation for the time evolution of P�t . In
general, if PLQ�t D 0, then Eq. (16) is closed. This is ful-
filled, for example, if the projection operator commutes
with the Liouville operator, PL D LP, then the closure
follows immediately from PQ D 0. This is an interesting
special case, connected to symmetries of the dynamical
system, that will be discussed extensively in Sect. “Struc-
tural Hierarchies: Foliations”. To achieve this one may
naively consider projections on the form [26] (based on
Cauchy’s formula):

P D 1
2� i

Z

�

d�(1 � �L)�1 ; (18)

where � is a closed curve in the complex plane. This is
a spectral projection, i. e. a generalization of the projec-
tions used in Eq. (10). The operator (18) projects onto the
space spanned by the eigenfunctions corresponding to the
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eigenvalues contained within the closed curve � . Projec-
tions defined as in (18) commutes with L by definition.
However, projections on the density space do not in gen-
eral correspond to dimensional reduction on the phase
space. Therefore we cannot simply follow the same line
of manipulations as in Eq. (10). We will discuss explicit
forms of projections that do correspond to dimensional
reductions shortly, but for now it is enough to accept that
we often want to consider projections wherePL ¤ LP. In
this case we proceed be formally solving Eq. (17) for Q�t
as

Q�t D Q�0 �
Z t

0
d�eQL(��t)QLP�� :

(Note that this approach does not work for Eq. (10) since
F is a nonlinear function.) We are interested in the asymp-
totic solutions, and we can therefore ignore the term that
comes from the initial distribution. Inserting the solution
forQ�t into Eq. (16) gives a closed equation for P�t :
@P�t
@t
D �PLP�t CPL

Z t

0
d�e��QLQLP�t�� : (19)

The structure of Eq. (19) is interesting. As discussed in the
Introduction, the dimensional reduction comes at a cost:
the system has (infinite) memory, i. e. it is not Marko-
vian. It should be noted that Eq. (19) is not simpler than
Eq. (15). So far we have achieved nothing. The central idea
is that, if there is a clear separation of time scales between
P�t and Q�t , then Eq. (19) can be simplified by using
a Markovian approximation. To proceed we use a dynam-
ical system where the fast and the slow degrees of freedom
have been separated explicitly. Let x and y denote the slow
and the fast degrees of freedom respectively. The dynami-
cal system is given by

ẋ D f (x; y)

ẏ D ��1g(x; y) ;
(20)

with 0 < �
 1 measuring the scale separation, f , and g
are on the order of unity. There is a hidden subtlety in
Eq. (20). As it stands, it is identical to the situation that
was analyzed in connection to averaging, Eq. (13). In fact,
in the �! 0C limit, the y-dependent part of the back-cou-
pling in f (x, y) must scale as O(��1/2). The intuitive ratio-
nale for this scaling is that the y-term in Eq. (20) should
behave as noise.

The corresponding Liouville operator splits into a fast
and a slow part:

� L D
X

i

@

@xi
fi(x; y)

„ ƒ‚ …
�Ls

C
1
�

X

i

@

@yi
gi (x; y)

„ ƒ‚ …
�L f

: (21)

The idea is now to find a closed evolution for the slow
degrees of freedom x. We proceed by assuming that the
fast variables have time to relax to a stationary state be-
forex changes. We define the projection operator as

P�t(x; y) D �ad(yjx)
Z

dy0�t(x; y0) ; (22)

where �ad(yjx) denotes the adiabatic equilibrium of the
fast degrees of freedom, y, for a given value of x, i. e.

�ad(yjx) D lim
�!1

e�L f �t(x; y) (23)

L f �ad(yjx) D 0 : (24)

Equation (24) means that �ad(yjx) is a zero eigenfunction
toL f and Eq. (23) is based on the assumption that the zero
eigenfunction is unique for all fixed x, which is often true
for a mixing system.

At this point it is interesting to make a connection
to a result called Trotter’s theorem. Assume that we have
an operator that can be decomposed as L D Ls C �

�1L f .
Then the following limit is well defined and con-
verges [46]:

et(LsC�
�1L f ) D lim

N!1

�
etL f /2�NetLs/NetL f /2�N

N
; (25)

where Ls and L f do not commute in general, L fLs ¤

LsL f (if the operators do commute, the relation is triv-
ial). The system can be accurately integrated from � D 0
to � D t using N steps, where 1
 N/t
 1/�. The in-
tuitive rational for the step size, and behind defining the
projection as in Eq. (22), is the assumption that the fast
degrees of freedom has time to effectively equilibrate be-
fore the slow degrees of freedom change significantly. In
Eq. (25) the scheme is explicit: etL f /�N relaxes the fast dy-
namics, whereas etLs /N evolves the slow dynamics. Tech-
nically this means that the limit in Eq. (23) actually con-
verge as � � O(�)
 1. The (unique) adiabatic equilib-
rium distribution of the fast variables is used to generate
noise, which drives the slow degrees of freedom.

To proceed with this scheme we need to re-write
Eq. (19) as an expansion in �. From (22), (23) and (24)
follows the relation:

PL f D L fP D 0 : (26)

Using this fundamental relation we can formally close
Eq. (16). Under the assumption that the fast variables re-
laxes to a stationary state, we set

@Q�t
@t
D 0 ;
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and use this in Eq. (17) to solve forLQ�t . Then we use this
result to close Eq. (16) (formally identifying the pseudo-in-
verse relationQ�1Q D Q, which follows from QQ D Q):

@P�t
@t
D �PLsP�t C PLs

�
Ls C

1
�
L f

��1
QLsP�t ;

where we have used (26) to set PL D PLs and
LP D LsP. Expanding to first order in � gives (under the
assumption that ˛(�)
 1/�):

@P�t
@t
D �PLsP�t C �PLsL�1f QLsP�t ; (27)

where L�1f is well defined since its null-space is projected
out by Q. Note that for the second term in Eq. (27) to be
non-zero in the � ! 0 limit,Ls must be of orderO(1/p�).
As discussed earlier, this scaling must come from the y-de-
pendent part of the coupling f (x, y). We will see this effect
explicitly in an example below. To use Eq. (27) in prac-
tice the eigenfunctions of L f must be found. Solutions of
(27) can then be expressed in terms of series expansions in
these eigenfunction basis. In most examples where this ap-
proach is successful the fast variables have a stochastic dy-
namics, i. e.L f is a Fokker–Planck operator, see [13,41] for
derivation of e. g. the Smoluchowski equation using a Her-
mitian polynomial basis. However, Eq. (27) is not the most
convenient form for deriving a closed dynamics for the
slow variables if the eigenfunctions of L f are not easy to
find (as is usually the case when the fast variables have de-
terministic dynamics). One can often introduce a trick by
adding a small amount of noise to the fast degrees of free-
dom to make the stationary distribution smooth and well
defined, i. e. to “fatten” the usually fractal attractor. Here
we discuss an alternative, more direct, approach. We start
by using Dyson’s operator identity,

e��QL D e��QL f C

Z �

0
d�

@

@�



e�
QLe�(��
)QL f

�

D e��QL f �

Z �

0
d�e�
QLQLse(
��)QL f ;

(28)

to write a perturbation expansion of Eq. (19) in terms of
� (using Eq. (26)):

@P�t
@t
D � PLsP�t C PLs

Z t

0
d� eQL f (��t)/�QLsP��

� �2PLs

Z t/�

0
d�
Z �/�

0
d� eQL f (��
)QLs

� e�Q(L fC�Ls )�QLsP�t��
 :

The last term is of order �2 will from now on be dropped.
We now define adiabatic averages as (the last equality as-
sumes ergodicity in the fast degrees of freedom):

hhiad(x)
:
D

Z
dy h(x; y)�ad(yjx)

D lim
T!1

1
T

Z T

0
d� h(x; �[� /�; y; x]) ;

(29)

where �[� /�; y; x] is defined as in Eq. (14). Using this for-
malism we can write Eq. (28) as:

@�̄t

@t
D �hLsiad �̄tC

Z t

0
d�
˝
Lse��L f /�QLs

˛
ad �̄t�� ; (30)

where �̄t(x) D
R
dy�t(x; y) is the density for the slow de-

grees of freedom only. It remains to analyze the kernel in
the last term. For the dynamics to become approximately
Markovian we need to assume that the fast degrees of free-
dom are exponentially mixing. Under this assumption, the
correlation functions captured by the kernel decay rapidly
on the time scale �, and we write:

Z t

0
d�
˝
Lse��L f /�QLs

˛
ad �̄t��

D

Z 1

0
d�
˝
Lse��L f /�QLs

˛
ad �̄t :

After some further algebraic manipulations we arrive at
a Fokker–Planck equation for the slow degrees of freedom:

@�̄t

@t
D�

X

i

@

@xi
D(1)

i (x)�̄t(x)

C
X

i j

@2

@xi@x j
D(2)

i j (x)�̄t(x) :
(31)

The drift term is defined as:

D(1)
i (x) D h fiiad(x)C

X

j

Z 1

0
d�
D
f j(x; y)

@

@x j
ı fi(x; �[� /�; y; x]

E

ad
;

(32)

where the we use the notation

ı fi(x; y) D fi(x; y) � h fiiad(x)

as an abbreviation for the fluctuations around the adia-
batic equilibrium. The diffusion term is defined as:

D(2)
i j (x) D

Z 1

0
d�
˝
ı fi(x; �[� /�; y; x]) ı f j(x; y)

˛
ad : (33)
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Example 2 As a simple example of the method we con-
sider a circle map coupled to a fast evolving Lorenz system
in the chaotic regime.

ẋ1 D x2 C x1

0

B
@
� C ˛y1q
x21 C x22

� 1

1

C
A

ẋ2 D �x1 C x2

0

B
@
� C ˛y1q
x21 C x22

� 1

1

C
A

ẏ1 D �
3(y1 � y2)

�

ẏ2 D �
y1y3 C 26:5y1 � y2

�

ẏ3 D
y1y2 � y3

�
:

(34)

Changing to cylindrical variables for the slow degrees of
freedom, their dynamics simplifies as

ṙ D �� (r � 1)C ˛y1
�̇ D 1 :

(35)

The derivation of the terms in (31) is now quite straight-
forward:

h friad(r; �) D � � (1 � r)

D(1)
rr (r; �) D D(1)

��
(r; �) D D(1)

r� (r; �) D 0

h f� iad(r; �) D 1

D(2)
rr (r; �) D ˛

2
Z 1

0
d�hy1(�)

ˇ̌
y1(0)Dy1

y1iad

ı fr(r; �; y1) D y1

D(2)
��
(r; �) D D(2)

r� (r; �) D 0

ı f� (r; �; y1) D 0

and the resulting approximative Langevin equation (4)
for r is

ṙ D �� (r � 1)C �(t) ; (36)

with � representing white noise: h�(t)i D 0 and h�(t1)
�(t2)i D 2D(2)

rr ı(t1 � t2) (see e. g. [13,41,55] for details
on how to relate a Langevin dynamics to a Fokker–Planck
equation). The mixing time for y1 is O(�) and this limits
the effective support in the integral defining D(2)

rr so that
D(2)
rr D O(˛2�). From this we conclude that, in the limit

� ! 0, D(2)
rr ! 0 unless ˛ � 1/

p
�. This is in agreement

with earlier remarks on the size of the back-coupling from
the fast degrees of freedom to the slow dynamics.

The resulting dynamics is shown in Fig. 1. A numerical
simulation with parameters � D 5; ˛ D 1, and � D 0:005
is shown. From the trajectory of the fast dynamics wemea-
sure D(2)

rr D 0:082. The Langevin equation (36) with white
noise predicts

h(r(t) � 1)2i D
D(2)
rr

�
;

from the fluctuation-dissipation theorem. We measure
h(r(t) � 1)2i D 0:076/� from the simulation, which can be
considered in good agreement with expectations with an
error of order O(�).

Separation of Time-Scales in Discrete Markov Chains

We now look at the discrete equivalent of separation of
time scales discussed in Sect. “Temporal Hierarchies: Sep-
aration of Time Scales”. The model problem is a Markov
process with a transition matrix that is approximately
block-diagonal:

T D �

0

BB
BB
@

1
�(1)

T(1) Q(12) � � � Q(1n)

Q(21) 1
�(2)

T(2) � � � Q(2n)

:::
:::

: : :
:::

Q(n1) Q(n2) � � � 1
�(n)

T(n)

1

CC
CC
A
; (37)

where the elements in the Q-matrices are of order unity
or smaller and the �s represent small numbers. Intuitively
this system consists of n subsystems with internal dynam-
ics T(i). On the time scale of O(1) the dynamics typically
remains within one of these subsystems, but on a time
scale of the order O(1/�) the systems switch from being
in one subsystem to being in another. The slow dynam-
ics therefore consists of n states whereas the fast dynamics
have a varying number of states depending on the dimen-
sionality of T(i). Note that the setup is analogous to the
continuous case with L D Ls C �

�1L f , where the Liou-
ville operator is viewed as a linear transition operator.

Normally, the transition matrix is not given on the
near block diagonal form as in (37), but has the columns
and rows mixed in random order just like in Sect. “Hierar-
chies in Markov Chains Through Aggregation of States”.
Finding a permutation matrix that transforms the tran-
sition matrix to the near block diagonal form is however
a much simpler problem than finding a hidden tensor de-
composition. Effective algorithms for finding optimal per-
mutations are based on the observation that a block di-
agonal matrix has a degeneracy of the stationary distribu-
tion corresponding to the number to blocks, i. e. there is
a n-fold degeneracy of the eigenvalue 1 (the Perron roots).
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Hierarchical Dynamics, Figure 1
To the left: The trajectory in the x1 � x2-plane of the dynamical system defined in (34). The parameters used: ˛ D 1; � D 0:005 and
� D 5. To the right: the auto-correlation function hy1(tC dt)y1(t)i used to calculateD(2)

rr

This also reflects the broken ergodicity for a Markov pro-
cess with a block diagonal transition matrix. For a system
where the transition matrix can be transformed into near
block diagonal form, there is a set of eigenvalues close to 1,
separated from the rest of the eigenvalues by a spectral gap.
The aggregates of states building up the slow dynamics are
identified by the approximately identical sign structure in
the corresponding (right) eigenvectors. See [7] for details.

It is worth mentioning that Markov processes of the
type given in (37) are often used as approximations of
stochastic differential equations of Langevin type (4):

ẍ D �rU(x) � � ẋ C �(t) :

If the free energy potential U has multiple minima, then
the jumping between the basins around these minima can
sometimes be described as a Markov process of the type
in (37). The spectral gap � 1/� is then depending on the
height and width of the potential barriers between the local
minima, as well as the temperature. In the crudest approx-
imation one only considers the second derivatives at the
minima to estimate the transition times. For more details
see e. g. [5,13,19].

Computational Mechanics

We end the presentation with a pointer to a framework
that is useful for complementing the hierarchical decom-
position of discrete systems; computational mechanics.
Computational mechanics [6,47,48] is a technique for de-
riving optimal predictors for stochastic processes. The
predictors, called �-machines, are automata whose nodes
are equivalence classes, causal states, of observed histo-
ries of states. All the states in a causal state must have
the same probability distribution of future observed states.
An �-machine is the minimal and maximally efficient

model of the observed process [48]. In practice an �-ma-
chine can be acquired approximately from generated time
series or other statistics [50]. In the context of hierarchi-
cal dynamics, the �-machines can be used to find an opti-
mal Markovian dynamics for a discrete system (with finite
memory), on which we can apply the methods presented
below to infer the hierarchical structure.

Invariants of the Motion

Invariants of the motion play a central role in the analysis
of mechanical systems. The oldest roots in this tradition
can be traced to the systematic study of continuous sym-
metries, advanced by Lagrange, Poisson, Jacobi, Lie, and
Noether. The resulting reduction schemes eliminate inac-
tive, i. e. constant, degrees of freedom. The most elegant
product of this line of thought is Noethers’ theorem, which
directly connects continuous symmetries of the Hamilto-
nian to conserved quantities such as momentum, energy,
angular momentum (spin) etc. Reduction of mechanical
systems with symmetries is still a very active field, see for
example the recent article [15] on reduction by stages in
the Kepler problem. The literature in this field is volumi-
nous. For a brief introduction, look in Arnold [1] (and
also in Smale’s article on topology in classical mechan-
ics [52]). For moderns reviews see Marsden et al. [31,32]
and Marmo et al. [30]. In the current context it is inter-
esting to note that invariants of the motion can be classi-
fied as both temporal and structural: a constant has an in-
finitely slow dynamics, and at the same time the dynamics
is trivially self-contained (see Sect. “Structural Hierarchies:
Foliations” for definition of structural hierarchies). Alter-
natively, one may argue that projections that eliminates,
or projects onto, invariants of the motion do not qualify to
define hierarchies since they merely reflect that the origi-
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nal description of the system is “over-determined”.Which
way we choose to interpret inactive degrees of freedom is
not critical for the definition of hierarchies, so we leave it
for the reader to decide for her or himself.

Structural Hierarchies: Foliations

Hierarchies in dynamical systems is a more general con-
cept than dimensional reduction. To define a hierarchy
in a more general setting, we focus on projections of the
dynamics that constitutes a new “self-contained” (Marko-
vian) dynamical system. The levels in the hierarchy do
not necessarily evolve on different time scales. The gen-
eral idea of autonomy naturally leads to the concept of pre-
served fibrations and foliations, as we define shortly.

Let a dynamical system be defined on a manifold M
through a flow �t generated by a vector field v. We define
a new hierarchical level through a map � from M onto
a lower dimensional manifold N. For N to define a new
level of description we require � to induce a well defined
flow on N , i. e., the differential ��(v) should be a well de-
fined vector field. The hierarchical organization of dynam-
ical systems is most naturally expressed in the language
of fiber bundles. Roughly, a fiber bundle consist of a map
� : M ! N of a total space M onto a base space N such
that all pre-image spaces��1(x), where x 2 N, are consid-
ered equivalent. The pre-image spaces ��1(x) are called
fibers over a base point x. We say that a fibration � is
preserved by a flow �t if fibers are carried over to fibers.
In other words, if x and y belongs to the same fiber, i. e.
�(x) D �(y), then �t(x) and �t(y) also belong to the same
fiber: �(�t(x)) D �(�t(y)). It should be clear that a pre-
served fibration also defines a new level in the dynamical
hierarchy as defined in Fig. 2.

Foliation are geometric constructs, closely related to fi-
bration. A foliation of an open subset of Rn is a union of
disjoint subsets called leaves.We say that a foliation is pre-

Hierarchical Dynamics, Figure 2
The manifold M is the original phase space, N is a lower dimen-
sional phase space, and �t and  t denotes flows on M respec-
tiveN. The projectivemap� describes a new level of description
if the diagram commutes

served by a flow �t if leaves are carried over to leaves, i. e.,
if x and y belong to the same leaf L1 then �t(x) and �t(y)
also belong to the same leaf L2. Note that we do not re-
quire L1 D L2. If L1 D L2, then we say that the foliation
is invariant under the flow. Further, if L1 has the struc-
ture of a manifold, then it is an invariant manifold of the
flow. If the set of leaves is taken as the base space then a fo-
liation becomes a fibration, with the projection defined by
collapsing all points on a leaf to the same point onN. Hier-
archical dynamics can be expressed either in terms of pre-
served fibration or preserved foliations.

If we let v denote the vector field that generates the flow
�t , the criterion for � to be a preserved fibration under the
flow generated by the vector field v can be expressed as:

�(x) D �(y)) ��(vjx ) D ��(vjy) ; (38)

where �� : TM ! TN denotes the differential of the map
� : M ! N . The foliations we are considering in this pa-
per are such that the leaves L are immersed integral sub-
manifolds of M. It then follows from Frobenius’ theorem
that the vector fields spanning the tangent space of the
leaves TL form an involution [4], i. e., if wk 2 TL then

[wk ;wl ] D
X

m
gmkl (x)wm ; (39)

for some smooth functions gmkl . Expressed as a fibration,
� is invariant under the translations along the vector fields
in TL. The invariance of the fibration � is then expressed
infinitesimally as

wk(�) D 0 ; (40)

for all wk 2 TL. The space of leaves, or the base space,
N (� : M ! N) carries the structure of a quotient mani-
fold, N D M/L. We have the following central result:

Theorem 3 LetM be a manifold of dimensionm. Consider
a (singular) foliation F of M through a partition of M into
connected immersed integral submanifolds (leaves). Let the
tangent space of a leaf at a point x, TLjx , be spanned by an
involution of vector fields wk at x. The foliation is preserved
under the flow generated by the vector field v if and only if

[v;wk] D
X

l

f lk (x)wl : (41)

Proof The proof of this theorem is given e. g. in [35], see
also [33,34] for a discussion on how to use this result for
constructing geometric integrators. We sketch the proof
idea as follows. For � to be a preserved fibration, we re-
quire

�(x) D �(y)) �(exp(tv)x) D �(exp(tv)y) :
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Now, if �(x) D �(y) then x D exp(w)y for somew 2 TL.
So

�(exp(tv)x) D �(exp(tv) exp(w)y)
D �(exp(ew) exp(tv)y)
D �(exp(tv)y) ;

for some vector field ew 2 TL, given explicitly by the
Baker–Campbell–Hausdorff formula. �

An important special case of Eq. (41) is f lk (x) D 0, i. e.,
when

[v;wk] D 0 8k : (42)

The vector field wk is then a symmetry of the dynamics
generated by v (and vice versa), see [37] for details. In prac-
tice, it is much easier to search for solutions to Eq. (42)
than Eq. (41). Equation (42) is a closed partial differen-
tial equation whereas Eq. (41) contains the unknown func-
tions f lk (x) which can be difficult to handle.

Quotient Manifold Projection

Given a set of vector fields that generates a preserved folia-
tion, we want to construct the corresponding reduced dy-
namical system. The most straightforward approach is to
find the projection � by solving Eq. (40). In local coordi-
nates, ifwk D

P
i �

i
k(x)

@
@x i , Eq. (40) can be written as a set

of quasi-linear first order partial differential equations:

wk(�) D 0 ; (43)

or in local coordinates

X

j

�
j
k(x)

@� i

@x j D 0 ;

for all k and j. To find an explicit expression for � we need
to recursively solve this system, using e. g. the method of
characteristics.

There are technical complications with the quotient
manifold construction presented above. Regularity is not
guaranteed. The resulting quotient manifold may not even
be Hausdorff. However, if we assume that the involution
wi form regular submanifolds, it follows that the vector
fields can be defined so that the functions f lk (x) in (41) and
gmkl in (39) are independent of x and wk form a Lie alge-
bra [35]. The corresponding Lie group has a regular action
on M. In this case the quotient manifold M/G is smooth
and well defined.

Example 3 (Linear dynamics projected onto the real pro-
jective plane.) In general, any linear system ẋ D Ax has

two trivial symmetries: w1 D
P

i j Ai jxi @@x j
and w2 D

P
i xi

@
@xi

. The first symmetry is just the dynamics itself
and the corresponding projection maps onto an invariant
of the motion. The latter symmetry comes from the triv-
ial observation that the identity matrix commutes with A,
but it actually gives a non-trivial foliation. According to
Eq. (43), the projection must fulfill

X

j

x j
@�i (x)
@x j

D 0 ;

for all components i. The general solution reads

�i(x) D Fi
�
xi
x j

�
;

for some arbitrary coordinate xj and general functions Fi.
Note that � j(x) is a constant. This reflects the reduction
of dimensionality by the projective map. Just as in the case
of the circle there is no single projective map valid over
the entire phase space. For different choices of coordinate
xˇ , � provides “coordinate charts” valid in regions where
x j ¤ 0. The resulting manifold can be identified as the real
projective plane, PRd�1, if the original dynamics was in
Rd .

The circle is a special case, AD
�

0 1
�1 0

�
where it

is natural to choose

�(x; y) D arctan(x/y) ;

in the coordinate chart where y ¤ 0, and

�(x; y) D �/2 � arctan(y/x) ;

in the coordinate chart where x ¤ 0. The projection is
onto the angular coordinate in the cylindric coordinate
system. Note that PR1 ' S1.

The other projections of a linear system follows di-
rectly from the Jordan form of A that fully resolves all
invariant subspaces of the dynamics. Each invariant sub-
space can then be projected out to form a new level in the
hierarchy. A set of non-redundant eigenvalues i can be
projected immediately using

�(x) D

 
Y

i

(A� i I)

!

x ; (44)

or the more abstract formula in Eq. (18). Note that Eq. (44)
is not strictly a projection since P2 ¤ P while Eq. (18) is
a projection. If it is important, this can be fixed by using
a pseudo-inverse, see Sect. “Hierarchies in Markov Chains
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Through Aggregation of States”. Equation (44) is perhaps
the most natural projection of a linear system. The special
case in the example above is focused on projecting onto
one degree of freedom corresponding to one half of a com-
plex conjugate pair. This is the reason why the topology of
the resulting reduced manifold becomes non-trivial.

Example 4 (Skew-product systems) Consider a dynamical
system with the following nonlinear skew-product struc-
ture:

ẋ D f (x)
ẏ D g(x; y) ;

(45)

where x 2 Rn and y 2 Rm�n . The family of vector fields
w1 D

@
@y1
; : : : ;wm�n D

@
@ym�n

forms an involution. The
corresponding foliation �(x; y) D F(x) for any function F
is in accordance with ẋ D f (x) being a self-contained sub-
system. Note that this result is also consistent with the dis-
cussion in Sect. “White Noise Reduction: Mori–Zwanzig
Projections” since if f (x, y) in Eq. (20) is independent of y it
follows that ı f (x; y) D 0 and therefore D(1) D D(2) D 0.

Non-autonomous Dynamical Systems

It is straight forward to generalize the foliation framework
to non-autonomous dynamical systems:

ẋ D f (t; x) : (46)

To analyze Eq. (46) we need to find a involution of vector
fields vk that can generate the dynamics, i. e.

f (t; x) D spanfvig 8t

[vk ; vl ] D
X

m
gmkl (x)vm :

Not that if f is free to take any form, then vi must span the
entire tangent space. The condition (41) is generalized to:

[vk ;wl ] D
X

m
f mkl (x)wm 8k : (47)

Hierarchies in Discrete Dynamical System
Through Normal Subgroup Extensions

In this section we present the analogy of non-autonomous
foliation (Sect. “Non-autonomous Dynamical Systems”)
for discrete systems. Let H be a semigroup with a finite
number of generators acting on a finite state space ˙ .
The semigroup H together with the state space ˙ de-
fine a dynamical system. We define a new finite group N,
also acting on ˙ . Further, we define the joint group
F D span(H;N) generated by the elements in both H and

N : f D
Q

i fi where fi 2 H [ N. The action  of F on˙
is well defined through the action of H and N individu-
ally. Two elements f 1 and f 2 are identical if and only if
 ( f1; �) D  ( f2; �),8� 2 ˙ . Note that bothH andN are
subgroups of F.

Assume that N has been carefully chosen so that, for
each h 2 H, � 2 ˙ , and n 2 N , there exist a n0 2 N such
that

 (h  n; �) D  (n0  h; �) : (48)

Note that the element n0 may depend on the state � ,
i. e.  (h  n; �1) D  (n0  h; �1) and  (h  n; �2) D
 (n00  h; �2) do not generally imply n0 D n00. Rela-
tion (48) ensures that N is a normal subgroup of F (for
each fixed � 2 ˙). Furthermore, the commutation rela-
tion in Eq. (48) ensures that, for each � 2 ˙ , the ele-
ments in the product f D

Q
i fi can be re-arranged so that

f D
Q

i ni
Q

j h j , i. e. for each f 2 F there exist n 2 N and
h 2 H such that f (
) D n(
)  h(
) (the superscript indi-
cates that the decomposition may be different for differ-
ent �). It then follows that (see Sect. “Some Concepts from
Group Theory”)

F(
) ' N Ì� (� ) H ; (49)

with the automorphism mapping � (
)
h (n) D n0, where

 (h  n; �) D  (n0  h; �).
Equations (48) and (49) are the equivalent of the ideal

relation for vector fields used in Eq. (41) or more gener-
ally Eq. (47). It is therefore the central relation in the re-
duction of discrete dynamical systems. Note that the def-
inition of the automorphism map � (
) plays the same
role as the commutator of the generating vector fields
exp(tv) exp(w) D exp(ew) exp(tv) in the proof of reduction
in continuous systems using preserved foliations. In the
continuous case, the solution to the equation (hn; �) D
 (n0  h; �) is given explicitly by the Baker–Campbell–
Hausdorff formula. In the discrete case there is no such ex-
plicit approach. However, as we shall see there is no need
for deriving the explicit expression for � (
).

To form the quotient projection in the discrete case,
we form equivalence classes on ˙ : �1 � �2 if there ex-
ist a n 2 N such that �1 D  (n; �2), i. e. the orbits of N
form the equivalence classes. The equivalence classes
are preserved under the action of H. To see this, let
�1 D  (n; �2). Then whenH acts on �1 and �2 we have

 (h; �1) D  (h  n; �2) D  (n0  h; �2) �  (h; �2)

for some n0 2 N. Thus  (h; �1) �  (h; �2), so the equiv-
alence classes are preserved. This implies that the action
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of H is well defined on the set of equivalence classes, i. e.,
the quotient set˙ /N . We say that the resulting dynamical
system, i. e. H acting on˙ /N, is reduced.

The algebraic structure presented in this sectionmakes
a clear connection to reduction through foliations for con-
tinuous dynamical systems. Moreover, since any automa-
ton can be represented as a semigroup (see Sect. “Some
Concepts from Group Theory”), it also shows how to
make hierarchical decompositions of automata. The al-
gebraic structure is also connected to Wreath products
and Krohn–Rhodes theory for finite automata [9,24]. Fur-
thermore, automata theory can also be applied to Markov
processes. The Markov process must then be decomposed
into a Bernoulli shift, combined with a set of deterministic
transition matrices [27]. Intuitively this means that at each
time step the system is updated using a randomly chosen
deterministic transition matrix. The semigroup H is com-
posed of all the deterministic transition matrices that gen-
erate the Markov process. However, for a Markov process
the approach introduced in this section is unnecessarily
complicated. In the next section we discuss a more useful
technique.

Hierarchies in Markov Chains
Through Aggregation of States

Consider a stochastic Markov process with transition ma-
trix T and state space consisting of symbols in an alpha-
bet ˙ . If T can be decomposed as a tensor, or Kronecker,
product

T D T(1) ˝ T(2) ˝ � � � ˝ T(N) ; (50)

then T(i) are transition matrices for independent pro-
cesses. Hence, a projection onto a state space represent-
ing one, or many, subsystems results in a new Markov
process over a state space with reduced cardinality. Let
T(2:N) D T(2) ˝ � � � ˝ T(N) and T(1)

i; j denote the elements
T(1). From the definition of a tensor product it then fol-
lows that

T D

0

BBB
BB
@

T(1)
1;1T

(2:N) T(1)
1;2T

(2:N) � � � T(1)
1;KT

(2:N)

T(1)
2;1T

(2:N) T(1)
2;2T

(2:N) � � � T(1)
2;KT

(2:N)

:::
:::

: : :
:::

T(1)
K;1T

(2:N) T(1)
K;2T

(2:N) � � � T(1)
K;KT

(2:N)

1

CCC
CC
A
;

where T(1)
i j T

(2:N) represents sub-matrices in T. Since T(1)

is a transition matrix, its column sum is normalized. It fol-
lows that

T(2:N) D

KX

jD1

T(1)
i; j T

(2:N) i D 1; : : : ;K ;

or explicitly

T(2:N)
k;l D

K�1X

jD0

TkCiK;lC jK i D 1; : : : ;K : (51)

On the one hand, under the assumption that T can be
decomposed as in the ansatz (50), then Eq. (51) gives
a Markov process on the reduced state space. On the other
hand, Eq. (51) also tests the ansatz since, for each element
T(2:N)
k;l the right hand side should evaluate identically for

all choices of the index i. The last observation can be used
to identify hierarchies in Markov processes.

When a subsystem T(1) is projected out according
to Eq. (51), the corresponding reduction on the state
space can, as usual, be defined in terms of equivalence
classes. Assume that the state vector is ordered in the de-
fault manner, so that the element in position i represents
the probability that the system is in a state denoted by
�i 2 ˙ . The reduction described by (51) is then equiva-
lent to forming equivalence classes according to �i � � j iff
(i � j) mod K D 0. It is clear that the composition of the
equivalence classes depends on the ordering in the state
vector. As a result, to find a tensor decomposition of the
transition matrix presented with the rows and columns
in random ordering, the validity of Eq. (51) should be
tested for all permutations (excluding those not affecting
the equivalence classes). Formally we express this as:

Theorem 4 An N � N transition matrix T can be de-
composed as a tensor product of an K � K matrix and
an N/K � N/K matrix if and only if there exists a P 2
Sym(˙) such that

K�1X

jD0

(PTTP)kCiK;lC jK (52)

gives the same result independent of the index i.

A major problem with this result is that the cardi-
nality of the symmetric group increase extremely fast
with the number of states in the state space (actually
jSym(˙)j D j˙ j!). The practical usefulness of the summa-
tion condition is of limited. Below we present a criterion
that is more useful for identify projections onto a Markov
process with reduced state space. Before this however, we
generalize from direct (Kronecker) product to semi-direct
products.

The decomposition in (51) is not the most general
form permitting projections onto well-defined Markov
subsystems. In (51) the subsystems are completely decou-
pled. In a more general case it may happen that a subsys-
tem can influence the dynamics of another but not vice
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versa. In this situation it is still possible to project onto
the fist subsystem, but not onto the second. This situa-
tion is equivalent with the one presented in Eq. (45) for
the continuous case. In the discrete setting a decomposi-
tion of this type uses a semi-direct product of submatrices.
It is straightforward to define consistency equations on the
form in Eq. (51) in this more general case. The size of the
different equivalence classes in the partitioning of the state
space may vary, and this needs to be taken into account in
the summation. We start by introducing some notation.

We consider aMarkov chainXt , t D 0; 1; : : :, with a fi-
nite state space ˙ D f1; : : : ;Ng and transition probabil-
ity matrix P D [pi j]. The transition matrix operates from
the right xtC1 D xtP. A reduction of the state space is
a lumping, or state aggregation, by a partition of the state
space ė D fL1; : : : ; LMg where Lk is a nonempty sub-
set of ˙ , Lk \ Ll D ; if k ¤ l and

S
k Lk D ˙ . Clearly

M�N. The reduction can be defined by an N �M ma-
trix ˘ D [�i k] where �i k D 1 if i 2 Lk and �i k D 0 if
i … Lk . We call the reduction, or the aggregation, a Lump-
ing ė . A lumping induces a quotient process x̃t D xt˘ .
If the process x̃t is a Markov process (which is, as always,
not usually the case), then we say that the Markov chain is
strongly lumpable with respect to˘ (or ė). The following
criterion is a generalization of the summation condition
above and is necessary and sufficient for a Markov chain
with transition matrix P to be lumpable with respect to˘
or ė [23,26]:

1. ˘eP D P˘ , where eP D ˘CP˘ is the transition ma-
trix on the reduced phase space (˘C :

D (˘ T˘ )�1˘ T

is the left psudo-inverse of˘ ,˘C˘ D I).
2. ker(˘ ) is P-invariant, i. e. y˘ D 0) yP˘ D 0.
3. For any Lk ; Ll 2 ė , the total probability of going from

any state i 2 Lk to Ll, i. e.
P

j2Ll
pi j , is independent

of i.

Note that condition 2 is equivalent to Eq. (43) and con-
dition 1 is related to Eq. (18). If the Markov chain is
lumpable, then the probability distribution over the re-
duced state space is updated according to x̃tC1 D x̃teP,
whereeP is defined in Criterion 1. Furthermore, the transi-
tion matrix for the reduced Markov chain is given by

p̃k l D
X

j2Ll

pi j i 2 Lk ; (53)

where we note that P̃ D [p̃k l ] is well defined since the sum
is independent of which representative i 2 Lk we chose ac-
cording to criterion 3.

As mentioned in connection with the summation cri-
terion in Eq. (52), criteria 1–3 not immediately useful

for identifying lumpings of a Markov chain. Barr and
Thomas [2] presented a necessary lumpability criterion in-
volving the left eigenvectors of the transition matrix. It was
first noted that the spectrum of P̃ must be a subset of the
spectrum of P (this is also discussed in detail in a more
general setting in [26]). It also follows that if vP D v then
ṽP̃ D ṽ, with ṽ D v˘ . It follows that if  is an eigenvalue
of both P and P̃, then ṽ is an eigenvector of P̃, but if  is
not an eigenvalue of P̃ then ṽ D v˘ D 0. Intuitively this
observation can be understood as ˘ eliminating a subset
of the eigenvectors of P. This is also clear from criterion
1 and 2, as well as from our previous discussion on linear
systems in general. Equation (44).

Barr and Thomas’ result suggests a search for lumpings
defined by ˘ such that v˛˘ D 0 for some subset of the
left eigenvectors of P, fv˛g˛2J , J � ˙ . Since ˘ should be
a matrix with zeros and ones, v˛˘ D 0 essentially means
searching for eigenvectors with subsets of elements that
sums to zero. For lumpings only involving agglomeration
of two states this is straightforward since the eigenvec-
tor(s) must have pairs of elements v˛i D �v

˛
j . However,

agglomeration of k states means searching for partial sums
evaluating to zero and involving k elements. This leads
back to the combinatorial explosion of possibilities dis-
cussed before. As Barr and Thomas point out, there is no
obvious algorithm to generate˘ based on their result.

In a recent study a more useful method for identify-
ing possible partitions of the state space leading to a re-
duced Markov process is presented [36]. The key is an ob-
servation that the dual of the probability space can be used
to identify lumpings. The criterion v˛˘ D 0 is viewed
as an orthogonality condition between the left eigenvec-
tors fv˛g˛2J and the column space of ˘ . The orthogo-
nal complement of a set of left eigenvectors is spanned
by complementary right eigenvectors (defined naturally in
the dual vector space). These complementary eigenvectors
span the column space of ˘ . Requiring that ˘ consists
of zeros and ones does corresponds to a criterion of re-
peated elements within each complementary right eigen-
vector. Clearly, identifying repeated elements in the right
eigenvectors is algorithmically straight forward. The pre-
cise result reads as follows (proof is to be published [36]):

Theorem 5 Assume that P is a diagonalizable transi-
tion matrix with full rank describing a Markov process
xtC1 D xtP. Consider a set of linearly independent right
eigenvectors of P, Pu˛ D ˛u˛ . Let I � ˙ be the set of
indices for the eigenvectors. Form state equivalence classes
defined by states with identical elements in all eigenvectors
u˛ , i. e. i � j iff u˛i D u˛j 8˛ 2 I. The equivalence classes
define a partitioning ė of the state space. This partitioning
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is a lumping of the Markov chain if the number of partition
elements equals the number of eigenvectors, i. e. jėj D jIj.

Conversely, if ė is a lumping then there exist jėj lin-
early independent right eigenvectors that are invariant un-
der permutations within the lumps.

There are two important points to make in connection to
this result. First, the result can be viewed as an extension
of the result in Sect. “Separation of Time-Scales in Discrete
Markov Chains”. A block diagonal matrix can be con-
structed as a semi-direct product of the identitymatrix and
a set of matrices appearing in the blocks. The second point
is that the criterion in general provides a relatively effi-
cient method for generating projections of a givenMarkov
chain. The most time consuming part of the algorithm is
to diagonalize the transition matrix. This problem scales
approximately cubic in the number of states, i. e. not ex-
ponential like the naive approaches. However, there are
several subtleties to take into consideration. Degenerate
eigenvalues can cause difficulties since the corresponding
eigenvectors are in this situation no longer uniquely de-
fined. The criterion is still valid but one must chose which
linear combination of eigenvectors to use. The partitions
suggested by the eigenvectors can also be nested to pro-
duce an exponential number of possible reductions. This
problem is intrinsic, no algorithm can find all possible re-
ductions in linear time since there might be an exponen-
tial number of possible projections. The identity matrix is
a good example where any projection is clearly an accept-
able lumping.

Example 5 (Kronecker product system) As a simple exam-
ple we use the method on a process with transition matrix
TA described in Fig. 3. If we sort the state vector accord-
ing to the default ordering: f�1; �2:�3; �4g, then the corre-
sponding transition matrix reads

TA D

0

BB
@

0 1 0 0
1 � p 0 p 0
0 p 0 1 � p
0 0 1 0

1

CC
A :

As it stands, TA is not directly decomposable but if we
change the ordering of the states to f�1; �4; �3; �2g, we end
up with a decomposable transition matrix:

PTTAP D

0

BB
@

0 0 0 1
0 0 1 0
0 1 � p 0 p

1 � p 0 p 0

1

CC
A

D

�
0 1

1 � p p

�

„ ƒ‚ …
TC

˝

�
0 1
1 0

�

„ ƒ‚ …
TB

;

Hierarchical Dynamics, Figure 3
Example process TA over the state space˙ D f�1; �2; �3; �4g.
The edges are labeled with transition probabilities

Hierarchical Dynamics, Figure 4
Dynamics (a) TB, (b) TC and (c) TD (a trivial process with
one state) resulting from projections of the example process
TA in Fig. 3. The states are defined in terms of equivalence
classes as follows: b1 D f�1; �3g, b2 D f�2; �4g, c1 D f�1; �4g,
c2 D f�2; �3g, d1 D f�1; �2; �3; �4g

where P is the permutation matrix providing the re-order-
ing: f�1; �2:�3; �4g ! f�1; �4:�3; �2g. From this it follows
that the process TA can be projected onto TB, TC , or the
trivial process with one state TD, all described in Fig. 4.

The eigenvalues of PA are 1 D 1, 2 D �1,
3 D 1 � p and 4 D p � 1. The corresponding right
eigenvectors are u1 D (1; 1; 1; 1)T, u2 D (�1; 1;�1; 1)T,
u3 D (�1; p�1; 1� p; 1)T, and u4 D (1; p � 1; p � 1; 1)T.
By the condition on repeated elements, the two pairs of
eigenvectors fu1; u2g and fu1; u4g implies the two possi-
ble lumpings found above: b1 D f�1; �3g, b2 D f�2; �4g,
c1 D f�1; �4g, c2 D f�2; �3g, d1 D f�1; �2; �3; �4g.

Example 6 (Semi-direct product system) Consider the
transition matrix

P D

0

@
aC bC (c � 1)/2 1 � a � b (1 � c)/2
�aC (c C 1)/2 a (1 � c)/2

1 � b � c b c

1

A ;

with 0 � a; b; c � 1. P has the eigenvalues 1 D 1,
2 D 2aC b � 1 and 3 D (3c � 1)/2, and the eigenvec-
tors

u1 D (1; 1; 1)T ;

u2 D (1C c � 2a � 2b; 2(a � c); 2bC c � 1)Tand

u3 D (�1;�1; 2)T :

There are three possible lumpings of P:

ė1 D ff1; 2; 3gg from fu1g ;
ė2 D ff1; 2g; f3gg from fu1; u3g and
ė3 D ff1g; f2g; f3gg from fu1; u2; u3g ;

where ė2 is valid if 2aC b � 1 ¤ 0 and 3c � 1 ¤ 0.
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Conclusion

Analysis of hierarchical dynamics contains two separate
steps. Initially the states, or degrees of freedom, that should
be eliminated in each hierarchical transition need to be
identified. After the identification, the reduced dynam-
ics can be derived. The first step is by far the most
computationally expensive. This is especially transparent
in the analysis of decomposition of transition matrices
for Markov processes (see Sect. “Hierarchies in Markov
Chains Through Aggregation of States”), but the conclu-
sion holds in general. In the discussion on temporal hier-
archies (Sect. “Temporal Hierarchies: Separation of Time
Scales”), the problem of separating the slow and the fast
degrees of freedom was tactically assumed to be given
a priori (with the exception of inertial manifolds where nu-
merical algorithms do exist [10,17,39]), and the nearly de-
composable Markov chains discussed in Sect. “Separation
of Time-Scales in Discrete Markov Chains”, see also [7]. In
the section on structural hierarchies (Sect. “Structural Hi-
erarchies: Foliations”), the conditions on the projections
are clearly stated. However the practical applicability of
the methods presented depends critically on efficient algo-
rithms for finding the projections. Naive approaches typi-
cally lead to algorithms that are exponentially slower than
solving the original system. There are in fact reasons to
believe that the Markov chains are typical. As we have
seen, naive approaches to finding reductions lead to expo-
nentially slow algorithms. There are more efficient meth-
ods that work most of the time, like to eigenvector cri-
terion presented in Sect. “Hierarchies in Markov Chains
Through Aggregation of States”, but in worst case sce-
narios these methods also become exponentially slow. In
conclusion, methods for deriving appropriate projections
for reduction is an area that is in need of more extensive
study.

Future Directions

In the physics community, one of the main areas where hi-
erarchical dynamics is discussed is renormalization of sys-
tems with critical behavior. The most prominent example
is the Ising model in two or three dimensions [16]. The
main idea in renormalization theory is that the state of the
system, drawn from an ensemble of possible states with
probability defined by the Hamiltonian, is structurally self-
similar under the projection operator. Clearly, since the
projection in general reduces the dimensionality of the
phase space, self-similarity can only be well defined if
the dimensionality of the system is infinite. For certain
parameter values (often the temperature is the parame-
ter), the dynamics is not only structurally self-similar but

the interaction strength between the agglomerated states
does not decay, i. e. the projection operator has a non-
trivial fixed point on the space of Hamiltonians (or rather
a parametrization of the Hamiltonians) . In this situation
the system is said to be in a critical state, characterized
by self-similarity and non-vanishing fluctuations on all
length scales. It seems obvious that renormalization theory
and hierarchical dynamics are closely connected. In fact it
is relatively straight forward to formulate the renormal-
ization group in the framework of structural hierarchies
as presented in Sect. “Structural Hierarchies: Foliations”.
A detailed investigation of the relation remains to be done.
Furthermore, the more interesting aspect of this connec-
tion would be to explore possible generalizations where
the constraint of self-similarity is relaxed and we focus on
non-vanishing interactions with different structure on dif-
ferent levels in the hierarchy. The result of such an effort
should, if successful, be of central interest in complex sys-
tems, especially for studying emergence (the author would
like to acknowledge private discussions with Nils Baas on
this subject).

The remarkable ingenuity in the renormalization
group is the step of abstraction when the projection is
viewed as generator of a discrete dynamical system on the
space of Hamiltonians. This leap enables us to understand
the origin of universality, as the details of the physical sys-
tem become unimportant for the analysis of the behavior
(the fixed points) of the dynamical system generated by
the projection. It is exciting to speculate about the possibil-
ity of formulating similar “meta-models” for the dynamics
generated by the projections used to define general hierar-
chical dynamics.

Finally, one of the central problems with defining
emergence in complex dynamical systems is the lack of
a framework for describing creation and destruction of ob-
jects. On the basic level, the number of degrees of free-
dom in a dynamical system does not change during the
time evolution. From this perspective one may argue that
dynamical systems are not suited for describing systems
consisting of entities that can be created, destroyed and
change internal properties [12]. These features are cen-
tral in many complex systems, especially in biological and
social systems. Methods used to analyze hierarchical dy-
namics can possibly be used to define the emergence of
objects and organizations in dynamical systems. Near de-
composability into independent subsystems (as defined in
Sect. “Hierarchies in Markov Chains Through Aggrega-
tion of States”) can for example be used to define ob-
jects, see [20] for an alternative definition. Emergence,
creation, destruction and change can be understood as
different regions of the phase space permitting different
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hierarchical structures. A “meta-model”, as described in
the previous paragraph, could possibly be used to under-
stand emergent higher-order organization in dynamical
systems.
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Glossary

Connectivity-k (k-connected, k-cohesive, structural co-
hesion, cohesive.blocks) refer to the Menger (1927) the-

orem for structure/traversal isomorphism in graph
theory, as explained in the text, where k-components
are the largest possible expansion (maximal group)
that preserve structural k-cohesion. Computation is
provided by cohesive.blocks in the igraph R package.

Scale-free network where the probability that a node i
in the network connects with k other nodes is in-
versely proportional to the number of k’s links (see:
power law), more generally, pi (k) � k�� , with  D 1
for scale-free.

Nonindependence is characteristic of complex phenom-
ena with built-in interdependencies, where distribu-
tions of attributes or relations should not be not di-
rectly subject to statistical inference using the null hy-
pothesis of independence, as in structural measures
sampled from networks, and autocorrelated time se-
ries or autocorrelated spatial distributions.

Sufficient statistic a sufficient statistic for a statistical
model is one that captures the information relevant to
statistical inference within the context of themodel, in-
cluding the size and composition of the units of study.
Let X1; : : : ; XM be a random sample, governed by the
density or probability mass function f (xj�). The statis-
tic T(x) is sufficient for � if the conditional distribu-

http://arxiv.org/abs/cond-mat/0303625
http://arxiv.org/abs/cond-mat/0303625
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tion of x, given T(x) D t, is independent of � . Equiv-
alently, the functional form of f� jx (x) does not in-
volve � , and the Fisher–Neyman factorization theorem
may be used to help spot sufficient statistics. The like-
lihood ratio test can often be reduced to a sufficient
statistic of the data for hypothesis testing. The mini-
mumvariance unbiased estimator of a parameter � can
be characterized in parameter estimation by sufficient
statistics and the Rao–Blackwell Theorem. See Scharf
Statistical Signal Processing [107]. A sufficient unit is
one for which a random sample of aggregate statistics
are sufficient.

Aggregate (“sufficient unit”) equation modeling
assumes that causality can be found with quantitative
equation models that use sufficient statistics, which
implies that the aggregate units studied have cohe-
sive mass or entitivity for causal interactions to act
on their aggregate characteristics. See Sect. “Aggregate
(“Sufficient Unit”) Equation-based Modeling”.

NP-complete (NPC) algorithms require an order of non-
deterministic polynomial time (NP) but are exception-
ally difficult: if a deterministic polynomial time solu-
tion can be found for any of them, it would provide
a solution to every other problem in NP and empty out
the class of NPC.

Dictator game where the first player proposes a split of
some endowment and the second, entirely passive, re-
ceives the remainder. Not formally a game at all (as the
term is used in game theory, where every player’s out-
come must depend on the actions of others), it is used
in decision theory to test the homo economicus model
of individual behavior, where selfishness would dictate
allocation entirely to oneself. Henrich et al. [50] dis-
covered in a 15-society cross cultural study that peo-
ple do allocate a share of the endowment to others.
Skyrms [113] gives the dynamics of an evolutionary
game theory variant.

Concentration indices such as the Laakso–Taagepera In-
dex 1/˙i pi , where pi is an effective proportion weight-
ing for each unit, are used for problems such as
“what are the effective numbers of political parties self-
weighted by their membership (for polities: by their
population or area)”, e. g., US party proportions {.49,
.49, .02} would have an effective number of 2.08 while
France with 101 parties (each weighted by its num-
ber of members) might have effective party number
of 22.1.

Power law is a Pareto distribution where probability
p(x) � x�˛ , as for example: “multifractals have tails
that follow a power law” (p. 209 in [75]) in how the
frequency of similar units at different scales varies

with the scale; see multifractal. Power laws tend to be-
come ubiquitous whenwhat is studied involves dimen-
sional constraints. Power-law growth is expressed as
N D K/(t0 � t)k where K is an initial constant, t is
calendrical time, and t0 is the calendrical singularity
date at which K/(t0 � t) D K/0, where division by zero
produces dynamical instability as K/(t0 � t)!1.

Fractal is a pattern or object (e. g. geometrical) whose
parts echo the whole, only scaled down, i. e., scale in-
variant; invariant at any scale of magnification or re-
duction. Fractal prices occur when positive and nega-
tive changes in prices (daily, weekly, monthly, yearly)
follow a power law. “To improve almost any fractal
model it is a good idea to replace it with a multifrac-
tal one” (p. 209 in [75]). A multifractal (with root and
generator) is a composite pattern that begins with an
initial root (e. g., a straight line) that is successively re-
placed with a generator (e. g., a zagged line) that re-
places every instance of the initial element. See power
law.

Causality is a relation holding between two variables such
that manipulation of one of the variables (the potential
cause) is reliably associated with variation in the other
(the response), for some configuration of the values of
other potential causes of the response. Estimation in-
cludes classical structural equations approaches [74],
the treatment effects framework [102,103], the directed
acyclic graph (DAG) probabilistic approach [95], and
the settable system probabilistic approach that unifies
all three [141]. Another aspect of causation is proba-
bilistic evaluation and decision theory, in which case
the effect of evidence in revising beliefs about causa-
tion can be studied in a Bayesian framework [28,112].
Probability of causation is not causation of probability,
although there are probabilistic causative models.

Definition of the Subject

Dynamics of human behavior (abbreviations DHB, HB,
HD) deals with the effects of multiple causal forces in hu-
man behavior, including network interactions, groups, so-
cial movements, and historical transitions, among many
other concerns. Description of movement and change dis-
tinguishes kinematics from statics, while dynamics consid-
ers causes of movement and change. Pearl [95] summa-
rizes issues of causality with two fundamental questions:
(1) What empirical evidence is required for legitimate in-
ference of cause-effect relationships? (2) Given that we are
willing to accept causal information about a phenomenon,
what inferences can we draw from such information, and
how? Policy issues entail beliefs about causation and open
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a second framework for evaluating beliefs about causal-
ity [28,112]. HB dynamics is a field replete with new dis-
coveries—and applications of methods derived from prob-
lems and principles that apply across disciplines. Insights
transfer across disciplinary boundaries. This is because re-
search strategies for studying causality in a hierarchy of
sciences are typically not a reductionism of one level to
another but involve recognition of emergence at different
levels. Common principles that apply are often shared but
with different detailed applications more finely tuned to ir-
reducible aspects of concurrent phenomena. Mathematics
and physical principles apply at various levels in the sci-
entific disciplines, but principles discovered in the human
and evolutionary sciences are increasingly found to apply
and generalize as well.

DHB takes into account the distinctive behaviors of
humans and the range of their sociopsychocultural vari-
ations. Focusing on causes, HB dynamics may refer, for
different levels of social entities, to spatial and temporal,
local and long-distance interactions, growth and decline,
oscillations, changes in distributional properties, and syn-
chronous or time-lagged causality in dynamical evolu-
tion. Examples of precursors in DHB include Ibn-Khal-
dun’s (c.1379) dynamical characterizations of the oscilla-
tions of Muslim and Berber political dynasties and charis-
matic tribal initiatives [60]. Ibn-Khaldun’s work was an
extraordinary early precursor of the empirical study of os-
cillatory sociopolitical dynamics (as contrastedwith beliefs
in cycles of renewal, for example, derived from experience
with cycles in nature) and is incorporated into contempo-
rary DHB modeling. Similarly, Richardson’s Statistics of
deadly quarrels (1960) searched for causality of war and
posed behavioral dynamic equation-based decision mod-
els with basins of attraction for stability, disarmament, or
the arms race [108,109]. Schelling’s “focal point” solution
in the study of strategic behavior and bargaining (“each
person’s expectation of what the other expects him to ex-
pect to be expected to do”) advanced the game theoretic
policy sciences while his Micromotives and Macrobehav-
ior [101] was seminal for modeling complex causal feed-
backs. Interest in lower-level processes and how they link
to higher levels motivates much of HB dynamical mod-
eling. This is the case as well in biological modeling, as
in SFI researcher David Krakauer’s statement of research
on “the evolutionary history of information processing
mechanisms in biology, with an emphasis on robust in-
formation transmission, signaling dynamics and their role
in constructing novel, higher level features. The research
spans several levels of organization finding analogous pro-
cesses in genetics, cell biology, microbiology and in organ-
ismal behavior” [68].

Introduction

HB dynamics is grounded within an evolutionary frame-
work and interacts well with research in biology and pri-
mate and human ethology. Fundamental problems in new
and old approaches to HB dynamics include general ap-
proaches to identify andmodel (1) units of analysis, (2) in-
teraction equations and structures, and (3) levels of analy-
sis, with (4) sufficient statistics. Many problems concerned
with the “units” of investigation, organized into systems,
are multifractal, and are explored through detailed study
of social organization, biological reproduction, evolution-
ary phylogeny, and developmental ontology. A focus on
networks recognizes the fluidity of dynamical interactions
in living systems (i. e., recognizing the limits of hard-unit
and hard-wired modeling). Network analysis also links to
hydrodynamics, nonlinear synchronization, percolation,
and other physical processes as well as models derived
from the study of graphs and lattices. Generalizations of
entropy measures may also provide approaches for testing
general principles in physics that are more useful than me-
chanics, solid state physics, or conventional models of en-
tropy. While many principles of complexity sciences will
apply across many disciplines, how they apply varies with
subject matter.

Formal approaches to HB dynamics—where formal
means theories have been stated in a formalized language,
usually mathematical, that does not allow for variable
readings [70,120,121]—require construction on the ba-
sis of careful descriptive, qualitative, and quantitative re-
search about human behavior and institutions such as are
independently carried out in the disciplines (history, soci-
ology, economics, psychology, cognitive science, political
science, linguistics, and anthropology, including ethnog-
raphy, archeology and other domains) as well as in cross-
disciplinary fields including those of complexity sciences.

The modeling of human behavior is still in its infancy,
and there are likely to be widespread advances in many
different areas in coming years. The examples here show
a range of concepts and practices but are not intended
to cover all of the definitive techniques for modeling hu-
man behavior. Among the formal and complexity science
approaches in HB dynamics, some of the examples in-
clude network modeling, aggregate equation-based mod-
eling, and simulation modeling (equation or agent-based,
or both), and how these deal with problems of non-inde-
pendence. Network modeling depends on finding means
of bounding and measuring fields of interaction where
particular kinds of units and their causal interrelations can
be specified. “Sufficient unit” modeling looks for aggre-
gates at particular scales that represent relative closures of
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systems in which causality from internal dynamics can be
studied for certain types of relatively well-bounded units
that occur within limited ranges of scale. Briefly exem-
plified are institutional studies of the evolution of market
systems extended by experiments in network economics.
Not covered are generalized “open system” entropy max-
imization [119], fields such as fractal dynamics that have
challenged fundamental economic axioms and start with
the notion that “units” of behavior operate with memory
compressed through repetitions of structure that are not
dependent on scale. The topics and examples presented
form an overall outline about structural k-cohesion and
resistance as measurable social forces in human behavior;
what enhances or limits scalability in cohesion; what pro-
duces and inhibits resistance; and the multiple ways that
these two social forces, very different from physical forces,
interact dynamically.

Networks and Cohesion in HB Dynamics

The interconnected theme of these illustrative examples
will vary from basic measurement to exploratory mod-
els to findings built on the mathematics of universality
classes, focusing on two features of human ethology that
make for unusual dynamics. One is an open-field bonding
ability, like chimpanzees, gorillas, and orangutans, which
involves recognition of community organized by weak
rather than strong ties [39,78]. Humans are additionally
equipped with a huge range of social and cultural abili-
ties that derive from our use of symbols, which can widen
community and cohesion and enable scalable networks of
trust through strong ties as well [135]. These emergents
can alter the scale and especially the dynamics of human
social organizations. One foundational base for a theory
of such emergents are the scalable cohesive groups whose
boundaries are identified with the concept of structural
k-cohesion in sociology [83,134], with new parallels re-
cently discovered in the signaling properties of human and
biological networks [104]. Another is the role of k-cohesive
resistance in human ethology. Taken together, the scalabil-
ity of cohesive human groups, which allow the scale-up of
group sizes that contribute greatly to political expansion
and warfare, and the role of decentralized cohesive resis-
tance in pushing back political aggression, exhibit some of
the properties of laws of momentum and of proportional
reaction, not atypical of complex systems with complex
interiors.

To understand the potential for such regularities in
phenomena as irregular as human sociopolitical histories
(ones that were not lost on the pre-Einsteinian Henry
Adams [53]), the concepts underlying indefinite extensi-

bility of scalably emergent cohesive human groups need
to be carefully drawn. Rather than harking back to Ibn
Khaldun, they draw on Menger’s 1927 theorem [80]
for graphs or networks, which is now in use in sociol-
ogy [83,97,134,138] and anthropology [17] even if rarely
used in physics or chemistry, although applications are be-
ginning in graph-theoretic formalization of biological sig-
naling network models [104]. In a network of connected
elements, a maximal group (one that cannot be expanded
further without losing the property) with structural co-
hesion k is one that (a) cannot be disconnected with-
out removal of at least k elements, and which, as proved
by Menger [80], is equivalent to its having (b) at least k
element-disjoint paths between every pair of elements.
Property (a) provides external resistance to complete dis-
ruption (i. e., removing fewer than k elements leaves the
structurally k-cohesive group connected), and property (b)
proves the existence of a measure k of internal cohesive
traversal through concomitant existence of at least k re-
dundant paths of transmission or potential communica-
tion between every pair of elements. Neither the internal
nor the external cohesive properties can be surpassed by
extending its boundary to include others, whereby each
structural cohesion k-group has a unique social bound-
ary. Perfect scalability occurs for the numeric size of the
intensive variable k by any scale-up extensivemultiplier m
because while a structurally k-cohesive group of size n re-
quires only k < n links per element, the same is true at
size nm. Note that while dying or migrating might be due
to external forces or attractions that remove people from
groups, sometimes group members themselves decide to
leave, or are expelled. This raises the point that cohesion
models and measures are appropriate where the inter-el-
ement or interpersonal ties are positive, not antagonistic
or negative, by restriction on what should be included in
such a model.

Broad problem areas of HB dynamics can be under-
stood from the pairing of (1) the indefinite extensibility
of scalably emergent structurally cohesive groups (which
have an indefinite supportive potential for scale-up in size
of cooperative groups and community) with (2) the con-
tending abilities to form both emergent centralized so-
cial structures and (3) cohesive resistance to invasion or
centralized authority. HB dynamical processes that can be
phrased in terms of symbolic and social interactions of
types (1)–(3) are discussed in Sect. “Cooperation, Con-
nectivity-k and “Critical Mass” in Collective Action”. Cen-
tral to these issues, John Turner’s (2002) Face to Face: To-
ward a Sociological Theory of Interpersonal Behavior [128]
presents evidence for the deeply rooted ethological two-
sidedness of humans as a species pitting cohesion against
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resistance. A reviewer’s summary is worth quoting:

Turner forcefully argues that we are not the soli-
darity-seeking emotional animals that theorists like
Durkheim, Goffman, and Mead would have us to
be. Nor are we normally the tortured beings of the
Freudian perspective. Reflecting our origins among
the great apes, we are a deeply ambivalent species
of twominds, craving strong emotional attachments
and at the same time, bridling against the con-
straints in closed social circles of even strong inter-
personal ties. Turner argues that this two-sidedness
is rooted deeply in our biology, and is not simply
the product of historically specific ideologies and
social structures. Clearly this viewpoint has enor-
mous implications for the study of face-to-face in-
teractions, as well as many other aspects of soci-
ology. However, in his deep respect for the tradi-
tional perspectives in this field, these implications
are often obscured and hidden in Turner’s exegesis
of the general problems and principles in this area
of study. None of the other theorists analyzed here
have created a better model of ambivalence. Cap-
turing the two-sided nature of social linkages was
not a key part of theorists such as Mead, Goffman,
and Schutz. Freud made ambivalence central to his
model, but locked it into a narrow sexual model. As
Neil Smelser has argued, the future of sociological
theory will depend in large part on its ability to deal
with ambivalence, and Turner’s model goes a long
way in this regard [45].

Issues of two-sidedness, through a number of steps in logic
and measurement, are not unrelated to those of scalability
in structural cohesion. To clarify the first three steps in this
logic, we can refer to the number of elements in a maxi-
mally-sized k-cohesive group as its k-cohsize or extension
and so state, for clarity, that k-cohesion and k-cohsize D n
(> k by definition) of such a group can vary independently
for a given level of k-cohesion that defines the boundaries
of a particular subgroup in a network:

Step 1. Intensive versus extensive aspects of structural
k-cohesion are independent. Evidence of the causal effect
of k-cohesion is found in empirical studies and is unre-
lated to k-cohsize. There are three major tests of this to
date, one where the major variance in student attachment
to high school [83] (as measured by a half-dozen vali-
dated questions) was consistently predicted, in multiple
tests (ten American high schools randomly selected from
the 100-school sample of US Adolescent Health network
surveys [10]), by level of k-cohesion in which each stu-
dent was embedded in the school’s network of friendships.

With complete data on students and networks in each
school, replication of this result was achieved in logistic re-
gressions where all other attribute and pertinent network
measures competed in accounting for variance. The influ-
ence coefficients for k-cohesion replicated in each of the
ten independent populations [83]; and the k-cohsize of the
friendship groups for individual students did not account
for school attachment. Since these groups varied in size for
each level of k-cohesion, this is evidence that the causal ef-
fect of k-cohesion is not diluted by size, that is, it is an in-
tensive predictive property independent of its scalability in
size.

In a second major study (Powell et al. 2006 [97]), At-
traction to k-cohesion along with recruitment of diversity
were the major predictors in a 12-year time-series analy-
sis of variables accounting for tie-formation probabilities
proportional to k in the biotech industry. Because of the
recruitment of new entrants, with fewer ties the overall in-
dustry levels of cohesion varied relatively little and oscil-
lated in alternation with 3-year to 4-year waves of varia-
tion in attracting new recruits. While k did vary slightly for
the maximally cohesive core of the industry, it grew nei-
ther uniformly nor uniformly decreased over time. There
is a consistency here with the finding that greater cohesion
was the attractor in tie formation and not greater network
centrality as hypothesized in the Barabási scale-free net-
work model [8]. The tie-preference attractor was a suffi-
cient level of k-cohesion that is scalable by addition of mem-
bers to the structurally cohesive group, as is shown to occur
over time in the biotech industry study.

A third study, of cohesive decay (White and Harary
2001 [134]), tested predictions of how a single 4-cohesive
group disintegrated into two competing and eventually
disconnected groups.With leaders in opposing groups, or-
der of dissolution of ties followed the pattern predicted,
as individuals dissolved their ties successively on the side
of the leader with whom they had less k-cohesion, and
if cohesion was equal, dissolved these ties to the oppos-
ing side that had the longer path lengths. While the larger
4-cohesive group dissolved, ties redistributed to the two
smaller 4-cohesive groups that formed around the dis-
putant leaders.

Step 2. Further evidence for scalability is that k-cohe-
sion and k-cohsizemeasures find cohesive groups on much
larger scales than do density-based measures called com-
munity detection [84,87] that split networks into mutu-
ally exclusive groups such that higher densities are within
rather than between them. Calling these density groups
“communities” ignores the fact that such groups overlap
and form k-cohesive groups on much larger scales. Com-
munity detection lacks the scalability of structural k-co-
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hesion. White et al. [138] demonstrate how the bound-
aries of these much larger cohesive groups can be ap-
proximated in extremely large networks, which is needed
because cohesive.blocks computation is NP-complete.
Further, they show how density-based and row-column
correlation-based algorithms fail in 30 out of 31 method-
ological studies in a meta-analysis of a classical small-net-
work dataset. They also show analytically, as do Harary
and White [134], how k-cohesive components of net-
works stack hierarchically for successive values of k, pro-
viding core-group centralization in addition to horizon-
tal cohesion within a group. The analytical properties
of multiconnectivity (aka structural cohesion and also
k-cohesion) as a precisely measurable and scalable con-
cept (connectivity-k in graph theory) for hierarchical and
overlapping group-cohesion boundaries make it an ideal
construct for studying the relation between micro (small
group and local network properties) and macro proper-
ties of social networks, those of political and other so-
cial units, and the social construction of roles and institu-
tions [59]. A large number of studies show cohesive scal-
ability in the ways in which symbols and attachments are
deployed in human groups and networks, as will be dis-
cussed in Sect. “Cooperation, Connectivity-k and “Criti-
cal Mass” in Collective Action”, although some effects are
preserved only up to certain scale-up thresholds in group
size.

Step 3. Evidence discussed in Sect. “Cooperation, Con-
nectivity-k and “Critical Mass” in Collective Action” sup-
ports the hypothesis that k-cohesive components of human
social networks amplify transmission quality and the util-
ity of information that can be cross-checked from multiple
independent paths. For example, distinguishing carefully
between dominance (force or force threat) and prestige
(freely conferred deference), generalized prestige rankings
are scalable along with the transmission quality of multiple
channels in k-cohesive groups, while dyadic dominance
hierarchies are not. Henrich and Gil-White [47] tested
and found support from data across the social sciences
for the predictions of a prestige model of social learning
as opposed to dominance imprinting. This supports their
argument that “natural selection favored social learners
who could evaluate potential models and copy the most
successful among them,” and that prestige rankings were
an emergent product of psychological adaptations that
evolved to improve the quality of information acquired via
cultural transmission. Finally, studies of networks where
utility is gained from long-range interactions [21,56,117]
show a variety of network topologies that may combine
the benefits of centralized hubs (which are often thought
in network economics to maximize efficiency by minimiz-

ing redundancy) with those of redundancy in k-cohesive
components.

The approach to cohesion taken here—also contrast-
ing to methods for the partitioning of roles [100]—is not
that of trying to specify analytical boundaries using ma-
trix-based methods (Newman [85,86]), which are insuffi-
cient as tools to capture the precise boundaries and over-
laps in the concept of k-connectivity. The analogy between
physical forces and social cohesion or repulsion breaks
down because the latter do not involve the kinds of hard-
body (Hamiltonian) equations used to describe simple sys-
tems such as a bouncing ball, billiard balls, a pendulum,
or an oscillating spring. The algorithmic complexity iden-
tifying k-cohesive units given an arbitrary graph is NP-
complete and not susceptible to matrix-analytic detection,
although humans are often better at perceiving accessible
and simple but algorithmically complex patterns than are
computers.

Because a great many fundamental issues in HB dy-
namics can be framed in the context of the pairing of co-
hesion and resistance—similar to but muchmore complex
than the concept of attractive and repulsive force—this
pairing is used to organize many of the research questions
and findings presented here, not the least of which is re-
lated to the problem of the units of analysis needed to for
tests of HB dynamics, and how these units interact or em-
bed in one another.

How, for example, do scalability and resistance play
out in terms of HB dynamics on the larger historical scale?
Peter Turchin’s [121] examination of 50 cases (Fig. 1)
in the historical military expansion of agrarian states in
European history over the last two millennia is illustra-
tive as a test of historical DHB theories that engage con-
cepts of social cohesion. What happens when agrarian
states or empires invade a sizeable group that differs in
major metaethnic markers (multiple cultural differentia-
tions in religion, language, and ethnicity) that are inter-
nally cohesive for the group invaded? The framing of this
problem is given initially by comparison of dynamical
equation-based models for ordinary differential equations
of zero-order (unbounded growth or decline), first-order
(bounded growth or decline), and second-order (oscilla-
tory growth and decline) [120,121]. Empires show growth
and collapse that fail to conform to the first two types of
dynamical equations, but could be governed by a second-
order dynamics in which there are time lags and negative
feedback. The next steps in this study engage the etholog-
ical issues that will also be examined here. For example:
What accounts for the resistive capabilities of human so-
cial groups, e. g., against outside invasion? (It is useful to
recall that this research was finished before 11 September
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Human Behavior, Dynamics of, Figure 1
Turchin’s [121] 50 cultural regions used as geographical units in the statistical analysis of the relationship between metaethnic fron-
tiers and polity size (courtesy of the author)

2001). The study draws parallels with the dynamical theory
of Ibn Khaldun, who used the term asabiya for collective
solidarity:

Ibn Khaldun was clearly aware of the nested nature
of ethnic groups, and that each level has its own
asabiya associated with it. . . . [T]he leading or ruling
elementwithin a groupmust be vested in a family or
lineage that has the strongest andmost natural claim
to the control of the available asabiya (Ibn Khal-
dun [60]). Only the leader who controls an asabiya
of sufficient strength may succeed in founding a dy-
nasty (pp. 38–39 in [47]).

Ibn Khaldun is widely credited as a thoroughly modern
sociological scientist of culture, knowledge, politics, and
urban life and in his theory of oscillations of Arab and
Berber polities. His theory and historical analysis is framed
in terms of second-order dynamics:

It [the theory] is held together by his central concept
of “asabiyyah”, or “social cohesion.” It is this cohe-
sion, which arises spontaneously in tribes and other
small kinship groups, but which can be intensified
and enlarged by a religious ideology, that provides
the motive force that carries ruling groups to power.
Its inevitable weakening, due to a complex combi-
nation of psychological, sociological, economic, and
political factors, which Ibn Khaldun analyzes with
consummate skill, heralds the decline of a dynasty

or empire and prepares the way for a new one, based
on a group bound by a stronger cohesive force [29].

The thesis of the 50-case study of European military ex-
pansion is that “areas where imperial andmetaethnic fron-
tiers coincide act as asabiya incubators” (p. 56 [121]), ar-
eas where new ethnies (i. e., ethnicities, nationalities) are
born in the growth of collective resistance. These solidary
groups with high asabiya have the attributes of k-connec-
tivity: “An important element of the theory is the ability
of ethnic groups to scale up without splintering into sub-
groups” (p. 57 [121]). Examples of integrativemechanisms
in this particular context of differing ethnies are religion,
society-wide mechanisms of male socialization, and ruler-
ship with primogeniture.

External conflict has long been seen to stimulate cohe-
sion on both sides of the conflict boundaries [24,111], as
exemplified in the fault line frontiers in history [79,127]
and in the marcher state [9] conflicts along these fron-
tiers. A remarkable display of the dynamics of history for
the 50-case study is provided by the maps constructed to
show, for the regions included in Fig. 1 and for each of the
last 20 centuries, the invasions by European empires across
metaethnic frontiers and the resultant appearance of new
nationalities as resistive movements and states [122].

This mathematical model for empire expansion lacks
“a well-developed theory that would connect micro-level
individual actions”—like those deriving from structural
cohesion—“to macro-level dynamics of asabiya” [121] al-
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though the altruism of asabiya is seen to follow a condi-
tional altruist model (like that of kin-selection [118]) that
depends on cohesion with other altruists—discussed in
Sect. “Cooperation, Connectivity-k and “Critical Mass” in
Collective Action” below. A provisional model (later im-
proved) is given, in its simplest form (pp. 64–66 in [121]),
for a polity with a spatial scale h of power projection (im-
perial “reach”) over an area A > 0 and the resistant co-
hesion 0 < S < 1 of asabiya with an everpresent/constant
minimum geopolitical pressure a from the hinterland
across a metaethnic frontier of size b. This is given as two
dynamical equations with negative feedback that give an
unstable equilibriumwith a single boom/bust cycle (c0 and
r0 in these equations are constants):
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Here, change in area is a function of the polity area and
of cohesion, limited by overextension, while the function
for change in cohesion has an in-built oscillatory dynamic
affected by the size of the metaethnic frontier. These dy-
namics, although intended only to characterize the prob-
lem, are informative as to how its parameters play into dy-
namical complexity. If “reach” h is not much greater than
frontier width b, the empire can reach a stable equilibrium,
while if b < h/4 the boom/bust cycle, but only one can oc-
cur, not more. Only when the model incorporates the dis-
counting of expansionary power with distance in a spatial
simulation is a second-order type of effect is obtained, that
of oscillatory growth and decline.

Rather than having this model serve to study attacks
and resistance, and the influence of relative cohesiveness
in outcomes of politicomilitary contests (which is diffi-
cult to measure), Turchin’s frontier theory is tested instead
with the time-lagged prediction for each of two millennia
that when the metaethnic frontier is intense in the first half
of the millennium, for one of the cultural areas in Fig. 1,
then large territorial polities (empires) will originate in the
second [121]. The evaluation is whether the expansive ten-
dency originated in a contest of respectively cohesive en-
tities rather than trying to predict the outcome of the bat-
tle, the more relevant outcome being that—having devel-
oped its cohesion through external conflict—the unit that
is initially attacked may eventually enlarge to become an
empire. This holds for 11 out of 15 cultural regions that
were on the metaethnic frontier, while out of 34 regions
that were not on the frontier, only 1 developed an empire
in the first millennium AD; and it holds for 22 of 28 Fig. 1
frontiers in 500AD–1500 and empires in 1000AD–2000.

The four exceptions in the first case and the six in the sec-
ond were regions incorporated into an empire centered in
a neighboring region.

Human Behavior, Dynamics of, Table 1
Cross tabulations for politics that start on frontiers and end as
empire a millenium later

0–1000CE Starts as frontier No frontier
Becomes empire 11 1
No Empire 4 34

1000–1900CE Starts as frontier No frontier
Becomes empire 22 3
No Empire 6 19

50 regions, p < :0000004

How many empires were observed that lacked the tem-
poral precondition of a metaethnic frontier (with subse-
quent growth of resistant cohesion)? The exceptions are
1 and 3 for the two periods, respectively. The first, and two
of the latter cases, occur where the existence of the frontier
was of short duration. One polity (Savoy-Sardinia, found-
ing Italy) remained as a true exception, in a population
formed by Celts and Romans, but with no clear causal path
frommetaethnic frontiers to polity expansion. But the ma-
jor result is that the empires of the later periods did (and
not just may) result in almost all cases from cohesive re-
sistance to the attacks of the previous period, at long time
scales.

Thus, these results are fully consistent with the scala-
bility of structural cohesion as a basis of sociopolitical sup-
port for military expansion of polities (potentially into em-
pires) but more importantly are supportive of the theory
that k-cohesive structural resistance, which grows slowly
on the metaethnic frontiers of expanding empires in such
a way as to facilitate the growth of resistive “nationalis-
tic” ethnic solidarity and eventually of consolidation of
resistive metaethnic frontier groups themselves into ex-
panding polities and empires, with long time-lags in their
development.

Lim, Metzler and Bar-Yam [72] analyze local conflicts
between distinct ethnic or cultural groups within multi-
ethnic states (India and former Yugoslavia), matching ac-
tual conflicts to spatial population structure in a simula-
tion model of type separation, where cohesion emerges
through movement to more homogeneous regions and
through avoidance of conflict. Conflicts are predicted due
to the structure of boundaries rather than between the
groups themselves, consistent with Turchin’s [121] find-
ings. The local ethnic patch serves as an “order parameter”
to which aspects of behavior are coupled in the dynam-
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ics of a universality class of collective behavior. Similarly,
the multilevel evolutionary model of Garcia and van den
Bergh [36] shows how parochialism, as altruistic behavior
specifically targeted towards in-group members, can result
from group selection operating on direct conflict between
groups.

Cooperation, Connectivity-k and “CriticalMass”
in CollectiveAction

If structural cohesion is scalable, what are the factors, aside
from external conflict, that would prevent or facilitate the
scale-up of cohesion? Or of group size generally, assuming
some modicum of cooperation [73]? The major problem
in explaining why cooperation should occur at all in hu-
man groups, in the absence of external conflict, is that of
the benefits of selfishness to free-riders when others bear
the cost of altruism. One component of “The Tragedy of
the Commons” [46] is that collective goods [92] are nonex-
cludable: Once achieved (like peace, clean water or air,
public transport, or wage contracts) they are available to
everyone. Many if not most such goods have jointness of
supply (available to all), i. e., their cost does not increase
proportionally to group size. The initial problem is that
if it takes only some initial investment and costs by those
who bring such goods into existence, why should anyone
else bear these costs when they can have them for free?
This creates “the dilemma of cooperation” [92] and of col-
lective action. And the larger the group the easier it is to
ride free. Evolutionary game theorym [89], with a replica-
tor dynamic that favors those with lower cost for the same
benefits, predicts that without some compensation for al-
truism, even starting from a small number of free-riders
in a population, selfishness becomes the norm. The sec-
ondary problem of collective goods is who will bear the
costs to maintain them?

Reputationmay attach positively to altruism and nega-
tively to free-riding. In this respect, two recent experimen-
tal papers are strongly supportive (although unaware) of
connectivity-k in helping to explain cooperation in human
groups [18]. In one study the judged veracity of gossip is
shown to increase considerably if it came from more dif-
ferent sources [54], not if one source kept repeating the
same gossip, while another relates gossip to reputation and
cooperation in general [114]. James West in Plainsville
(1945) [130] was the first to connect gossip and the main-
tenance of the unity of groups. According to Gluckman
(p. 308 in [37]), however, West misinterpreted the extent
to which “gossip does not have isolated roles in commu-
nity life, but is part of the very blood tissue of that life.”
Gluckman refers to Colson’s Makah Indians [23] ethnog-

raphy to illustrate the importance of gossip to the unity of
groups.

While diffusion of reputation along the node-disjoint
paths of k-components can provide benefits to altruism,
its influence diminishes as groups grow larger and aver-
age network distance grows large, reducing the scalability
of k-components with high levels of cooperation. Further,
if a group has too much k-connectivity (as in completely
connected cliques), the benefits of reputation diminish be-
cause of the “echoing” effects of conformity and diminu-
tion of independent sources of information [19,55,145].
In cliques or overly-connected groups, single dominant
individuals have the potential to influence everyone and
thus to distort the robust veracity of information. Fur-
ther, studies of human friendships and other long-term
relationships show that the success of reciprocal strategies
(such as tit-for-tat) relies on a combination of medium-
term accounting, forgiveness, and propensity to defect
with strangers if they already have an adequate number of
partners [55].

Benefits of punishment within a group have a sim-
ilar profile of optimality to reputation. Like gossip
and reputation, punishment can be effectively delivered
through k-cohesive independent paths and thus diffuse co-
herently respecting the boundaries of k-cohesion [18] (al-
though for a given k-cohesive group, the paths used to dif-
fuse reputation need not be the same as those used to de-
liver punishments). This works best for groups with mod-
erate average distances in the network andwith (or defined
by) moderate connectivity-k. Similar to reputation, “co-
hesion extends punishment even beyond the community
network and protects insiders against trouble-making out-
siders, [especially] when communitymembers come to de-
fend fellow community members against norm-violating
outsiders” [18], while incidental defectors at the margins
of the cohesive group may have little impact on behav-
ior within the group. Henrich et al. [50,51] ethnographic-
psychological study of 15 societies from five continents,
representing the breadth of human production systems,
found that willingness to use punishment in the dictator
game covaries with altruism across populations in a man-
ner consistent with coevolutionary theories. But while ap-
propriate punishments diminish the relative rewards of
free-riding, they also incur costs to the enforcers.

Punishment as third-party intervention tends to rely
more on dominance and perceptions of the use of force,
entailing higher risks in some cases, than on reputation in
the modeling of advantages of cooperative behavior. Af-
ter observing a group of macaques in captivity in which
a small number of individuals fulfilled policing tasks,
making interventions into dyadic conflicts, temporary ex-
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perimental “network knockout” removals of the polic-
ing monkeys showed it was their presence that prevented
the group from falling apart into small clusters [34,35].
Here, Jessica Flack and coworkers note [33], “the degree
to which one individual perceives another as capable of
using force is communicated using a special dominance
signal. Group consensus about an individual’s capacity
to use force arises from the network of signaling inter-
actions.” Consistent with studies of k-cohesion, this re-
search found that “coarse-grained information stored at
the group level—behavioral macrostates – “was more use-
ful than detailed information at the individual level”. Be-
cause “successful intervention relies on consensus among
combatants about the intervener’s capacity to use force,”
use of “ a formalism to quantify consensus in the network,”
and with consensus as a measure of power, showed that
“the power distribution is fat tailed and power [here: con-
sensus] is a strong predictor of social variables including
request for support, intervention cost, and intensity.” This
modeling of power distributions shows how dominance
signaling strategies “promote robust power distributions
despite individual signaling errors” [34].

Third-party interventions in conflicts resemble recog-
nition of community membership in that such inter-
ventions rarely occur with respect to outsiders. Recog-
nized community boundaries (as distinct from k-cohesion,
which may extend beyond these boundaries) provide the
most probable context for the dyadic construction of co-
operativity through reciprocity [118], dominance in third-
party intervention, and dyadic game theoretic strategies
that achieve cooperativity (such as tit-for-tat or lose-shift
in Prisoner’s dilemma) [113]. These, together with gen-
eralized reciprocity [71], i. e., altruism in the expectation
of indirect return, are also among the most potent con-
structors of community-building strong ties in social net-
works [135], especially if they are navigable [1], as in many
elite groups and non-Western [136] societies. Bowles and
Gintis [15] summarize the game-theoretic work on co-
operation showing that the critical condition for coop-
erative outcomes, which otherwise deteriorate with in-
creases in group size, is the presence of strong recipro-
cators, who cooperate with one another and punish de-
fectors, even if they sustain net costs, provided that they
are more likely to interact with one another than at ran-
dom. Thus, network structure and preferences (positive
assortment) prove to be central to an evolutionary path
to large-scale cooperativity. Pepper and Smuts [107] show
how positive assortment through environmental feedback
can play the same role. There are, then, evolutionary
paths to the scale-up of k-cohesion for indefinitely large
groups.

Putting together these principles of primate (reci-
procity, policing) and human social networking, we can
also see compatibility of k-connectivity with the theory of
“critical mass” in collective action [77,90,91]. Group size
does increase the probability of a critical mass of people
who develop common goods through collective or cooper-
ative action. This relates directly to the scalability of k-con-
nectivity, wherein as the size nof such a structurally cohe-
sive group expands, it is still only k links per person that
are needed for k-connectivity. But there is always an ex-
pected excess of ties, upwards of k, for some members of
such a group, and an increase in n increases the probability
of formation for a group with a critical mass of connectiv-
ity k C 1 or higher (k C l > 1). This relates to the “para-
dox of group size” for collective action groups: “When
groups are heterogeneous and a good has high jointness
of supply [i. e., with cost that does not increase propor-
tionally to size], a larger interest group [size n] can have
a [relatively] smaller critical mass,” which could also be
a critical mass with connectivity k C l . The problem of
mobilizing collective action is whether there is a mecha-
nism that connects enough people with appropriate inter-
ests and resources so that they can act to construct a col-
lective good [77]. Structural cohesion provides just such
a mechanism [17,83,97].

An extended feature of this model of critical mass,
which has been investigated through simulation [77], is an
accelerative function for what has been called network ex-
ternality [4], where every new participant in creating a col-
lective good makes it more attractive for the next partici-
pant to join. Different forms of collective action have some
mix of this source of nonindependent decisions and/or
a decelerative function wherein free-riding is more likely
on the belief that others will do the job. Since success in
collective action is partly a problem of coordination, there
is some advantage to members of a critical mass in col-
lective action having greater centrality. But again, if the
collective action group at large has connectivity k and the
leadership critical mass has connectivity k C l, the latter is
achieved by the hierarchical embedding of higher orders
of connectivity and not necessarily by greater centrality of
a single leader.

So there are two aspects to consider for the dynamics of
growth and decline in size of cooperative human groups:
(1) reinforcement mechanisms of community, which tend
to be self-limiting with respect of structural cohesion, and
(2) critical mass in collective action or positive assortative
reciprocators [15], which both tend to be self-enabling.
While collective action to produce a collective good also
requires a model of group process that cannot be deduced
from simple models of individual behavior [77], the prob-
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lem for understanding how large-scale societies and poli-
ties can achieve sustainability may be solved by assortative
strong reciprocators [15]. The former problem—of sus-
tainability of cooperation in a community—is different.
All of the mechanisms there—reciprocity, third-party in-
tervention, reputation, and punishment—depend on rela-
tive stability of community membership. Prior to the elec-
tronic age (which poses somewhat different problems of
stability in virtual communities but makes for more in-
dependence of k-connectivity from local density and geo-
graphic distance), stable communities carried designations
such as “settlement” or “nomadic group” as nominal indi-
cators of relative stability in proximal spatial interactions
among their members.

There is a herd cohesion solution to the stability prob-
lem (follow the surest neighbor!) [25,26], but also an ad-
vanced social cohesion solution (the formation of k-con-
nectivity groups with a stable core) [18]. Empirical stud-
ies of neighborhoods [105,106] show that a certain thresh-
old of residential stability is a crucial factor for the effi-
cacy of mechanisms for community-level enforcement of
the cooperative norms of third-party intervention, repu-
tation, and punishment (all but strictly dyadic reciprocity
unless it is strong and assortative). “For cooperation to
be maintained at the community level, the network as
a whole must be relatively more stable than patterns of
individual actions” [18]. Combining community mecha-
nisms and critical mass in collective action, we have the
foundations for an evolutionary theory of cooperativity
and cohesion in human groups. Many of these features
(but not structural cohesion) have been brought under the
Darwinian umbrella in a way that shows how the co-evo-
lution of culture and genes jointly influence cultural trans-
mission (dual inheritance theory) through the vehicles of
human behavior and psychology [48,52]. This framework
allows the integration of work on kinship, friendship, reci-
procity, reputation, social norms, and ethnicity into a gen-
erally applicable mathematical characterization that may
contribute to solving the problem of cooperation and ex-
tending on to the evolution of evolution and of economic
systems [49,50].

Beyond adding k-connectivity into dual inheritance
theory, there are also newermodels of achievingminimum
punishment and maximum crime reduction through
policing concentration on an arbitrary push-down set of
offenders [64]. The theory here, validated in simulation
and case study, is that a fair and effective law enforcement
strategy can only succeed if it approximates one with a sta-
ble target set of offenders at whom punishment is directed
until recidivism ceases, individual by individual, replacing
each nonrecidivist on the pushdown list by another known

offender chosen with a probability proportional to rate of
current offenses but otherwise arbitrarily, i. e., fairly. Polic-
ing an arbitrarily stabilized set of offenders mirrors the re-
quirement for stability in cooperative neighborhoods. Sta-
bility seems to be a key ingredient for cooperativity.

What are the implications of these findings for con-
siderations of the scalability of human communities and
of human polities? Although k-connected groups are
scalable, the properties of third-party intervention, rep-
utation, and punishment to maintain cooperativity are
not scalable, nor is dyadic reciprocity except under very
special conditions [135,136]. Scalability through con-
flict—resistance to threat—and through collective action
to produce collective goods, organized by a “critical mass”
or through assortative strong reciprocity [15] is, however,
scalable.

So why do human groups not simply grow larger at
all scales [73], as challenged by competing groups, or by
possibilities such as establishing collective goods capable
of sustaining growth? Prestate societies only rarely sustain
continued growth in size, but rather split, and then remix
through intermarriage and mating (fission and remixing),
with transition to a higher-order political form occurring
extremely sporadically. It might be thought that if polit-
ically independent groups fission but still remain linked,
through intermarriage or k-connectivity, then fusion into
larger political groups would be easy. Many anthropo-
logical theories assume a stage-wise progression such as
band to tribe or tribe to chiefdom [110]. Comparative
ethnographic, historical, and archaeological studies, such
as those of Wright [143,144], however, make it clear that
passages from band to tribe (concepts with serious con-
ceptual problems) to chiefdom to state are extremely dif-
ficult and unlikely transitions. And as we have seen [121],
growth in state societies and empires is followed by col-
lapse and the rise of other polities instead. Models of po-
litical fission might provide necessary conditions for tran-
sitions in successions of forms of leadership as polities de-
velop with different sets of roles. New role set configura-
tions might also create founder effects in the emergence of
economic or political forms.

TransitionModelswith Thresholds

Transitions such as chiefdom to state can be modeled in
an evolutionary dynamics of human behavior framework
that includes the interaction of ethological characteris-
tics—general human behavioral tendencies—and forms of
sociopolitical organization. Social anthropologist Christo-
pher Boehm [13,14], whose field studies range from Mon-
tenegro [12] to wild chimpanzees at Gombe, called at-
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tention to the human tendency to resist domination (con-
sistent with Turchin’s findings [121] in Sect. “Networks,
and Cohesion in HB Dynamics”), which is not shared
with other great apes (consistent with Henrich and Gil-
White [47]). In a substantial cross-cultural survey of so-
cieties in a wide variety of social and ecological settings,
Boehm selected those with egalitarian behavior, and found
that their behavior was not shaped by these settings but
rather was deliberately shaped by their members, guided
by a nearly universal ethos in these societies “that disap-
proves of hierarchical behavior in general and of bossi-
ness in leaders in particular.” His survey reveals the wide
variety of means by which “the political rank and file”
evict leaders who evince excessive authoritarian tenden-
cies. This “creates a reverse dominance hierarchy, a social
arrangement that has important implications for cross-
phylogenetic comparisons and for the theory of state for-
mation” [13] thatmight be called a “law of human etholog-
ical resistance”, consistent with [121]. One of thesemecha-
nisms of resistance is fission, the break-away from a group
that is growing large or with too many settlements under
a single leader.

Surveys of archaeological, historical, and ethnographic
cases not only show transitions from chiefdoms to states
to be very rare but also show that states are based on a rad-
ically different principle of a hierarchy of roles to which
decision-makers are recruited. Henry Wright [143,144]
shows that primary and secondary states have three or
more levels of mobilization of resources upwards and
passing of information both upwards and downwards
through a hierarchy of divided offices and a division of po-
litical labor [115]. Chiefdoms, unlike states, are character-
ized by paramount leaders who delegate as little authority
as possible, in contrast to states with their delegated divi-
sion of labor for authority [144]. Paramount chiefs may
govern subdivided territories with village chiefs and ritual
specialists, but there are nearly always no more than two
levels of chiefly resource mobilization conducting directly
to the chief and all political decisions are integrated into the
chiefly persona.

To assume a simple quantitative increase in network
size and complexity as chiefdoms develop into states is
therefore inappropriate. Chiefdoms are also characterized
by a reverse ranking hierarchy [13,14], not an actual re-
versal of dominance but one of prestige ranking [47] in
which leaders are expected to exhibit altruism to follow-
ers through redistribution of goods or forms of reciprocity
and bestowal of favors or gifts to counterbalance the pro-
cesses whereby resources were concentrated through in-
terpersonal network ties, although the reciprocity is rarely
balanced in any material sense [27,96,98]. In their dy-

namics of growth, chiefdoms—with their structural co-
hesion and cohesive hierarchies based on intermarriage,
exchange, and cross-cutting ties—tend to increase in size
through internal growth or annexation of settlements,
then to give way to fission at times of crisis following
growth, especially if these crises coincide with issues of
political succession. There is no tendency in these dy-
namics for gradual cumulative evolution in complexity to-
ward state organization. The mosaic of sub-chief territo-
ries mapped into the chiefly ranking are segments that re-
currently separate and then re-form in successive periods
of political change

Griffin and Stanish (p. 2,24 in [43]) provide evidence
and a model for a tipping-point synchronicity threshold in
the transition from chiefdoms to emergent pristine states
in the Lake Titicaca case of Tiwanaku, c. 500AD (out-
growing the territorially larger political formation at Pu-
cara). The transition occurred archeologically and in a de-
tailed simulation model after a long period of cycling in
which multiple chiefdoms climb the population size gra-
dient only to be fragmented by fission. There is strong em-
pirical evidence for cycling in growth and fission. During
the period of cycling, primary centers, population con-
centrations, and increase in both the overall productivity
and population of the region occur sporadically without
synchronization. Then, in one rapid burst, archeologically
and in repeated probabilistic simulations, these previously
unsynchronized features emerge synchronously, pushing
past a probability threshold for fission. Figure 2, reflect-
ing results from the simulation model, shows the variables
affecting the fission of chiefdoms plotted against time for
growth; then, as cycling occurs, setting the cycling time
back to that of an earlier equal scale in size. The simula-
tion data were also reaggregated for X as number of settle-
ments under the chief, and could be estimated analytically
for other variables such asX for communication time from
center to furthest outlier. The first variable, Y1, is one of
exponential decay in the ratio of resistance strength to the
leader’s strength, which can be expressed as an exponen-
tial probability density function supported on the interval
[0;1), where  > 0 is the rate parameter of the distribu-
tion. Since this is a discrete exponential distribution with
X � 1:

p(X;) � e��X :

The second variable, Y2, increases with X on the assump-
tion that the likelihood of resistance to the chief increases
with time, or variables that cycle with time, such as num-
ber of settlements. The third variable, Y3 D Y1 � Y2, is the
probability of fission due to resistance, which is humped
because it is a product of distributions that have higher
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Human Behavior, Dynamics of, Figure 2
The transition threshold from Chiefdom to State: Y1 � Exponen-
tial Decay in the ratio of Resistance strength/Leader’s strength;
Y2 � Increasing] probability of Resistance as number of settle-
ments increases; Y3 D Y1 
 Y2 D the probability of fission

resistance probabilities at opposite magnitudes of X. The
shape of the Y3 distribution emerges as an average over
many simulation runs, and opens further questions for
investigation. What emerged in the Lake Titicaca region,
consistent with the simulation, were two dominant poli-
ties, separated in time, one an incipient state, the other
smaller in population but larger in territory, along with
extensive trade networks including the smaller centers.
This is a typical multisite trading configuration of early
states [3].

One can speculate as to whether resistive transition
thresholds might occur also from band to tribe or big man
(having occasional fission), to chiefdom and from chief-
doms (having occasional fission) to minimal states. Fis-
sioning is by no means universal, and one study of the
Titicaca region itself shows that village but not chiefly fis-
sioning had ceased long before state formation with emer-
gence of a regional religious tradition [7]. Are there resis-
tive transition thresholds from minimal states (having oc-
casional fission) to urbanized states, from urbanized states
(having occasional fission through colonization) to dynas-
tic states, or from dynastic states (with occasional fission
with the death of a ruler and partition of domains un-
der obligatory personal inheritance) to territorial agrarian
states? Or do nonterritorial state expansions collapse, re-
placed by others? The territorial state, given institutional
sovereignty over territory, is less likely to fission at a size
threshold and its growth dynamics are shown in Sect. “Ag-
gregate (“Sufficient Unit”) Equation-based Modeling” to
involve shrinkage following times of scarcity in popu-
lation/resource ratios. This creates amplifications of in-

equality and internal conflict [126]. Modern mega-corpo-
ration growth is often arrested by national and interna-
tional legal regulations mandating breakup of monopolies
but there are no early barriers against corporate growth
in size, although some corporations do fission for reasons
other than size constraints.

The temporal scaling of long-term transitions in pop-
ulations and sizes of the largest polities does show clear
transitions, over 5000 years of world history, as shown
on Fig. 3 [116]. The lower line in the figure is an expo-
nential fitting of the effective number of polities (Laakso–
Taagepera concentration index 1/˙i pi , where pi is the ef-
fective proportion-weighting for each unit) weighted by
their populations, and the upper line by their geographi-
cal areas. More even proportions for pi, such as {.4 .3 .2 .1},
compared to higher concentrations like {.7 .1 .1 .1}, will
have a higher effective numbers, 3.33 versus 1.92, while
extremely concentrated proportions, e. g., {.97 .01 .01 .01}
with effective number 1.06, approach unity. The declining
slopes in Fig. 3 show a decrease in effective polity numbers
1/˙i pi with greater concentration of population than of
area (slopes differ by 2, the fitted exponential population
roughly the square root of area). Over these five millen-
nia the fitted effective number of political entities weighted
by area decreased from circa one million to circa 64, and
from circa one thousand to circa 8 weighted by population.
For Fig. 3:

Three sudden increases in polity sizes occur: [fewer
large polity concentrations] around 3000 BC [urban
revolution in Mesopotamia], 600 BC, and AD 1600
[the seafaring trade revolution]. This study tests the
exponential model against area and population data
[for polities] over five millennia. It also gives tables
and graphs of area versus time for all major polities
since AD 600. The median duration of large polities
at more than half the peak size has been 130 years,
and it has not changed over 5000 years. (p. 475
in [116])

Two of the three solid lines superimposed on the origi-
nal figure show how two of the three elbows of change
in the lower of the empirical data lines (circa 2600BC,
1200 BC, and 200 AD), from polity population concen-
trations to dispersals, are followed with short time-lags
by two similar elbows of change in the upper line from
polity area concentrations to dispersals over the next hun-
dred years. Whether these transitions represent eras of
crises in urban empires is unclear, as are most extrapo-
lations from so few data points. The first case might re-
flect the short-lived breakup of early Bronze-age polities
(Mesopotamian and Indus) and the second the breakup
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Human Behavior, Dynamics of, Figure 3
Transition thresholds for States and Empires (effective number of polities), based on area and on population (Taagepera 1997 Fig.
5, courtesy of the author, who notes that individual polities that expand slower tend to last slightly longer (p. 475 in [116]); arrows
mark his dates for large polity concentrations; others are marked by lighter lines)

Human Behavior, Dynamics of, Figure 4
World population power-law growth spurts and flattening as shown in a semilog plot of Kremer’s (1993) [69] data with successive
power-law fits

of North China states. At 50 AD the third elbow of tran-
sition from population concentration to dispersion (e. g.,
for classical empires such as those of the Romans, Savat-
aphana and Han, which actively discouraged market de-
velopments) occurs in the dispersion phase commensurate
with that of polity area. Population and area reconcentra-
tion in the next phase (ca. 500–850AD) are also roughly
commensurate. A downward spike of population concen-
tration recurs circa 1050AD when again it has a lagged

effect on polity area concentration. It might be surmised
that changes in population-area interactions in the era of
power-law city growth are increasingly subject to mar-
ket-driven trade routes (e. g., Silk Roads in Eurasia from
100 BC–1300AD). This is a context, from 900AD for-
ward, of new national market economies that diffuse from
Sung China to the west, where the Abbasid, Carolingian
and related polities encouraged widely articulated mar-
ket systems. Such changes are studied and modeled by
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Modelski and Thompson [82]. Variability in the ways that
markets change these political oscillations is particularly
evident from 1800 and the industrial revolution, as na-
tionalism and markets consolidate the effective number of
polities geometrically weighted by size, up until 1990 with
the breakups of the Soviet Union. There has been little dy-
namical modeling of the multiple causality in these cou-
pled/decoupled oscillations. Taagapera (p. 488 in [116])
notes that while population concentration can continue to
increase in the present era area concentration must sta-
bilize because jumps to higher concentrations in earlier
eras occurred with acquisition of control over large and
sparsely populated areas (desert, steppe, deserts, tundra,
respectively for Sargon,Mongol, British, Russian empires),
and such areas are much less available now.

To express some of the consequences of the transition
to networks of cities connected by trade routes, and even-
tually to market-driven trade, Fig. 4 sketches the sugges-
tion that world population begins to grow not exponen-
tially but in power-law growth spurts, correlated initially
with the transitions noted in Fig. 3 [133].

Cities act as attractors for skilled, unskilled and intel-
lectual labor as well as entrepreneurs and merchants, with
a concomitant drain on settlements of smaller size. This
enables power-law growth, at growth rates proportional
to city size, i. e., cities as “attractors” as in the scale-free
network model of Barabási 2000 [8] (but see [139]), while
rural areas and smaller settlements do not diminish their
population but with elevated birth rates can replenish their
losses from outmigrants. This pattern allows world popu-
lation to grow in power-law spurts, but power-law growth
is self-limited by population crashes as it would otherwise
grow to infinity in a finite time [129]. The places where the
polity transition crises occur in Fig. 3, e. g., 2600–2400BC,
1200–1100BC, and 200–100 BC, and 1300AD correspond
to those crises in the larger states and cities where power-
law growth in their (and world) population hits some sort
of limit, growth flattens, and resets the starting parameters
for a new upswing of power-law growth (a pattern first
noticed but not explained in Korotayev et al. 2006 [66]).
The largest world empires, of the Golden Horde Mongols
and the British, appear as the result of two of these more
recent upswings (a topic currently under investigation by
Christopher Chase-Dunn in one of the National Science
Foundation’s Human Social Dynamics research awards).

Aggregate (“Sufficient Unit”) Equation-Based
Modeling

This approach aggregates to the unit size and boundaries
at which to define causal variables and interactions and to

Human Behavior, Dynamics of, Figure 5
Population and Sociopolitical Instability for Han and TangChina
(Turchin 2005a [124], courtesy of the author)

attempt to explain behavioral dynamics of these units by
appropriate equations. This requires the “sufficient unit”
condition that the aggregate units of study have the kinds
of cohesive mass or entitivity for causal interactions to act
on their aggregate characteristics. Time-series will have
periods in which this condition is satisfied because of rela-
tive “endogeneity” of interactions where there are few ex-
ternal disturbances or exogenous shocks to the unit.

Using this approach, Peter Turchin [123,124] ex-
tended a realistic and empirical approach to historical
processes—not caricatures of imperial collapse—for basic
Malthusian models of population pressure on resources
and time-lagged negative feedback effects with internal
conflict (see also [125]). He simply uses “standard quan-
titative methods of natural sciences, such as time-series
analysis, regression, and cross-validation. The statistical
analysis reveals strong and repeatable patterns in the data
on population numbers and the intensity of internal war.
And history of science suggests that strong empirical reg-
ularities are usually associated with the action of funda-
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mental laws” [22], some yet to be discovered for com-
plex systems science. Examples from the Han and Tang
China data [123,124] (Chap. 8 in [121]) are shown in Fig. 5
for population and sociopolitical instability (internecine
wars), which are related by time-lagged feedback effects.

For the stationary X (population) and Y (internecine
wars) variables in these figures, standard time-lagged re-
gression is used to estimate regression constants ai D
fa0; a1; a2g where � is the time lag of 30 years (approxi-
mating a human generation), t is time, and "t is an error
term assumed to be normally distributed [16]:

X(t) D a0C a1X(t� �)C a2Y(t� �)C "t ; (Model(1))

(and an analogous model for Y(t), reversing the defini-
tions of X and Y). Further:

One possible objection to the procedure outlined
above is that there is some positive autocorrela-
tion between X(t) and X(t � �) due to the time-
series nature of the data, and it is conceivable that
the excellent correlations between the observedX(t)
and predicted X(t)� are entirely due to this “iner-
tial” effect. To eliminate this possibility [the ana-
lyzes were redone] with a different dependent vari-
able,
X(t) D X(t) � X(t � �).
X(t) is a measure
of the rate of change, and by using it we break the
autocorrelation arising from the time-series nature
of the data. In fact,
X(t) is none other than the re-
alized per capita rate of population change, which
is the standard dependent variable in the analyzes
of population data. . . . There can still be some pre-
dictive relationship between 
X(t) and X(t), so we
need to compare two alternative models:


X(t) D a0 C a1X(t � �)C "t ;
(Model(2))

Human Behavior, Dynamics of, Table 2
Comparing Out-of-Sample Predictions of the Inertial and Interactive Models (Turchin 2005a [124], courtesy of the author)

Source of data Dependent variable Correlation between predicted and observed
1st half! 2nd half 2nd half! 1st half
Inertial Interactive Inertial Interactive

England Population �0.57 0.94 �0.07 0.44
England Instability �0.13 0.80 �0.53 0.89
Han China Population 0.45 0.57 0.73 0.48
Han China Instability 0.39 0.87 0.37 0.68
Tang China Population 0.56 0.80 0.61 0.90
Tang China Instability 0.57 0.78 0.66 0.92

. . . the inertial model (with an analogous (2) for
Y(t)), and


X(t) D a0 C a1X(t � �)C a2Y(t � �)C "t ;
(Model(3))

. . . the interactivemodel (with an analogous (3) for
Y(t)). The interactive model has an extra parame-
ter, but in a cross-validation setting this does not
matter (if the extra independent variable does not
have a systematic influence on the dependent vari-
able, then adding it to the model actually decreases
to the ability of the model to predict out-of-sample
data) [124].

The comparisons of the inertial and interactive predic-
tions in Table 2 show consistent effects of dynamical time-
lagged interactions between population and sociopolit-
ical instability (civil conflict) that cannot be attributed
simply to the inertial dynamics of each of these vari-
ables separately. The interactive effects, documented in
detailed case studies [126], are those of oscillations: ris-
ing population creating resource scarcity, which ampli-
fies inequality, making the value of property rise while
that of labor falls, which, if lasting longer than a gen-
eration, causes civil unrest and conflict, causing popula-
tion in turn to decline, with a lag until the cycle recurs
as civil conflict ceases, allowing population to rise again
(see [38]). Replications of similar findings are obtained by
Turchin for the English Tudor cycle (1485–1730) [124],
the Medieval English Plantagenet Cycle (1150–1485),
French Capetian cycle (1150–1450) and Valois (1450–
1660) cycles, Roman republican (350–30 BCE) and prin-
cipate (30 BCE–285 CE) cycles, Russian Muscovite and
Romanov cycle [126], and the Pueblo cycle, where Kohler
et al. [65] examine the Turchin model with data from
Southwest Colorado between AD 600 and 1300. They find
that “it fits well during those periods when this area is
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a more or less closed system. It fits poorly during the time
from about AD 1000–1200 when this area is heavily influ-
enced first by the spread of the Chacoan system, and then,
by its collapse and the local political reorganization that
follows. The model is helpful in isolating periods in which
the relationship between violence and population size is
not as expected.”

Institutions, Network, EconomicModels
and Experiments: Testing Causality

Studies of historical HB dynamics often lead to different
conclusions. In many cases these differences result from
the aspects of social process that are focused upon. Con-
tending views may have more general points of consensus
when we look at these processes more abstractly. The con-
cepts of structural (k-)cohesion and resistance may help to
provide more points of consensus.

There are many views of the formative processes of
a market economy based on impersonal exchange and
its prior institutional bases. Conceptualized as a network,
a market economy requires k-cohesiveness simply to at-
tain k > 3 alternatives for buyers and sellers, the mini-
mum “many” players in the market without which the ad-
vantages of competitive pricing cannot be obtained. Com-
petition itself, however, is simultaneously a resistive as
well as a cohesive process, a differentiation of the interests
and identities of the competitors. The goods exchanged,
for competitive markets, must be alienable, which entails
a change of hands in property rights. Players at one time
and place may be groups or corporations as property own-
ers party to exchange. At other times they are individuals;
or, parties to exchange may be a heterogeneous mix of in-
dividuals and groups. For parties to exchange they must
have rights: rights to hold property and to alienate prop-
erty, rights that can be agreed upon by contract, rights and
institutions that can enforce the contract. Effective “coer-
cion-constraining” institutions that prevent the abuse of
others’ property rights “influence whether individuals will
bring their goods to the market in the first place” (p. 727
in [41]). These give rise to agency, as the capacity for hu-
man beings to make choices within a social world and to
enforce the rights that those choices impose on the world,
whether agency is for the selfsame agent or on behalf of an-
other. The social world is complexly layered at the level of
rights, obligations, agents, agency—and institutions as co-
hesive and resistant social constructions exist for the en-
forcement of norms. Competing views and agendas are
entailed.

These kinds of interlocking components of social
worlds do not fall into place quickly, but are built up in-

crementally over time, just as social networks are built
up incrementally and their structural configurations may
change slowly evenwhile specific individuals come and go.
Market institutions, for example, “co-evolve through a dy-
namic inter-play between contract-enforcement and coer-
cion constraining institutions” (p. 727 in [40]) along with
resistive social movements, movements to create collec-
tive goods against the resistance of free-riders, and more
episodic events.

The institution-building perspective is one that has re-
ceived very detailed effort in modeling actual social net-
works and institutional change in their historical con-
text, abstracting the ways that social players and agents
have come to effectively optimize their interactions from
their multiple interests and perspectives. One of the most
formidable projects of this sort over the last decade, build-
ing on the earlier work of North [88], has been to trace
social foundations and historical development of insti-
tutions in pre-modern Eurasia that facilitate impersonal
exchange and lead to paths toward competitive markets,
while other developmental paths lead in a variety of other
directions [42]. In the words of one reviewer, this work of
Avner Greif:

strips economic transactions down to their elements
[and] focuses on the core question: who (or what)
were the watchdogs that allowed the merchants
to trust one another and to bear with the princes
who could confiscate the fruits of all their efforts?
And who (or what) were the watchdogs’ watchdogs?
[The work] repeatedly and carefully relates these
questions to economic theory [and] illustrates them
with real transactions of medieval merchants. He
takes the right approach to economic development,
and thereby achieves an original and important new
perspective on its causes [2].

In each of Greif’s case studies, dynamical game theory
is used to test the fit between the observed data and the
known historical development of institutions as well as the
cultures and behaviors of the players and actors. One of the
shortcomings of Greif’s work is that the earlymodernmer-
chants did not face the same problems as those developing
markets de novo in early Mesopotamia, India, China, and
Mesoamerica. But further evaluation of the replicability
of Greif’s model is carried on by network economists us-
ing experimental real-world simulations that engage par-
ticipants in the knowledge, payoffs, and choices of the
context that is modeled, testing the experimental models
against the observed or recorded historical processes and
outcomes [62]. To quote:
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North (2005) argues that belief systems and the
stock of local knowledge, the internal representa-
tions of the human experience, are intimately inter-
twined with the external institutions that humans
build. We investigate this relationship by varying
the degree to which property rights are enforced
in yesterday’s institutions before the opportunities
for long-distance trade present themselves with per-
fectly enforced property rights. Specifically, in the
new experiment we report here, three-fourths of the
subjects in an economy are drawn from two differ-
ent treatment histories in Build8 sessions, one in
which property rights in personal goods are per-
fectly enforced for all of the participants, though
they must rely on trust and repeat interactions to
enforce exchange agreements, and another in which
no property rights of any kind are enforced. Hence,
in both sets of history-inducing sessions, there is
no external enforcement of exchange contracts and,
as found [in an earlier experiment], no need for
such [62].

The findings of the experimental study are “that a history
of un-enforced property rights hinders our subjects’ ability
to develop the requisite personal social arrangements nec-
essary to support specialization and effectively exploit im-
personal long-distance trade.” Thus we might understand
through network economic experiments some replicable
elements of the origin of impersonalmarket system. These,
like cooperativity, require but go beyond structural cohe-
sion to the social constructions of institutions that secure
trust and the benefits of interpersonal trade, i. e., network
elements that reinforce the scalability and benefits of struc-
tural k-cohesion as discussed above.

In Greif’s analysis, while the institutional supports
for impersonal long-distance trade only developed slowly
in medieval Europe (and elsewhere) the full protections
of “coercion-constraining” institutions “that prevent the
abuse of others’ property rights” and “influence whether
individuals will bring their goods to the market in the
first place” were still not in place even in England after
the “Glorious Revolution of 1688,” which did not secure
such rights beyond “the landed, commercial, and financial
elite” (p. 786 [41]). Rarely is linear progression of rights
entailed in the ups and downs of the precursor elements
of fully competitive markets that vary from one country to
another. In England, after 1688, for example, although

parliament gained supremacy, it was not in the busi-
ness of protecting property rights per se. Its pol-
icy reflected the interests of those who controlled
it. . . . The subsequent history is thusmarked by gross

abuses of property rights. . . . Yet, a state controlled
by its landed, commercial, and financially elite and
later empowered by the Industrial Revolution was
a boon for the extensions of markets. The evolu-
tion of the modern markets reached its zenith. . . .
Europeans shared a common heritage of individu-
alism, self-governance, a broad distribution of co-
ercive powers, and man-made laws. Reversing their
institutional developments and enabling market ex-
tensions was relatively easy (pp. 775–776 in [41]).

Eurocentrism is not intended in the use of this example, as
this project entailed equally detailed historical and model-
ing analyzes of China and the Muslim world.

Greif’s analysis of land-based institutions and ex-
change example provides a contrastive comparison against
Erikson and Bearman’s 2006 [30]) network study of En-
glish maritime trade between 1600 and 1831. Here an
entirely different account is given of the emergence of
the competitive market system. The shared elements are
the k-cohesive extensions of trade routes, extensive by sea
as by land, and the institutional development of English
rights in property, commercial exchange, protection, and
agency. Here, however, the resistive element is paramount,
and the “new economy” arises through malfeasance of the
sea captains of the English East India Company. Their
work is carried on preemptively, out of self-interest, ex-
ploiting the opportunity of delay. Instead of bringing En-
glish goods to the orient and returning with oriental goods
in one single return cycle, in order to stay beyond the time
when the ships could return by the monsoon winds, they
traded from port to port on their own behalf with their
own goods and retained the profits. Over time, the density
of this network became so great that the sheer volume of
overlapping circular routes, crisscrossing the net of visited
ports, pushed the k-connectivity of the market exchanges
beyond 0, 1, or 2 for different subregions often up to 7–8,
a veritable revolution in creating new market opportuni-
ties and competitive market pricing through shear volume
of malfeasance behavior: malfeasance because this was all
conducted against the policy of the home company, which
was powerless to prevent it.

Future Directions

The topics covered here, of cohesion and resistance as
measurable social forces in human behavior, and the mul-
tiple ways that these two social forces dynamically in-
teract—and what enhances or limits scale-up and scale-
down of both cohesion and conflict or resistance – leaves
open many researchable questions. Lim, Metzler and Bar-
Yam’s (2007) study supports a more advanced even if
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partial view of the dynamics of cohesion and resistance,
group separations, and segregative conflicts along insuf-
ficiently demarcated boundaries. Other parts of the hu-
man cohesion/resistance dynamics covered in this review
show some of the other ways in which cohesion and resis-
tance interact. Human capacities for structural cohesion,
for example, support cultural differentiation of groups.
Transition thresholds characterize evolutionary bouts of
scale-up in group size through central authority, oscil-
lating against resistance from egalitarian preferences for
autonomy. With scale-up in size, expansions of political
units encounter boundaries of cultural and ethnic differ-
entiation where resistance scales up as oppositional cohe-
sion in positive feedback cycles, creating further expan-
sion of polities that began only as resistive groups. These
support growth of population sizes, which lead in turn to
scarcity relative to resources within regions. With gener-
ational time lags there develop both greater differential
inequality and conflictual resistances to inequality. Large
polities develop institutional and economic frameworks
that can provide benefits to internal differentiation, while
the enhanced potential for cohesiveness and economic
growth can find ways, as in the biotechnology industry
illustration, to utilize the recruitment of diversity to cre-
ate innovation [93] while stabilizing the costs of cohesive
integration.

The problems of modern states and institutions may
be seen to devolve on how to minimize the costs of the
conflicts that are generated by the oscillations between
oppositional cohesion and integrative cohesion. For HB
dynamics more generally, solid causal analysis using the
most advanced techniques is only possible with current
and future data collected systematically on historically
documented entities compared over different time scales,
up to millennial time series. These data can be analyzed
with processual models, network analytic models, institu-
tional, cultural, and evolutionary game-theoretic and eco-
nomic analyzes. Many of the algorithms needed at this
level of complexity have developed in computer science,
e. g., by Pearl [5,95] and, by including the crucial element
of agency in a new econometrics framework [140,141,142]
economics—the otherwise dismal science—can be investi-
gated by causal modeling algorithms. In the modeling of
causality that is relevant here to HB dynamics, the ana-
lytical power recently gained in econometric models may
be neatly illustrated by a comparison of statistical results
and conclusions reached by fractal economics, survivor-
ship analysis of successful mutual fund managers, boot-
strap models of the same problem, and market simula-
tions of intelligent agents that place orders to trade at ran-
dom. The first case involves the discovery of fractal pric-

ing in cotton markets [75] and the Dow-Jones [76], con-
tradicting the standard assumption in economics hypoth-
esized by Bachelier [6] that Brownian movement (Gaus-
sian price deviations) is descriptive of market price dy-
namics. If volatility is predictable in markets, but not price
and direction, the implication is that value might not be
useful as a concept in economics [75] (consider market
collapse when no trader wants to trade in an uncertain
market (pp. 3–4 in [58]). Parallel evidence from experi-
mental studies rejected the reference-independent fram-
ing of judgments for the “value” of expected utility the-
ory as originally framed by Bernoulli [11], and question-
ing the assumption that utilities are stable [61]. Simi-
larly, survivorship analysis of successful mutual fundman-
agers showed no evidence that the top ranked funds were
any better than random as they lacked measurable persis-
tence [20]. Finely tuned bootstrap estimation models that
are oriented toward testing causal models in econometrics,
however, showed that while income fund managers did no
better than random, growth fundmanagers showed persis-
tence in their ability to pick stocks (Kosowski et al. [67]).
And finally, a baseline market simulation model of for in-
telligent agents that place orders to trade at random, with
only one free parameter, accounted for 96% of the best
buying and selling prices (the spread), and 76% of the
variance of the price diffusion rate [32], which “demon-
strates the existence of simple laws relating prices to order
flows, and in a broader context, because it suggests that
there are circumstances where the strategic behavior of
agents may be dominated by other considerations.” “One
of the virtues of this model is that it provides a bench-
mark to separate properties that are driven by the sta-
tistical mechanics of the market institution from those
that are driven by the strategic behavior of agents. It sug-
gests that institutions strongly shape our behavior, so that
some of the properties of markets may depend more on
the structure of institutions than on the rationality of in-
dividuals.” These examples are all indicators of complex
dynamics.

The challenge of HB dynamics is to assemble better
data related to aspects of the problems modeled, includ-
ing those of competing hypotheses: more complete data,
data better grounded in diverse historical circumstances,
and more contextual detail. A second challenge is to have
better statistical estimators, identification and correction
for sources of bias, attention to nonindependence, care-
ful modeling of richly grounded historical data, attention
to causal modeling, and multiple-level models. These ef-
forts are facilitated by sharing of data, collaborative anal-
ysis of potential biases in data, sharing of documentation
of software and source code, verification of source code,
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and replication of results. Extensive effort has gone into
the archaeological and geocoded data related to the eval-
uation of the model in Fig. 2 of transition probabilities.
Ten years of effort went in locating and coding the data
in Fig. 3, for example. Good data on population numbers
at all levels, such as aggregated in Figs. 3 and 4, is ex-
tremely important for modeling, hard to come by, and de-
mands careful analysis for bias detection, bias correction
and data reconstruction. The data on internecine warfare
in Fig. 5 were patiently transcribed episode by episode in
two compendia of scholarly work over millennia. These
are but a few of many thousands of databases, many of
which have not been made sharable or are not conserved
or not well documented. Also needed are data analytic
routines able to make accurate estimates using probabilis-
tic bootstrap methods with small samples and for different
kinds of data, e. g., continuous or discrete, nominal or or-
dinal. A great deal of documented open source code is now
available.

Causal modeling is the core of dynamical analysis, and
future directions will include modeling of the types illus-
trated here, and many more, but with integrated datasets
for different foci and levels of analysis. A host of inter-
secting and mutually enriching integratable time-coded
longitudinal datasets—like Turchin’s data for the 50-re-
gion data in Fig. 1 [121], or the sufficient size data for
Fig. 2 [124]—are needed from comparable local con-
texts and processes up to the global, e. g., google-earth-
like sharable data structures, equipped with analytic rou-
tines for time-series causal modeling and testing. There
are many separate projects on shared issues, but over-
all integration is needed. Geographic Information Sys-
tems (GIS), for example, need to be reintegrated around
open source code (e. g., GRASS, written in open source
R) that includes temporal and network modeling. Auto-
correlation and other techniques and models for dealing
with nonindependence of cases will figure heavily in causal
modeling.

Among new network analytic methods that are be-
coming standard in many disciplines are the censuses
of different types of cycles (“motifs”) in large networks
that make up cohesive k-components, and accessible soft-
ware to compute k-connectivity. Analysis of these sorts
of data allow testing of where and how the internal mi-
cro and middle-range structures come from in k-com-
ponents [44,81,132]. Which structures come from prefer-
ences and which from the marginals or limits on how data
were collected or spatially distributed? This kind of work
is now being done in biology but also in anthropological
network studies, where new software packages have been
developed that are specifically designed to deal with cer-

tain problems, such as kinship networks or the kinds of
generative kinship computations that people actually use
in their social cognition [70,99].

Entropy maximization “open system” models condi-
tioned on biased random processes will increasingly be-
come integrated with HB dynamics as we come to under-
stand how to connect them to foundational problems in
the human sciences, some of which are discussed in the
ENTROPY entry in these volumes. Simple entropy mod-
els, for example, are currently being used to fill in missing
data from what is known from an archaeological site [31].
Tsallis entropy [119], in contrast, would provide a one-pa-
rameter modification for least energy maximization chan-
neled through networks, with diffusion gradients that have
multiplicative effects. Generative network models for co-
hesive cycles, as studied to date [137] show consistent dis-
tributions of numbers of links that are all in the Tsallis
entropy family, so there are promising avenues in this re-
search area.

As seen in examples here, more integration of theory
and data is needed, from macrohistorical models where
large-unit aggregation relates to sufficient statistics for
causality, through cascades of spatio-temporal processes
to the micro level of interactions between individuals [94].
Kirman [63], for example, argues that “The emergence and
evolution of the networks that govern the interaction in
the economy plays a crucial role and it may well be the
case that the standard notion of equilibrium is irrelevant
in such as context.” Multilevel network analyzes will be ag-
gregated structurally in new ways for which newmodeling
techniques are needed to analyze the composition of units
and of processes [131].

The construction of theory and hypotheses in this ar-
ticle illustrate only a few potential causal links among ma-
jor topics on evolutionary and historical dynamics, institu-
tional and economic models, game theory and social net-
works, organized around a few core dimensions of etho-
logical importance (structural cohesion and resistance).
The point of these illustrations has been that there are truly
major forces in history—k-cohesion and cohesive resis-
tance for example—but these have very different proper-
ties than forces in physics, or the dynamics of chemistry
and biology (although one LANL biologist, asked to pin-
point the major threats to survival, responded with “hu-
man behavior” [57]), and they require very different mea-
surements and theory. But there is no closure on the topics
of HB dynamics: rather, there is an abundance of theory
and results in social, historical, and simulation modeling
that lend themselves to the evaluation of causality. Taking
causality and dynamics seriously rather than dismissively
leads to very different theoretical and analytical perspec-
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tives. Longitudinal data on human social, historical, and
network phenomena are sufficient to support high-level
theoretical and integrative research that can further ben-
efit from the most advanced of methods in the complexity
sciences. But there is a pressing work to be done in analytic
methods and in constructing valid and reliable datasets
and variables on appropriate and comparable units and
processes under analysis.
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Glossary

Emergence The appearance of complex structures or be-
haviors within a complex adaptive system that is un-
predictable from the starting conditions or materials.

Lock-in The inability to change non-optimal behavior
due to the engrained social, financial, or technical cost
of changing the behavior.

Negative feedback Outcomes of an action within a com-
plex adaptive system that tend to decrease the magni-
tude of the originating action.

Panarchy A model of behavior of complex adaptive sys-
tems proposing that such systems progress through cy-
cles of growth, collapse, and renewal.

Path dependence The dependence on system behavior
upon prior system behavior.

Positive feedback Outcomes of an action within a com-
plex adaptive system that tend to increase the magni-
tude and impact of the originating action.

Resilience The ability of a complex adaptive system to
maintain its form in the face of disruption.

Transformability The ability of a complex adaptive sys-
tem to transform into a different state better suited to
existing conditions.
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Definition of the Subject

Dynamic sustainable development is a process-based en-
vironmental management theory based upon the recogni-
tion of human systems as complex adaptive systems that
are, in turn, subsets of ecosystems that are also complex
adaptive systems. Human systems and ecosystems exist in
an evolving relationship, and as human systems grow in
size adaptive management techniques must be employed
to ensure that the containing ecosystems are not over-
whelmed by human resource demands or by the waste
products of human activity. Dynamic sustainable develop-
ment is the latest step in an ongoing process of evolution
within the larger sustainable development discourse away
from goal-based, utopian models of sustainability to a pro-
cess-based, iterative, adaptive approach.

Introduction

The concept of dynamic sustainable development arose
as a means of reconciling the desire to create less envi-
ronmentally damaging human enterprises with the com-
plexity inherent in the field of resource management. Dy-
namic sustainable development suggests that there are two
central pillars to the successful adaptive management of
human–environment interactions; the need for resilience
and the need for transformability. Resilience, defined as
the magnitude of disturbance that can be absorbed be-
fore a structural change occurs within a system [30], has
been identified as a desirable goal of adaptive manage-
ment. However while a system should be able to main-
tain a degree of stability in the face of surrounding change,
sometimes a system change is required for long term sus-
tainability; the system must possess transformability, the
ability to totally alter itself if needed [71]. This combina-
tion of stability and change represents a break with the
goal-based models of steady-state human–environmental
interactions more prevalent in earlier environmental
discourses.

Some of the general principles of dynamic sustainable
development are set out in [46]; these general principles
draw on the continuing evolution of the general sustain-
able development concept. As such dynamic sustainable
development is part of a larger trend to incorporate com-
plex adaptive systems theory into environmental manage-
ment. The first general principle is that dynamic sustain-
able development is a process, not a goal. This principle re-
flects a broader shift within the sustainable development
discourse. In recent literature, sustainable development is
described as a continuous process of change [36], and is
described as a process that must be treated as an evolution
of ideas [53]. This shift is well founded; complexity theory

has shown us that change is the norm in social and ecolog-
ical systems. Any static or “climax community” will even-
tually fall prey to the “inevitable accident” [38]. Change is
the process that allows evolving systems to thrive. Rammel
notes, “ . . . there cannot be any best state, or stable equi-
librium, or optimal path of development” [51].

One of the key figures of the shift from goal to pro-
cess within the environmental management and planning
field is C.S. Holling, whose contributions include panar-
chy theory and many of the formative writings on adap-
tive management. The panarchy theory was developed to
help clarify the role of change within adaptive systems. The
term was chosen as a reference to the Greek God of na-
ture, Pan, and as a reference to the combination of change
and persistence found within complex systems. Panarchy
theory focuses on the interplay between different levels of
activity within a system and outlines an evolutionary cy-
cle of growth, collapse, and rebirth that systems undergo.
Different time scales within systems are also highlighted:
fast scales of events experiment and test, while slower lev-
els stabilize and conserve. The interplay of these scales and
levels create dynamic structures. Holling argues that see-
ing sustainable development in the light of complex adap-
tive systems resolves the critique that sustainable develop-
ment is an oxymoron:

Sustainability is the capacity to create, test, and
maintain adaptive capability. Development is the
process of creating, testing, and maintaining oppor-
tunity. The phrase that combines the two, ‘sustain-
able development’ thus refers to the goal of foster-
ing adaptive capabilities and creating opportunities.
It is, therefore, not an oxymoron but a term that de-
scribes a logical partnership [29].

Holling’s vision of sustainable development is an itera-
tive one; it can emerge organically from unsustainable be-
havior in manageable steps. Norms cannot be imposed
in advance [56], but will emerge as part of an adaptation
process. Instead of being a final objective, sustainable de-
velopment has to be understood as a continuous process
of change [36], and a fruitful approach to this process is
to treat it as an evolution [53]. Treating sustainable de-
velopment as a process creates the need for an indefinite
program of monitoring and adjustment. Every successful
adaptation is only a temporary “solution” to changing se-
lective conditions [53]. This principle of sustainable devel-
opment means that it is always a moving target [60].

The second principle of dynamic sustainable devel-
opment is that dynamic sustainable development must
cope with the inherent unpredictability of the systems it
addresses.
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Uncertainty is inherent to complex adaptive systems;
in particular the behavior of ecosystems and social systems
are notoriously difficult to predict. These systems man-
ifest emergent properties; human society in particular is
highly heterogeneous, far from equilibrium, and complex-
ity is our society’s defining feature. Human society is also
highly non-ergodic. Ergodicity is the tendency of a system
to move towards equilibrium, maximizing entropy. Hu-
man societies do not settle down into stable patterns for
long. They constantly innovate, grow and change, posing
a challenge for those trying to adjust our interactions with
the biosphere.

Though we might wish to design a perfect and stable
society, history suggests such experiments end in failure.
Sustainable development models must therefore be robust
enough to mitigate the ecological effects of a non-ergotic
society. Positive feedback loops, which will be discussed in
detail later, allow accidents of history to get magnified in
outcome [70]. This leads to many results of small actions
being unintended [35] and unpredictable from the initial
conditions. Our predictions of the future are at best tem-
porary guides, leaving us in the need to iteratively monitor
feedback loops and continually adjust our models and our
actions accordingly. This inherent unpredictability repre-
sents a “strong uncertainty”; not only are we unable to
predict the consequences of events we are unable to de-
termine which events are the ones that will lead to fu-
ture change [65]. To use the language of complex adap-
tive systems theory, when human societies interact with
natural systems they show sensitive dependence on initial
conditions. The changes that can arise in a complex sys-
tem involving society and the environment can be partic-
ularly perplexing, as they can involve changes in human
knowledge and awareness, changes in technology, and also
changes in public perception [24]. These three aspects can
all be present at the same time and interact.

The third guiding principle of dynamic sustainability
is that innovation processes greatly affect sustainable de-
velopment initiatives. Early models of environmental soci-
eties were almost always static, steady state societies that
changed very little over time. Goal orientated utopian
models of environmental action range from Skinner’s
“Walden Two” [65] to the steady state economics pro-
posed by HermanDaly [14] to the models presented in the
landmark document “Limits to Growth” [43]. These mod-
els, however, ignore innovation as a fundamental compo-
nent of human society. We use technical ingenuity to cre-
ate new technology, but social ingenuity reforms old insti-
tutions and social arrangements into new ones [31]. Man-
aging our interaction with the Earth’s ecosystemswould be
much easier without the complicating factor of innovation

constantly changing the nature of this interaction, but this
process is constantly occurring on a number of scales. At
the smaller scale we see incremental innovations, which
are small refinements that occur relatively continuously.
At a larger scale, there are radical innovations represent-
ing large shifts in technologies. These are not predictable,
and may happen at any time. There are systematic innova-
tions that can create entirely new fields [48]. Such sudden
shifts can provide new technologies to protect ecosystems,
can shift our resource use from one resource base to an-
other, and can also increase our impact on ecosystems in
new and unexpected ways.

The process of innovation should be rather familiar to
those who work with complex systems; Complexity has
been called the “science of surprise” precisely because un-
predictable behaviors and structures are emergent within
complex systems. Emergence is the creation of new be-
havior and properties that cannot be understood from an
investigation of the system’s parts [20]; emergent behav-
ior underlies the need for transformability within systems
as the need for sudden changes to preserve the integrity
of ecological systems and social systems can arise at any
time. Lewin calls emergence “the central feature of the new
science of complexity”, p. 175 in [40]. It is certainly one
of the more surprising features of complex adaptive sys-
tems. Emergence can be observed in the biosphere by even
a casual investigator. As ecologist Chaia Heller says, a seed
doesn’t grow; it becomes something new p. 106 in [27].
An emergence process drives the agricultural processes
that allow us to harness energy and survive. C.D Broad,
a philosopher, coined the term emergence in the 1920s, to
describe those things that appear even though there is no
hint of them at lower levels, p. 28 in [9].

The problem is that while it is easy to understand ef-
fects that can intuited from the behavior of the system,
predicting emergent behavior is a different matter. This
unpredictability deeply affects the quest for sustainable de-
velopment. The existence of emergent behavior requires
our definitions of sustainability to be dynamic emergent
behavior can provide sudden unexpected innovation, and
it can also spawn bursts of ecological destruction. For this
reason, the existence of emergent structure raises the need
for safety factors and resiliency.

The prominence of emergence and innovation do not
sit well with many members of the environmental move-
ment. There is a historical uneasiness with innovation that
informs the development of sustainable development di-
alogs. Though technology can be seen as an “adaptive an-
swer” to problems [53], there is a fundamental discon-
nect between the world of the information society and the
groundings of sustainable development due to differing
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values held by the actors involved [36]. This uneasiness is
made more acute by the inherent uncertainty in the pro-
cess of innovation [7].

Placing Dynamic Sustainable Development
in a Historical Context

The application of complex systems theory to questions
of resource management and environmental preservation
was first attempted relatively early in the twentieth cen-
tury, long before the concept of sustainable development
itself was developed.What was then called general systems
theory addressed environmental issues under the assump-
tion that human organizations could not be successfully
analyzed by only considering their parts. In effect, systems
theory reverse engineered the study of complexity from
the study of specific complex adaptive systems associated
with human society.

General systems theory arose from the necessity of
managing complex technologies in difficult situations.
General systems theory sought common principles in the
structure and the operation of systems of all shapes and
sizes [63], a quest that continues in the field of adaptive
resource management. In 1950, Ludwig von Bertalanffy,
one of the founders of general systems theory, brought
together several of his ideas to argue that systems have
properties independent of discipline. Von Bertalanffy felt
ever-increasing specialization was not useful to the study
of such systems [69]. The study of cybernetics had already
proven useful during the Second World War, and there
was a growing movement among ecologists to consider
systems in a transdisciplinary way.

In 1954, Anotol Rapoport, Ludwig von Bertalanffy,
Kenneth Boulding, Ralph Gerrard, and James Miller
founded the Society for General Systems Research [25].
Von Bertalanffy had already introduced the concept of
general systems theory in 1937. He understood that so-
cial systems are far from equilibrium and coined the term
“open system”.

General systems theory is devoted to understanding
function of systems, including organizations [69]. It was
meant to be a very practical study, and has been applied
widely to the understanding of business organizations.
Boulding, who coined the term “spaceship earth”, divided
study into special systems theory, which focused on mod-
eling, and general systems theory, which was a broader
philosophical inquiry into the overall dynamics of social
systems [25].

Several of the elements of complex adaptive systems
studied by physicists have also been studied by systems
theorists. Erich Jantsch felt dissipative structures were of

particular importance to the understanding of human sys-
tems [34], as they are far from equilibrium but resilient. He
felt dissipative structures grow to limits governed by inter-
nal, not external constraints, a belief that reflects a gen-
eral interest among systems theorists in autopoiesis, the
process by which dissipative structures continually re-
new and regulate themselves in order to maintain them-
selves. The Society for General Systems Research con-
tributed to the Limits to Growth Report, which is dis-
cussed below as a foundational document of sustainable
development.

An unlikely contributor to the incorporation of
complex systems theory within environmental discourse
emerged from the mathematical study of discontinuous
phase transitions. Mathematician Rene Thom developed
a method for examining such discontinuous changes in
mathematical and physical systems, a method he came to
call catastrophe theory. In Thom’s theory, a catastrophe is
the discontinuous transition between stable but divergent
paths [73]. Thom based the theory on rules of topology,
and the assumption of underlying structural stability. This
assumption relies on the presence of unseen order; Thom
assumed there was a hidden order beneath the disconti-
nuity that he could not quantify. He also understood the
uniqueness of each region of discontinuity. Even though
it went against the grain of traditional model of mathe-
matics, Thom insisted catastrophes were local, and that no
global models of such systems exist, p. 7 in [66].

Catastrophe theory provided a new way of thinking
about change, and gave a metaphor for the abrupt changes
seen in natural and human systems, unlike the continu-
ous, linear models used at the time. The theory thus rep-
resented a rather significant mathematical breakthrough,
and enjoyed a spectacular rise in general popularity, per-
haps due to its very striking name. Catastrophe theory
was quickly trumpeted as describing the actual workings
of natural and social systems. Controversy began to sur-
round the theory as it was used as a blanket metaphor for
a wide range of systems. The application of catastrophe
theory became a craze that spread far beyond the mathe-
matical sciences. Unfortunately, the application of catas-
trophe theory to social and environmental issues could
not actually live up to the hype surrounding it. This was
partly due to the difficulty of the mathematics underly-
ing the theory, and partly due to the fact that many of
the social systems it was applied to did not lead at the
time to quantifiable models [20]. The bubble of popular-
ity Thom and his theory enjoyed collapsed. However the
brief flirtation with this theory planted a seed of interest in
complex adaptive systems within practitioners of ecologi-
cal management.
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The evolution of the sustainable development concept
itself really began in earnest with the publication of Limits
to Growth by the Club of Rome, group which was founded
by British scientist Alex King and Italian industrialist Au-
relio Peccei. The first meeting of roughly forty interna-
tional thinkers occurred on the seventh of August, 1967
in Rome, Italy. The Limits to Growth report features com-
puter models of resource use created by Donella and Den-
nis Meadows. Their most advanced model, World Three,
shows three possible futures: overshoot and collapse, over-
shoot and oscillation, and sigmoid growth, p. 123 in [44].
The futures predicted in World Three were highly pes-
simistic of future progress. Overshoot refers to a society
that is using resources and creating wastes at a rate faster
than can be supplied or absorbed by the biosphere. This
crude beginning founded an ongoing movement to build
complex models of human–ecological interactions.

Limits to Growth focused on what the authors called
the “world problematique”. This group of linked problems
included poverty amid plenty, environmental destruction,
urban sprawl, and economic problems p. 10 in [43]. In the
opinion of Meadows and her co-authors, we are far past
the point at which overshoot has occurred. Her models
commonly predict overshoot and collapse. In short, not
only must our societies not grow any more, they must
contract.

Response was immediate and was highly polarized. It
was pointed out thatWorld Three underestimates the abil-
ity of technology to postpone catastrophe [12]. The mod-
els rely on tables composed of extrapolated data generated
through an iteration process, causing runaway errors, p. 32
in [12]. The Limits to Growth report was heavily critiqued
for ignoring innovation [10]. Inmanyways what wasmiss-
ing from the models were non-linear effects such as feed-
back and emergence.

When the Club of Rome published Limits to Growth
in 1970, it sparked intense international debate over its
basic premise, which challenges the basic tenets of tra-
ditional economics. The prevalent economic vision sees
the economy as an isolated system: a circular flow of ex-
change value between firms and households. The economy
is the system of interest and natural systems are simply
sources of resources and sinks for wastes. Nature may be
finite, but these natural sources and sinks can be infinitely
substituted for by human capital, without limiting overall
growth in any important way.

The problem with exponential growth in a finite sys-
tem is simple enough to describe; the economy strains na-
ture with respect to sources and waste sinks [32]. In effect,
the finite expanse of the natural world has a carrying ca-
pacity that can be expressed in different ways; economic

carrying capacity is the maximum global economic wel-
fare derivable from the sustainable throughput flows of the
ecosphere [72].

Following Limits to Growth it became popular to speak
of a finite and firm upper limit to the scope of human
activity within the biosphere, and to imagine static so-
cieties that would exist at an equilibrium point with the
biosphere that respected clear limits. The first Earth Day
was held in 1970, attracting 20 million people to peaceful
demonstrations across the US. The deteriorating state of
the Great Lakes prompted a number of clean-up efforts.
Many governments began to allocate resources to estab-
lish ministries of the environment. Of particular impor-
tance was the founding of Greenpeace in 1971. Greenpeace
mustered grass-roots support for campaigns against clear-
cut ecological abuse. Spurred by public interest in the en-
vironment, several major commissions and reports estab-
lished by various levels of government began to highlight
the environmental damage caused by economic growth.
The Stockholm Conference of 1972 focused attention on
the growth of industrial pollution. The Global 2000 report
to President Carter of the United States warned that “if
present trends continue, the world in 2000 will be more
crowded, more polluted, less stable ecologically . . . despite
greater material output the world’s people will be poorer
in many ways than they are today”, p. 1 in [5].

The conservation movement helped to fuel the de-
bate over humanity’s appropriation of natural resources
and the physical limitations scarcity posed to economic
growth. However, the early movement was often fixated
with scaling back human activity to remove the complex-
ity from our interactions with the environment, rather
than addressing issues through a complex adaptive lens.
In 1983, the United Nations assembled the World Com-
mission on Environment and Development, and charged
them with the task of gathering opinion on the state of
the environment and its potential effect on development.
In 1987, the group produced Our Common Future, which
introduced the concept of sustainable development into
common use. Known as the Brundtland Report in refer-
ence to Chairperson Gro Harlem Brundtland, this docu-
ment drew on scientists, government and communities to
pinpoint the resource issues most pressing to global de-
velopment. The Brundtland report set out as an objective
the achievement of a sustainable society by the year 2000,
and quickly became a milestone in the discussion of Sus-
tainable Development.Our Common Future also called for
a conference to be called in five years time to set out an ac-
tion plan for the achievement of these goals.

The lasting effects of the Brundtland report were
mixed, and reflect the tensions between those still work-
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ing within a goal-based mindset and those arguing for
process-based management. Our Common Future created
consensus between many different stakeholders, and for-
malized many of the assumptions now taken for granted
in the discussion of sustainability. Two of these are par-
ticularly important; the Brundtland report made clear the
link between economic and ecological health, condemning
the treatment of the natural sphere and the human sphere
as separate entities. The report defines development as
what we do in an attempt to improve our lot within these
conjoined spheres. Our Common Future begins by giving
a very vague definition of “sustainable development”, say-
ing simply that it should “meet the needs of the present
without compromising the ability of future generations to
meet their own needs” [8]. The Brundtland report puts
forward many initiatives designed to reach a state of sus-
tainability, which was still framed in a goal-oriented way.
They call for action on all levels, including monitoring at
the global level. They ask that “the ability to anticipate and
prevent environmental damage requires that the ecologi-
cal dimensions of policy be considered at the same time
as the economic, trade, energy, agricultural and other di-
mensions”, p. 10 in [8]. In short, they wish for less reac-
tive repair of environmental problems and more proactive
monitoring to prevent environmental damage.

The lasting importance of the Brundtland report is due
to several factors. The commission’s use of roundtables
and participatory democracy allowed the widest possible
input of voices to be heard, leading to a document that
spoke to a variety of stakeholders. The Brundtland report
made it clear that sustainability is a needed goal, but left
the definitions vague enough to allow further discussion.
The report also called for a follow up meeting to be held
five years later at which a roadmap to sustainability would
be set out.

The years following the publication of Our Common
Future saw a peak in environmental concern, cumulat-
ing in the publication of Agenda 21, the follow-up report
to Our Common Future [58]. Agenda 21 is a broad ac-
tion plan adopted at the 1992 Rio Conference to promote
environmentally sound and sustainable development in
all countries of the world. Agenda 21 was signed on 13
June 1992 by over one hundred heads of state represent-
ing ninety eight percent of the world’s population. Agenda
21 is not legally binding; it is a flexible guide for achieving
a sustainable world.

Agenda 21 is divided into six themes composed of sub-
areas with specified action plans. The first theme, quality
of life, addresses areas such as limiting poverty, chang-
ing consumption patterns, controlling population growth,
and ensuring the availability of adequate health care. The

second theme, efficient use of resources, focuses on land
use planning, water conservation and management, en-
ergy resources, food production, forest management, and
the protection of biodiversity. The third theme, protection
of the global commons, discusses management of the at-
mosphere and the oceans. The fourth theme, management
of human settlements, considers urban issues and the pro-
vision of adequate shelter. The fifth theme, waste manage-
ment, focuses on the classification and disposal of chemi-
cal, solid, and radioactive wastes. The final theme, sustain-
able economic growth, discusses trade, development, and
technology transfer.

Agenda 21 has been criticized for not including strong
positions on transport, energy issues, and tourism. The ac-
tion plan has also been criticized for being too focused on
increasing trade. Agenda 21 stresses that removing distor-
tions in international trade is essential and environmental
concerns should not restrain trade, positions that are cri-
tiqued by antiglobalisation groups.

The success of Agenda 21 has been mixed. The ac-
tion plan has been successful at linking environment and
poverty, andmany local working groups have been formed
that include the multiple stakeholders such as youth,
indigenous people, scientists, and farmers called for in
the plan. The Commission on Sustainable Development,
which is charged with monitoring the progress of Agenda
21’s implementation, has reported positive developments
in the areas of controlling population growth, increas-
ing food production, and improving local environments.
However they also report an increase in inequality, in-
creasing water scarcity, and extensive loss of agricultural
land. Implementation in the European countries has been
more successful than in other regions.

The action plan’s mixed success can be attributed in
part to a lack of commitment of funding for the initiatives
in the plan. Every action in Agenda 21 included a pro-
jected cost; but no source of funding was secured at the
time of signing. The Commission on Sustainable Develop-
ment continues to monitor the implementation of Agenda
21, and follow-up meetings known as the Earth Summits
and nicknamed Rio +5 and Rio +10, were held in 1997
in New York and in 2002 in Johannesburg. In 2002 the
United Nations General Assembly called the progress of
Agenda 21’s implementation extremely disappointing, and
at Johannesburg a plan was developed to speed the imple-
mentation of Agenda 21.

Agenda 21 and Our Common Future set out as a goal
the achievement of a sustainable world by the year 2000.
This goal was not achieved, though much good did come
out of these documents. This failed legacy will also shape
any attempt to form a dynamically sustainable society. We
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can learn a lot by considering this large attempt at build-
ing a sustainable world. The importance of securely fund-
ing initiatives is made clear, for example. Also, the impor-
tance of entrenching a culture of sustainability at the in-
dividual level is made clear as well. Our Common Future
and Agenda 21 were largely off the radar of popular cul-
ture, and so did not get the attention they needed to move
forward.

Though Our Common Future propelled the concept of
sustainable development into the public eye, the vague def-
inition given within the report of sustainable development
led to a long and ongoing debate over what sustainable de-
velopment actually means. Since the introduction of sus-
tainable development into common parlance, numerous
variations have emerged, such as sustainability, sustain-
able growth, sustainable economic growth, and sustain-
able environmental or ecological development. Although
disagreement exists among different sectors and commu-
nities about the usefulness of the concept of sustainable
development, it is recognized internationally and it does
avoid most of the traditional left-right polarization and
discourse about growth versus no-growth, by bringing to-
gether the terms sustainable and development in a con-
structive ambiguity that has stimulated greater dialog be-
tween sectors. Despite its ambiguity, it has succeeded in
uniting widely divergent theoretical and ideological per-
spectives into a single conceptual framework [19]. More
fundamentally, it has brought a wide diversity of indus-
trialists, environmentalists, public policy practitioners and
politicians to round tables, in their attempts to define, deal
with and actualize the concept. In order to provide some
contextual appreciation, a brief examination of some of the
earlier definitions of sustainable development follows. Hu-
man societies everywhere will place a different emphasis
on the former and on the latter, according to their ecolog-
ical, social and economic conditions.

Though the term was popularized by the Brundtland
commission, it predates Our Common Future. In 1980,
the World Conservation Strategy, IUCN, UNEP, WWF,
and others argued that integration of conservation and de-
velopment is particularly important, because unless pat-
terns of development that also conserve living resources
are widely adopted, it will become impossible to meet the
needs of today without foreclosing the achievement of to-
morrow’s needs. Meadows et al. [44] defined a sustain-
able society as one that had in place informational, social
and institutional mechanisms to keep in check the positive
feedback loops that cause exponential population and cap-
ital growth. In other words, means that birth rates roughly
equal death rates, and investment rates roughly equal de-
preciation rates, unless and until technical changes and so-

cial decisions justify a considered and controlled change
in the levels of population or capital. In order to be so-
cially sustainable the combination of population, capital
and technology in the society would have to be config-
ured so that the material living standard is adequate and
secure for everyone. In order to be physically sustainable
the society’s material and energy throughput has to meet
economist Herman Daly’s [15] three conditions: its rates
of use of renewable resources do not exceed their rates of
regeneration; its rates of use of nonrenewable resources do
not exceed the rate at which sustainable renewable substi-
tutes are developed, and its rates of pollution emission do
not exceed the assimilative capacity of the environment.
Some scholars differentiate between sustainability and sus-
tainable development, while others use them interchange-
ably. Sustainability derives from the Latin root sus-tinere,
which literally means to under-hold or hold up from un-
derneath. Sustainability describes a characteristic of rela-
tions (states or processes) that can bemaintained for a very
long time or indefinitely [37].

The outcome of this dialog produced a generic, rather
than a specific definition for sustainable development. It
is a process of reconciliation of three imperatives. These
are the ecological imperative to live within global biophys-
ical carrying capacity and to maintain biodiversity, the so-
cial imperative to ensure the development of democratic
systems of governance that can effectively propagate and
sustain the values that people wish to live by, and the
economic imperative to ensure that basic needs are met
worldwide [13,57]. This definition, however, remains gen-
eral enough to allow for sustainable development to be
interpreted differently in specific socio-geographic situa-
tions and to be sufficiently responsive in the face of un-
predictable change and uncertainty. It also responds to the
dynamic interplay between the imperatives, reflecting the
complexity of modern human society.

The move from the above “three pillar model” to
a process oriented version of the same model is largely
a product of the last ten years. Various organizations have
fed this shift by studying ecological systems with com-
plex adaptive techniques. Perhaps the most well-know of
these organizations is the Resilience Alliance, a multi-
disciplinary group based in the United States that a fo-
cuses on the exploration of the dynamics of social-ecolog-
ical systems. Their mission is to assemble knowledge that
embraces resilience, adaptability and transformability and
that influences sustainable development policy and prac-
tice. The Resilience Alliance publishes the journal “Ecol-
ogy and Society”, which was started by C.S Holling un-
der the name “Conservation Ecology”. The Society for Hu-
man Ecology has a similar focus as the Resilience Alliance,
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and holds one of the central annual conferences in the
field. The journal is one of the central ones in the areas of
sustainable development as process, along with the jour-
nals Sustainable Development and International Journal
of Sustainable Development. On the modeling side of the
field, the Santa Fe Institute is a definite leader. The Santa
Fe Institute was founded as an independent multidisci-
plinary research institute to study complex adaptive sys-
tems theory and how it can be applied to address environ-
mental, technological, biological, economic, and political
challenges. These centers of knowledge creation continue
to fuel the robust development of dynamic sustainable
development.

Feedback Loops and Reactive, Proactive,
and AdaptiveManagement

The next few sections look at the complex adaptive fea-
tures that shape dynamic sustainable development; the
first of these is the existence of feedback process within
social-environmental systems. Complex adaptive systems
are far more than a collection of elements; they are bound
together by the flow of energy, matter and information.
This flow is often two-way, forming feedback loops within
the complex system. Feedback loops are a central feature
of all complex adaptive systems, and an understanding
of feedback loops is critical to the understanding of hu-
man complex adaptive systems. Achieving sustainability is
fundamentally a question of observing and responding to
feedback. Feedback allows control within complex adap-
tive systems, and also allows growth. Feedback loops form
the nervous systems of complex adaptive systems, allowing
the flow of information between elements and between the
system and the environment.

Feedback is a process in which a change in an element
alters other elements, which in turn affect the original el-
ement [35]. Feedback is an iterative process, and is a fun-
damental part of what makes a system both complex and
adaptive.

There are two main types of feedback within complex
systems: positive and negative feedback. Negative feed-
back loops moderate a system, but this process does not
always lead to stability. Too much negative feedback can
cause a system to become stagnant and unable to adapt
to suddenly changing situations. A system composed only
of negative feedbacks will become out of step with its sur-
rounding environment and perish.

In Waldrop’s opinion, it is the mixture of positive and
negative feedback that creates complex systems [70]. Neg-
ative feedback provides stability [35] that holds systems
away from run-away growth and collapse. Negative feed-

back is often associated with the concept of equilibrium.
As an example, a thermostat uses negative feedback to
maintain homeostatic equilibrium, keeping the surround-
ing area at a stable temperature. Most systems, thus, have
built in processes that can bypass negative feedback in
emergency situations. Writer and urban planner Jane Ja-
cobs provides as an example of such an “override” mech-
anism: our reflexive ability to stop breathing upon being
immersed suddenly in water, p. 115 in [33].

Positive feedback is the driving force behind sensi-
tive dependence on initial conditions, which is also called
the “butterfly effect” after an example given by Lorentz in
a 1972 talk entitled, “Predictability: Does the Flap of a But-
terfly’s Wings in Brazil Set Off a Tornado in Texas?” [41].
The concept of positive feedback can be difficult to grasp,
as we tend to believe in a “conservation of complexity” [11]
in which simple causes lead to simple effects, and com-
plex causes lead to complex effects. This is a restatement
of Newton’s second law: for every action there is an equal
and opposite reaction. This correlation does not hold in
complex adaptive systems. Positive feedback can reinforce
a small event again and again until it becomes a system-
wide phenomenon.

Positive feedback allows growth, and fuels expansion
and diversity [33,35]. As Waldrop comments, positive
feedback loops allow accidents of history to get magnified
in outcome [70]. If negative feedback loops hold a sys-
tem stable, positive feedback loops allow systems to ex-
plore their environment and follow new paths of develop-
ment. As they magnify random small variations, positive
feedback loops add an element of surprise to the system’s
behavior. This leads to many results of small actions be-
ing unintended and unpredictable from the initial condi-
tions. A forest free from disturbances will evolve towards
an equilibrium state that was once called “climax” ecology.
Little changes in such an ecosystem until a positive feed-
back process occurs; such as a tiny blaze that builds upon
itself to raze the forest and make room for new growth. By
its nature, positive feedback has the ability to lead complex
systems into precarious territory. Positive feedback loops
are either dampened by negative feedback loops or they
crash [33]. The ability to dampen positive feedback loops
is necessary to the survival of complex adaptive systems.

Both positive and negative feedback take a non-zero
amount of time to propagate through a complex system. If
this time is overly large the feedback loop may be ineffec-
tive at regulating the system or might have an unintended
effect on the system. Delayed feedback is quite common
within natural ecosystems’ responses to human stresses,
as the two complex systems function on such different
time scales. Delayed feedback poses a large challenge to the
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achievement of dynamic sustainability. As it might take us
some time for the biosphere to respond to our actions, we
can suffer creeping environmental decay. Damage occurs
slowly and by the time we notice, it has already become
severe.

The existence of positive feedback and sensitive de-
pendence on initial conditions within society has pro-
found consequences for sustainable development. As we
can never trust our predictions of the future entirely, there
can be no perfect model of a sustainable society that will
hold up for all time. Instead, we must monitor feedback
loops carefully and continually adjust our models and our
actions accordingly. In the larger context of dynamic sus-
tainable development, negative feedback processes pro-
vide resilience and positive feedback processes provide
transformability.

Within the environmental movement there is a great
desire to move away from the reactive approach of deal-
ing with environmental problems after they develop to
a proactive approach in which feedback processes are an-
ticipated before they begin.

One proposed method used to mitigate uncertainty
is to use what is called a precautionary principle. The
concept of a precautionary principle is often credited
to the German principle of Vorsorgeprinzip, or fore-
sight planning, which began to receive attention in the
1970s [45]. The concept has evolved over time; what be-
gan as a “measure” shifted to an “approach” and finally to
a “principle” [1].

In the United Nation’s Rio Declaration, the use of
a precautionary principle is urged. Principle 15 of the Rio
Declaration states that where there are threats of seri-
ous or irreversible damage, lack of full scientific certainty
shouldn’t be used as a reason for postponing cost-effec-
tive measures to prevent environmental degradation [45].
A stronger definition known as the “Wingspread def-
inition” emerged from a conference of environmental
thinkers in 1998. The Wingspread definition of the pre-
cautionary principle states that when an activity raises
threats of harm to human health or the environment,
precautionary measures should be taken even if some
cause-and-effect relationships are not fully established
scientifically [49].

Intuitively, the precautionary principle is straightfor-
ward, but it is notoriously difficult to apply [1,49]. The
general idea of the precautionary principle is to avoid seri-
ous and irreversible damage [64]. As Raffensperger states,
the precautionary principle can be used to prevent, not just
redress, harm [52]. What is simple to describe, however, is
not necessarily simple to put into use. There must be some
evidence a hazard exists if the precautionary principle isn’t

to lead to ruling out any action [61]. If the precautionary
principle is not to stifle progress, it should be coherent,
utilize known information and theories, have explanatory
power, and possess simplicity [55]. Low complexity solu-
tions should be preferred to high complexity solutions if
the precautionary principle is to avoid simply creating fur-
ther problems [64]. And given that not all results of an ac-
tion within a complex system can be predicted before they
occur, no purely proactive management regime will be
sufficient.

A solution to this problem that is gaining in popu-
larity is a combination of proactive and reactive manage-
ment known as adaptive management. Adaptive co-man-
agement involves the combination of proactive and re-
active management techniques through an iterative pro-
cess of feedback monitoring. Adaptive management keeps
careful track of uncertainties within the system, partially
through local control of day to day ecosystem manage-
ment, as it is assumed that undesirable effects will ap-
pear locally first. Adaptive co-management seeks to in-
clude past, present and future stakeholders. Adaptive co-
management is an emergent and self-organizing.

Adaptive co-management attempts to correct for run-
away feedback through a place-based approach. Local
voices are incorporated into Adaptive co-management of
ecosystems in which both local actors and larger level ef-
fects are considered is critical to the creation of resilience
and transformability. Use of local ecological knowledge
builds resilience [6]; local solutions tailored to local con-
ditions are necessary for healthy ecosystem interactions,
and if many variables are to be monitored changes in those
variables will first be observed “on the ground” locally.
Without local involvement, management tends to shift to-
wards exploitation; as local resources are depleted new re-
sources are substituted in other locations.

The need for local knowledge and observation is not,
however, an argument in favor of moving to locally iso-
lated small-scale enterprise. As even local action can have
global consequences, resilience emerges from both cross-
scale and within scale interactions [47]. Transformabil-
ity in the face of external changes requires an outward
focus to the larger scale. Connectivity allows resilience
and movement, but the existence of local network struc-
ture buffers against cascades of disaster from the larger
world [2]. That said, for adaptive co-management to work
it must be collaborative; without a shared sense of purpose
stakeholders at different scales are likely to have very dif-
ferent interests [26]. In some cases global stakeholders are
likely to value short-term financial gain over local ecosys-
tem integrity, but in other cases local actors might value
short-term employment prospects over larger ecological
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needs. Actors on all scales must work in concert, not at
cross-purposes.

Complex systems are filled with uncertainty, and no
amount of precaution will eliminate all risks. Management
must, thus, build system resilience. There are several fac-
tors that influence the resilience of a system. These include
the system’s latitude, which is the maximum amount of
stress that a system can absorb without changing to a new
state, the system’s ability to resist change, and its precar-
iousness, which refers to how fragile it is [71]. The more
resilient an ecosystem or society is, the better it will be at
responding and adapting to unpredictable changes.

There are several ways system resilience can be in-
creased. Primarily, we can increase resilience by ensuring
that as we undertake a course of action we leave room for
alternatives. Preventative measures should allow for more
flexibility in the future [22]. Especially in cases of irre-
versibility, options should be kept open [4]. We can in-
crease resilience through increasing the buffering capacity
of the system, managing for processes at multiple scales,
and nurturing sources of renewal [23].

Path Dependence and Lock-in

A critical feature of complex adaptive systems that has
direct application on human–environment interactions is
the occurrence of branching points during the evolution
of complex systems. These points occur when the system
can evolve in multiple and exclusive ways. Such systems
are thus path dependent; the state of the system depends
on its earlier history. Path dependence is important to the
study of complex adaptive systems such as human societies
and ecosystems because it limits the ability to act reac-
tively when attempting to intervene in a complex system.
The field of restoration ecology was one of the first to en-
counter this aspect of complex systems. To restore a dam-
aged ecosystem, one cannot simply plant the species that
were found in the undamaged ecosystem; one must plant
the pioneer species for that ecosystem and then allow the
ecosystem to follow a succession cycle to the desired state.
To do this, one must know the ecosystem’s trajectory; the
history of its succession over time. Determining this can be
very difficult as the pioneer species are often not found in
the desired mature ecosystem. In short, the status of a sys-
tem does not only depend on the state of a set of variables,
but how they were reached [35]. Path dependence makes
the job of understanding complex adaptive systems much
more difficult.

Path dependence is central to the development of eco-
systems and human development. Historical records are,
thus, critically important. Knowledge gathered over time

locally can provide historical knowledge that is not acces-
sible to more abstract methods of data collection [21]. Lo-
cal knowledge allows for adaptivemanagement of local re-
sources [6] precisely because it captures the on-going path
dependence of complex systems.

Local complex problems require general scientific
knowledge, but local knowledge plays a complimentary
role. That said, the needed historical data are not often
easily found; most local knowledge is passed on orally and
is based upon generations of observation; this knowledge
as younger generations move to urban areas and older
generations die. Practitioners have uncovered a wealth
of unlikely environmental information locally, including
records of planting times, bird logs, temperature records,
and species lists.

Local knowledge can add another layer of uncertainty
even as it provides crucial data. There is an assumption
that locals have intimate knowledge of the local environ-
ment, but not all locals have the same knowledge [16]. Ex-
perts can usually be identified by asking locals who holds
the greatest knowledge locally. Using local knowledge can
be frustrating for all involved [21], and thus must be used
appropriately. Local knowledge can determine changes in
local conditions, outline ecological trajectories, and iden-
tify path dependent processes.

Path dependence can be described as “reactive se-
quences” in which each event precipitated by previous
self-reinforcing sequences [42]. In short, history matters,
and a random event can ensure a suboptimal technology
or process becomes the norm. Rammel points out some-
times rather mediocre solutions dominate a natural selec-
tion process in the short term (2003); systems, particu-
larly ones of great complexity, can prove very inflexible.
Arthur calls this re-enforcement of certain historical paths
nonergodic behavior; in his words, path dependence mat-
ters [3] deeply. Though this problem could be minimized
by careful use of precautionary principles at the beginning
of the development of a technological path, in many cases
negatives of new technologies tend to appear after imple-
mentation [39]. The ozone-depleting properties of CFCs
are a good example of a technology that had to be com-
pletely replaced due to an unforeseen danger that became
apparent after lock-in had occurred. Identifying a prob-
lem and choosing a solution is difficult, but it is often, as
Homer-Dixon notes, implementation that is the true prob-
lem, p. 23 in [31].

From a practical standpoint, the largest impact of path
dependence is that it actively constrains the actions one
can take to implement sustainable development programs.
Even if one is carefully monitoring feedback, and a sig-
nal arrives within a system suggesting change is needed,



Human–Environment Interactions, Complex Systems Approaches for Dynamic Sustainable Development H 4641

the needed change might not be possible. The problem
of technologies’ ideas and behavior patterns becoming en-
trenched is known in the literature as lock-in. Lock in oc-
curs because within complex societies innovations do not
stand alone, they co-develop as entire networks of sup-
porting technologies, much as keystone species co-develop
in nature. If we suddenly need to change one of these key-
stone technologies we can find there is significant social
and economic reluctance to do so. Diamond calls this the
“sunk cost effect” as we are reluctant to abandon what
we have even if it doesn’t work, p. 432 in [18]. Lock-in
arises naturally out of two properties of complex systems;
path dependence and increasing returns. One cannot sim-
ply change them without setting off cascading changes
throughout the system.

Recognition of this problem is not new. In his work
on the need to shift away from fossil fuels, Unruh calls
lock-in a technological “cul de sac” that at its worst cumu-
lates in an embedded techno-institutional complex [67].
There is a need to tackle path dependence and lock in [53],
but as Unruh notes “the question of how to overcome
lock-in has been little explored” [69]. Lock-in has been
related to the issue of diversity discussed as condition
three: the encouragement of niche markets is a possible
way of breaking lock in [68]. However research has shown
that in extremely locked in systems, research into options
falls to near zero [54]. As Arthur notes, there is a mini-
mum cost for a transition and changing by fiat sometimes
necessary [3].

Future Directions

The role of complex systems theory in sustainable devel-
opment continues to develop. At the qualitative level the
greatest challenge is an educational one; factors such as
feedback loops, sensitive dependence on initial conditions
and path dependence are not widely understood by de-
cision makers. One of the largest policy challenges will
be understanding and controlling lock-in within complex
markets. It is likely that the leaders in the field will con-
tinue to be found in the areas of ecosystem management
led by members of groups such as the Resilience Alliance.
Given the difficulty of the underlying mathematics and
physics, knowledge of complex systems theory is likely to
remain outside of the general knowledge employed by sus-
tainable development practitioners aside from qualitative
models and metaphorical applications of general concepts
such as self organization and feedback. Fostering this un-
derstanding of general concepts should be encouraged.

If sustainable development initiatives are to create the
kind of changes needed to ensure the survival of our soci-

eties and the ecosystems they reside in, the move to adap-
tive and process-based environmental management will
need to proceed at a faster pace. It has been rightly re-
marked that the transition to sustainable development is
alarmingly slow [52], partly due to the magnitude of the
changes required.

The greatest factor in the continuing development of
quantitative complex models in this field is the ongoing
increase in available computational power. New computa-
tional techniques such as evolutionary computing [17] will
also increase the range of techniques for modeling the sus-
tainability of complex systems. These computational tech-
niques could add needed rigor to popular sustainable de-
velopment tools such as the Natural Step and the Ecologi-
cal Footprint, both of which are widely used and are based
on iterative processes that would benefit from complex
systems approaches. It is likely the Santa Fee institute will
continue to play a leading role in approaches to complex
modeling. Areas that will benefit from these technologi-
cal advances could include the management of electric-
ity grids that include a large number of small intermittent
renewable energy sources, traffic management to reduce
emissions, and climate modeling.

The lasting influence of sustainable development lies
in its ability to evolve as a concept. Given the advances
in the understanding of complex adaptive systems and the
application of this understanding to ecological and social
systems, there are likely many fruitful avenues that com-
bine sustainable development and complex systems the-
ory. In the long run, the most successful sustainable devel-
opment initiatives will likely look rather a lot like ecosys-
tems; diverse, complex, and evolving.
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Glossary

Anthropomorphic Resembling, or having the attributes,
human form. Human qualities have been ascribed to
inanimate objects, computer-animated characters, and
mechanical objects, among others. When referring to
a robot, anthropomorphism refers to how human-like
that robot is.

AR Assistive Robotics refers to robot systems that are de-
signed to give aid or support to a human user. Tradi-
tionally, the assistance has been physical. However, AR
has more recently expanded to encompass other types
of assistance, including social, motivational, and cog-
nitive. AR thus includes socially assistive robotics (de-
fined below), rehabilitation robots, wheelchair robots
and other mobility aids, companion robots, and edu-
cational robots.

Autonomy The ability to exert independent control, to
self-direct. When referring to robotics, autonomy is
used to indicate how much control of a robot results
from the robot itself (based on its sensory inputs and
internal computation), and how much is exerted by
a human operator through tele-operation (defined be-
low).

Benchmarks A standard used to measure performance.
In the robotics context, benchmarks can be practical,
relating to the safety and task performance of a sys-
tem, or more abstract, relating to the ethical and other
aspects of the system.

Embodied Having physical form, a body. Robots are in-
herently embodied, having physical form and existing
in the physical world. In contrast, computer characters
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may or may not be embodied. Some animated char-
acters have three-dimensional bodies with simulated
physics, thereby satisfying the condition of being em-
bodied, but not being in the physical world.

GSR Galvanic Skin Response. Measure of electrodermal
activity (EDA), or skin conductance, a function of the
eccrine gland. GSR has been shown to be related to
emotional stimuli, making it a potential sensor for de-
termining user state.

HCI Human–Computer Interaction. HCI is the study of
interaction between humans and computers. HCI in-
cludes interface design, issues with usability, ethics, in-
teraction, and hardware and software design.

HRI Human–Robot Interaction. HRI is the study of inter-
action dynamics between humans and robots. In con-
trast to HCI, which addresses human-computer inter-
action, HRI addresses the dynamics of interaction be-
tween humans and physical, embodied robots.

SAR Socially Assistive Robotics is the study of robots
capable of providing assistance through social rather
than physical interaction. SAR is the intersection of
SIR (defined below) and AR (defined above). SAR
work is focused on addressing societal needs, such as
eldercare, education, and cognitive, physical, and so-
cial therapy.

SIR Socially Interactive Robotics describes robots that in-
teract with humans through social interaction rather
than through tele-operation. SIR is a subset of HRI that
addresses the challenges of social interaction between
humans and robots. SIR can also be referred to as so-
cial robotics.

Robot A mechanical system that takes inputs from sen-
sors, processes them, and acts on its environment to
perform tasks.

Tele-Operation The act of controlling a device (such as
a robot) remotely. The use of tele-operation for a robot
decreases the autonomy of that robot.

Definition of the Subject

Human–robot interaction (HRI) is the interdisciplinary
study of interaction dynamics between humans and
robots. Researchers and practitioners specializing in HRI
come from a variety of fields, including engineering (elec-
trical, mechanical, industrial, and design), computer sci-
ence (human–computer interaction, artificial intelligence,
robotics, natural language understanding, and computer
vision), social sciences (psychology, cognitive science,
communications, anthropology, and human factors), and
humanities (ethics and philosophy).

Introduction

Robots are poised to fill a growing number of roles in to-
day’s society, from factory automation to service appli-
cations to medical care and entertainment. While robots
were initially used in repetitive tasks where all human
direction is given a priori, they are becoming involved
in increasingly more complex and less structured tasks
and activities, including interaction with people required
to complete those tasks. This complexity has prompted
the entirely new endeavor of Human–Robot Interaction
(HRI), the study of how humans interact with robots, and
how best to design and implement robot systems capa-
ble of accomplishing interactive tasks in human environ-
ments. The fundamental goal of HRI is to develop the
principles and algorithms for robot systems that make
them capable of direct, safe and effective interaction with
humans. Many facets of HRI research relate to and draw
from insights and principles from psychology, communi-
cation, anthropology, philosophy, and ethics, making HRI
an inherently interdisciplinary endeavor.

Major HRI Influences in Popular Culture

Robots got their name in Čapek’s play R.U.R. (Rossum’s
Universal Robots, 1921) [18]. In R.U.R., robots were
man-made beings created to work for people and, as in
many fictional stories thereafter, they went on to rebel
and destroy the human race. In the 1950s, Isaac Asimov
coined the term “robotics” and first examined the funda-
mental concepts of HRI, most prominently in his book
I, Robot [3].

HRI has continued to be a topic of academic and pop-
ular culture interest. In fact, real-world robots have come
into existence long after plays, novels, and movies devel-
oped them as notions and began to ask questions regard-
ing how humans and robots would interact, and what their
respective roles in society could be. While not every one
of those popular culture works has affected the field of
robotics research, there have been instances where ideas in
the research world had their genesis in popular culture. In
this section, significant popular culture products relating
to HRI are overviewed, and their impact discussed.

The original benchmarks for HRI were proposed by
Isaac Asimov in his now famous three laws of robotics:

1. A robot may not injure a human being or, through inac-
tion, allow a human being to come to harm.

2. A robot must obey orders given it by human beings ex-
cept where such orders would conflict with the First Law.

3. A robot must protect its own existence as long as such
protection does not conflict with the First or Second Law.
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In I, Robot [3], the three laws were examined relative
to commands that humans give robots, methods for hu-
mans to diagnose malfunctions, and ways in which robots
can participate in society. The theoretical implications of
how the three laws are designed to work has impacted the
way that robot and agent systems operate today [140], even
though the type of autonomous reasoning needed for im-
plementing a system that obeys the three laws does not ex-
ist yet.

Philip K. Dick’s novel Do Androids Dream of Electric
Sheep [23] is set in a future world (originally in the late
’90s) where robots (called replicants) mingle with humans.
The replicants are humanoid robots that look and act like
humans, and special tests are devised to determine if an
individual is a human or a replicant. The test is related to
the Turing Test [132], in that both involve asking probing
questions that require human experiences and capacities
in order to answer correctly. As is typical, the story also
featured a battle between humans and replicants.

George Lucas’ Star Warsmovies (starting in 1977) fea-
ture two robot characters (C3P0 and R2D2) as key char-
acters, which are active, intuitive, even heroic. One of the
most interesting features from a robot design point of
view is that, while one of the robots is humanoid in form
(C3PO) and the other (R2D2) is not, both interact effec-
tively with humans through social, assistive, and service
interactions. C3P0 speaks, gestures, and acts as a less-than-
courageous human. R2D2, on the other hand, interacts so-
cially only through beeps and movement, but is under-
stood and often preferred by the audience for its decisive-
ness and courage.

In the television show Star Trek: The Next Genera-
tion (1987–1994), an android named Data is a key team
member with super-human intelligence but no emotions.
Data’s main dream was to become more human, finally
mastering emotion. Data progressed to becoming an ac-
tor, a poet, a friend, and often a hero, presenting robots in
a number of potentially positive roles.

The short story and movie The Bicentennial Man [4],
features a robot who exhibits human-like creativity, carv-
ing sculptures from wood. Eventually, he strikes out on his
own, on a quest to find like-minded robots. His quest turns
to a desire to be recognized as a human. Through cooper-
ation with a scientist, he develops artificial organs in order
for him to bridge the divide between himself and other hu-
mans, benefiting both himself and humanity. Eventually,
he is recognized as a human when he creates his own mor-
tality.

These examples, among many others, serve to frame
to scope of HRI research and exploration. They also pro-
vide some of the critical questions regarding robots and

Human Robot Interaction, Figure 1
An example of an HRI testbed: a humanoid torso on a mobile
platform, and a simulation of the same system

society that have become benchmarks for real-world robot
systems.

Prominent Research Challenges

The study of HRI contains a wide variety of challenges,
some of them of basic research nature, exploring concepts
general toHRI, and others of domain-specific nature, deal-
ing with direct uses of robot systems that interact with hu-
mans in particular contexts. In this paper, we overview the
following major research challenges within HRI: multi-
modal sensing and perception; design and human factors;
developmental and epigenetic robotics; social, service and
assistive robotics; and robotics for education. Each is dis-
cussed in turn.

Multi-modal Perception

Real-time perception and dealingwith uncertainty in sens-
ing are some of the most enduring challenges of robotics.
For HRI, the perceptual challenges are particularly com-
plex, because of the need to perceive, understand, and re-
act to human activity in real-time.

The range of sensor inputs for human interaction is far
larger than for most other robotic domains in use today.
HRI inputs include vision and speech, both major open
challenges for real-time data processing. Computer vision
methods that can process human-oriented data such as
facial expression [10] and gestures [25] must be capa-



4646 H Human Robot Interaction

ble of handling a vast range of possible inputs and situ-
ations. Similarly, language understanding and dialog sys-
tems between human users and robots remain an open re-
search challenge [49,141]. Tougher still is to obtain under-
standing of the connection between visual and linguistic
data [106] and combining them toward improved sens-
ing [110] and expression [14].

Even in the cases where the range of input for HRI-
specific sensors is tractable, there is the added challenge of
developing systems that can accomplish the sensory pro-
cessing needed in a low-latency timeframe that is suit-
able for human interaction. For example, Kismet [13], an
animated robotic head designed for infant-like interac-
tions with a human, using object tracking for active vision,
speech and prosody detection and imitation, and an actu-
ated face for facial expressions, required several comput-
ers running in tandem to produce engaging if non-sen-
sical facial and speech behavior. The humanoid ASIMO
has been adapted to use a combination visual-auditory sys-
tem for operation in indoor environments [109]. ASIMO’s
subsystems were used for perception, planning, and ac-
tion with the goal of enabling human–robot interaction.
Addingmeaning to the facial and physical expressions and
speech, and combining all of those capabilities in real time
on a mobile, self-contained robot platform, is still an open
research problem in HRI.

Even though most implemented HRI systems are nec-
essarily domain-specific, as all physical systems, they still
require the additional step of generalization to make
them work beyond the research lab context. Computer
vision solutions often depend on specific lighting con-
ditions [51], ambient colors [116], and objects in the
scene [15]. Beyond the lab, either the environment must
be constrained to match the acceptable conditions for sys-
tem operation [130], or the system capabilities must be ex-
tended in order to meet the range of conditions in the spe-
cific destination environment [83].

In addition to robot sensors that mimic the func-
tionality of human perception (speech recognition, com-
puter vision, etc.), sensors are being developed that cater
to alternative sensing opportunities presented by an au-
tonomous system such as a robot. These sensors enable
a machine to observe people and the environment in ways
that may be beyond human capability. Physiological sig-
nals, such as heart rate, blood pressure, galvanic skin re-
sponse (GSR, themeasure of skin conductance using a gal-
vanometer), provide information about the user’s emo-
tional state [62,86,114] that may not otherwise be observ-
able. Work by Mower et al. [90] used GSR as part of an
HRI system to model and predict when a user is about to
quit a rehabilitation-type task.

Body pose and movement are important sources of in-
formation for social interaction [106]. For example, social
and expressive gestures are crucial components of human–
human and human–robot interaction [121]. Computer vi-
sion can provide such information in limited contexts. In
others, wearable sensors may be an effective means of ob-
taining human activity data in real time with high accu-
racy [85]. Such wearable systems have been used in HRI
tasks applied to physical rehabilitation post-stroke [32],
and for social interaction [124].

In addition to developing new and improving exist-
ing sensors toward particular needs of HRI, researchers
are also developing algorithms for integrating multi-sen-
sor multi-modal data inherent to HRI domains [29,44,91,
93,109]. For example, Kapoor and Picard [57] imple-
mented an affect recognition system that applies Gaussian
models to fuse multiple sensors. Multi-modal sensing has
also been used for a robot to detect the attention of hu-
man users in order to determine if a user is addressing
the robot [71], integrating person tracking, face recogni-
tion [12], sound source localization [135], and leg detec-
tion [84].

Design and Human Factors

The design of the robot, particularly the human factor con-
cerns, are a key aspect of HRI. Research in these areas
draws from similar research in human–computer inter-
action (HCI) but features a number of significant differ-
ences related to the robot’s physical real-world embodi-
ment. The robot’s physical embodiment, form and level of
anthropomorphism, and simplicity or complexity of de-
sign, are some of the key research areas being explored.

Embodiment The most obvious and unique attribute
of a robot is its physical embodiment. By studying the
impact of physical embodiment on social interaction,
HRI researchers hope to find measurable distinctions
and trade-offs between robots and non-embodied systems
(e. g., virtual companion agents, personal digital assistants,
intelligent environments, etc.).

Little empirical work to date has compared robots to
other social agents. Work by Bartneck et al. [9] claimed
that robotic embodiment has no more effect on peo-
ple’s emotions than a virtual agent. Compelling recent
work [60] used three characters, a human, a robot, and
an animated character, to verbally instruct participants
in a block stacking exercise. The study reported differ-
ences between the embodied and non-embodied agents:
the robot was more engaging to the user than a simu-
lated agent. Woods et al. [146] studied perception dif-
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ferences between live and video recorded robot perfor-
mances. They proposed using video recordings during
system development as a complementary research tool
for HRI.

Recent findings [138,139] suggest that there are several
key differences between a robot and virtual agent in the
context of human–machine interaction. The three condi-
tions explored in that work (a physical robot body, a phys-
ical robot located elsewhere through a video link, and
a simulation of a robot) were an attempt to control vari-
ables in order to isolate the effects of embodiment from re-
alism. The researchers surveyed the participants regarding
various properties related to the interaction. The results
showed that the embodied robot was viewed by partici-
pants as more watchful, helpful, and appealing than either
the realistic or non-realistic simulation.

Much work remains to be done in order to address
the complex issues of physical embodiment in human–
machine interaction. One confounding factor of this study
involves the robot’s form, discussed next.

Anthropomorphism The availability and sophistication
of humanoid robots has recently soared. The humanoid
form allows for exploring the use of robots for a vast vari-
ety of general tasks in human environments. This propels
forward the various questions involved in studying the role
of anthropomorphism in HRI. Evidence from commu-
nications research shows that people anthropomorphize
computers and other objects, and that that anthropomor-
phism affects the nature of participant behavior during ex-
periments [104].

HRI studies have verified that there are differences in
interaction between anthropomorphic and non-anthropo-
morphic robots. For example, children with autism are
known to respond to simple mobile car-like robots as
well as to humanoid machines. However, pilot experi-
ments have suggested that humanoid robots may be over-
whelming and intimidating, while others have shown ther-
apeutic benefit [107,111]. Biomimetic, and more specifi-
cally, anthropomorphic forms all for human-like gestures
and direct imitation movements, while non-biomimetic
form preserves the appeal of computers and mechanical
objects.

Several examinations have been performed of the ef-
fects of anthropomorphic form onHRI [28]. These include
studies of how people perceive humanoid robots com-
pared to people and non-humanoid robots [99], possible
benchmarks for evaluating the role of humanoid robots
and their performance [54], and how the design of hu-
manoid robots can be altered to affect user interacts with
robots [24].

Simplicity/Complexity of Robot Design The simplic-
ity/complexity of the robot’s expressive behavior is re-
lated to the biomimetic/anthropomorphic property. Re-
searchers are working to identify the effect that simple v.
complex robot behavior has on people interacting with
robots. For example, Parise et al. [100] examined the ef-
fects of life-like agents on task-oriented behavior. Powers
and Kiesler [103] examined how two forms of agent em-
bodiment and realism affect HRI for answering medical
questions. Wainer et al. [138,139] used a similar experi-
mental design to explore the effects of realism on task per-
formance. In those studies, the more realistic or complex
a robot was, the more watchful it seemed. However, it was
also found that participants were less likely to share per-
sonal information with a realistic or complex robot.

Other Attributes In Reeves and Nass [104], several hu-
man factors concepts are explored in relation to human–
computer interaction (HCI). As researchers work to bet-
ter understand human–robot interaction, human factors
insights from HCI can be valuable, but may not always
be relevant. Lee and Nass [75] examined the relation-
ship between a a virtual agent’s voice and its personal-
ity. The authors found that users experienced a stronger
sense of social presence from the agent when the voice
type and personality matched, than when they did not. In
an HRI study, Tapus and Matarić [126] showed that when
a robot’s expressive personality matched the user’s person-
ality, task performance was better than when the person-
alities were mismatched. Robles et al. [108] used agents
that gave feedback for a speed-dating application to exam-
ine users’ feelings regarding monitoring (public and pri-
vate), conformity, and self-consciousness. This study cor-
related users’ actions with surveyed perceptions regard-
ing feedback to determine how feedback can be most ef-
fectively given, and how it can be given in as effective
a context as possible. Kidd and Breazeal [60] used a sim-
ilar design to evaluate how a robot (compared to a com-
puter agent or to a human) can give feedback for making
decisions.

Ongoing research is also exploring how cultural norms
and customs can affect the use of computer agent and
robot systems. For example, Takeuchi et al. [125] designed
an experiment to test the differences in behavior reci-
procity between users of a virtual agent in the US and users
in Japan. They discovered that users from both countries
expressed attitudes consistent with behavior reciprocity,
but only US users exhibited reciprocal behavior. However,
they discovered that when recognizable brands from pop-
ular culture were used, then reciprocal behavior was ex-
hibited in Japanese users as well.
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Developmental/Epigenetic Robotics

Developmental robotics, sometimes referred to as epige-
netic robotics, studies robot cognitive development. De-
velopmental roboticists are focused on creating intelli-
gent machines by endowing them with the ability to au-
tonomously acquire skills and information [142]. Research
into developmental/epigenetic robotics spans a broad
range of approaches. One effort has studied teaching task
behavior using shaping and joint attention [15], a primary
means used by children in observing the behavior of others
in learning tasks [92,94]. Developmentalwork includes the
design of primitives for humanoid movements [26], ges-
tures [69], and dialog [115].

While developmental/epigenetic robotics is not a di-
rect subset of HRI research, there is significant overlap
in the goals of the two areas. Developmental techniques
for information acquisition share much in common with
multi-modal perception. Epigenetic research into pro-
noun learning has overlap with social robotics [41]. Fi-
nally, techniques for automated teaching and learning of
skills has direct applications for algorithm development
for education robotics [66,95]. This work involves estimat-
ing behavior from human actions [67]. In the broader field
of robot learning, a variety of methods are being developed
for robot instruction from human demonstration [44,68,
96,102], from reinforcement learning [134], and from ge-
netic programming [97], among others.

Social, Service, and Assistive Robotics

Service and assistive robotics [31] include a very broad
spectrum of application domains, such as office assis-
tants [5,43], autonomous rehabilitation aids [79], and edu-
cational robots [128]. This broad area integrates basic HRI
research with real-world domains that required some ser-
vice or assistive function. The study of social robots (or so-
cially interactive robots) focuses on social interaction [35],
and so is a proper subset of problems studied under HRI.

Assistive robotics itself has not been formally defined
or surveyed. An assistive robot is broadly defined as one
that gives aid or support to a human user. Research into
assistive robotics includes rehabilitation robots [16,27,47,
53,78], wheelchair robots and other mobility aides [2,
40,118,147], companion robots [8,101,136], manipulator
arms for the physically disabled [39,42,59], and educa-
tional robots [55]. These robots are intended for use in
a range of environments including schools, hospitals, and
homes. In the past, assistive robotics (AR) has largely
referred to robots developed to assist people through
physical interaction. This definition has been significantly
broadened in the last several years, in response to the

growing field of AR in which assistive robots provide help
through non-contact, social interaction, defining the new
field of socially assistive robotics (SAR).

Socially assistive robotics (SAR) is a growing area of
research with potential benefits for elder care, education,
people with social and cognitive disorders, and rehabilita-
tion, among others [33]. SAR is the intersection of assistive
robotics, which focuses on robots whose primary goal is
assistance, and socially interactive robotics [35], which ad-
dresses robots whose primary feature is social interaction.
SAR arose out of the large and growing body of problem
domains suitable for robot assistance that involves social
rather than physical interaction [77,129,144].

In rehabilitation robotics, an area that has typically
developed physically-assistive robots, non-contact assis-
tive robots are now being developed and evaluated. These
robots fulfill a combined role of coach, nurse, and com-
panion in order to motivate and monitor the user dur-
ing the process of rehabilitation therapy. Observing the
user’s progress, the robots provide personalized encour-
agement and guidance. Applications for post-operative
cardiac surgery recovery [56] and post-stroke rehabilita-
tion [79] have been studied. Other rehabilitation projects
have explored using a robot as a means of motivating re-
habilitation through mutual storytelling [72,101]. In these
experiments, a robot and a user constructs a story, which,
when acted out, require the user to perform physical ther-
apy exercises.

A variety of assistive robotics systems have been stud-
ied for use by the elderly. Such robots are meant to be used
in the home, in assisted living facilities, and in hospital
settings. They work to automate some physical tasks that
an elderly person may not be able to do, including feed-
ing [59], brushing teeth [131], getting in and out of bed,
getting into and out of a wheelchair, and adjusting a bed
for maximum comfort [52]. In some cases, the robots are
envisioned as part of a ubiquitous computing system [52],
which combines cameras and other sensors in the environ-
ment and computer controlled appliances (such as light
switches, doors, and televisions) [8]. In others, the robots
serve SAR roles such as promoting physical and cognitive
exercise [127].

HRI systems have been used as companion robots in
the public areas of nursing homes, aimed at increasing
resident socialization. These robots are designed not to
provide a specific therapeutic function, but to be a focus
of resident attention. One such example is the huggable,
a robot outfitted with several sensors to detect different
types of touch [123]. Another such example is NurseBot,
a robot used to guide users around a nursing home [87].
Paro [136,137], an actuated stuffed seal, behaves in re-



Human Robot Interaction H 4649

Human Robot Interaction, Figure 2
Examples of SAR research. Left: post-cardiac surgery convalescence.Middle: post-stroke rehabilitation. Right: cognitive and physical
exercises

sponse to touch and sound. Its goal is to provide the bene-
fits of pet-assisted therapy, which can affect resident qual-
ity of life [30], in nursing homes that cannot support pets.
Initial studies have shown lowered stress levels in residents
interacting with this robot, as well as an overall increase in
the amount of socialization among residents in the com-
mon areas of the same facility.

Finally, HRI is being studied as a tool for diagno-
sis [111,112] and socialization [22,70,83,143] of children
with autism spectrum disorders (ASD). When used for di-
agnosis, robots can observe children in ways that humans
cannot. In particular, eye-tracking studies have shown re-
markable promise when evaluating children for the pur-
poses of diagnosing ASD. In terms of socialization, robots
are a more comfortable social partner for children with
ASD than people. These robots encourage social behavior,
such as dancing, singing, and playing, with the robot and
with other children or parents in the hope of making such
behavior more natural.

Educational Robotics

Robotics has been shown to be a powerful tool for learn-
ing, not only as a topic of study, but also for other more
general aspects of science, technology, engineering, and
math (STEM) education. A central aspect of STEM ed-
ucation is problem-solving, and robots serve as excellent
means for teaching problem-solving skills in group set-
tings. Based on the mounting success of robotics courses
world-wide, there is now is an activemovement to develop
robot hardware and software in service of education, start-
ing from the youngest elementary school ages and up [50,
80,81]. Robotics is becoming an important tool for teach-
ing computer science and introductory college engineer-
ing [81].

Robot competition leagues such as Botball [122],
RoboCup [120] and FIRST [98] have become vastly pop-
ular. The endeavors encourage focused hands-on prob-
lem solving, team work, and innovation, and range from

middle- and high-school-age children up to university
teams. Educators are also using robots as tools for ser-
vice learning, where projects are designed for assistive do-
mains. Innovative teaching methods include competitions
to develop robot toys for children with ASD [82] and other
assistive environments [48].

In some specific domains, robots have been shown to
be better for instruction than people [73]. While some au-
tomated systems are used for regular academic instruc-
tion [45], others are used for social skill instruction. In
particular, robots can be used to teach social skills such
as imitation [107], and self-initiation of behavior [65], in
addition, they are being explored as potentially powerful
tools for special education [58].

Benchmarks and Ethical Issues for HRI

As HRI systems are being developed, their impact on users
and society at large are increasingly being considered [34].
Currently, it is difficult to compare robotic systems de-
signed for different problem domains, yet it is important
to do so in order to establish benchmarks for effective and
ethical HRI design. Kahn et al. [54] argued for comparative
methods and proposed benchmarks for HRI, with a par-
ticular focus on gaining a better understanding humanoid
robots designed for HRI.

One of the most challenging aspects of establishing
such benchmarks is that many aspects of HRI are difficult
to measure. Establishing whether or not a robot can make
eye contact with a person is comparatively simple (if not
always easy to implement), but evaluating how the person
reacts to and is affected by the robot’s gaze and behavior is
muchmore difficult. Does the user get bored or frustrated?
Does the user consider the robot helpful and effective? Is
the robot perceived as competent? Is it trusted to perform
its intended tasks?

These and related questions lead to ethical consid-
erations and legal guidelines that need to be addressed
when developing HRI systems. Not only do roboticists
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need to act ethically, the robots themselves must do so
as well. Challenges to be considered include unintended
uses of the robot, allowable tasks, and unintended situa-
tions that might be encountered. For example, if the user
needs emergency attention, what is the robot’s responsibil-
ity? Furthermore, the issue of control has important im-
plications. While it is assumed the user is in control, in
a variety of situations (dispensing medicine, dealing with
cognitively incapacitated users) the control responsibility
must rest with the machine. The issue of control and au-
thority thus extends to all involved with the machine, in-
cluding caretakers, and even designers and programmers.
Well-studied ethical challenges are gradually making their
way intoHRI as the systems are growing in complexity and
usefulness, and as their likelihood of entering human daily
life increases.

General Benchmarks and Ethical Theory

While no specific ethical guidelines have yet been estab-
lished, active discussions and task forces have taken up this
challenging problem. Turkle [133] addressed the attach-
ment that occurs between humans and robots when resi-
dents of a nursing home are asked to “care for” a baby-like
robot. The users in the experiment ascribed human-like
qualities to the robot, resulting in side-effects with eth-
ical ramifications. What happens when the robot breaks
down? What if the robot is taken away? Some benchmarks
address the disparity between machines that exist only to
serve a human “master” and those that exist in cooperation
with their users and act with autonomy [54]. Is it accept-
able for people to treat a social being like a slave?

The nature of morality for androids and other artifi-
cially intelligent entities has also been explored [140] and
the difference between top-down and bottom-up moral-
ity defined. A top-down approach to morality is any ap-
proach that takes an ethical theory and guides the design
and implementation of algorithms and subsystems capa-
ble of implementing that ethical theory. A bottom-up ap-
proach involves treating values as implicit to the design
of the robot. In that work, morality (either implied or ex-
plicitly programmed) helps guide the behavior of robots to
effectively work with humans in social situations.

Yanco [147] described the evaluation of an assistive
robot, stating that such evaluation can be done through
user tests and comparison to a human in the same assis-
tive role. Long-term studies were recommended in order
to evaluate effectiveness in real-world settings. Others ad-
vocated a human-centered approach to design, suggesting
ecological studies of the use of the robots in the intended
environment rather than long-term user studies [37].

Robot Evaluation

Any robot is a physical and technological platform that
must be properly evaluated. In this section, two evaluation
benchmarks of particular concern to HRI, safety and scal-
ability, are discussed.

Safety Safety is an important benchmark for HRI: How
safe is the robot itself, and how safe can the robot make life
for its user?

A robot’s safety in its given domain is the primary con-
cern when evaluating an HRI system. If a robot is not de-
signed with safety in mind, it could harm the very users it
is designed to interact with. A key advantage of HRI over
physically assistive robots is the minimization of the in-
herent safety risk associated with physical contact. When
discussing safety pertaining to a mobile platform, we re-
fer to the ability to maneuver about a scene without un-
wanted contact or collisions. Safety also refers to protec-
tion (as much as it is possible) of a robot’s user and of the
robot itself. This concept, as a benchmark, refers to safety
in a bottom-up fashion, rather than Asimov’s laws which
refer to the concept in a top-down fashion [140].

Safety for assistive robots has been studied in depth
in the contexts of obstacle avoidance for guide-canes and
wheelchairs [7,105,147]. Robots have also been designed to
help users navigate through a nursing home [40,89]. The
need for safety assessment for HRI systems designed for
vulnerable user populations is a topic of growing impor-
tance as HRI systems are increasingly being developed to-
ward users from such populations.

Scalability The majority of current HRI work occurs in
research laboratories, where systems are engineered for
one environment and a pre-determined prototype user
population. As HRI becomes more widespread in homes,
schools, hospitals, and other daily environments, the ques-
tion of scalability and adaptability arises: How well will
such HRI systems perform outside of the lab? and How
well does a robot perform with users from the general
population?

The scalability benchmark does not imply that roboti-
cists should design each robot for a large a variety of sit-
uations where assistance is required. Rather, it is impor-
tant to stress that, even within a group that needs assis-
tance, there is a great difference between a “prototypical”
user or environment and the range of real-world users and
environments.

Another key question to address is: How many peo-
ple can be helped by such a robot? Consider, for exam-
ple, a robot that uses speech recognition for understand-
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ing a user’s intentions. How does speech recognition per-
form when the speaker has recently suffered a stroke? Can
the robot interact with someone who cannot speak? If the
robot is meant to be a companion for a user, can the robot
adapt its behavior to different users? How difficult is it for
the robot to be modified for different needs?

In addition to user population scalability, the range
of usable environments is an important benchmark. Most
systems to date have been tested in research labs or con-
trolled hospital and managed care settings. In the future,
however, HRI systems will be used in homes and other
more unpredictable environments. In such domains, the
following benchmark becomes relevant: Can the robot op-
erate in the most relevant environments for the user?

Social Interaction Evaluation

A critical benchmark of HRI is the evaluation of the robot
as a social platform. Social interaction and engagement
are both the primary means of interaction and the driving
force behind the design. When assessing a robot in terms
of social performance, we must also consider the larger
goal of the robot in its application context.

Previously proposed benchmarks for humanoid
robots [54] are directly relevant to HRI as well. In many
respects, the same comparisons and evaluations that hold
for humanoid robotics also hold for HRI. However, the
goal of HRI is not to make as interesting or realistic a robot
as possible, but to make a robot that can best carry out its
task. It is important, therefore, to evaluate HRI not only
from a perspective of modeling human characteristics,
but also from a user-oriented perspective. The following
sections describe how some of the previously identified
humanoid benchmarks that relate to HRI.

Autonomy Autonomy is a complex property in the HRI
context. It is favorable, when constructing a system that
is designed to stand in for a human in a given situation,
to have a degree of autonomy which allows it to perform
well in its desired tasks. Autonomy can speed up applica-
tions for HRI by not requiring human input, and by pro-
viding rich and stimulating interactions. For example, HRI
systems for proactive social interaction with children with
ASD [22] and motivational robot tools [79,126,138] re-
quire such autonomy. However, autonomy can also lead
to undesirable behavior. In situations such as medication
dispension and therapy monitoring [38], for example, au-
tonomy is not desirable.

In general, HRI contexts require engaging and believ-
able social interaction, but the user must clearly retain au-
thority. For example, rehabilitation should terminate if the

user is in pain. Social interaction should only occur when
it is tolerable for the user. Partial or adjustable autonomy
on the part of the HRI system allows for an appropriate
adjustment of both authority and autonomy.

Imitation Alan Turing proposed a test of artificial intel-
ligence (AI), whereby a system is evaluated by whether it
could fool a human user communicating with it through
teletype [132]. This test was later elaborated to the To-
tal Turing Test [46], where a system communicating in
human-like ways (text, speech, facial expressions) tries to
fool a human user into believing it is human. Since that
time, one of the benchmarks for success in AI and HRI
has been how well the system can imitate human behav-
ior. However, when dealing with goal-oriented systems
not primarily relating to human behavior but rather to as-
sistance and treatment, imitating human behavior is nec-
essarily desirable.

It has been shown that a robot’s personality can effect
a user’s compliance with that robot [61]. When exhibiting
a serious personality, the robot could provoke a greater
degree of compliance than displaying a playful personal-
ity. It has also been shown that when the robot’s extro-
version/introversion personality traits matched the user’s,
task performance was improved [126]. Thus, the imitation
benchmark proposed by Kahn could be revised for HRI:
How do imitation and reciprocity affect task performance?

While no definitive evidence yet exists, there is a good
deal of theory regarding a negative correlation between
the robot’s physical realism and its effectiveness in hu-
man–robot interaction. Realistic robotics introduces new
complications to social robot design [28] and it has been
implied that anthropomorphism has a negative influence
on social interaction when the robot’s behavior does not
meet a user’s expectations [117]. The Uncanny Valley the-
ory suggests that as a robot becomes very similar in ap-
pearance to a human, that robot appears less, rather than
more, familiar [88]. Physical similarity that attempts in
imitation of human-like appearance and behavior could
cause discord. This leads to two possible benchmark for
imitation: Does the interaction between the human and
the robot reflect an accurate and effective impression of the
robot’s capabilities? and Does the interaction between the
human and the robot allow for the expression of the hu-
man’s capabilities?

Privacy The presence of a robot inherently affects
a user’s sense of privacy [54]. In contrast to ubiquitous
systems [11,63,76] where a user has no idea of when the
systemmay be watching, robots are tangible and their per-
ception limited and observable. A robot can be told to
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leave when privacy is desired, and the user can observe
when privacy is achieved. Because of its synthetic nature,
a robot is perceived as less of a privacy invasion than
a person, especially in potentially embarrassing situations.
Since privacy is such a concern for designers of assistive
systems [6]. Therefore, a possible benchmark from an HRI
perspective asks: Does the user’s perceived sense of privacy
relate to better robot performance as an assistive presence?

Task-Oriented Benchmarks

The interactive, task-oriented nature of HRI suggests some
additional benchmarks. Task performance is described as
the ability of the robot to assist a user in a given task. The
benchmarks then pertain to how the social aspects of the
robot affect the overall task performance of the robot and
its user. As with the other benchmarks, discussed above,
these could apply to all social robots, but when put into
an assistive context, the task-related effects highlight these
features.

Social Success Does the robot successfully achieve the de-
sired social identity? This is perhaps the most amorphous
of benchmarks, but its evaluation is simple. When the
robot is intended to be playful, do users find the robot
playful? If the robot is supposed to be a social peer, do
users act as if it were a social peer? How does the intended
social identity compare to what occurs in practice? This
benchmark is not meant to judge the ability of the robot
system designer to generate a suitable robot personality.
The social success of the robot is a fundamental compo-
nent of HRI applications. As discussed above, the social
identity of the robot (both the personality and the role of
the robot) has an effect on the user’s task performance.

Understanding of Domain Understanding of social dy-
namics is a critical component of HRI. Roboticists employ
user and activity modeling as means of achieving such un-
derstanding. Efforts to understand a user of an HRI sys-
tem include emotion recognition [19,20], and integration
of vocalizations, speech, language, motor acts, and ges-
tures [17,74] for effectively modeling user state.

Sensing social understanding and engagement can be
be assessed through a variety of means. Roboticists have
also used radio frequency identification (RFID) tags and
position tracking to observe children in school hallways
to detect when users were in social range, and who they
were interacting with over time [55], to help the robot
determine appropriate social responses. Thus, social un-
derstanding in HRI can come from both human-oriented
social perception (such as the interpretation of gestures,

speech, and facial expressions), and from an evaluation of
user physiologic state (such as GSR, heart rate, tempera-
ture, etc.). How such data are used leads to the following
benchmark: Does a robot’s social understanding of human
behavior help task performance?

Evaluation as an Assistive Tool

For the domains of HRI, impact on user’s care, impact
on caregivers, impact on the user’s life, and the role of
the robot are the key benchmarks for an assistive plat-
form. An important way to view how an assistive robot
performs when caring for people is by first observing how
people care for other people in similar situations. The role
of an assistive robot may be that of a stand-in for a hu-
man caregiver, a complement for a human caregiver, or an
assistant to a human caregiver. Naturally, the benchmarks
have different application in various scenarios. As with the
other benchmarks, discussed above, this is not meant to be
a comprehensive list, but a consideration of some of the
most relevant benchmarks.

Success Relative to Human Caregiver A good place to
start when evaluating the effect a robot has on a user’s
care is to compare the results of care with a robot care-
giver to that of care with a human caregiver: How does
the robot perform relative to a human performing the same
task? When such evaluation is possible, existing metrics
can be applied. For example, in rehabilitation tasks, func-
tional improvement can be a metric [79]. For learning
tasks, overall learning measures such as grades, tests, or
evaluations can be used. In a spirometry task where a robot
instructed a cardiac surgery patient to do breathing exer-
cises [56], compliance with the robot compared to compli-
ance with a human was a suitable metric. For companion
robots, evaluating user satisfaction is most relevant.

A key role of assistive HRI is to provide care where hu-
man care is not available. In many cases, the type of inter-
action that is established in HRI is not directly comparable
to human care, and in some instances, human care is not
available for comparison. In all cases, the user satisfaction
and motivation to engage in the relevant activities is a key
metric of system effectiveness, on par with functional mea-
sures of task performance.

Cost/Benefit Analysis The robot can perform in several
different capacities for any given task. For example, in a re-
habilitation setting a robot could serve as therapist, giv-
ing advice on specific movements, a motivational coach,
giving general encouragement and monitoring progress,
a cognitive orthotic, reminding the users of important
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items, a companion, a learning aid, or as a demonstra-
tion, showing a user how to do specific exercises. The role
of the robot for a given task can inform the complexity
and sophistication of the robot and its social and assistive
capacities.

HRI is intended as a tool for creating robotic systems
capable of providing cost-effective solutions to a variety of
applications. Cost/benefit analysis can thus a benchmark
for success for such systems. In domains where no alter-
natives exist, and where HRI systems provide a novel and
only solution, have the potential of creating major societal
impact. Health care is one such domain. This suggests two
benchmarks for HRI: Does the use of the robot (a) change
the cost/benefit ratio of providing such care or (b)make such
care available where it was not previously possible?

Impact on Caregivers In some cases, the goal of au-
tomation is not to increase the efficiency, productivity, or
standard of care, but to make the user’s or caregivers’ job
easier and more manageable. For example, the goal of the
robot described above in Kang et al. [56] was to reduce the
overall workload for cardiac nurses, given the overall nurse
shortage in the US and world-wide. The robot visited car-
diac patients post-surgery, approached each patient’s bed,
encouraged the patient to perform the breathing exercise,
monitored the number and depth of the breaths taken, and
collected performance data. By automating the prompting
and monitoring of spirometry, which must be performed
ten times per hour for the critical post-surgery period, the
robot made it possible for caregivers to attend to other
tasks and provide more individualized services. However,
in this case, the robot did not provide any care not already
provided by a human caregiver.

Caregiver impact is thus a useful benchmark: Does the
job condition of the caregiver improve as a result of the
robot?Additionally, it is important to observe cooperation:
Howwell does the caregiver work with the robot? This arises
out of a concern that trained and experienced caregivers
are not used to working with robots, and may need to ad-
just their work habits [113].

Satisfaction with Care User satisfaction is an important
aspect of assistive therapy success. Users’ impression of
a nurse robot’s personality affects compliance with that
robot, both positively and negatively [61]. Satisfaction,
therefore can be a useful benchmark for success. Ques-
tionnaires are being explored [138,139] to measure satis-
faction, although little work to date has directly related
satisfaction with a robot system to task performance or
user compliance. An important question when designing
an assistive system is raised: Does user satisfaction with

a system affect the assistive task performance and/or user
compliance?

Existing Quality of Life Measures Evaluating the effects
of a particular therapy regimen must be done relative to
the overall quality of life (QoL) of the user [145]. Some rec-
ommend using repeatedmeasures with the same survey to
capture changes over time. The SF-36 survey is designed
for patient rating of health-related quality of life [1]. This
survey assesses the comprehensive quality of life from the
patient’s point of view. The 15-D survey produces quality
of life numbers along several dimensions [119]. In addi-
tion to such quantifiable measures, experiential measures,
such as the Dementia Care Mapping (DCM), are also used
broadly [64]. Such measures bring to the forefront the
users of a particular type of service [148], as well as the
notion that socially-sensitive care (involving eye-contact,
favorable attention, etc.) is important to the overall out-
come. This leads to a suitable HRI benchmark: Does the
robot result in a general increase in the quality of life as per-
ceived by the user?

Impact on the Role in Community/Society The intro-
duction of automation andHRI-capable systems has an af-
fect the user community.When fish tanks were introduced
into a nursing home environment to test the effects on res-
idents, observers found an overall increase in nutrition on
the part of the participating residents [30]. A side-effect of
the installation of the fish tanks was that residents gath-
ered around those situated in common areas and engaged
in more conversation than was previously observed. The
introduction of new objects of social interest into an envi-
ronment can thus change the dynamics of the community.

When roboticists introduced the robot seal Paro into
the common areas of a nursing home [136,137], they
found a reduction of stress proteins in the urine of the
participants. Another positive effect of the experiment was
that residents were in the common areas longer and social-
ized more. The Robovie project was able to use a robot to
stimulate social interaction among a group of elementary
school students [55]. By telling “secrets” about itself, the
robot was able to elevate a student’s status in the group by
giving him/her special information [21].

An ethnographic study used readily-available low-cost
robot vacuum cleaners to determine the role that the
robots played in household [36]. The study used home
tours and semi-structured interviews to create an ecolog-
ical model of the home. The data provided insights into
how a service robot might be treated, and how close the
real users came to the design intention of the robot. Some
treated the robot as if it were a member of the house-
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hold, with status roughly between the vacuum cleaner and
a pet. Others treated it strictly as a device with a purpose.
An interesting observation is that men got more involved
in cleaning tasks associated with the Roomba (pre-clean-
ing, activation, and emptying the unit when the task was
completed).

A potential critique of assistive robotics is that social
robots capable of HRI could reduce the amount of human
contact for their users. Thus, when assessing a particular
robot-assisted therapy, it is important to note not only the
immediate effects on a single user, but also the effects that
the robot has on the community as a whole:Does the robot
increase or decrease the amount of socialization in its user
community? and: Are changes in community due to a robot
positive or negative?

Notable Conferences

HRI is an active and growing area of research. Progress in
the field is discussed and showcased at a number of confer-
ences, symposia, and workshops. Research results are pub-
lished both in new and growing HRI conferences and jour-
nals, and the more established venues of the parent fields
of HRI, namely robotics and AI.

Human–Robot Interaction-Specific Conferences

� Conference on Human Robot Interaction (HRI) This
conference, created in 2006, is focused specifically on
HRI research. Attendees and submissions to this con-
ference are mostly from engineering (electrical en-
gineering and computer science) with contributions
from allied fields, such as psychology, anthropology,
and ethics.

� International Workshop on Robot and Human In-
teractive Communication (RO-MAN) RO-MAN pro-
vides a forum for an interdisciplinary exchange for re-
searchers dedicated to advancing knowledge in the field
of human–robot interaction and communication. Im-
portantly, RO-MAN has traditionally adopted a broad
perspective encompassing research issues of human–
machine interaction and communication in networked
media as well as virtual and augmented tele-presence
environments. RO-MAN is somewhat longer-standing
than HRI.

� International Conference on Development and
Learning (ICDL) This conference brings together the
research community at the convergence of artificial
intelligence, developmental psychology, cognitive sci-
ence, neuroscience, and robotics, aimed at identifying
common computational principles of development and
learning in artificial and natural systems. The goal of

the conference is to present state-of-the-art research
on autonomous development in humans, animals and
robots, and to continue to identify new interdisci-
plinary research directions for the future of the field.

� Computer/Human Interaction (CHI) Conference
CHI is an established conference in Human–Computer
Interaction (HCI). Every year, it is a venue for 2000
HCI professionals, academics, and students to discuss
HCI issues and research and make lasting connections
in the HCI community. HRI representation in this
meeting is small, but the two fields (HRI andHCI) have
much to learn and gain from each other.

General Robotics and AI Conferences

� Association for the Advancement of Artificial Intel-
ligence (AAAI)AAAI’s annual conference affords par-
ticipants a setting where they can share ideas and learn
from each other’s artificial intelligence (AI) research.
Topics for the symposia change each year, and the lim-
ited seating capacity and relaxed atmosphere allow for
workshoplike interaction.

� AAAI Spring and Fall Symposia These annual sym-
posia cover a broad range of focused topics. With the
rapid growth of HRI, the topic and related areas (e. g.,
service robotics, socially assistive robotics, etc.) sym-
posia are held in each session.

� Epigenetic Robotics (EpiRob) The Epigenetic
Robotics annual workshop has established itself as an
opportunity for original research combining develop-
mental sciences, neuroscience, biology, and cognitive
robotics and artificial intelligence is being presented.

� International Conference on Robotics and Automa-
tion (ICRA) This is one of two most major robotics
conferences, covering all areas of robotics and automa-
tion. In recent years, the themes of the conference have
includedmany areas of HRI research, such as “Human-
itarian Robotics,” “Ubiquitous Robotics,” and “Hu-
man-Centered Robotics”, reflecting the rapid growth in
the field.

� International Conference on Intelligent Robots and
Systems (IROS) This is the other major international
robotics conference, featuring a very large number of
papers, with a growing representation of HRI. Tutorials
and workshops, as well as organized/special sessions in
HRI are featured regularly.

� International Symposium on Experimental Robotics
(ISER) ISER is a single-track symposium featuring
around 50 presentations on experimental research in
robotics. The goal of these symposia is to provide a fo-
rum dedicated to experimental robotics research with
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principled foundations. HRI topics have become a reg-
ular part of this venue.
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Glossary

Basic reproduction rate The most common way to cal-
culate the epidemic threshold is to calculate the basic
reproduction rate, R0, which is usually defined as the
average number of secondary infections caused by one
infectious individual that enters into a totally suscep-
tible population. The basic reproduction rate may un-
derestimate the risk of epidemic outbreaks if the vari-
ation in number of contacts is large, as is usually the
case with sexual contacts.

Core group A subgroup of individuals in a population
characterized by a high partner turnover rate and
a high tendency for having sexual contacts within the
group. The existence of a core group may push the
population above the epidemic threshold.
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Epidemic threshold The probability that an epidemic
will occur is determined by the contagiousness of the
disease, the duration of infectiousness, and the inter-
action structure in the population. Contagious dis-
eases are nonlinear phenomena in the sense that small
changes in any of these parameters may push the pop-
ulation from a state in which a large epidemic is not
possible to a state in which an epidemic may easily oc-
cur if infection is introduced into the population. The
specific point at which an epidemic is possible is re-
ferred to as the epidemic threshold.

Random homogeneous mixing When modeling out-
breaks of contagious diseases in a population, the indi-
viduals are often assumed to have the same probability
of interacting with everyone else in the population.
This assumption has been shown to be less valid for
sexually transmitted infections because they are char-
acterized by a large variation in number of contacts.

Sexually transmitted infection Many contagious infec-
tions can be spread through sexual contact. Sexually
transmitted infections are, however, generally defined
as being spread through vaginal intercourse, anal in-
tercourse, and oral sex. They include Chlamydia tra-
chomatis, gonorrhea, and HIV. The reason why the
expression “sexually transmitted infection” is used in-
stead of “sexually transmitted disease” is that a state of
infection and infectiousness do not necessarily result
in disease.

Definition of the Subject

Human sexual networks are the network structures that
emerge when individuals have sexual contact with each
other. In general, use of the term “sexual contact” is re-
stricted in this article to mean vaginal or anal intercourse
or oral sex – contacts by which sexually transmitted infec-
tions (STIs) can be transmitted. Sexual networks are im-
portant because an understanding of their structure and
how they facilitate the spread of infection can help us un-
derstand how the spread of this type of infection can best
be prevented.

Introduction

Although the type of contact that spreads STIs occurs less
frequently than is the case for most other types of contact
that spread disease, the spread of STIs has turned out to be
surprisingly hard to limit. The difficulties in getting STIs
under control have led to an interest in sexual contact pat-
terns [24,28,29]. In the present chapter we discuss a variety
of explanations related to the structural properties of sex-
ual networks that have been advanced for why STIs are so

widespread, and why such diseases are so hard to eradi-
cate. We begin this chapter by presenting a family of mod-
els in which no explicit assumptions are made about the
interaction structure other than that all individuals are as-
sumed to have the same probability of interacting with ev-
eryone else in the population. These models are then used
as a baseline when discussing more realistic assumptions
about the sexual contact structure. We then move on to
more realistic assumptions about the contact structure by
introducing one of the first theories about sexual contact
structure, the core-group theory.

The emerging AIDS epidemic in the early 1980s raised
new questions about how sexually transmitted diseases are
spread in human populations [19]. We discuss different
structural explanations for why the number of HIV-in-
fected not did grow as fast as models based on random ho-
mogeneous mixing predicted. We then look at two other
structural properties of importance for the understand-
ing of the spread of STIs, assortative interaction and con-
current relationship. Sexual networks are usually very dif-
ficult to study empirically for several different reasons.
These difficulties and ways of handling them are intro-
duced in the succeeding section. Some remarks on the fu-
ture challenges for research on sexual networks conclude
the chapter.

Non-Complex Models of ContagiousDiseases

To help to understand the complexity of human sex-
ual networks and how their structures may facilitate the
spread of STIs, we will first introduce a simple family of
models based on the assumption of random homogeneous
mixing. Random homogeneous mixing means that every
person in the population has the same probability of inter-
acting with every other person in the population; hence no
assumption is made about any structural properties of the
contact network. Models based on this assumption often
model outbreaks of highly contagious diseases surprisingly
well, while they are usually less good formodeling less con-
tagious diseases. These simple models and their charac-
teristic behaviors will then be used as a baseline when we
introduce and discuss different structural properties of hu-
man sexual networks that deviate from random homoge-
neous mixing.

In this type of standard model, individuals in a popu-
lation are assumed to be in one of three states: susceptible
(S), infected (I), or removed (R). The latter can, depend-
ing on the disease under study, result from immunity or
death. It is conventional to distinguish between SI, SIS, and
SIRmodels. Children’s diseases are best modeled by an SIR
model because infection confers lifelong immunity, that is,
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removal from the pool of those susceptible. For most sexu-
ally transmitted diseases, the SIS model makes most sense
since few sexually transmitted diseases confer any immu-
nity after infection, and people remain susceptible. An im-
portant exception is HIV, which is still appropriately de-
scribed, at least in the Western world, using the SI model.

The random homogenous mixing assumption is ex-
plained by Eq. (1), which represents the SI model as a con-
tinuous model in its simplest form, consisting of a system
of two differential equations:

dS
dt
D
�cˇS(t)I(t)

N
;

dI
dt
D

cˇS(t)I(t)
N

:

(1)

There are two dependent variables in Eq. (1): The num-
ber of susceptible persons, S, and the number of infected
persons, I. The number of susceptible and infectious per-
sons are constrained by the size of the population N so
that S(t)C I(t) D N . Note that this constraint means that
the two variables, S(t) and I(t), are linearly dependent, so
that the two differential equations actually are redundant.
As is evident, this model is homogenous across the pop-
ulation as each person is assumed to have the same num-
ber of contacts per time unit, c and the same probability
of infection per contact, B. This is what we refer to as the
assumption of random homogeneous mixing.

For many diseases, such as measles or flu, that are
spread by aerosolized droplets by all infected persons, ran-
dom interaction is a reasonable assumption and proba-
bly a good approximation. It describes an abundance of
everyday situations in which a person is exposed to such
infections, for instance on public transportation, in the
workplace, and in shops. A significant advantage of the
random interaction assumption is that it can easily be
modeled with differential equations, and these models can
be studied analytically [1,7]. The equilibriums for the sys-
tem, for example, can easily be found by first setting the
left side of Eq. (1) to 0, and then solving the expression as
a system of equations.

The solution to Eq. (1) yields an S-shaped trajectory
as shown in Fig. 1. One important property of such mod-
els is that they predict that the number of infected persons
will grow exponentially during the early stages of an out-
break. This growth cannot, however, continue to acceler-
ate at this rate for long because the number of susceptible
persons is low during later stages of the process. In later
stages, most infected persons will interact only with other
infectious persons. Consequently, the growth in the num-
ber of infected persons is largest at about the midpoint of
the process.

Human Sexual Networks, Figure 1
The typical growth in the number of infectious persons during
an outbreak for an SI, an SIS and an SIRmodel, when randomho-
mogeneous mixing is assumed for the population

The SISmodel can be written as a system of two differ-
ential equations as follows:

dS
dt
D
�cˇS(t)I(t)

N
C

I(t)
D

;

dI
dt
D

cˇS(t)I(t)
N

�
I(t)
D

:

(2)

The equation for the SIS model differs from that of the SI
model in the sense that the term I(t)

D that describes the
rate of individuals who recover from the disease and be-
come susceptible is added to both equations. The solu-
tion to the SIS equations also shows that we should ex-
pect an S-shaped trajectory with an exponential growth in
the number of infected persons. The SIS trajectory, how-
ever, differs from the SI trajectories in the sense that the
number of infected persons never reaches that of the en-
tire population. The process equilibrates at a point where
exactly as many infectious individuals become susceptible
as susceptible ones become infected.

The last model we are going to discuss here is the SIR
model, which can be formulated as a set of differential
equations in its simplest form as:

dS
dt
D
�cˇS(t)I(t)

N
;

dI
dt
D

cˇS(t)I(t)
N

�
I(t)
D

;

dR
dt
D

I(t)
D

:

(3)

The SIR model is portrayed here in the form of a system
of three differential equations that describe the change in
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the three different states (of which two are independent,
since we now have S(t)C I(t)C R(t) D N). The solution
to the SIR model also shows an S-shaped form during the
early stages of the epidemic. The SIR model differs from
the SI and the SIS models by its tendency to result in zero
infectious individuals in the long run.

These three basic models can be adapted to the char-
acteristics of specific diseases by, for example, letting per-
sons be immune only for a certain time interval, making
it possible for new individuals to enter into the popula-
tion through birth and immigration, and allowing persons
leave the population because of emigration or death. This
makes it possible to generate more complex types of tra-
jectories such as cyclic behavior [1].

A critical notion in disease epidemiology is the basic
reproduction number, R0. In the homogenous determin-
istic SIS-model and SIR-model this number tells us how
many uninfected persons an infectious individual will, on
average, infect in a totally susceptible population [1]:

R0 D cˇD : (4)

R0 has received special attention because in the homoge-
nous model it is quite an intuitive measure of the epidemic
threshold. If R0 is less than 1, then the disease will become
extinct. With R0 equaling exactly 1, we have an unstable
equilibrium with no change in the number of infected or
susceptible persons, that is, the disease is endemic. A value
greater than 1 upsets the replacement conditions, which
means that if R0 > 1 the outcome is an epidemic. (Note
that R0 will always be larger than one in the SI model since
an infectious individual is assumed to be infectious for an
infinitely long time.)

The Core Group Theory

Core group theory is an early, and probably also the best
known, explanation for why STIs can be endemic despite
the fact that the average number of sexual contacts in most
national populations is such that we should expect R0 to be
lower than 1, that is, below the epidemic threshold if the
contacts were evenly distributed in the population [13].
According to core group theory, the reproduction of STIs
can be explained by the existence of several distinct sub-
groups in the general population that are all character-
ized by high-risk sexual behavior (high partner turnover
rate and unprotected sex) and extensive intergroup inter-
action. The existence of core groups, according to the the-
ory, makes it possible for STIs to reproduce within the core
group because R0 is greater than 1 in these groups. The
core groups thus constitute a reservoir allowing the sex-
ually transmitted infection to remain endemic in a gen-

eral population in which the R0 is lower than the criti-
cal value 1. The core groups also make it possible for the
rest of the population to be infected through contacts with
these groups.

Lessons Learned from the Early AIDS Epidemic

The discovery of a progressive outbreak of AIDS in the
early 1980s gave rise to intensive research efforts to un-
derstand the path of contagion and the disease’s dynamic
course [8]. One of the most important findings was made
by Anderson andMay [1] who showed that the expression
for R0 in Eq. (4) is not suitable if the variance in number
of potential infectious contacts is high, as is the case with
STIs. They showed instead that R0 would be more accu-
rately estimated by using the following equation:

R0 D �0

�
1C

�2

�2

�
; (5)

where �0 is the average number of infections produced
by an infected person in an uninfected population, �2 is
the variance in the number of contacts, and � is the mean
number of contacts in the population. From this equation,
it is clear that the larger the variance in number of part-
ners in the population for a given �, the less infectious an
infection needs to be to continue to reproduce itself, that
is, to generate an epidemic.

It became clear relatively early that the AIDS epidemic
did not behave the way traditional infection epidemio-
logical models expected. The assumption of random ho-
mogeneous mixing makes these models predict an expo-
nential increase in the number of contagious persons at
the beginning of an epidemic (see Fig. 1). The AIDS epi-
demic did not seem to follow this pattern, however. In-
stead of increasing exponentially, it seemed to increase
more slowly [5]. This was seen to occur in spite of the fact
that the epidemic was very far from global saturation, so
that the slowing down could not be due to a global satura-
tion effect. Exponential growth is characterized by a con-
stant time required for the number of infected persons to
double. However, in the case of AIDS, that time became
increasingly longer as the epidemic spread. At the end of
the 1980s, the AIDS epidemic was demonstrated to exhibit
a polynomial pattern of spread, and it was shown that epi-
demics have had this functional form before any changes
in behavior patterns could have had an effect. Then Col-
gate et al. [5] argued that a polynomial pattern of spread
could not be explained as a direct effect of interventions or
by changed behavior patterns caused by a general under-
standing of how HIV was spread. They also showed that
polynomial spread could be observed in groups of indi-
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viduals of different ethnic backgrounds. There are at least
three structural properties of contact structures that may
slow down spread in the observed way: clustering, embed-
ding in a low-dimensional space, and a large variation in
partner turnover rate.

Clustering

One structural property of contact networks that has been
shown to slow an epidemic’s rate of spread is clustering
(or transitivity as it is also called). A large amount of clus-
tering is typical of many social networks. For example, if
Charles is a good friend of Paul and Ben’s, it is quite prob-
able that Paul and Ben know each other. In an outbreak
of a highly contagious disease, the contacts of an infected
individual in a clustered network will often already have
been infected by common contact or by a contact only
a few steps away in the network. A common way of esti-
mating clustering in a network is to estimate its relative
number of triangles, or more exactly, to calculate the frac-
tion C of all paths of length three in the network that form
a triangle:

C D
3ntriangle
ntriple

; (6)

where ntriangle is the number of triangles and ntriple is the
number of triples of vertices connected by two or three
contacts. The factor three is needed to normalize C to the
interval [0; 1]. One useful property of C is that 1 � C gives
the average proportion of outgoing links from all contacts
directly connected to an individual that potentially can
transmit the disease further to the rest of the network.

Clustering, that is, two individualswith a common sex-
ual contact who also have sexual relations with each other
by definition cannot exist in a heterosexual network un-
less bisexual relationships are allowed. It is possible, how-
ever, for two individuals of the same sex to have had two
or more sexual partners in common. This phenomenon is
calledmutuality,M. For computational reasons,M is often
defined in a way similar to 1� C as

M D

mean number of nodes two steps away
from a node

mean number of paths of length two between
those nodes

;

(7)

where a node here would be a person, and a path would
be a route along any number of links from one node to
another. Mutuality can thus be thought of as the oppo-
site of clustering (transitivity). For example,M for a given

node A reaches its maximum value Eq. (1) whenA reaches
asmany two-hop neighbors as possible with the number of
two-hop paths coming from A. Thus, high mutuality leads
to faster epidemic spreading, while high transitivity tends
to confine epidemic spreading.

Recently, Balázs Szendroi and Gábor Csányi [45] have
proposed that the polynomial pattern of spreading could
be explained by the fact that sexual networks should show
a high degree of transitivity. This may hold true for a pop-
ulation of gay men; it is not clear, however, that this thesis
would be valid for heterosexual sexual contacts. In hetero-
sexual networks, there are no tricycles per definition, so
in these parts of the sexual network, an epidemic course
must be slowed down by four cycles. One study of a ro-
mantic and sexual network presents a result that indicates
the existence of a norm against changing each other’s part-
ner, which may decrease the effect of local clustering even
more [3].

The Effect of Geographical Space

Contagious diseases that are spread by a contact network
that is embedded in a two-dimensional space where only
local interaction takes place will also have a polynomial
pattern of spread. This property can easily be understood
by the following thought experiment. Assume that we have
a large population distributed on a square lattice so that
there is one individual on each vertex of the lattice. If we
then infect an individual in the center of the square lat-
tice with a chronic disease that is spread to all neighbors
every 24 h, it is easy to understand that the cumulative
number of infected persons after t days and nights will be
(2 � t C 1)2. That is to say, it will have a polynomial pat-
tern of spread. It is not likely, however, that sexual contacts
are sufficiently local for a polynomial pattern of spread to
be observed. This is because strong evidence indicates that
enough contacts extend over social and geographical dis-
tances, usually referred to as social and spatial bridges [47],
for the sexual contact network to exhibit a so called small
world quality [46]. That is to say, the average distance in-
creases logarithmically with the network’s size in the same
way a random network does. Figure 2, for example, shows
how different parts of the region Värmland in Sweden are
sexually connected to each other and to the rest of Swe-
den by sexual contacts of individuals that tested positive
for chlamydia in Värmland [36].

The Long Tail

According to Colgate et al. [5], the polynomial pattern
of spread could be explained by a great variation in be-
havior that involves the risk of being infected by HIV.
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Human Sexual Networks, Figure 2
The spatial distribution of the sexual contacts outside of Värm-
land County (contacts outside Sweden not shown) [36]

They demonstrated that if a behavior involving risk fol-
lows a power-law function, that is to say, the largest group
indulges in a relatively safe kind of behavior, the next
largest is a little riskier, etc., this would be enough, to-

gether with a tendency to have sex with individuals ex-
hibiting similar risk behavior, to generate a polynomial
pattern of spread. First, the small high-risk group will be
quickly infected to the point of local saturation. The dis-
ease will then spread gradually to groups with lower and
lower risk levels. In these groups, the infection will spread
increasingly slowly as the epidemic continues. What is in-
teresting is that Colgate et al. presented empirical evidence
that at an STD clinic the distribution of the number of sex-
ual contacts in the risk category of homosexual men fol-
lowed a power-law with exponent �3.

There are many examples that show the error of trying
to generalize a certain behavior pattern from a group of in-
dividuals in a community to the whole community. To do
so, it is necessary for these individuals to have been chosen
at random, independently of each other. The first study in-
dicating that the frequency distribution for the number of
sexual contacts of an entire nation is very close to a power-
law tail was reported by Liljeros et al. [23], using the results
of a study of the sexual habits of Swedish citizens, “Sex in
Sweden” [22]. It was shown that the number of sexual con-
tacts for men and women did fit a power law for the upper
tail of reported contacts during the past twelvemonths and
reported contacts over the lifetime. The data for the Sex in
Sweden study were gathered in 1996.

The method used to estimate tail inclination was crit-
icized after the results of the Swedish study were pub-
lished [11,17,18,24]. The study was conducted on a rather
small dataset but had the additional strength of show-
ing a power-law tail for both partners during the past 12
months and for the number of partners over a lifetime. Re-
cently, however, Schneeberger et al. [43] reported a similar
power-law-looking distributions on a dataset that can be
described as the “Rolls Royce” of national sexual studies
that has been carried out so far, the NATSAL 2000 [16].
The NATSAL 2000 was a study of 10 000 individuals in
Great Britain who answered a survey at their home on
a laptop that was brought to them by a research assistant.
The research assistant did not sit in the same room while
the respondent answered the questions, and the respon-
dent was told that those answers were encrypted so that the
research assistant would be unable to read them. Schnee-
berger et al. [43] reported the slope of the power law at 2.5
for heterosexual men, 3.1 for heterosexual women, 3.3 for
homosexual women, and 1.6 for homosexual men. There
will probably always be questions about human sexual be-
havior that cannot be answered due to lack of empirical
data, such as the location of the upper cutoff of the distri-
bution that by necessity must exist due to space and time
constraints. Interestingly, a recent study of flirting on an
Internet dating community reported a similar power-law-
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like tail in the number of contacts that people had with
each other on the site [15]. This data source is, however as-
sociated with large uncertainty when it comes to mapping
the actual sexual network, because no information exists
about actual sexual contact.

A power-law distribution in the number of sexual con-
tacts has, under some specific circumstances, recently been
shown to have serious consequences for the potential for
eradicating sexually transmitted infections [37,38]. In an
infinite population with homogeneous mixing, a slope
smaller than three makes the second moment of the dis-
tribution infinitely large, and therefore also the variance
of the distribution [25]. It can easily be seen from Eq. (5)
that this will result in an infinitely large R0 for the popu-
lation. This has the bizarre consequence that all individ-
uals must be tested and treated at the same time, other-
wise it will be impossible to eradicate the disease. There
are, however, several reasons to believe that this is not the
case for sexual networks. We know, for example, that ev-
ery human population must by definition have a finite size.
Even though it has been shown that a power-law distribu-
tion in number of contacts will increase R0 significantly
in a finite population (as compared to a population with
the same mean number of contacts but a low variance in
number of contacts – see again Eq. (5), and [39], this does
not imply that an epidemic outbreak of an STI cannot be
stopped, or at least curtailed. Another factor that probably
mitigates the effect of the skewed distribution is that there
must also be an upper limit for how many sexual contacts
a single individual can have per unit of time. A study of
prostitutes in the United States shows, however, that this
limit can be very large. The median value for number of
partners was found to be as large as 103 during the pre-
vious six months [4]. One advantage of the skewed dis-
tribution, from an STI prevention perspective, is that it is
predicted that R0 can be drastically reduced and the epi-
demic eventually stopped if the individuals who change
partners frequently can be tested and convinced to prac-
tice safe sex [6]. It may at first glance seem difficult to
identify, for a specific targeted intervention, individuals
who change partners frequently, except perhaps for spe-
cific groups such as prostitutes, or gaymen who visit video
clubs where anonymous sex takes place. Contact tracing,
however (which is discussed in more detail in Sect. “Data
Sources”), has the positive side effect that individuals who
have many contacts have a higher probability of showing
up – because they have a larger group of sources of infec-
tion – than do individuals with fewer contacts.

There are several ways to generate networks with a dis-
tribution of contacts similar to the one observed in sex-
ual networks. The model so far given the most attention is

Human Sexual Networks, Figure 3
A snapshot at an early stage of a BA model for generating a net-
work with a degree distribution power-law tail. The probabil-
ity pc that an already connected individual (i. e., one of A–E) will
connect to the new individual F is proportional to the connected
individual’s number of contacts

one proposed by Albert-László Barabási and Réka Albert
(the BA model) [2]. This model is based on an idea that
can be traced back to the work of Herbert Simon [44] and
J.D. Price [41] and works in the following way: start with
a small number of vertices, and continuously add new ver-
tices. Let the new vertices connect to one or several of the
already existing vertices. Do this with a probability that is
linear in proportion with the number of contacts these al-
ready existing vertices have.

Figure 3 shows a snapshot of the BA model, where the
new vertex F is about to connect to the network of already
connected vertices. The probability of F connecting to ver-
tex D at this stage is twice the probability of F connect-
ing to vertex E; and F’s probability of connecting to C is
three times the probability of F connecting to vertex E. The
BA model generates a network, whose degree distribution
could be described by a Yule distribution where ˛ D 3.

p(kj˛) D
(˛ � 1)� (k)� (˛)

� (k C ˛)
: (8)

The BAmodel was originally proposed as a model for how
the World Wide Web grows over time, that is to say, how
a new homepage links to already existing homepages. As
other types of networks have started to be analyzed, sev-
eral modified BA models have been proposed that aim at
finding special properties in these networks. The original
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BA model assumes that new connections are made only
between old and new vertices, which is not correct for sex-
ual networks. In other words, it does not permit the updat-
ing of new links to already existing pages. Réka Albert and
Albert-László Barabási [2] have shown that it is possible
to generate power-law distributions leaning more steeply
than 3 if the formation and resolving of links between al-
ready existing nodes is also permitted.

Surveys of sexual behavior are usually both too small
and contain too little information about how the indi-
vidual’s number of partners grows over time to use stan-
dardmethods tomeasure preferential attachment. One ex-
ception is an MLE-based expectation–maximization fit-
ting technique developed especially for estimating prefer-
ential attachment in sexual survey data [10]. This method
has demonstrated a significant effect of sublinear preferen-
tial attachment in partner growth over time on Norwegian
survey data.

Theoretically, it is possible to argue for at least three
different mechanisms that may cause preferential attach-
ment. Like most other social behavior, it ought to be possi-
ble to get better at flirting and picking up through practice.
An individual may also, under some circumstances, be
considered to be more attractive the more partners he/she
has had. Finally, we know that getting a new partner, like
any other initially pleasurable behavior, can be psychologi-
cally addictive. To date we have no empirical results verify-
ing the extent to which each of these different preferential
attachment mechanisms are operative.

The Importance of Concurrent Relationship

The number of unprotected sexual contacts is clearly as-
sociated with an individual’s risk for both being infected
by a sexually transmitted infection, and for passing on the
infection once infected. It is, however, possible that the
number of sexual contacts is not the most important risk
factor for getting an STI per se. Morris and Kretzschmar
suggested in a series of articles [20,30,31] that it is the fre-
quency of concurrent relations (partnerings that overlap
over short time periods) in a population that is the most
important factor in the transmission of sexually transmit-
ted infections. Concurrent relations are important because
potential contacts for the transmission of an STI come
much closer in time if individuals have concurrent rela-
tions than if they practice serial monogamy.

This approach gives rise to a special type of graph
called a line graph [12] in which the contacts between the
persons are seen as nodes in a network.Whenwe let a con-
tact between two persons define a node on the graph, an
edge is present whenever a person has more than one con-

Human Sexual Networks, Figure 4
Two contact networks and corresponding line graphs following
Morris and Kretzschmar [30]. In the line graph, every edge in the
contact network is translated into a node; for example, edge A–C
in a becomes the node AC. Nodes with a degree> 1 in the con-
tact network will contribute to new edges in the line graph. For
example, in b there is an edge between D and C and D and E in
the contact network (C has a degree of 3), thus there will be an
edge between DC and DE in the line graph

tact. Two graphical examples of sexual contacts and their
corresponding line graphs are shown in Fig. 4. Both con-
tact networks displayed in Fig. 4a and b have the same av-
erage degree. Despite this, it is much easier for an STI to
propagate in the left network than in the right one.

This is due to the fact that the level of concurrent sex-
ual relations is much higher in network Fig. 4a than in
network Fig. 4b, as can be seen by considering the corre-
sponding line graphs. A measure for assessing the level of
concurrency in a line graph has been suggested by Morris
and Kretzschmar [20]. The concurrency, �2, is given by the
following equation:

�2 D L2
�
N2(N2 � 1)

2

��1

D

8
<̂

:̂

1 all pairs adjacent
0 < �2 < 1 some pairs adjacent
0 no pairs adjacent (monogamy) :

(9)

Here L2 is the number of links and N2 is the number of
nodes in the line graph (i. e., �2 is the density of the line
graph). By further calculating the mean number of con-
current relationships per relationship, the index of con-
currency �3, it has been demonstrated that concurrency
is a function of the mean and the standard deviation of
the degree distribution [20]. Since these properties can be
calculated solely on the basis of ego-network data (i. e., lo-
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cal information), it is possible to estimate concurrency by
using random samples of the population [20,30], which is
very difficult for several other network measures such as
density and component size [9].

The idea of using line graphs [20,30] has been devel-
oped even further by taking into consideration that an STI
can propagate between two non-concurrent sexual rela-
tionships that occur relatively closely in time [42]. To han-
dle this possibility in defining the line graph, it has been
suggested that a sexual relation should be viewed as ac-
tive for some period after the sexual partnership ended,
depending on the type of disease.

Assortative Interaction

A tendency for individuals to prefer sexual contact with
persons similar to themselves is usually referred to as as-
sortative interaction in the STI literature. A tendency to-
ward assortative interaction has been reported for social
factors such as social class and ethnicity [24]. An impor-
tant property of most sexually networks is that they are
assortative by number of contacts [32,33,34]. This means
that individuals who havemany contacts tend to have con-
tact with other individuals who also have many contacts.
High assortativity decreases the epidemic threshold be-
cause a large interconnected component will emerge at
a lower average density. The standard measure of assor-
tativity is the assortative mixing coefficient r; that is, Pear-
son’s correlation coefficient between the individuals’ de-
grees on each side of the edges [32,33]. As the edges are
undirected, we need a coefficient that is invariant to edge
reversal. This can be obtained for an edge (i; j) by includ-
ing both (ki ; k j) and (k j; ki ) in the correlation coefficient,
which can be expressed mathematically as:

r D
4hk1k2i � hk1 C k2i2

2
˝
k21 C k22

˛
� hk1 C k2i2

; (10)

where k1 (k2) is the degree of the first (and second) argu-
ment as it appears in the edge list.

Data Sources

The study of sexual networks can to some extent be com-
pared to the study of planets in other solar systems in
the sense that that they can only be studied indirectly.
Our knowledge comes from at least four different sources,
each of which has its specific advantages and disadvan-
tages. The first consists of national surveys of sexual be-
havior [16,21,22]. The advantage of such studies is that,
given that they are based on random population sam-
ples, they are the only kind of study that can theoretically

yield knowledge about sexual behavior for the whole pop-
ulation. Unfortunately, such studies have several draw-
backs. For one thing, it is very hard to control for the ac-
curacy of respondents’ answers. Also, the response rate is
also usually too low to guarantee reliable precision in the
estimates.

One striking thing about national surveys, for exam-
ple, is that men on average report a significantly higher
number of sexual partners than do women. This discrep-
ancy has been explained by a tendency for men as a group
to over-report the number of sexual partners [27]. A re-
cent study has also shown that this difference may be ex-
plained by the fact that prostitutes are usually not included
in the samples [4]. National surveys have another disad-
vantage that is probably more important than the validity
problem mentioned above, namely that they are only able
to give us information about the behavior of the respon-
dents, and not information about the behavior of their sex-
ual partners (and their partners). National surveys cannot
therefore give us information about the global properties
of a network, such as level of clustering, size of the largest
interconnected component, or average distance between
the individuals.

A second source of information about sexual networks
is the network data generated by contact tracing [47],
which is the process whereby the contacts of an individual
who has tested positive for an STI are traced and tested.
If this procedure is also continued for the contacts that
tested positive, and for their contacts in turn, it is even-
tually possible to generate a subgraph of a sexual network.
This subnetwork can then be used to analyze global struc-
tural properties of the network that cannot be studied with
national survey data. This kind of sampling is also associ-
atedwith severe biases. It is not always possible for an indi-
vidual, even if s/he is cooperative, to give enough informa-
tion about any given sexual partner to be able to identify
him or her. A more serious bias is that, by definition, con-
tact tracing has a tendency to identify the subnetworks of
the general sexual networks in which it is easiest for the
disease to spread. The latter may not, however, always be
a problem. If, for example, the purpose of a study is to find
ways to mitigate the epidemic in the parts of the network
in which the STIs are spread, this type of biased data really
can be very useful.

A third type of data source is the mapping of the sex-
ual network. This has so far only been carried out at the
local level, probably for practical reasons, for example with
a high risk group for HIV of drug users and prostitutes in
a town in the United States (see Fig. 5) [40].

Another example is the study of a network of romantic
relationships in a high school in the United States [3].
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Human Sexual Networks, Figure 5
A sexual network of a high risk group for HIV infection in a town in the US. (Line colorings are blue for vaginal sexual contact, red for
anal sexual contact. Node colorings are red for prostitutes, blue for pimps, and green for sex-buyers) [40]

These studies have the same problem as contact trac-
ing studies when it comes to identifying and finding part-
ners. It is also important to remember that these two
studies cannot straightforwardly be generalized to the rest
of the population, as studies based on a random sample
can.

The fourth and last data source is data generated from
Internet dating communities [15]. Becausemuch of the ac-
tivity that takes place in such communities is logged, it is
possible to extract a network about which members inter-
act. The advantage of this data source is that all contacts in
the community can be traced, and that networks of a sig-
nificant size can be generated. This data source is, how-
ever, probably the least valid network discussed here when

it comes to mapping the actual sexual network, because no
information exists about actual sexual contact.

The classification of data sources into the four groups
cited here should be seen as a preliminary one. There are
also combinations of such as surveys based on non-ran-
dom samples, for example, individuals who are seen at
STI clinics [5] or convenient samples of university stu-
dents. This short survey of data sources for sexual net-
works shows that all data sources are associated with dif-
ferent kinds of validity problems. This is quite a common
situation in the social sciences. One way to mitigate, if not
to solve, the problem is to try to confirm an empirical re-
sult with data from different sources, a procedure usually
referred to as triangulation.
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Human Sexual Networks, Figure 6
The largest component in network of romantic relationships in
a high school in the United States (romantic relationships with
non-students not included) [3]

Future Directions

To date, the risk of becoming infected with an STI and the
risk of passing on the STI have been assumed to grow with
partner turnover rate. A recent analysis of a small Swedish
survey which contained unusually detailed information on
sexual behavior has, to some extent, put this assumption
into question [35]. The study suggested that the increased
risk of high partner turnover rate may be compensated for
by the fact that individuals with a high partner turnover
rate seem to have a tendency to have fewer sexual inter-
courses with each partner, and therefore a lower risk for
STI transmission per partner. The effect of this tendency
seems to be especially important for STIs with a low risk
of transmission per intercourse as shown in Fig. 7.

The high incidence of the most common STI, Chlamy-
dia trachomatis, that has been reported in most West-
ern societies may look like an anomaly in light of these
results. Recent work based on a simulation model sug-
gests, however, that a small set of individuals who report
a large number of partners in sexual surveys are not neces-
sarily as indispensable for transmitting STIs as generally
thought [29]. The authors argue instead that multicon-
nected components, that is, network components such as
network cycles in which each individual reaches each other
individual in mutually exclusive ways, may be of greater
importance for the spread of STIs. Interestingly, their pre-
liminary simulation results show that large bicomponents,

Human Sexual Networks, Figure 7
Total number of secondary cases per total number of partners,
when each individual has 100 sexual intercourses evenly dis-
tributed among his or her partners (
= probability of transmis-
sion per act of sexual intercourse) [35]

that is, components in which each individual can reach
each other individual in two different, mutually exclusive
ways, may emerge in networks that have a low variance
and a relatively low mean number of contacts.

There is a tendency in most network research to sim-
plify dynamic networks to their static equivalents, where
the links that exist during a more or less long period
are assumed to be concurrent. This also holds true of
research about sexual networks even though the forma-
tion of and resolution of sexual relationship is to some
extent taken into consideration in the notion of concur-
rent relations. Concurrency cannot, however, capture the
fact that A can infect C, but not vice versa, in Fig. 8.
One exception to this is Moody’s pioneering “The impor-
tance of relationship timing for diffusion” [26] in which he
presents a formalized framework for describing dynamic
networks.

The results presented here indicate that many differ-
ent structural properties must be taken into consideration
to understand the spread of STIs. It is therefore not likely
that a single solution to the problem will ever be found.
The solution probably lies in a combination of broad and
targeted interventions. It is also important to remember
that efforts to control STIs in manyWestern societies have
already drastically decreased their incidence, especially in
the case of gonorrhea (even though the disease has not
been totally eradicated). The fact that an increase in the in-
cidence of STIs has been reported in some Western coun-
tries is a warning that must be taken seriously [14]. It is
also important to remember that STIs are now a global
problem, and as long as travel patterns between countries
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Human Sexual Networks, Figure 8
An example of how the order of relationship may be of im-
portance for the transmission of a sexually transmitted disease.
A may indirectly infect C but not vice versa

and continents persist, STIs will never be eradicated in one
part of the world as long as STIs are still endemic in the rest
of the world.
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Glossary

Global asymptotic stability The typical closed-loop ob-
jective of a hybrid controller. Often, the hybrid con-
troller achieves global asymptotic stability of a com-
pact set rather than of a point. This is the property that
solutions starting near the set remain near the set for
all time and all solutions tend toward the set asymp-
totically. This property is robust, in a practical sense,
for well-posed hybrid dynamical systems.

(Well-posed) Hybrid dynamical system
System that combines behaviors typical of continu-
ous-time and discrete-time dynamical systems, that is,
combines both flows and jumps. The system is said to
be well-posed if the data used to describe the evolu-
tion (consisting of a flowmap, flow set, jumpmap, and
jump set) satisfy mild regularity conditions; see con-
ditions (C1)–(C3) in Subsect. “Conditions for Well-
posedness”.

Hybrid controller Algorithm that takes, as inputs, mea-
surements from a system to be controlled (called the
plant) and combines behaviors of continuous-time
and discrete-time controllers (i. e. flows and jumps)
to produce, as outputs, signals that are to control the
plant.

Hybrid closed-loop system The hybrid system resulting
from the interconnection of a plant and a controller, at
least one of which is a hybrid dynamical system.

Invariance principle A tool for studying asymptotic
properties of bounded solutions to (hybrid) dynamical
systems, applicable when asymptotic stability is absent.
It characterizes the sets to which such solutions must
converge, by relying in part on invariance properties of
such sets.

Lyapunov stability theory A tool for establishing global
asymptotic stability of a compact set without solv-
ing for the solutions to the hybrid dynamical system.
A Lyapunov function is one that takes its minimum,
which is zero, on the compact set, that grows un-
bounded as its argument grows unbounded, and that
decreases in the direction of the flow map on the flow
set and via the jump map on the jump set.

Supervisor of hybrid controllers A hybrid controller
that coordinates the actions of a family of hybrid
controllers in order to achieve a certain stabilization
objective. Patchy control Lyapunov functions provide
a means of constructing supervisors.
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Temporal regularization A modification to a hybrid
controller to enforce a positive lower bound on the
amount of time between jumps triggered by the hybrid
control algorithm.

Zeno (and discrete) solutions A solution (to a hybrid dy-
namical system) that has an infinite number of jumps
in a finite amount of time. It is discrete if, moreover,
the solution never flows, i. e., never changes continu-
ously.

Notation

� Rn denotes n-dimensional Euclidean space. R de-
notes the real numbers. R� denotes the nonnegative
real numbers, i. e., R� D [0;1). Z denotes the inte-
gers. N denotes the natural numbers including 0, i. e.,
N D f0; 1; : : :g.

� Given a set S, S denotes its closure.
� Given a vector x 2 Rn , jxj denotes its Euclidean vector

norm.
� B is the closed unit ball in the norm j � j.
� Given a set S � Rn and a point x 2 Rn , jxjS :D

infy2S jx � yj.
� Given sets S1; S2 subsets of Rn , S1 C S2 :D fx1 C

x2j x1 2 S1; x2 2 S2g.
� A function is said to be positive definite with respect to

a given compact set in its domain if it is zero on that
compact set and positive elsewhere.When the compact
set is the origin, the function will be called positive def-
inite.

� Given a function h : Rn ! R, h�1(c) denotes its c-level
set, i. e. h�1(c) :D fz 2 Rn jh(z) D c g.

� The double-arrow notation e. g., g : D � Rn , indicates
a set-valuedmapping, in contrast to a single arrow used
for functions.

Definition of the Subject

Control systems are ubiquitous in nature and engineer-
ing. They regulate physical systems to desirable condi-
tions. The mathematical theory behind engineering con-
trol systems developed over the last century. It started with
the elegant stability theory of linear dynamical systems and
continued with the more formidable theory of nonlinear
dynamical systems, rooted in knowledge of stability theory
for attractors in nonlinear differential or difference equa-
tions. Most recently, researchers have recognized the lim-
ited capabilities of control systems modeled only by dif-
ferential or difference equations. Thus, they have started
to explore the capabilities of hybrid control systems. Hy-
brid control systems contain dynamical states that some-

times change continuously and other times change discon-
tinuously. These states, which can flow and jump, together
with the output of the system being regulated, are used to
produce a (hybrid) feedback control signal. Hybrid con-
trol systems can be applied to classical systems, where their
added flexibility permits solving certain challenging con-
trol problems that are not solvable with other methods.
Moreover, a firm understanding of hybrid dynamical sys-
tems allows applying hybrid control theory to systems that
are, themselves, hybrid in nature, that is, having states that
can change continuously and also change discontinuously.
The development of hybrid control theory is in its infancy,
with progress being marked by a transition from ad-hoc
methods to systematic design tools.

Introduction

This article will present a general framework for model-
ing hybrid control systems and analyzing their dynamical
properties. It will put forth basic tools for studying asymp-
totic stability properties of hybrid systems. Then, particu-
lar aspects of hybrid control will be described, as well as
approaches to successfully achieving control objectives via
hybrid control even if they are not solvable with classical
methods. First, some examples of hybrid control systems
are given.

Hybrid dynamical systems combine behaviors typical
of continuous-time dynamical systems (i. e., flows) and be-
haviors typical of discrete-time dynamical systems (i. e.,
jumps). Hybrid control systems exploit state variables that
may flow as well as jump to achieve control objectives that
are difficult or impossible to achieve with controllers that
are not hybrid. Perhaps the simplest example of a hybrid
control system is one that uses a relay-type hysteresis ele-
ment to avoid cycling the system’s actuators between “on”
and “off ” too frequently.

Consider controlling the temperature of a room by
turning a heater on and off. As a good approximation, the
room’s temperature T is governed by the differential equa-
tion

Ṫ D �T C T0 C T#u ; (1)

where T0 represents the natural temperature of the room,
T# represents the capacity of the heater to raise the tem-
perature in the room by being always on, and the variable u
represents the state of the heater, which can be either 1
(“on”) or 0 (“off ”).

A typical temperature control task is to keep the
temperature between two specified values Tmin and Tmax
where

T0 < Tmin < Tmax < T0 C T# :
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For purposes of illustration, consider the case when
Tmin D 70ıF, Tmax D 80ıF. An algorithm that accom-
plishes this control task is

input T, u
if u=1 and T >= 80 then
u=0

elseif u = 0 and T <= 70 then
u=1

end

In words, if the heater is “on” and the temperature is larger
than 80ıF, then the heater is turned off, while if the heater
is “off ” and the temperature is smaller than 70ıF, then
the heater is turned on. By programming the controller
with the algorithm above and closing the loop, the tem-
perature of the system will evolve as shown in Fig. 1 (the
values T0 D 60ıF and T# D 30ıF were used in these sim-
ulations).

Following the logic in the algorithm above, the con-
troller can be expressed by the following conditional dif-
ference equation

uC D 0 if u D 1; T � 80

uC D 1 if u D 0; T � 70 ;

where uC is the value of u after a jump. Combining this
difference equation with the differential equation (1) leads
to the closed-loop system

Ṫ D �T C T0 C T#u
u̇ D 0

)
u D 0; T � 70 or
u D 1; T � 80

(2)

TC D T

uC D 1 � q

)

u D 1; T � 80 or u D 0; T � 70 :

(3)

This closed-loop system is a hybrid dynamical system.
The state variables are T and u; the continuous dynamics

Hybrid Control Systems, Figure 1
Temperature control. a Flow diagramof control algorithm. b Evolution of temperature with control algorithm

or flows as well as the constraints on the continuous evo-
lution are given by (2); the discrete dynamics or jumps as
well as the constraints on the discrete evolution are given
by (3).

As in the temperature control problem above, a hybrid
control system can arise from controlling a classical system
with a hybrid controller. In a more general setting, hybrid
control systems emerge when controlling hybrid systems
with nonlinear and/or hybrid controllers. Consider con-
trolling the verticalmotion of a ball through collisions with
an actuated robot. Figure 2 depicts such a scenario. The
impacts between the ball and the robot generate a jump in
their velocity. When the control task is to stabilize the ball
to a periodic motion, like the height pattern in Fig. 2b, this
system is referred to as the one degree-of-freedom juggler.

The dynamics of the ball in between the collisions are
given by classical physics laws and can be written in terms
of the ball’s height and vertical velocity, denoted by x11 and
x12, respectively, as follows:

ẋ11 D x12
ẋ12 D �� ;

(4)

where � is the gravity constant. We denote the mass of the
ball bym1.

We consider a robot with a vertical velocity control in-
put u and denote the robot’s height and velocity by x21 and
x22, respectively. Then, its dynamics are given by

ẋ21 D x21
ẋ22 D u :

(5)

The mass of the actuated robot is denoted bym2.
Following [10,58], impacts between the ball and the

robot are assumed to conserve momentum, i. e.,

m1xC12 C m2xC22 D m1x12 C m2x22 ; (6)

and, for some restitution coefficient e 2 (0; 1), satisfy

xC12 � xC22 D �e(x12 � x22) : (7)
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Hybrid Control Systems, Figure 2
One degree-of-freedom juggler and a juggling task. Positions
are denoted by x11; x21 and velocities by x12; x22, respectively.
The control input is denoted by u. A desired height pattern is de-
noted by r11. a Ball and actuated robot. b Desired ball’s height
pattern

Defining  :D m1
m1Cm2

, Eqs. (6) and (7) can be combined
to obtain the update law for velocities

�
xC12
xC12

�
D

�
�e C (1C e) (1 � )(1C e)
(1C e) 1 � (1C e)

� �
x12
x22

�

D: � (; e)
�
x12
x22

�
:

The update law for positions is given by

xC11 D x11 ; xC21 D x21 :

Impacts between the ball and the actuated robot occur
when their heights are the same, that is, x11 D x21, and
when their velocities indicate that they are not moving
away from each other, that is, x12 � x22.

The derivation above leads to the following model for
the one degree-of-freedom juggler system in Fig. 2:

Hybrid Control Systems, Figure 3
Trajectories to the one degree-of-freedom juggler. Their positions are denoted by x11; x21 and their velocities by x12; x22, respec-
tively. The desired height pattern is denoted by r11. a Juggling on ball. b Ball’s position and velocity

Flows:

ẋ11 D x12 ; ẋ12 � �
ẋ21 D x22 ; ẋ22 D u

)

x11 � x21 � 0 :

Jumps:

xC11 D x11

xC12 D
�
1 0

�
� (; e)

�
x12
x22

�

xC21 D x21

xC22 D
�
1 0

�
� (; e)

�
x12
x22

�

9
>>>>>>>>=

>>>>>>>>;

x11 � x21 D 0
and x12 � x22 � 0 :

A controller designed to accomplish stabilization of the
ball to a periodic pattern will only be able to measure
the ball’s state at impacts. During flows, it will be able to
control the robot’s velocity through u. Regardless of the
nature of the controller, the closed-loop system will be
a hybrid system by virtue of the dynamics of the one
degree-of-freedom system. Figure 3 shows a trajectory to
the closed-loop system with a controller that stabilizes the
ball state to the periodic pattern in Fig. 2b (note the dis-
continuity in the velocity of the ball at impacts); see the
control strategy in [55].

Following the modeling techniques illustrated by the
examples above, the next section introduces a general
modeling framework for hybrid dynamical systems. The
framework makes possible the development of a robust
stability theory for hybrid dynamical systems and prepares
the way for insights into the design of robust hybrid con-
trol systems.
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Well-posed Hybrid Dynamical Systems

For numerous mathematical problems, well-posedness
refers to the uniqueness of a solution and its continuous
dependence on parameters, for example on initial condi-
tions. Here, well-posedness will refer to some mild regu-
larity properties of the data of a hybrid system that enable
the development of a robust stability theory.

Hybrid Behavior and Model

Hybrid dynamical systems combine continuous and dis-
crete dynamics. Such a combination may emerge when
controlling a continuous-time system with a control algo-
rithm that incorporates discrete dynamics, like in the tem-
perature control problem in Sect. “Introduction”, when
controlling a system that features hybrid phenomena, like
in the juggling problem in Sect. “Introduction”, or as
a modeling abstraction of complex dynamical systems.

Solutions to hybrid systems (sometimes referred to as
trajectories, executions, runs, or motions) can evolve both
continuously, i. e. flow, and discontinuously, i. e. jump.
Figure 4 depicts a representative behavior of a solution to
a hybrid system.

For a purely continuous-time system, flows are usu-
ally modeled by differential equations, and sometimes
by differential inclusions. For a purely discrete-time sys-
tem, jumps are usually modeled by difference equations,
and sometimes by difference inclusions. Set-valued dy-
namics naturally arise as regularizations of discontinu-
ous difference and differential equations and represent the
effect of state perturbations on such equations, in particu-
lar, the effect of state measurement errors when the equa-
tions represent a system in closed loop with a (discontin-
uous) feedback controller. For the continuous-time case,
see the work by Filippov [22] and Krasovskii [34], as well
as [26,27,]; for the discrete-time case, see [33].

When working with hybrid control systems, it is ap-
propriate to allow for set-valued discrete dynamics in or-
der to capture decision making capabilities, which are typ-
ical in hybrid feedback. Difference inclusions, rather than

Hybrid Control Systems, Figure 4
Evolution of a hybrid system: continuous motion during flows
(solid), discontinuous motion at jumps (dashed)

equations, also arise naturally in modeling of hybrid au-
tomata, for examplewhen the discrete dynamics are gener-
ated by multiple so-called “guards” and “reset maps”; see,
e. g. [8,11,40] or [56] for details on modeling guards and
resets in the current framework.

Naturally, differential equations and difference inclu-
sions will be featured in the model of a hybrid system. In
most hybrid systems, or even in some purely continuous-
time systems, the flowmodeled by a differential equation is
allowed to occur only on a certain subset of the state space
Rn . Similarly, the jumps modeled by a difference equa-
tion may only be allowed from a certain subset of the state
space. Hence, the model of the hybrid system stated above
will also feature a flow set, restricting the flows, and a jump
set, restricting the jumps.

More formally, a hybrid system will be modeled with
the following data:

� The flow set C � Rn ;
� The flow map f : C ! Rn ;
� The jump set D � Rn ;
� The (set-valued) jump map G : D � Rn .

A shorthand notation for a hybrid system with this data
will beH D ( f ;C;G;D). Such systems can be written in
the suggestive form

H : x 2 Rn

(
ẋ D f (x) ; x 2 C

xC 2 G(x) ; x 2 D ;
(8)

where x 2 Rn denotes the state of the system, ẋ denotes its
derivative with respect to time, and xC denotes its value
after jumps. In several control applications, the state x of
the hybrid system can contain logic states that take value
in discrete sets (representing, for example, “on” or “off ”
states, like in the temperature control problem in Sect. “In-
troduction”).

Two parameters will be used to specify “time” in solu-
tions to hybrid systems: t, taking values inR�0, and repre-
senting the elapsed “real” time; and j, taking values in N ,
and representing the number of jumps that have occurred.
For each solution, the combined parameters (t; j) will be
restricted to belong to a hybrid time domain, a particular
subset of R�0 �N . Hybrid time domains corresponding
to different solutions may differ.

Note that with such a parametrization, both purely
continuous-time and purely discrete-time dynamical sys-
tems can be captured. Furthermore, for truly hybrid solu-
tions, both flows and jumps are parametrized “symmetri-
cally” (cf. [8,40]).

A subset E of R�0 �N is a hybrid time domain
if it is the union of infinitely many intervals of the
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form [t j; t jC1] � f jg, where 0 D t0 � t1 � t2 � : : :, or of
finitely many such intervals, with the last one possibly of
the form [t j; t jC1] � f jg, [t j; t jC1) � f jg, or [t j;1) � f jg.
On each hybrid time domain there is a natural ordering of
points: we write (t; j) � (t0 j0) for (t; j); (t0; j0) 2 E if t � t0

and j � j0 .
Solutions to hybrid systems are given by functions,

which are called hybrid arcs, defined on hybrid time do-
mains and satisfying the dynamics and the constraints
given by the data of the hybrid system. A hybrid arc is
a function x : dom x ! Rn , where dom x is a hybrid time
domain and t 7! x(t; j) is a locally absolutely continuous
function for each fixed j. A hybrid arc x is a solution to
H D ( f ;C;G;D) if x(0; 0) 2 C [ D and it satisfies

Flow condition:

ẋ(t; j) D f (x(t; j)) and x(t; j) 2 C (9)

for all j 2 N and almost all t such that (t; j) 2
dom x;

Jump condition:

x(t; jC 1) 2 G(x(t; j)) and x(t; j) 2 D (10)

for all (t; j) 2 dom x such that (t; jC 1) 2 dom x.

Figure 5 shows a solution to a hybrid system H D

( f ;C;G;D) flowing (as solutions to continuous-time sys-
tems do) while in the flow set C and jumping (as solutions
to discrete-time systems do) from points in the jump setD.

A hybrid arc x is said to be nontrivial if dom x con-
tains at least one point different from (0; 0) and complete
if dom x is unbounded (in either the t or j direction, or
both). It is said to be Zeno if it has an infinite number of
jumps in a finite amount of time, and discrete if it has an
infinite number of jumps and never flows. A solution x to
a hybrid system is maximal if it cannot be extended, i. e.,

Hybrid Control Systems, Figure 5
Evolution of a solution to a hybrid system. Flows and jumps of
the solution x are allowed only on the flow set C and on the jump
set D, respectively

there is no solution x0 such that dom x is a proper subset
of dom x0 and x agrees with x0 on dom x. Obviously, com-
plete solutions are maximal.

Conditions for Well-Posedness

Many desired results in stability theory for dynamical sys-
tems, like invariance principles, converse Lyapunov the-
orems, or statements about generic robustness of stabil-
ity, hinge upon some fundamental properties of the space
of solutions to the system. These properties may involve
continuous dependence of solutions on initial conditions,
completeness and sequential compactness of the space of
solutions, etc.

To begin addressing these or similar properties for hy-
brid systems, one should establish a concept of distance
between solutions. In contrast to purely continuous-time
systems or purely discrete-time systems, the uniform met-
ric is not a suitable indicator of distance: two solutions ex-
periencing jumps at close but not the same times will not
be close in the uniform metric, even if (intuitively) they
represent very similar behaviors. For example, Fig. 6 shows
two solutions to the juggling problem in Sect. “Introduc-
tion” starting at nearby initial conditions for which the ve-
locities are not close in the uniform metric.

Amore appropriate distance notion should take possi-
bly different jump times into account. We use the follow-
ing notion: given T; J; " > 0, two hybrid arcs x : dom x !
Rn and y : dom y ! Rn are said to be (T; J; ")-close if:

(a) for all (t; j) 2 dom x with t � T , j � J there exists s
such that (s; j) 2 dom y, jt � sj < ", and

jx(t; j) � y(s; j)j < " ;

(b) for all (t; j) 2 dom y with t � T , j � J there exists s
such that (s; j) 2 dom x, jt � sj < ", and

jy(t; j) � x(s; j)j < " :

An appealing geometric interpretation of (T; J; ")-
closeness of x and y can be given. The graph of a hybrid
arc x : dom x ! Rn is the subset ofRnC2 given by

gph x :D f(t; j; z) j(t; j) 2 dom x; z D x(t; j) g :

Hybrid arcs x and y are (T; J; ")-close if the restriction
of the graph of x to t � T , j � J, i. e., the set f(t; j;
z)j(t; j) 2 dom x; t � T; j � J; z D x(t; j)g, is in the "-
neighborhood of gph y, and vice versa: the restriction of
the graph of y is in the "-neighborhood of gph x. (The
neighborhoods of gph x and gphy should be understood
in the norm for which the unit ball is [�1; 1]�[�1; 1]�B.)
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Hybrid Control Systems, Figure 6
Two solutions to the juggling system in Sect. “Introduction” starting at nearby initial conditions. Velocities are not close in the uni-
formmetric near the jump times. a Ball’s heights. b Ball’s velocities

The (T; J; ")-closeness can be used to quantify the con-
cept of graphical convergence of a sequence of hybrid arcs;
for details, see [23]. Here, it is only noted that graphi-
cal convergence of a sequence of mappings is understood
as convergence of the sequence of graphs of these map-
pings. Such a convergence concept does have solid intu-
itive motivation when the mappings considered are asso-
ciated with solutions to hybrid systems.

It turns out that when (T; J; ")-closeness and graph-
ical convergence are used to study the properties of the
space of solutions to a hybrid system H D ( f ;C;G;D),
only mild and easy to verify conditions on the data ofH
are needed to ensure thatH is “well-posed”. These condi-
tions are:

(C1) the flow set C and jump set D are closed;
(C2) the flow map f : C ! Rn is continuous;
(C3) the jump map G : D � Rn is outer semicontinuous

and locally bounded.

Only (C3) requires further comment:G : D � Rn is outer
semicontinuous if for every convergent sequence xi 2 D
with xi ! x and every convergent sequence yi 2 G(xi )
with yi ! y, one has y 2 G(x); G is locally bounded if
for each compact set K � Rn there exists a compact set
K0 � Rn such that G(x) � K0 for all x 2 K. Any system
H D ( f ;C;G;D) meeting (C1), (C2), and (C3) will be re-
ferred to as well-posed.

One important consequence of a hybrid systemH be-
ing well-posed is the following:

(?) Every sequence of solutions to H has a subse-
quence that graphically converges to a solution toH ,

which holds under very mild boundedness assumptions
about the sequence of solutions in question. The assump-
tions hold, for example, if the sequence is uniformly
bounded, i. e., there exists a compact set K � Rn such
that, for each i, xi(t; j) 2 K for all (t; j) 2 dom xi , where
fxig1iD1 is a sequence of solutions.

Another important consequence of well-posedness is
the following outer-semicontinuity (or upper-semicontinu-
ity) property:

(??) For every x0 2 Rn , every desired level of close-
ness of solutions " > 0, and every (T; J), there exists
a level of closeness for initial conditions ı > 0 so that
for every solution xı toH with jxı(0; 0) � x0j < ı,
there exist a solution x toH with x(0; 0) D x0 such
that xı and x are (T; J; ")-close.

This property holds at each x0 2 Rn from which all maxi-
mal solutions toH are either complete or bounded.

Properties (?) and (??), while being far weaker than
any kind of continuous dependence of solutions on initial
conditions, are sufficient to develop basic stability charac-
terizations. Continuous dependence of solutions on initial
conditions is rare in hybrid systems, as in its more classi-
cal meaning it entails uniqueness of solutions from each
initial point. If understood in a set-valued sense, in order
for inner-semicontinuity (or lower-semicontinuity) to be
present, it still requires many further assumptions on the
data.

Property (?) is essentially all that is needed to estab-
lish invariance principles, which will be presented in Sub-
sect. “Invariance Principles”. Property (??) is useful in
describing, for example, uniformity of convergence and
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of overshoots in an asymptotically stable hybrid system.
For the analysis of robustness properties of well-posed hy-
brid systems, strengthened versions of (?) and (??) are
available. They take into account the effect of small per-
turbations; for example a stronger version of (?) makes
the same conclusion not about a sequence of solutions
toH , but about a sequence of solutions to H generated
with vanishing perturbations. (More information can be
found in [23].) It is the stronger versions of the two prop-
erties that make converse Lyapunov results possible; see
Subsect. “Converse Lyapunov Theorems and Robustness”,
wheremore precise meaning to perturbations is also given.

In the rest of this article, the analysis results will as-
sume that (C1)–(C3) hold, i. e., the hybrid system under
analysis is well-posed. The control algorithms will be con-
structed so that the corresponding closed-loop systems are
well-posed. Such algorithms will be called well-posed con-
trollers.

Modeling Hybrid Control Systems

Hybrid Controllers for Classical Systems

Given a nonlinear control system of the form

P :

(
ẋ D f (x; u) ; x 2 CP

y D h(x) ;
(11)

where CP is a subset of the state space where the system is
allowed to evolve, a general output-feedback hybrid con-
trollerK D (�; �;CK ;  ;DK) takes the form

K :

8
<̂

:̂

u D �(y; �)
�̇ D �(y; �) ; (y; �) 2 CK

�C 2  (y; �) ; (y; �) 2 DK ;

where the output of the plant y 2 Rp is the input to the
controller, the input to the plant u 2 Rm is the output of
the controller, and � 2 Rk is the controller state. When
system (11) is controlled by K, their interconnection re-
sults in a hybrid closed-loop system given by

ẋ D f (x; �(h(x); �))
�̇ D �(h(x); �)

)

(x; �) 2 C

xC D x

�C 2  (h(x); �)

)

(x; �) 2 D ;

(12)

where

C :D f(x; �) jx 2 CP ; (h(x); �) 2 CK g

D :D f(x; �) j(h(x); �) 2 DK g :

We now cast some specific situations into this framework.

Hybrid Control Systems, Figure 7
Sample-and-hold control of a nonlinear system

Sample-and-hold Control

Perhaps the simplest example of a hybrid system that arises
in control system design is when a continuous-time plant
is controlled via a digital computer connected to the plant
through a sample-and-hold device. This situation is ubiq-
uitous in feedback control applications. A hybrid system
emerges by considering the nonlinear control system (11),
with CP D Rn , where the measurements y are sampled ev-
ery T > 0 seconds, producing a sampled signal ys that is
processed through a discrete-time algorithm

�
zC

us

�
D �(z; ys )

to generate a sequence of input values us each of which is
held for T seconds to generate the input signal u.

When combined with the continuous-time dynamics,
this algorithm will do the following:

� At the beginning of the sample period, it will update
the value of u and the value of the controller’s internal
state z, based on the values of z and y (denoted ys) at
the beginning of the sampling period.

� During the rest of the sampling period, it will hold the
values of u and z constant.

A complete model of this behavior is captured by
defining the controller state to be

� :D

2

6
4

z
�

�

3

7
5 ;

where � keeps track of the input value to hold during
a sampling period and � is a timer state that determines
when the state variables z and � should be updated. The
hybrid controller is specified in the form of the previous
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section as

u D �
ż D 0

�̇ D 0
�̇ D 1

9
>>>>=

>>>>;

(y; z; �; �) 2 CK

�
z
�

�C
D �(z; y)

�C D 0

9
>=

>;
(y; z; �; �) 2 DK ;

where

CK :D f(y; z; �; �) j� 2 [0; T] g ;
DK :D f(y; z; �; �) j� D T g :

The overall closed-loop hybrid system is given by

ẋ D f (x; �)
ż D 0

�̇ D 0
�̇ D 1

9
>>>>=

>>>>;

(x; z; �; �) 2 C

xC D x
�
z
�

�C
D �(z; h(x))

�C D 0

9
>>>>=

>>>>;

(x; z; �; �) 2 D ;

where

C :D f(x; z; �; �) j� 2 [0; T] g ;
D :D f(x; z; �; �) j� D T g :

Notice that if the function � is discontinuous then this may
fail to be a well-posed hybrid system. In such a case, it be-
comes well-posed by replacing the function � by its set-
valued regularization

�̄(z; y) :D
\

ı>0

�((z; y)C ıB) :

This corresponds to allowing, at points of discontinuity,
values that can be obtained with arbitrarily small pertur-
bations of z and y. Allowing these values is reasonable in
light of inevitable control systems perturbations, like mea-
surement noise and computer round-off error.

Networked Control Systems

Certain classes of networked control systems can be
viewed as generalizations of systems with a sample-and-
hold device. The networked control systems generaliza-
tion allows for multiple sample-and-hold devices operat-
ing simultaneously and asynchronously, and with a vari-
able sampling period. Compared to the sample-and-hold

closed-loop model in Subsect. “Sample-and-hold Con-
trol”, one can think of u as a large vector of inputs to a col-
lection of i plants, collectively modeled by ẋ D f (x; u).
The update rule for u may only update a certain part of u
at a given jump time. This update rule may depend not
only on z and y but perhaps also on u and a logic variable,
which we denote by `, that may be cycling through the
list of i indices corresponding to connections to different
plants. Several common update protocols use algorithms
that are discontinuous functions, so this will be modeled
explicitly by allowing a set-valued update rule. Finally, due
to time variability in the behavior of the network connect-
ing the plants, the updates may occur at any time in an
interval [Tmin; Tmax] where Tmin > 0 represents the min-
imum amount of time between transmissions in the net-
work and Tmax > Tmin represents the maximum amount
of time between transmissions. The overall control system
for the network of plants is given by

u D �
ż D 0

�̇ D 0
˙̀D 0
�̇ D 1

9
>>>>>>>=

>>>>>>>;

(y; z; �; `; �) 2 CK

�
z
�

�C
2 �(z; y; �; `)

`C D (`mod i)C 1

�C D 0

9
>>>>=

>>>>;

(y; z; �; `; �) 2 DK ;

where

CK :D f(y; z; �; `; �) j� 2 [0; Tmax] g ;
DK :D f(y; z; �; `; �) j� 2 [Tmin; Tmax] g :

The closed-loop networked control system has the form

ẋ D f (x; �)
ż D 0

�̇ D 0
˙̀D 0
�̇ D 1

9
>>>>>>>=

>>>>>>>;

(x; z; �; `; �) 2 C

xC D x
�
z
�

�C
2 �(z; h(x); �; `)

`C D (`mod i)C 1

�C D 0

9
>>>>>>>=

>>>>>>>;

(x; z; �; `; �) 2 D ;
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where

C :D f(x; z; �; `; �) j� 2 [0; Tmax] g ;
D :D f(x; z; �; `; �) j� 2 [Tmin; Tmax] g :

Reset Control Systems

The first documented reset controller was created by
Clegg [19]. Consisting of an operational amplifier, resis-
tors, and diodes, Clegg’s controller produced an output
that was the integral of its input subject to the constraint
that the sign of the output and input agreed. This was
achieved by forcing the state of the circuit to jump to
zero, a good approximation of the behavior induced by the
diodes, when the circuit’s input changed sign with respect
to its output. Consider such a circuit in a negative feedback
loop with a linear control system

ẋ D Ax C Bu ; x 2 Rn ; u 2 R

y D Cx ; y 2 R :

Use � to denote the state of the integrator. Then, the hybrid
model of the Clegg controller is given by

u D �
�̇ D �y ; (y; �) 2 CK

�C D 0 ; (y; �) 2 DK ;

where

CK :D f(y; �) j�y � 0 g ;
DK :D f(y; �) j�y � 0 g :

One problem with this model is that it exhibits discrete
solutions, as defined in Subsect. “Hybrid Behavior and
Model”. Indeed, notice that the jump map takes points
with � D 0, which are in the jump set DK , back to points
with � D 0. Thus, there are complete solutions that start
with � D 0 and never flow, which corresponds to the defi-
nition of a discrete solution.

There are several ways to address this issue. When
a reset controller like the Clegg integrator is implemented
through software, a temporal regularization, as discussed
next in Subsect. “Zeno Solutions and Temporal Regular-
ization”, can be used to force a small amount of flow time
between jumps. Alternatively, and also for the case of an
analog implementation, one may consider a more detailed
model of the reset mechanism, as the model proposed
above is not very accurate for the case where � and y are
small. This modeling issue is analogous to hybrid model-

ing issues for a ball bouncing on a floor where the simplest
model is not very accurate for small velocities.

Zeno Solutions and Temporal Regularization

Like for reset control systems, the closed-loop system (12)
may exhibit Zeno solutions, i. e., solutions with an infi-
nite number of jumps in a finite amount of time. These
are relatively easy to detect in systems with bounded so-
lutions, as they exist if and only if there exist discrete so-
lutions, i. e., solutions with an infinite number of jumps
and no flowing time. Discrete solutions in a hybrid con-
trol system are problematic, especially from an imple-
mentation point of view, but they can be removed by
means of temporal regularization. The temporal regu-
larization of a hybrid controller K D (�; �;CK ;  ;DK)
is generated by introducing a timer variable � that re-
sets to zero at jumps and that must pass a threshold de-
fined by a parameter ı 2 (0; 1) before another jump is
allowed. The regularization produces a well-posed hy-
brid controller Kı : D (�̃; �̃;CK;ı ;  ̃ ;DK;ı ) with state
�̃ :D (�; �) 2 RkC1, where

�̃(�̃) :D �(�)
�̃(�̃) :D �(�) � f1 � �g ;
 ̃(�̃) :D  (�) � f0g ;

CK;ı :D
�
CK �R�0


[ (Rk � [0; ı]) ;

DK;ı :D DK � [ı; 1] :

This regularization is related to one type of temporal
regularization introduced in [32]. The variable � is ini-
tialized in the interval [0; 1] and remains there for all
time. When ı D 0, the controller accepts flowing only if
(y; �) 2 CK , since �̇ D 1 � � and the flow condition for �
when (y; �) … CK is � D 0. Moreover, jumping is possi-
ble for ı D 0 if and only if (y; �) 2 DK . Thus, the con-
troller with ı D 0 has the same effect on the closed loop
as the original controller K. When ı > 0, the controller
forces at least ı seconds between jumps since �̇ � 1 for
all � 2 [0; ı]. In particular, Zeno solutions, if there were
any, are eliminated. Based on the remarks at the end of
Subsect. “Conditions for Well-Posedness”, we expect the
effect of the controller for small ı > 0 to be close to the ef-
fect of the controller with ı D 0. In particular, we expect
that this temporal regularization for small ı > 0 will not
destroy the stability properties of the closed-loop hybrid
system, at least in a practical sense. This aspect is discussed
in more detail in Subsect. “Zeno Solutions, Temporal Reg-
ularization, and Robustness”.
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Hybrid Controllers for Hybrid Systems

Another interesting scenario in hybrid control is when
a hybrid controller

K

8
<̂

:̂

u D �(y; �)
�̇ D �(y; �) ; (y; �) 2 CK

�C 2  (y; �) ; (y; �) 2 DK

is used to control a plant that is also hybrid, perhaps mod-
eled as

ẋ D f (x; u) ; x 2 CP

xC D g(x) ; x 2 DP

y D h(x) :

This is the situation for the juggling example presented in
Sect. “Introduction”. In this scenario, the hybrid closed-
loop system is modeled as

ẋ D f (x; �(h(x); �))
�̇ D �(h(x); �)

)

(x; �) 2 C

�
x
�

�C
2 G(x; �) ; (x; �) 2 D

where

C :D f(x; �) jx 2 CP ; (h(x); �) 2 CK g

D :D f(x; �) jx 2 DP or (h(x); �) 2 DK g

and

GP(x; �) :D
�
g(x)
�

�

GK(x; �) :D
�
fxg

 (h(x); �)

�

G(x; �) :D

8
ˆ̂̂
<̂

ˆ̂̂
:̂

GP(x; �) ; x 2 DP ; (h(x); �) … DK

GK(x; �) ; x … DP ; (h(x); �) 2 DK

GP(x; �) [ GK(x; �) ;
x 2 DP ; (h(x); �) 2 DK :

As long as the data of the controller and plant are well-
posed, the closed-loop system is a well-posed hybrid sys-
tem. Also, it can be verified that the only way this model
can exhibit discrete solutions is if either the plant exhibits
discrete solutions or the controller, with constant y, ex-
hibits discrete solutions. Indeed, if the plant does not ex-
hibit discrete solutions then a discrete solution for the
closed-loop system would eventually have to have x, and
thus y, constant. Then, if there are no discrete solutions

to the controller with constant y, there can be no discrete
solutions to the closed-loop system.

Stability Theory

Lyapunov stability theory for dynamical systems typically
states that asymptotically stable behaviors can be charac-
terized by the existence of energy-like functions, which
are called Lyapunov functions. This theory has served as
a powerful tool for stability analysis of nonlinear dynam-
ical systems and has enabled systematic design of robust
control systems. In this section, we review some recent ad-
vances on Lyapunov-based stability analysis tools for hy-
brid dynamical systems.

Global (Pre-)Asymptotic Stability

In a classical setting, say of differential equations with
Lipschitz continuous right-hand sides, existence of solu-
tions and completeness of maximal ones can be taken for
granted. These properties, together with a Lyapunov in-
equality ensuring that the Lyapunov function decreases
along each solution, lead to a classical concept of asymp-
totic stability. On its own, the Lyapunov inequality does
not say anything about the existence of solutions. It is
hence natural to talk about a concept of asymptotic sta-
bility that is related only to the Lyapunov inequality. This
appears particularly natural for the case of hybrid sys-
tems, where existence and completeness of solutions can
be problematic.

The compact set A � Rn is stable for H if for
each " > 0 there exists ı > 0 such that any solution x
to H with jx(0; 0)jA � ı satisfies jx(t; j)jA � " for all
(t; j) 2 dom x; it is globally pre-attractive for H if any
solution x to H is bounded and if it is complete then
x(t; j)!A as t C j!1; it is globally pre-asymptoti-
cally stable if it is both stable and globally pre-attractive.
When everymaximal solution toH is complete, the prefix
“pre” can be dropped and the “classical” notions of stabil-
ity and asymptotic stability are recovered.

Globally Pre-Asymptotically Stable˝-Limit Sets Sup-
pose all solutions to the hybrid system are bounded, there
exists a compact set S such that all solutions eventually
reach and remain in S, and there exists a neighborhood
of S from which this convergence to S is uniform. (We are
not assuming that the set S is forward invariant and thus
it may not be stable.) Moreover, assume there is at least
one complete solution starting in S. In this case, the hy-
brid system admits a nonempty compact setA � S that is
globally pre-asymptotically stable. Indeed, one such set is
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the so-called˝-limit set of S, defined as

˝H (S) :D

8
ˆ̂
ˆ̂̂
<

ˆ̂̂
ˆ̂:

y 2 Rn

ˇ
ˇ̌
ˇ
ˇ̌
ˇ
ˇ̌
ˇ
ˇ

y D lim
i!1

xi(ti ; ji ) ;

ti C ji !1 ; (ti ; ji ) 2 dom xi
xi is a solution toH
with xi(0; 0) 2 S

9
>>>>>=

>>>>>;

:

In fact, this˝-limit set is the smallest compact set in S that
is globally pre-asymptotically stable.

To illustrate this concept, consider the temperature
control system in Sect. “Introduction” with additional
heater dynamics given by

ḣ D �3hC (2h# C h)u ;

where h is the heater temperature and h# is a constant
that determines how hot the heater can get due to being
on. That is, when the heater is “on” (u D 1), its temper-
ature rises asymptotically towards h#. There is a max-
imum temperature h
̄ < h# for which the heater can
operate safely, and another temperature h
 < h
̄ corre-
sponding to a temperature far enough below h
̄ that it is
considered safe to turn the heater back on. For the de-
sired range of temperatures for T given by Tmin D 70ıF,
Tmax D 80ıF and T# D 30ıF, let the overheating con-
stant be h# D 200ıF, the maximum safe temperature
be h
̄ D 150ıF, and the lower temperature h
 D 50ıF.
Then, to keep the temperature T in the desired range and
prevent overheating, the following algorithm is used:

� When the heater is “on” (u D 1) and either T � 80 or
h � 150, then turn the heater off (uC D 0).

� When the heater is “off ” (u D 0) and T � 70 and
h � 50, then turn the heater on (uC D 1).

These rules define the jump map for u, which is given
by uC D 1 � u, and the jump set of the hybrid control
system. The resulting hybrid closed-loop system, denoted
byHT , is given by

Ṫ D �T C T0 C T#u

ḣ D �3hC (2h# C h)u
u̇ D 0

9
>=

>;

8
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
:

u D 1;
(T � 80 and h � 150)

or
u D 0;
(T � 70 or h � 50)

TC D T

hC D h

uC D 1 � u

9
>>=

>>;

8
<̂

:̂

u D 1; (T � 80 or h � 150)
or

u D 0; (T � 70 and h � 50) :

For this system, the set

S :D [70; 80] � [0; 150] � f0; 1g (13)

is not forward invariant. Indeed, consider the initial con-
dition (T; h; u) D (70; 150; 0) which is not in the jump
set, so there will be some time where the heater remains
off, cooling the room to a value below 70ıF. Neverthe-
less, all trajectories converge to the set S and a neighbor-
hood of initial conditions around S produce solutions that
reach the set S in a uniform amount of time. Thus, the set
˝HT (S) � S is a compact globally pre-asymptotically sta-
ble set for the systemHT .

Converse Lyapunov Theorems and Robustness

For purely continuous-time and discrete-time systems
satisfying some regularity conditions, global asymptotic
stability of a compact set implies the existence of
a smooth Lyapunov function. Such results, known as con-
verse Lyapunov theorems, establish a necessary condi-
tion for global asymptotic stability. For hybrid systems
H D ( f ;C;G;D), the conditions for well-posedness also
lead to a converse Lyapunov theorem.

If a compact set A � Rn is globally pre-asymptoti-
cally stable for the hybrid systemH D ( f ;C;G;D),
then there exists a smooth Lyapunov function; that is,
there exists a smooth function V : Rn ! R�0 that
is positive definite with respect to A, radially un-
bounded, and satisfies

hrV(x); f (x)i � �V (x) 8x 2 C ;

max
g2G(x)

V(g) �
V (x)
2

8x 2 D :

Converse Lyapunov theorems are not of mere theoret-
ical interest as they can be used to characterize robustness
of asymptotic stability. Suppose thatH D ( f ;C;G;D) is
well-posed and that V : Rn ! R�0 is a smooth Lyapunov
function for some compact set A. The smoothness of V
and the regularity of the data ofH imply that V decreases
along solutions when the data is perturbed. More pre-
cisely:

Global pre-asymptotic stability of the compact set
A � Rn for H is equivalent to semiglobal prac-
tical pre-asymptotic stability of A in the size of
perturbations to H , i. e., to the following: there
exists a continuous, nondecreasing in the first ar-
gument, nonincreasing in second argument func-
tion ˇ : R�0 �R�0 ! R�0 with the property that
lims&0 ˇ(s; t) D limt!1 ˇ(s; t) D 0 and, for each
" > 0 and each compact set K � Rn , there ex-
ists �� > 0, such that for each perturbation level
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� 2 (0; ��] each solution x, x(0; 0) 2 K, to the �-per-
turbed hybrid system

H� : x 2 Rn

(
ẋ 2 F�(x) ; x 2 C�
xC 2 G�(x) ; x 2 D� ;

where, for each x 2 Rn ,

F�(x) :D co f ((x C �B) \ C)C �B ;
G�(x) :D fv 2 Rn jv 2 z C �B; z 2 G((x C �B) \ D) g ;

and

C� :D fz 2 Rn j(z C �B) \ C ¤ ;g ;
D� :D fz 2 Rn j(z C �B) \ D ¤ ;g ;

satisfies

jx(t; j)jA � maxfˇ(jx(0; 0)jA; tC j); "g 8(t; j) 2 dom x :

The above result can be readily used to derive robustness
of (pre-)asymptotic stability to various types of perturba-
tions, such as slowly-varying and weakly-jumping param-
eters, “average dwell-time” perturbations (see [16] for de-
tails), and temporal regularizations, as introduced in Sub-
sect. “Zeno Solutions and Temporal Regularization”. We
clarify the latter robustness now.

Zeno Solutions, Temporal Regularization, and Robust-
ness Some of the control systems we will design later will
have discrete solutions that evolve in the set we are trying
to asymptotically stabilize. So, these solutions do not af-
fect asymptotic stability adversely, but they are somewhat
problematic from an implementation point of view. We
indicated in Subsect. “Zeno Solutions and Temporal Reg-
ularization” how these solutions arising in hybrid control
systems can be removed via temporal regularization. Here
we indicate how doing so does not destroy the asymptotic
stability achieved, at least in a semi-global practical sense.

The assumption is that stabilization via hybrid con-
trol is achieved as a preliminary step. In particular, as-
sume that there is a well-posed closed-loop hybrid system
H :D ( f ;G;C;D) with state � 2 Rn , and suppose that the
compact set A � Rn is globally pre-asymptotically sta-
ble. Following the prescription for a temporal regulariza-
tion of a hybrid controller in Subsect. “Zeno Solutions and
Temporal Regularization”, we consider the hybrid system
Hı :D ( f̃ ;Cı ; G̃;Dı ) with the state x : D (�; �) 2 RnC1,
where ı 2 (0; 1) and

f̃ (x) :D f (�) � f1 � �g ;
G̃(x) :D G(�) � f0g ;
Cı :D

�
C �R�0


[ (Rn � [0; ı]) ;

Dı :D D � [ı; 1] :

As observed before, the system H0 D ( f̃ ;C0; G̃;D0) has
the compact set Ã :DA � [0; 1] globally pre-asymptoti-
cally stable. When ı > 0, in each hybrid time domain of
each solution, each time interval is at least ı seconds long,
since �̇ � 1 for all � 2 [0; ı]. In particular, Zeno solutions,
if there were any, have been eliminated. Regarding pre-
asymptotic stability, note that

Cı �
˚
z 2 RnC1 ˇ̌ (z C ıB) \ C0 6D ;

�

(with B � RnC1), while Dı � D0. Hence, following the
discussion above, one can conclude that forHı , the set Ã
is semi-globally practically asymptotically stable in the size
of the temporal regularization parameter ı. Broadly speak-
ing, temporal regularization does not destroy (practical)
pre-asymptotic stability ofA.

Lyapunov Stability Theorem

A Lyapunov function is not only necessary for asymptotic
stability but also sufficient. It is a convenient tool for estab-
lishing asymptotic stability because it eliminates the need
to solve explicitly for solutions to the system. In its suffi-
ciency form, the requirements of a Lyapunov function can
be relaxed somewhat compared to the conditions of the
previous subsection.

For a hybrid systemH D ( f ;C;G;D) the compact
set A � Rn is globally pre-asymptotically stable if
there exists a continuously differentiable function
V : Rn ! R� that is positive definite with respect
toA, radially unbounded, and, with the definitions,

uc (x) :D

(
hrV(x); f (x)i x 2 C
�1 otherwise

(14)

ud (x) :D

(
maxg2G(x) V(g) � V(x) x 2 D
�1 otherwise ;

(15)

satisfies

ud (x) � 0 8x 2 Rn (16)

uc (x) < 0 ; ud (x) < 0 8x 2 Rn nA : (17)

In light of the converse theorem of the previous sub-
section, this sufficient condition for global asymptotic
stability is reasonable. Nevertheless, finding a Lyapunov
function is often difficult to do. Thus, there is motivation
for stability analysis tools that relax the Lyapunov condi-
tions. There are several directions in which to go. One is in
the direction of invariance principles, which are presented
next.
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Invariance Principles

An important tool to study the convergence of solutions
to dynamical systems is LaSalle’s invariance principle.
LaSalle’s invariance principle [35,36] states that bounded
and complete solutions converge to the largest invari-
ant subset of the set where the derivative or the differ-
ence (depending whether the system is continuous-time
or discrete-time, respectively) of a suitable energy func-
tion is zero. In situations where the condition (17) holds
with nonstrict inequalities, the invariance principle pro-
vides a tool to extract information about convergence of
solutions.

By relying on the sequential compactness property
of solutions in Subsect. “Conditions for Well-Posedness”,
several versions of LaSalle-like invariance principles can
be stated for hybrid systems. Like for continuous-time and
discrete-time systems, to make statements about the con-
vergence of a solution one typically assumes that the solu-
tion is bounded, that its hybrid time domain is unbounded
(i. e., the solution is complete), and that a Lyapunov func-
tion does not increase along it. To obtain information
about the set to which the solution converges, an invari-
ant set is to be computed. For hybrid systems, since solu-
tions may not be unique, the standard concept of invari-
ance needs to be adjusted appropriately.

Following [35], but in the setting of hybrid systems, we
will insist that a (weakly) invariant set be both weakly for-
ward invariant and weakly backward invariant. The word
“weakly” indicates that only one solution, rather than all,
needs to meet some invariance conditions. By requiring
both forward and backward invariance we refine the sets to
which solutions converge. For a given setM and a hybrid
systemH , these notions were defined, in [54], as follows:

� Forward invariance: if for each point x0 2M there ex-
ists at least one complete solution x toH that starts at x0

and stays in the setM for all (t; j) 2 dom x.
� Backward invariance: if for each point q 2 M and ev-

ery positive number N there exists a point x0 from which
there exists at least one solution x toH and (t�; j�) 2
dom x such that x(t�; j�) D q and x(t; j) 2 M for all
(t; j) 2 dom x ; (t; j) � (t�; j�).

Then, the following invariance principle can be stated:

Let V : Rn ! R be continuously differentiable
and suppose that U � Rn is nonempty. Let x be
a bounded and complete solution to a hybrid system
H :D ( f ;C;G;D). If x satisfies x(t; j) 2 U for each
(t; j) 2 dom x and

uc (z) � 0; ud (z) � 0 for all z 2 U ;

then, for some constant r 2 V(U), the solution x ap-
proaches the largest weakly invariant set contained in

�
u�1c (0) [

�
u�1d (0) \ G

�
u�1d (0)

�
\ V�1(r) \ U :

(18)

Note that the statement and the conclusion of this invari-
ance principle resemble the ones by LaSalle for differen-
tial/difference equations. In particular, the definition of
the set (18) involves both the zero-level set of uc and ud as
the continuous and discrete-time counterparts of the prin-
ciple. For more details and other invariance principles for
hybrid systems, see [54].

The invariance principle above leads to the following
corollary on global pre-asymptotic stability:

For a hybrid systemH D ( f ;C;G;D) the compact
set A � Rn is globally pre-asymptotically stable if
there exists a continuously differentiable function
V : Rn ! R� that is positive definite with respect
to A, radially unbounded, such that, with the defi-
nitions (14)–(15),

uc(x) � 0; ud (x) � 0 8x 2 Rn ;

and, for every r > 0, the largest weakly invariant sub-
set in (18) is empty.

This corollary will be used to establish global asymptotic
stability in the control application in Subsect. “Source Lo-
calization”.

Design Tools

Supervisors of Hybrid Controllers

In this section, we discuss how to construct a single,
globally asymptotically stabilizing, well-posed hybrid con-
troller from several individual well-posed hybrid con-
trollers that behave well on particular regions of the state-
space but that are not defined globally.

Suppose we are trying to control a nonlinear system

ẋ D f (x; u) ; x 2 C0 (19)

and suppose that we have constructed a finite family of
well-posed hybrid controllersKq , that work well individu-
ally, on a particular region of the state space.We will make
this more precise below.

For simplicity, the controllers will share the same state.
This can be accomplished by embedding the states of the
individual controllers into a common state space. Each
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controller Kq , with q 2 Q and Q being a finite index set
not containing 0, is given by

Kq

8
<̂

:̂

u D �q(x; �)
�̇ D �q(x; �) ; (x; �) 2 Cq

�C 2  q(x; �) ; (x; �) 2 Dq :

(20)

The sets Cq andDq are such that (x; �) 2 Cq [ Dq implies
x 2 C0.

The union of the regions over which these con-
trollers operate is the region over which we want to ob-
tain robust, asymptotic stability. We define this set as
	 :D [q2Q

�
Cq [ Dq


. To achieve our goal, we will con-

struct a hybrid supervisor that makes decisions about
which of the hybrid controllers should be used based on
the state’s location relative to a collection of closed sets
�q � Cq [ Dq that cover 	. The hybrid supervisor will
have its own state q 2 Q. The composite controller, de-
notedK with flow set C and jump set D, should be such
that 1) C [ D D 	 �Q, 2) all maximal solutions of the
interconnection of K with (19), denoted H , starting in
	 �Q are complete, 3) and the compact setA �Q, a sub-
set of 	 �Q, is globally asymptotically stable for the sys-
temH .

We now clarify what we mean by the family of hybrid
controllers working well individually. LetHq denote the
closed-loop interconnection of the system (19) with the
hybrid controller (20). For each q 2 Q, the solutions to the
systemHq satisfy:

I. The setA is globally pre-asymptotically stable.
II. Each maximal solution is either complete or ends in

0

@
[

i2Q;i>q

�i

1

A [	n
�
Cq [ Dq


:

III. No maximal solution starting in � q reaches

	 n

2

4Cq [ Dq [

0

@
[

i2Q;i>q

�i

1

A

3

5 nA :

Item III holds for free for the minimum index qmin since
�qmin � Cqmin [ Dqmin and [i2Q�i D 	. The combina-
tion of the three items for the maximum index qmax im-
plies that the solutions to Hqmax that start in �qmax con-
verge toA.

Intuitively, the hybrid supervisor will attempt to reach
its goal by guaranteeing completeness of solutions and
making the evolution of q eventually monotonic while
(x; �) does not belong to the setA. In this way, the (x; �)

component of the solutions eventually converges to A
since q is eventually constant and because of the first as-
sumption above. The hybrid supervisor can be content
with sticking with controller q as long as (x; �) 2 Cq [ Dq ,
it can increment q if (x; �) 2 [i2Q;i>q�i , and it can do
anything it wants if (x; �) 2A. These are the only three
situations that should come up when starting from � q.
Otherwise, the hybrid controller would be forced to de-
crease the value of q, taking away any guarantee of con-
vergence. This provides the motivation for item III above.
Due to a disturbance or unfortunate initialization of q, it
may be that the state reaches a point that would not oth-
erwise be reached from � q. From such conditions, the im-
portant thing is that the solution is either complete (and
thus converges toA) or else reaches a point where either q
can be incremented or where q is allowed to be decre-
mented. This is the motivation for item II above.

The individual hybrid controllers are combined into
a single, well-posed hybrid controllerK as follows: Define
˚q :D [i2Q;i>q�i and then

K

8
ˆ̂̂
<̂

ˆ̂̂
:̂

u D �q(x; �)
�̇ D �q(x; �) ; (x; �) 2 C̃q
�
�

q

�C
2 Gq(x; �) ; (x; �) 2 D̃q ;

(21)

where

D̃q : D Dq [˚q [	n(Cq [ Dq) ;

C̃q is closed and satisfies

Cqn˚q � C̃q � Cq ;

and the set-valued mapping Gq is constructed via the fol-
lowing definitions:

Dq;a :D ˚q

Dqn˚q � Dq;b � Dq

Dq;c :D 	n
�
Cq [ Dq [ ˚q



and

Gq;a(x; �) :D
�

f� g

fi 2 Q ji > q ; (x; �) 2 �i g

�

Gq;b(x; �) :D
�
 q(x; �)
fqg

�

Gq;c(x; �) :D
�

f� g

fi 2 Q j(x; �) 2 �i g

�

Gq(x; �) :D
[

f j2fa;b;cg ; (x;�)2Dq; jg

Gq; j(x; �) :

(22)
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This hybrid controller is well-posed and induces complete
solutions from 	 �Q and global asymptotic stability of
the compact setA �Q.

Uniting Local andGlobal Controllers As a simple illus-
tration, consider a nonlinear control system ẋ D f (x; u),
x 2 Rn , and the task of globally asymptotically stabiliz-
ing the origin using state feedback while insisting on us-
ing a particular state feedback �2 in a neighborhood of the
origin. In order to solve this problem, one can find a state
feedback �1 that globally asymptotically stabilizes the ori-
gin and then combine it with �2 using a hybrid supervi-
sor. Suppose that the feedback �2 is defined on a closed
neighborhood of the origin, denoted C2, and that if the
state x starts in the closed neighborhood �2 � C2 of the
origin then the closed-loop solutions when using �2 do
not reach the boundary of C2. Then, using the notation
of this section, we can take �1 D C1 D Rn and D1 D

D2 D ;. With these definitions, the assumptions above
are satisfied and a hybrid controller can be constructed
to solve the posed problem. The controller need not use
the additional variable �. Its data is defined as Gq(x) :D
3 � q, D̃1 :D �2 D ˚1, D̃2 :D RnnC2, C̃1 :D C1n�2 and
C̃2 :D C2.

Additional examples of supervisors will appear in the
applications section later.

Patchy Control Lyapunov Functions

A key feature of (smooth) control Lyapunov functions
(CLFs) is that their decrease along solutions to a given con-
trol system can be guaranteed by an appropriate choice of
the control value, for each state value. It is known that, un-
der mild assumptions on the control system, the existence
of a CLF yields the existence of a robust (non hybrid) stabi-
lizing feedback. It is also known that many nonlinear con-
trol systems do not admit a CLF. This can be illustrated by
considering the question of robust stabilization of a sin-
gle point on a circle, which faces a similar obstacle as the
question of robust stabilization of the set A D f0; 1g for
the control system on R given by ẋ D f (x; u) :D u. Any
differentiable function on R that is positive definite with
respect toA must have a maximum in the interval (0; 1).
At such a maximum, say x̄, one has rV(x̄) D 0 and no
choice of u can lead to hrV(x̄); f (x̄; u)i < 0.

(Smooth) patchy control Lyapunov functions (PCLFs)
are, broadly speaking, objects consisting of several local
CLFs the domains of which cover Rn and have certain
weak invariance properties. PCLFs turn out to exist for
far broader classes of nonlinear systems than CLFs, espe-
cially if an infinite number of patches (i. e., of local CLFs)

is allowed. They also lead to robust hybrid stabilizing feed-
backs. This will be outlined below. A brief illustration of
the concept, for the control system onRmentioned above,
would be to consider functions V1(x) D x2 on (�1; 2/3)
and V2(x) D (x � 1)2 on (1/3;1). These functions are lo-
cal CLFs for the points, respectively, 0 and 1; their domains
cover R; and for each function, an appropriate choice of
control will not only lead to the function’s decrease, but
will also ensure that solutions starting in the function’s do-
main will remain there.

While the example just mentioned outlines a general
idea of a PCLF, the definition is slightly more technical.
For the purposes of this article, a smooth patchy control
Lyapunov function for a nonlinear system

ẋ D f (x; u) x 2 Rn ; u 2 U � Rm (23)

with respect to the compact set A consists of a finite set
Q � Z and a collection of functions Vq and sets ˝q, ˝ 0q
for each q 2 Q, such that:

(i) f˝qgq2Q and f˝ 0qgq2Q are families of nonempty
open subsets of Rn such that

Rn D
[

q2Q

˝q D
[

q2Q

˝ 0q ;

and for all q 2 Q, the unit (outward) normal vector
to˝q is continuous on @˝q n

S
i>q˝

0
i , and

˝ 0q � ˝q ;

(ii) for each q, Vq is a smooth function defined on
a neighborhood of˝q n

S
i>q˝

0
i ;

and the following conditions are met: There exist a contin-
uous, positive definite function ˛ : R�0 ! R�0, and pos-
itive definite, radially unbounded functions � , �̄ such that

(iii) for all q 2 Q, all x 2 ˝q n
S

i>q˝
0
i ,

� (jxjA) � Vq(x) � �̄(jxjA) ;

(iv) for all q 2 Q, all x 2 ˝q n
S

i>q˝
0
i , there exists

uq;x 2 U such that

hrVq(x); f (x; uq;x )i � �˛(jxjA) ;

(v) for all q 2 Q, all x 2 @˝q n
S

i>q˝
0
i , the uq;x of (iii)

can be chosen such that

hnq(x); f (x; uq;x )i � �˛(jxjA);

where nq(x) is the unit (outward) normal vector to
˝q at x.
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Suppose that, for each x; v 2 Rn and c 2 R, the set
fu 2 U j hv; f (x; u)i � cg is convex, as always holds if
f (x; u) is affine in u and U is convex. For each q 2 Q let

Cq D ˝q n
[

i>q

˝ 0i

and

�q D ˝ 0q n
[

i2Q;i>q

˝ 0i :

It can be shown, in part via arguments similar to those one
would use when constructing a feedback from a CLF, that
for each q 2 Q there exists a continuous mapping

kq : Cq ! U

such that, for all x 2 Cq ,

hrVq(x); f (x; kq(x))i � �
˛(jxjA)

2
;

all maximal solutions to

ẋ D f (x; kq(x))

are either complete or end in
0

@
[

i>q;i2Q

�i

1

A [Rn n Cq ;

and no maximal solution starting in � q reaches

Rn n

0

@Cq [
[

i2Q;i>q

�i

1

A :

The feedbacks kq can now be combined in a hybrid feed-
back, by taking Dq D ; for each q 2 Q, and following
the construction of Subsect. “Supervisors of Hybrid Con-
trollers”. Indeed, the properties of maximal solutions just
mentioned ensure conditions I, II and III of that section;
the choice of Cq and� q also ensures that�q � Cq and the
union of � q’s covers Rn .

Among other things, this construction illustrates that
the idea of hybrid supervision of hybrid controllers applies
also to combining standard, non hybrid controllers.

Applications

In this section, we make use of the following:

� For vectors in R2, we will use the following multiplica-
tion rule, conjugate rule, and identity element:

z˝x :D
�
z1x1 � z2x2
z2x1 C z1x2

�
; xc :D

�
x1
�x2

�
; 1 :D

�
1
0

�
:

The multiplication rule is commutative, associative,
and distributive. Note that x D 1˝ x D x ˝ 1 and
note that xc ˝ x D x ˝ xc D jxj21. Also, (z ˝ x)c D
xc ˝ zc .

� For vectors in R4, we will use the following multiplica-
tion rule, conjugate rule, and identity element (vectors
are partitioned as x D [x1 xT2 ]

T where x2 2 R3):

z˝ x D
�

z1x1 � zT2 x2
z2x1 C z1x2 C z2 � x2

�
;

xc D
�
x1
�x2

�
;

1 D
�
1
0

�
:

The multiplication rule is associative and distribu-
tive but not necessarily commutative. Note that x D
1 ˝ x D x ˝ 1 and xc ˝ x D x ˝ xc D jxj21. Also,
(z ˝ x)c D xc ˝ zc .

Overcoming Stabilization Obstructions

Global Stabilization and Tracking on the Unit Circle
In this section, we consider stabilization and tracking con-
trol of the constrained system

�̇ D � ˝ v(!) ; v(!) :D
�
0
!

�
� 2 S1 ; (24)

where S1 denotes the unit circle and ! 2 R is the con-
trol variable. Notice that S1 is invariant regardless of the
choice of ! since h�; � ˝ v(!)i D 0 for all � 2 S1 and all
! 2 R. This model describes the evolution of orientation
angle of a rigid body in the plane as a function of the an-
gular velocity !, which is the control variable. We discuss
robust, global asymptotic stabilization and tracking prob-
lems which cannot be solved with classical feedback con-
trol, even when discontinuous feedback laws are allowed,
but can be solved with hybrid feedback control.

Stabilization First, we consider the problem of stabiliz-
ing the point � D 1. We note that the (classical) feedback
control ! D ��2 would almost solve this problem. We
would have �̇1 D �22 D 1 � �21 and the derivative of the en-
ergy function V(�) :D 1 � �1 would satisfy

hrV(�); � ˝ v(!)i D �
�
1 � �21


:
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We note that the energy will remain constant if � starts
at ˙1. Thus, since the goal was (robust) global asymp-
totic stability, this feedback does not achieve the desired
goal. One could also consider the discontinuous feedback
! D �sgn(�2) where the function “sgn” is defined arbi-
trarily in the set f�1; 1g when its argument is zero. This
feedback is not robust to arbitrarily small measurement
noise which can keep the trajectories of the system arbi-
trarily close to the point � D �1 for all time. To visualize
this, note that from points on the circle with �2 < 0 and
close to � D �1, this control law steers the trajectories to-
wards � D 1 counterclockwise, while from points on the
circle with �2 > 0 and close to � D �1, it steers the trajec-
tories towards 1 clockwise. Then, from points on the circle
arbitrarily close to � D �1, one can generate an arbitrarily
small measurement noise signal e that changes sign appro-
priately so that�sgn(�2 C e) is always pushing trajectories
towards �1.

In order to achieve a robust, global asymptotic stability
result, we consider a hybrid controller that uses the con-
troller ! D ��2 when the state is not near �1 and uses
a controller that drives the system away from �1 when
it is near that point. One way to accomplish the second
task is to build an almost global asymptotic stabilizer for
a point different from �1 such that the basin of attrac-
tion contains all points in a neighborhood of �1. For ex-
ample, consider the feedback controller! D ��1 D: �1(�)
which would almost globally asymptotically stabilize the
point � :D (0;�1) with the only point not in the basin of
attraction being the point �c.

Strangely enough, each of the two controllers can be
thought of as globally asymptotically stabilizing the point 1
if their domains are limited. In particular, let the domain
of applicability for the controller ! D ��1 be

C1 :D S1 \ f� j�1 � �1/3 g ;

and let the domain of applicability for the controller
! D ��2 be

C2 : D S1 \ f� j�1 � �2/3 g :

Notice that C1 [ C2 D S1 D: 	. Thus, we are in a sit-
uation where a hybrid supervisor, as discussed in Sub-
sect. “Supervisors of Hybrid Controllers”, may be able to
give us a hybrid, global asymptotic stabilizer. (There is no
state � in the controllers we are working with here.) Let us
take

�1 :D C1 ; �2 :D S1nC1 :

We have �1 [ �2 D S1. Next, we check the assumptions
of Subsect. “Supervisors of Hybrid Controllers”. For each

q 2 f1; 2g, the solutions ofHq (the system we get by us-
ing ! D �q(�) and restricting the flow toCq), are such that
the point 1 is globally pre-asymptotically stable. For q D 1,
this is because there are no complete solutions and 1 does
not belong to C1. For q D 2, this is because C2 is a subset
of the basin of attraction for 1. We note that every maxi-
mal solution toH1 ends in � 2. Every maximal solution to
H2 is complete and every maximal solution toH2 start-
ing in� 2 does not reach S1nC2. Thus, the assumptions for
a hybrid supervisor are in place.

We follow the construction in Subsect. “Supervisors of
Hybrid Controllers” to define the hybrid supervisor that
combines the feedback laws �1 and �2. We take

! :D �q(�)
C̃q :D Cq

D̃1 :D �2 [


S1nC1

�
D S1nC1

D̃2 :D S1nC2 :

For this particular problem, jumps toggle the mode q in
the set f1; 2g. Thus, the jump map Gq can be simplified to
Gq :D 3 � q.

Tracking Let � : R�0 ! S1 be continuously differen-
tiable. Suppose we want to find a hybrid feedback con-
troller so that the state of (24) tracks the signal �. This
problem can be reduced to the stabilization problem of the
previous section. Indeed, first note that � c ˝ � D 1 and
thus the following properties hold:

�̇ c ˝ � D �� c ˝ �̇

� c ˝ �̇ D

�
0

�1�̇2 � �2�̇1

�
:

(25)

Then, with the coordinate transformation � D z ˝ �, we
have:

I. By multiplying the coordinate transformation on the
right by �c we get z D �˝� c and z˝zc D �˝� c D 1,
so that z 2 S1.

II. � D � () z D 1.
III. The derivative of z satisfies

ż D �̇ ˝ � c C � ˝ �̇ c

D � ˝ v(!)˝ � c C � ˝ �̇ c ˝ � ˝ � c

D � ˝
h
v(!)C �̇ c ˝ �

i
˝ � c

D z ˝ � ˝
h
v(!) � � c ˝ �̇

i
˝ � c :

Our desire is to pick ! so that we have

ż D z ˝ v(˝)
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and then to choose ˝ to globally asymptotically stabilize
the point z D 1. Due to (25) and the properties of multipli-
cation, the vectors � c˝�̇ and � c˝v(˝)˝� are in the range
of v(!). So, we can pick v(!) D � c ˝ �̇ C � c ˝ v(˝)˝ �
to achieve the robust, global tracking goal. In fact, since
the multiplication operation is commutative in R2, this is
equivalent to the feedback v(!) D � c ˝ �̇ C v(˝).

Global Stabilization and Tracking for Unit Quaternions
In this section, we consider stabilization and tracking con-
trol of the constrained system

�̇ D � ˝ v(!) ; v(!) :D
�
0
!

�
� 2 S3 ; (26)

where S3 denotes the hypersphere in R4 and ! 2 R3 is
the control variable. Notice that S3 is invariant regardless
of the choice of ! since h�; � ˝ v(!)i D 0 for all � 2 S3

and all ! 2 R3. This model describes the evolution of ori-
entation angle of a rigid body in space as a function of
angular velocities !, which are the control variables. The
state � corresponds to a unit quaternion that can be used to
characterize orientation. We discuss robust, global asymp-
totic stabilization and tracking problems which cannot be
solved with classical feedback control, even when discon-
tinuous feedback laws are allowed, but can be solved with
hybrid feedback control.

Stabilization First, we consider the problem of stabiliz-
ing the point � D 1. We note that the (classical) feedback
control

! :D
�
0 I

�
v(��2) D: �2(�)

(i. e., ! D ��2 where �2 refers to the last three compo-
nents of the vector �) would almost solve this problem.We
would have �̇1 D �T2 �2 D 1 � �21 and the derivative of the
energy function V(�) :D 1 � �1 would satisfy

hrV(�); � ˝ v(!)i D �
�
1 � �21


:

We note that the energy will remain constant if � starts
at ˙1. Thus, since the goal is (robust) global asymptotic
stabilization, this feedback does not achieve the desired
goal. One could also consider the discontinuous feedback
! D �sgn(�2) where the function “sgn” is the component-
wise sign and each component is defined arbitrarily in the
set f�1; 1g when its argument is zero. This feedback is not
robust to arbitrarily small measurement noise which can
keep the trajectories of the system arbitrarily close to the
point �1.

In order to achieve a robust, global asymptotic stabil-
ity result, we consider a hybrid controller that uses the

controller above when the state is not near �1 and uses
a controller that drives the system away from �1 when
it is near that point. One way to accomplish the second
task is to build an almost global asymptotic stabilizer for
a point different from �1 and so that the basin of attrac-
tion contains all points in a neighborhood of �1. For ex-
ample, consider stabilizing the point � : D (0;�1; 0; 0)T

using the feedback controller (for more details see the next
subsection)

z D �˝ � c ; ! D
�
0 I

� �
� c ˝ v(�z2)˝ �


D: �1(�)

(i. e. ! D (��1; �4;��3)T where now the subscripts refer
to the individual components of �). This feedback would
almost globally asymptotically stabilize the point � with
the only point not in the basin of attraction being the
point �c.

The two feedback laws, ! D �2(�) and ! D �1(�), are
combined into a single hybrid feedback law via the hybrid
supervisor approach given in Subsect. “Supervisors of Hy-
brid Controllers”. In fact, the construction is just like the
construction for the case of stabilization on a circle with
the only difference being that S1 is replaced everywhere
by S3.

Tracking Let � : R�0 ! S3 be continuously differen-
tiable. Suppose we want to find a hybrid feedback con-
troller so that the state of (26) tracks the signal �. This
problem can be reduced to the stabilization problem of the
previous section. Indeed, first note that � c ˝ � D 1 and
thus the following properties hold:

�̇ c ˝ � D �� c ˝ �̇

� c ˝ �̇ D

�
0

�1�̇2 � �̇1�2 � �2 � �̇2

�
:

(27)

Then, with the coordinate transformation � D z ˝ �, we
have:

I. By multiplying the coordinate transformation on the
right by �c we get z D �˝� c and zc˝ z D � c˝� D 1
so that z 2 S3.

II. � D � () z D 1.
III. The derivative of z satisfies

ż D �̇ ˝ � c C � ˝ �̇ c

D � ˝b! ˝ � c C � ˝ �̇ c ˝ � ˝ � c

D � ˝
h
b! C �̇ c ˝ �

i
˝ � c

D z ˝ � ˝
h
b! � � c ˝ �̇

i
˝ � c :
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Our desire is to pick ! so that we have

ż D z ˝ v(˝)

and then to choose ˝ to globally asymptotically stabilize
the point z D 1. Due to (27) and the properties of multipli-
cation, the vectors � c˝�̇ and � c˝v(˝)˝� are in the range
of v(!). So, we can pick v(!) D � c ˝ �̇ C � c ˝ v(˝)˝ �
to achieve the robust, global tracking goal.

Stabilization of a Mobile Robot

Consider the global stabilization problem for a model of
a unicycle or mobile robot, given as

ẋ D �#

�̇ D � ˝ v(!)
(28)

where x 2 R2 denotes planar position from a reference
point (in meters), � 2 S1 denotes orientation, # 2 V :D
[�3; 30] denotes velocity (in meters per second), and ! 2
[�4; 4] denotes angular velocity (in radians per second).
Both # and ! are control inputs. Due to the specification
of the set V , the vehicle is able to move more rapidly in
the forward direction than in the backward direction. We
defineA0 to be the point (x; �) D (0; 1). The controllers
below will all use a discrete state p 2 P :D f�1; 1g. We
takeA :DA0 � P and	 : D R2 � S1 � P.

This system also can be modeled as

ẋ D
�
cos(�)
sin(�)

�
#

�̇ D !

where � D 0 corresponds to � D 1 and � > 0 is in the
counterclockwise direction. The set A0 in these coordi-
nates is given by the set f0g � f� j� D 2k� ; k 2 Zg .
Even for the point (x; �) D (0; 0), this control system fails
Brockett’s well-known condition for robust local asymp-
totic stabilization by classical (even discontinuous) time-
invariant feedback [9,26,52]. Nevertheless, for the con-
trol system (28), the point (0; 1) can be robustly, globally
asymptotically stabilized by hybrid feedback. This is done
by building three separate hybrid controllers and combin-
ing them with a supervisor. The three controllers are the
following:

� The first hybrid controller, K1, uses # D ProjV
(k1�T x), where k1 < 0 and ProjV denotes the pro-
jection onto V , while the feedback for ! is given by
the hybrid controller in Subsect. “Global Stabilization
and Tracking on the Unit Circle” for tracking on the

unit circle with reference signal for � given by �x/jxj.
The two different values for q in that controller should
be associated with the two values in P. The particu-
lar association does not matter. Note that the action of
the tracking controller causes the vehicle eventually to
use positive velocity to move x toward zero. The con-
troller’s flow and jump sets are such that

C1 [ D1 D
˚
x 2 R2 jjxj � "11

�
� S1 � P

where "11 > 0, and C1;D1 are constructed from the
hybrid controller in Subsect. “Global Stabilization and
Tracking on the Unit Circle” for tracking on the unit
circle.

� The second hybrid controller, K2, uses # D ProjV
(k2�T x), k2 � 0, while the feedback for ! is given as
in Subsect. “Global Stabilization and Tracking on the
Unit Circle” for stabilization of the point 1 on the unit
circle. Again, the q values of that controller should be
associated with the values in P and the particular asso-
ciation does not matter. The controller’s flow and jump
sets are such that

C2 [ D2 D
��˚

x 2 R2 jjxj � "21
�
� S1



\
˚
(x; �)

ˇ̌
1 � �1 � "22jxj2

�
� P ;

where "21 > "11, "22 > 0, and C2;D2 are constructed
from the hybrid controller in Subsect. “Global Stabi-
lization and Tracking on the Unit Circle” for stabiliza-
tion of the point 1 on the unit circle.

� The third hybrid controller, K3, uses # D ProjV
(k3�T x), k3 < 0, while the feedback for ! is hybrid as
defined below. The controller’s flow and jump sets are
designed so that

C3 [ D3 D
�
fx jjxj � "31 g � S1



\
˚
(x; �)

ˇ̌
1 � �1 � "32jxj2

�
� P D: �3 ;

where "31 > "21 and "32 > "22. The control law for ! is
given by ! D pk, where k > 0 and the discrete state p
has dynamics given by

ṗ D 0; pC D �p :

The flow and jump sets are given by

C3 :D�3 \
�
f�(p)�2 � 0g

[
˚
�(p)�2 � 0; 1 � �1 � "22jxj2

�

D3 :D�3nC3 :

This design accomplishes the following: controller K1
makes � track �x/jxj as long as jxj is not too small, and
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thus the vehicle is driven towards x D 0 eventually using
only positive velocity; controllerK2 drives � towards 1 to
get the orientation of the vehicle correct; and controller
K3 stabilizes � to 1 in a persistently exciting manner so
that # can be used to drive the vehicle to the origin.

This control strategy is coordinated through a supervi-
sor by defining

�1 :DC1 [ D1

�2 :D


	n�1

�
\ (C2 [ D2)

�3 :D
��
fx jjxj � "21 g � S1



\
˚
(x; �)

ˇ
ˇ1 � �1 � "22jxj2

�
� P :

It can be verified that [q2Q�q D 	 and that the condi-
tions in Subsect. “Supervisors of Hybrid Controllers” for
a successful supervisor are satisfied.

Figure 8 depicts simulation results of the mobile robot
with the hybrid controller proposed above for global
asymptotic stabilization of A �Q. From the initial con-
dition x(0; 0) D (10; 10) (in meters), �(0; 0) correspond-
ing to an angle of 	4 radians, the mobile robot backs up
using controllerK1 until its orientation � corresponds to
about 3	

4 radians, at which x is approximately (10; 9:5).
The green ? denotes a jump of the hybrid controller K1.
From this configuration, the mobile robot is steered to-
wards a neighborhood of the origin with orientation given
by �x/jxj. About a fifth of a meter away from it, a jump
of the hybrid supervisor connects controllerK3 to the ve-
hicle input (the location at which the jump occurs is de-
noted by the red ?). Note that the trajectory is such that
controllerK2 is bypassed since at the jump of the hybrid

Hybrid Control Systems, Figure 8
Global stabilization of a mobile robot to the origin with orientation (1;0). Vehicle starts at x(0;0) D (10;10) (in meters) and �(0;0)
corresponding to an angle of �4 radians. a The vehicle is initially steered to a neighborhood of the origin with orientation �x/jxj.
At about 1/5meters away from it, controllerK3 is enabled to accomplish the stabilisation task. b Zoomed version of trajectory in a
around the origin. ControllerK3 steers the vehicle to x D (0;0) and � D 1 by a sequence of “parking” maneuvers

supervisor, while jxj is small the orientation � is such that
the system state does not belong to � 2 but to � 3; that is,
the orientation is already close enough to 1 at that jump.
Figure 8a shows a zoomed version of the x trajectory in
Fig. 8b. During this phase, controllerK3 is in closed-loop
with the mobile robot. The vehicle is steered to the origin
with orientation close to 1 by a sequence of “parking” ma-
neuvers. Note that after about seven of those maneuvers,
the vehicle position is close to (0; 0:01) with almost the de-
sired orientation.

Source Localization

Core of the Algorithm Consider the problem of pro-
gramming an autonomous vehicle to find the location
of a maximum for a continuously differentiable function
by noting how the function values change as the vehicle
moves. Like before, the vehicle dynamics are given by

ẋ D �#

�̇ D � ˝ v(!) ; � 2 S1 :

The vehicle is to search for the maximum of the function
' : R2 ! R. The function is assumed to be such that its
maximum is unique, denoted x�, that r'(x) D 0 if and
only if x D x�, and the union of its level sets over any in-
terval of the form [c;1), c 2 R, yields a compact set. For
simplicity, we will assume that the sign of the derivative
of the function ' in the direction ẋ D �# is available as
a measurement. We will discuss later how to approximate
this quantity by considering the changes in the value of the
function ' along solutions. We also assume that the vehi-
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cle’s angle, � , can make jumps, according to

�C D � ˝ � ; (�; �) 2 S1 � S1 :

We will discuss later how to solve the problem when the
angle � cannot change discontinuously.

We propose the dynamic controller

# D #̄
"

ż
!

#

D �(z)

9
>>=

>>;
(x; �; z) 2 C

"
zC

�

#

2  (z)

)

(x; �; z) 2 D

where #̄ is a positive constant,

C :D
˚
(x; �; z)

ˇ
ˇhr'(x); �#̄i � 0 ; � 2 S1 ; z 2 $

�

D :D
˚
(x; �; z)

ˇ
ˇhr'(x); �#̄i � 0 ; � 2 S1 ; z 2 $

�
;

(note that C and D use information about the sign of the
derivative of ' in the direction of the flow of x) and the
required properties for the set $ , the function � , and the
set-valued mapping � are as follows:

I. (a) The set $ is compact.
(b) The maximal solutions of the continuous-time sys-

tem
�
ż
!

�
D �(z) z 2 $

and the maximal solutions to the discrete-time sys-
tem

�
zC

�

�
2  (z) z 2 $

are complete.
II. There are no non-trivial solutions to the system

ẋ D �#̄

�̇ D � ˝ v(!)
�
ż
!

�
D �(z)

9
>>>>=

>>>>;

(x; �; z) 2 C0

where

C0 :D
˚
(x; �; z)

ˇ̌
hr'(x); �#̄i D 0 ; � 2 S1 ; z 2 $

�
:

III. The only complete solutions to the system

xC D x

�C D � ˝ �
�
zC

�

�
2  (z)

9
>>>>=

>>>>;

(x; �; z) 2 D

start from xı D x�.

The first assumption on ($; �; ) above guarantees that
the control algorithm can generate commands by either
flowing exclusively or jumping exclusively. This permits
arbitrary combinations of flows and jumps. Thus, since
C [ D D R2 � S1 � $ , all solutions to the closed-loop
system are complete. Moreover, the assumption that $ is
compact guarantees that the only way solutions can grow
unbounded is if x grows unbounded.

The second assumption on ($; �; ) guarantees that
closed-loop flows lead to an increase in the function '.
One situation where the assumption is easy to check is
when ! D 0 for all z 2 $ and the maxima of ' along each
search direction are isolated. In other words, the maxima
of the function '�;x : R! R given by  7! '(x C �) are
isolated for each (�; x) 2 S1 �R2. In this case it is not pos-
sible to flow while keeping ' constant.

The last assumption on ($; �; ) guarantees that the
discrete update algorithm is rich enough to be able to find
eventually a direction of decrease for ' for every point x.
(Clearly the only way this assumption can be satisfied is if
r'(x) D 0 only if x D x�, which is what we are assum-
ing.) The assumption prevents the existence of discrete so-
lutions at points where x ¤ x�.

One example of data ($; �; ) satisfying the three con-
ditions above is

$ D f0g ; �(z) D
�
0
0

�
;  (z) D

2

4
z�
0
1

�
3

5 :

For this system, the state z does not change, the generated
angular velocity ! is always zero, and the commanded ro-
tation at each jump is �/2 radians. Other more compli-
cated orientation-generating algorithms that make use of
the dynamic state z are also possible. For example, the al-
gorithm in [42] uses the state variable z to generate conju-
gate directions at the update times.

With the assumptions in place, the invariance princi-
ple of Subsect. “Invariance Principles” can be applied with
the function �' to conclude that the closed-loop system
has the compact setA :D fx� g � S1 � $ globally asymp-
totically stable. Moreover, because of the robustness of
global asymptotic stability to small perturbations, the re-
sults that we obtain are robust, in a practical sense, to slow
variations in the characterization of the function ', includ-
ing the point where it obtains its maximum.

Practical Modifications The assumptions of the previ-
ous section that we would like to relax are that � can
change discontinuously and that the derivative of ' is
available as a measurement.
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The first issue can be addressed by inserting a mode
after every jump where the forward velocity is set to zero
and a constant angular velocity is applied for the correct
amount of time to drive � to the value � ˝ �. If it is not
possible to set the velocity to zero then some other open-
loop maneuver can be executed so that, after some time,
the orientation has changed by the correct amount while
the position has not changed.

The second issue can be addressed by making sure
that, after the direction is updated, values of the function '
along the solution are stored and compared to the cur-
rent value of ' to determine the sign of the derivative.
The comparison should not take place until after a suffi-
cient amount of time has elapsed, to enhance robustness to
measurement noise. The robustness of the nominal algo-
rithm to temporal regularization and other perturbations
permits such a practical implementation.

Discussion and Final Remarks

We have presented one viewpoint on hybrid control sys-
tems, but the field is still developing and other authors will
give a different emphasis.

For starters, we have stressed a dynamical systems view
of hybrid systems, but authors with a computer science
background typically will emphasize a hybrid automaton
point of view that separates discrete-valued variables from
continuous-valued variables. This decomposition can be
found in the early work [61] and [59], and in the more
recent work [2,8,58]. An introduction to this modeling
approach is given in [7]. Impulsive systems, as described
in [4], are closely related to hybrid systems but rely on
ordinary time domains and usually do not consider the
case where the flow set and jump set overlap. The work
in [18] on “left-continuous systems” is closely linked to
such systems. Passing to hybrid time domains (under dif-
ferent names) can be seen in [20,24,39,40]; other general-
ized concepts of time domains can be found in [43] and in
the literature on dynamical systems on time scales, see [41]
for an introduction.

For simplicity, we have taken the flow map to be
a function rather than a set-valued mapping. A motiva-
tion for set-valued mappings satisfying basic conditions is
given in [56] where the notion of generalized solutions is
developed and shown to be equivalent to solutions in the
presence of vanishing perturbations or noise. Set-valued
dynamics, with some consideration of the regularity of the
mappings defining them, can be found in [1,2]. Implica-
tions of data regularity on the basic structural properties
of the set of solutions to a system were outlined concur-
rently in [20,24]. The work in [24] emphasized the impli-

cations for robustness of stability theory. The latter work
preceded the rigorous derivations in [23] where the proofs
of statements in the Subsect. “Conditions for Well-Posed-
ness” can be found. To derive stronger results on contin-
uous dependence of solutions to initial conditions, extra
assumptions must be added. An early result in this direc-
tion appeared in [59]; see also [11,20,40]. The work in [11]
exhibited a continuous selection of solutions, continuous
dependence in the set-valued sense was addressed in [17].

Sufficient Lyapunov stability conditions, for hybrid or
switching systems, and relying on various concepts of a so-
lution, appeared in [6,21,40,62]. The results in Subsect.
“Lyapunov Stability Theorem” are contained in [54] which
develops a general invariance principle for hybrid sys-
tems. A part of the latter result is quoted in Subsect. “In-
variance Principles”. Other invariance results for hybrid
or switching systems have appeared in [3,18,28,30,40].
Some early converse results for hybrid systems, relying on
nonsmooth and possibly discontinuous Lyapunov func-
tions, were given in [62]. The results quoted in Subsect.
“Converse Lyapunov Theorems and Robustness” come
from [15].

The development of hybrid control theory is still in its
formative stages. This article has focused on the develop-
ment of supervisors of hybrid controllers and related top-
ics, as well as to applications where hybrid control gives
solutions that overcome obstacles faced by classical con-
trol. For hybrid supervisors used in the context of adap-
tive control, see [63] and the references therein. Other re-
sults related to supervisors include [47], which considers
the problem discussed at the end of Subsect. “Supervisors
of Hybrid Controllers”, and [57]. The field of hybrid con-
trol systems is moving in the direction of systematic de-
sign tools, but the capabilities of hybrid control have been
recognized for some time. Many of the early observations
were in the context of nonholonomic systems, like the re-
sult for mobile robots we have presented as an application
of supervisors. For example, see [29,31,37,44,49]. More re-
cently, in [48] and [50] it has been established that every
asymptotically controllable nonlinear system can be ro-
bustly asymptotically stabilized using logic-based hybrid
feedback. Other recent results include the work in [25] and
its predecessor [12], and the related work on linear reset
control systems as considered in [5,45] and the references
therein.

This article did not have much to do with the control
of hybrid systems, other than the discussion of the juggling
problem in the introduction and the structure of hybrid
controllers for hybrid systems in Subsect. “Hybrid Con-
trollers for Hybrid Systems”. A significant amount of work
on the control of hybrid systems has been done, although



4694 H Hybrid Control Systems

typically not in the framework proposed here. Notable ref-
erences include [10,46,51] and the references therein.

Other interesting topics and open questions in the area
of hybrid control systems are developed in [38].

Future Directions

What does the future hold for hybrid control systems?
With a framework in place that mimics the framework of
ordinary differential and difference equations, it appears
that many new results will become available in directions
that parallel results available for nonlinear control systems.
These include certain types of separation principles, con-
trol algorithms based on zero dynamics (results in this di-
rection can be found in [60] and [13]), and results based on
interconnections and time-scale separation. Surely there
will be unexpected results that are enabled by the funda-
mentally different nature of hybrid control as well.

The theory behind the control of systems with impacts
will continue to develop and lead to interesting applica-
tions. It is also reasonable to anticipate further develop-
ments related to the construction of robust, embedded hy-
brid control systems and robust networked control sys-
tems. Likely the research community will also be inspired
by hybrid control systems discovered in nature.

The future is bright for hybrid control systems design
and it will be exciting to see the progress that is made over
the next decade and beyond.
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Glossary

Hybrid intelligent systems Intelligent Systems that are
build using a combination of soft computing tech-
niques. In particular, Soft Computing includes fuzzy
logic, neural networks, genetic algorithms or hybrid
approaches.

Intelligent control The application of intelligent tech-
niques for achieving the control of non-linear plants.
In particular, the use of fuzzy logic, neural networks,
genetic algorithms or hybrid approaches for designing
intelligent controllers.

Soft computing Soft Computing is a new area of Com-
puter Science that deals with new intelligent method-
ologies that combine symbolic and numerical calcula-
tions. In particular, Soft Computing includes, at the
moment, methodologies like fuzzy logic, neural net-
works, genetic algorithms or hybrid approaches.

Fuzzy systems Intelligent systems that are developed
based on the theory of fuzzy logic, fuzzy inference
and membership functions, and fuzzy rules. Fuzzy sys-
tems are able to manage the uncertainty of the deci-
sion process of humans, and for this reason are able to

mimic the expert decision process in automation ap-
plications.

Genetic algorithms Genetic algorithms are search opti-
mization techniques that mimic natural evolution for
finding solution to complex problems. In particular,
genetic algorithms use operators to generate new can-
didate solutions based on the selection of previous
good solutions.

Evolution of fuzzy systems Application of evolutionary
algorithms to the optimization of number of fuzzy
rules and membership functions, as well as the param-
eter values of the fuzzy system.

Definition of the Subject

The evolutionary design of hybrid intelligent systems us-
ing hierarchical genetic algorithms will be described in this
paper. The evolutionary approach can be used for fuzzy
system optimization in intelligent control. In particular,
we consider the problem of optimizing the number of
rules andmembership functions using an evolutionary ap-
proach. The hierarchical genetic algorithm enables the op-
timization of the fuzzy system design for a particular ap-
plication. We illustrate the approach with two cases of in-
telligent control. Simulation results for both applications
show that we are able to find an optimal set of rules and
membership functions for the fuzzy control system. We
also describe the application of the evolutionary approach
for the problem of designing hybrid intelligent systems in
time series prediction. In this case, the goal is to design the
best predictor for complex time series. Simulation results
show that the evolutionary approach optimizes the hybrid
intelligent systems in time series prediction.

Introduction

The application of a Hierarchical Genetic Algorithm
(HGA) for fuzzy system optimization [14] will be de-
scribed in this paper. In particular, we consider the prob-
lem of finding the optimal set of rules and membership
functions for a specific application [24]. The HGA is used
to search for this optimal set of rules and membership
functions, according to the data about the problem. We
consider, as an illustration, the case of a fuzzy system for
intelligent control [4].

Fuzzy systems are capable of handling complex, non-
linear and sometimes mathematically intangible dynamic
systems using simple solutions [10]. Very often, fuzzy sys-
tems may provide a better performance than conventional
non-fuzzy approaches with less development cost [17].
However, to obtain an optimal set of fuzzy membership
functions and rules is not an easy task [12]. It requires
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time, experience and skills of the designer for the te-
dious fuzzy tuning exercise [22]. In principle, there is
no general rule or method for the fuzzy logic set-up, al-
though a heuristic and iterative procedure for modifying
the membership functions to improve performance has
been proposed [19]. Recently, many researchers have con-
sidered a number of intelligent schemes for the task of
tuning the fuzzy system [1]. The noticeable Neural Net-
work (NN) approach [9] and the Genetic Algorithm (GA)
approach [8] to optimize either the membership func-
tions or rules, have become a trend for fuzzy logic system
development.

The HGA approach differs from the other tech-
niques [5] in that it has the ability to reach an optimal set
of membership functions and rules without a known fuzzy
system topology [20]. During the optimization phase, the
membership functions need not be fixed. Throughout the
genetic operations [7], a reduced fuzzy system including
the number of membership functions and fuzzy rules will
be generated [25]. The HGA approach has a number of
advantages:

1. An optimal and the least number of membership func-
tions and rules are obtained,

2. no pre-fixed fuzzy structure is necessary, and
3. simpler implementing procedures and less cost are in-

volved.

We consider in this paper the case of automatic anesthe-
sia control in human patients for testing the optimized
fuzzy controller. We did have, as a reference, the best fuzzy
controller that was developed for the automatic anesthesia
control [13], and we consider the optimization of this con-
troller using the HGA approach. After applying the genetic
algorithm the number of fuzzy rules was reduced from 12
to 9 with a similar performance of the fuzzy controller. Of
course, the parameters of the membership functions were
also tuned by the genetic algorithm. We did compare the
simulation results of the optimized fuzzy controllers ob-
tained with the HGA against the best fuzzy controller that
was obtained previously with expert knowledge, and con-
trol is achieved in a similar fashion. Since simulation re-
sults are similar, and the number of fuzzy rules was re-
duced, we can conclude that the HGA approach is a good
alternative for designing fuzzy systems.

We also describe the application of the evolutionary
approach for the problem of designing hybrid intelligent
systems in time series prediction. In this case, the goal is to
design the best predictor for complex time series. Simula-
tion results show that the evolutionary approach optimizes
the hybrid intelligent systems in time series prediction.

Genetic Algorithm for Optimization

In this paper, we used a floating-point genetic algo-
rithm [3] to adjust the parameter vector � , specifically we
used the Breeder Genetic Algorithm (BGA). The genetic
algorithm is used to optimize the fuzzy system for control
that will be described later. A BGA can be described by the
following equation:

BGA D (P0g ;N; T; �;�;HC; F; term) (1)

where: P0g = initial population, N = the size of the popula-
tion, T = the truncation threshold, � = the recombination
operator, �= the mutation operator, HC= the hill climb-
ing method, F = the fitness function, term= the termina-
tion criterion.

The BGA uses a selection scheme called truncation se-
lection. The %T best individuals are selected and mated
randomly until the number of offspring is equal the size
of the population. The offspring generation is equal to
the size of the population. The offspring generation re-
places the parent population. The best individual found so
far will remain in the population. Self-mating is prohib-
ited. As a recombination operator we used “extended in-
termediate recombination”, defined as: If x D (xi ; : : : ; xn)
and y D (y1; : : : ; yn) are the parents, then the successor
z D (z1; : : : ; zn) is calculated by:

zi D xi C ˛i(yi � xi) i D 1; : : : n : (2)

The mutation operator is defined as follows: A variable xi
is selectedwith probability pm for mutation. The BGA nor-
mally uses pm D 1/n. At least one variablewill bemutated.
A value out of the interval [�rangei ; rangei ] is added to
the variable. rangei defines the mutation range. It is nor-
mally set to (0:1 � searchintervali ). searchintervali is the
domain of definition for variable xi. The new value zi is
computed according to

zi D xi ˙ rangei � ı : (3)

The C or � sign is chosen with probability 0:5:ı is com-
puted from a distribution which prefers small values. This
is realized as follows

ı D

15X

iD0

˛i2i ˛i 2 0; 1 : (4)

Before mutation we set ˛i D 0. Then each ˛i is mutated
to 1 with probability pı D 1/16. Only ˛i D 1 contributes
to the sum. On the average there will be just one ˛i with
value 1, say ˛j. Then ı is given by

ı D 2� j : (5)
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The standard BGA mutation operator is able to gener-
ate any point in the hypercube with center x defined by
xi ˙ rangei . But it generates values much more often in
the neighborhood of x. In the above standard setting, the
mutation operator is able to locate the optimal xi up to
a precision of rangei � 2

�150.
We also solved the problem with a LMS algorithm,

with the purpose of have a good reference mark. To mon-
itor the convergence rate of the LMS algorithm, we com-
puted a short term average of the squared error e2(n) using

ASE(m) D
1
K

nCKX

kDnC1

e2 (k) (6)

where m D n/K D 1; 2; : : :. The averaging interval K may
be selected to be (approximately) K D 10N. The effect of
the choice of the step size parameter� on the convergence
rate of LMS algorithm may be observed by monitoring the
ASE(m).

Genetic Algorithm for Optimization

The proposed genetic algorithm is as follows:

1. We use real numbers as a genetic representation of the
problem.

2. We initialize variable i with zero (i D 0).
3. We create an initial random population Pi, in this case

(P0). Each individual of the population has n dimen-
sions and, each coefficient of the fuzzy system corre-
sponds to one dimension. Since we are using a fuzzy
system of 25 coefficients, then our search space is of
n D 25. The generated individuals have their coeffi-
cients in [�3; 3].

4. We calculate the normalized fitness of each individual
of the population using linear scaling with displace-
ment, in the following form:

f 0i D fi C
1
N

X
j fi j C

ˇ̌
ˇ̌min

i
( fi)

ˇ̌
ˇ̌ 8i :

5. We normalize the fitness of each individual using:

Fi D
f 0iPN
iD1 f

0
i

8i :

6. We sort the individuals from greater to lower fitness.
7. We use the truncated selection method, selecting the

%T best individuals, for example if there are 500 in-
dividuals and, then we select 0:30�500 D 150 indi-
viduals.

8. We apply random crossover, to the individuals in the
population (the 150 best ones) with the goal of creat-
ing a new population (of 500 individuals). Crossover
with it self is not allowed, and all the individuals have
to participate. To perform this operation we apply the
genetic operator of extended intermediate recombina-
tion as follows:
If x D (x1; : : : ; xn) and y D (y1; : : : ; yn) are the par-
ents, then the successors z D (z1; : : : ; zn) are cal-
culated by, zi D xi C ˛i (yi � xi) for i D 1; : : : ; n
where ˛ is a scaling factor selected randomly in the
interval [�d; 1C d]. In intermediate recombination
d D 0, and for extended d > 0, a good choice is
d D 0:25, which is the one that we used.

9. We apply the mutation genetic operator of BGA.
In this case, we select an individual with probabil-
ity pm D 1/n(where n represents the working dimen-
sion, in this case n D 25, which is the number of co-
efficients in the membership functions). The muta-
tion operator calculates the new individuals zi of the
population in the following form: zi D xi ˙ rangeiı
we can note from this equation that we are actually
adding to the original individual a value in the in-
terval: [�rangei ; rangei ] the range is defined as the
search interval, which in this case is the domain of
variable xi, the sign˙ is selected randomly with prob-
ability of 0.5, and is calculated using the following
formula,

ı D

m�1X

iD0

˛i2�i ˛i 2 0; 1 :

Common used values in this equation arem D 16 and
m D 20. Beforemutation we initiate with ˛i D 0, then
for each ˛i we mutate to 1 with probability pı D 1/m.

10. Let i D i C 1, and continue with step 4.

Evolution of Fuzzy Systems

Ever since the very first introduction of the fundamen-
tal concept of fuzzy logic [26], its use in engineering dis-
ciplines has been widely studied. Its main attraction un-
doubtedly lies in the unique characteristics that fuzzy logic
systems possess [27]. They are capable of handling com-
plex, non-linear dynamic systems using simple solutions.
Very often, fuzzy systems provide a better performance
than conventional non-fuzzy approaches with less devel-
opment cost [24].

However, to obtain an optimal set of fuzzy member-
ship functions and rules is not an easy task [11]. It requires
time, experience, and skills of the operator for the tedious
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fuzzy tuning exercise [2]. In principle, there is no general
rule or method for the fuzzy logic set-up [15]. Recently,
many researchers have considered a number of intelligent
techniques for the task of tuning the fuzzy set.

Here, another innovative scheme is described [23].
This approach has the ability to reach an optimal set of
membership functions and rules without a known overall
fuzzy set topology. The conceptual idea of this approach
is to have an automatic and intelligent scheme to tune
the membership functions and rules, in which the con-
ventional closed loop fuzzy control strategy remains un-
changed, as indicated in Fig. 1.

In this case, the chromosome [6] of a particular sys-
tem is shown in Fig. 2. The chromosome consists of two
types of genes, the control genes and parameter genes. The
control genes, in the form of bits, determine the member-
ship function activation, whereas the parameter genes are
in the form of real numbers to represent the membership
functions.

To obtain a complete design for the fuzzy control sys-
tem, an appropriate set of fuzzy rules is required to en-

Hybrid Soft Computing Models for Systems Modeling and Control, Figure 1
Genetic algorithm for a fuzzy control system

Hybrid Soft Computing Models for Systems Modeling and Control, Figure 2
Chromosome structure for the fuzzy system

sure system performance [25]. At this point it should
be stressed that the introduction of the control genes is
done to govern the number of fuzzy subsets in the sys-
tem.

Once the formulation of the chromosome has been set
for the fuzzy membership functions and rules, the genetic
operation cycle can be performed. This cycle of operation
for the fuzzy control system optimization using a genetic
algorithm is illustrated in Fig. 3.

There are two population pools, one for storing the
membership chromosomes and the other for storing the
fuzzy rule chromosomes. We can see this in Fig. 3 as
the membership population and fuzzy rule population, re-
spectively. Considering that there are various types of gene
structure, a number of different genetic operations can be
used. For the crossover operation, a one-point crossover
is applied separately for both the control and parameter
genes of the membership chromosomes within certain op-
eration rates. There is no crossover operation for fuzzy
rule chromosomes since only one suitable rule set can be
assisted.



4700 H Hybrid Soft ComputingModels for Systems Modeling and Control

Hybrid Soft Computing Models for Systems Modeling and Control, Figure 3
Genetic cycle for fuzzy system optimization

Bit mutation is applied for the control genes of the
membership chromosome. Each bit of the control gene is
flipped if a probability test is satisfied (a randomly gener-
ated number is smaller than a predefined rate). As for the
parameter genes, which are real number represented, ran-
dom mutation is applied.

The complete genetic cycle continues until some ter-
mination criteria, for example, meeting the design spec-
ification or number of generation reaching a predefined
value are fulfilled.

The fitness function can be defined in this case as fol-
lows:

fi D
X
jy(k)� r(k)j (7)

where
P

indicates the sum for all the data points in the
training set, and y(k) represents the real output of the fuzzy
system and r(k) is the reference output. This fitness value
measures how well the fuzzy system is approximating the
real data of the problem.

Application to Anesthesia Control

We consider the case of controlling the anesthesia given to
a patient as the problem for finding the optimal fuzzy sys-
tem for control [13]. The complete implementation was

done in the MATLAB programming language. The fuzzy
systems were build automatically by using the Fuzzy Logic
Toolbox, and the genetic algorithm was coded directly in
the MATLAB language. The fuzzy systems for control are
the individuals used in the genetic algorithm, and these are
evaluated by comparing them to the ideal control given by
the experts. In other words, we compare the performance
of the fuzzy systems that are generated by the genetic algo-
rithm, against the ideal control system given by the experts
in this application. We give more details below.

Anesthesia Control Using Fuzzy Logic

The main task of the anesthesist, during and operation,
is to control anesthesia concentration. In any case, anes-
thesia concentration can’t be measured directly. For this
reason, the anesthesist uses indirect information, like the
heartbeat, pressure, and motor activity. The anesthesia
concentration is controlled using a medicine, which can
be given by a shot or by a mix of gases. We consider here
the use of isoflurance, which is usually given in a concen-
tration of 0 to 2% with oxygen. In Fig. 4 we show a block
diagram of the controller.

The air that is exhaled by the patient contains a specific
concentration of isoflurance, and it is recirculated to the
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Hybrid Soft Computing Models for Systems Modeling and Control, Figure 4
Architecture of the fuzzy control system

patient. As consequence, we can measure isoflurance con-
centration on the inhaled and exhaled air by the patient, to
estimate isoflurance concentration on the patient’s blood.
From the control engineering point of view, the task by
the anesthesist is to maintain anesthesia concentration be-
tween the high levelW (threshold to wake up) and the low
level E (threshold to success). These levels are difficult to
be determine in a changing environment and also are de-
pendent on the patient’s condition. For this reason, it is
important to automate this anesthesia control, to perform
this task more efficiently and accurately, and also to free
the anesthesist from this time consuming job. The anes-
thesist can then concentrate in doing other task during op-
eration of a patient.

The first automated system for anesthesia control was
developed using a PID controller in the 60’s. However, this
system was not very successful due to the non-linear na-
ture of the problem of anesthesia control. After this first
attempt, adaptive control was proposed to automate anes-
thesia control, but robustness was the problem in this case.
For these reasons, fuzzy logic was proposed for solving this
problem. An additional advantage of fuzzy control is that
we can use in the rules the same vocabulary as the medi-
cal doctors use. The fuzzy control system can also be easily
interpreted by the anesthesists.

Characteristics of the Fuzzy Controller

In this section we describe the main characteristics of the
fuzzy controller for anesthesia control. We will define in-
put and output variable of the fuzzy system. Also, the fuzzy

rules of fuzzy controller previously designed will be de-
scribed.

The fuzzy system is defined as follows:

1. Input variables: Blood pressure and Error.
2. Output variable: Isoflurance concentration.
3. Nine fuzzy if-then rules of the optimized system, which

is the base for comparison.
4. 12 fuzzy if-then rules of an initial system to begin the

optimization cycle of the genetic algorithm.

The linguistic values used in the fuzzy rules are the follow-
ing:

� PB=Positive Big
� PS = Positive Small
� ZERO= zero
� NB=Negative Big
� NS=Negative Small

We show below a sample set of fuzzy rules that are used
in the fuzzy inference system that is represented in the ge-
netic algorithm for optimization:

� if Blood pressure is NB and error is NB then
conc_isoflurance is PS

� if Blood pressures is PS then conc_isoflurance is NS
� if Blood pressure is NB then conc_isoflurance is PB
� if Blood pressure is PB then conc_isoflurance is NB
� if Blood pressure is ZERO and error is ZERO then

conc_isoflurance is ZERO
� if Blood pressure is ZERO and error is PS then

conc_isoflurance is NS



4702 H Hybrid Soft ComputingModels for Systems Modeling and Control

� if Blood pressure is ZERO and error is NS then
conc_isoflurance is PS

� if error is NB then conc_isoflurance is PB
� if error is PB then conc_isoflurance is NB
� if error is PS then conc_isoflurance is NS
� if Blood pressure is NS and error is ZERO then

conc_isoflurance is NB
� if Blood pressure is PS and error is ZERO then

conc_isoflurance is PS.

Genetic Algorithm Specification

The general characteristics of the genetic algorithm that
was used are the following:

� NIND =40; % Number of individuals in each subpop-
ulation.

� MAXGEN= 100; % Maximum number of generations
allowed.

� GGAP = .6; % “Generational gap”, which is the per-
centage from the complete population of new individ-
uals generated in each generation.

� PRECI= 120; % Precision of binary representations.
� SelCh= select(’rws’, Chrom, FitnV, GGAP); %

Roulette wheel method for selecting the individuals
participating in the genetic operations.

� SelCh= recombin(’xovmp’,SelCh,0.7); % Multi-point
crossover as recombination method for the selected in-
dividuals.

� ObjV= FuncionObjDifuso120_555(Chrom, sdifuso);
Objective function is given by the error between the
performance of the ideal control system given by the
experts and the fuzzy control system given by the ge-
netic algorithm.

Representation of the Chromosome

In Table 1 we show the chromosome representation,
which has 120 binary positions. These positions are di-
vided in two parts, the first one indicates the number of

Hybrid Soft Computing Models for Systems Modeling and Con-
trol, Table 1
Binary chromosome representation

Bit assigned Representation
1 to 12 Which rule is active or inactive
13 to 21 Membership functions active or inactive of rule 1
22 to 30 Membership functions active or inactive of rule 2
. . . Membership functions active or inactive of rule . . .
112 to 120 Membership functions active or inactive of rule 12

rules of the fuzzy inference system, and the second one is
divided again into fuzzy rules to indicate which member-
ship functions are active or inactive for the corresponding
rule.

Simulation Results for the Case of Anesthesia Control

Wedescribe in this section the simulation results that were
achieved using the hierarchical genetic algorithm for the
optimization of the fuzzy control system, for the case of
anesthesia control. The genetic algorithm is able to evolve
the topology of the fuzzy system for the particular appli-
cation. We used 50 generations of 40 individuals each to
achieve the minimum error. We show in Fig. 5 the final
results of the genetic algorithm, where the error has been
minimized. This is the case in which only nine fuzzy rules
are needed for the fuzzy controller. The value of the min-
imum error achieved with this particular fuzzy logic con-
troller was of 0.0064064, which is considered a small num-
ber in this application.

In Fig. 6 we show the simulation results of the fuzzy
logic controller produced by the genetic algorithm after
evolution. We used a sinusoidal input signal with unit am-
plitude and a frequency of 2 radians/second, with a trans-
fer function of [1/(0:5 sC 1)]. In this figure we can appre-
ciate the comparison of the outputs of both the ideal con-
troller (1) and the fuzzy controller optimized by the ge-
netic algorithm (2). From this figure it is clear that both
controllers are very similar and as a consequence we can
conclude that the genetic algorithm was able to optimize

Hybrid Soft Computing Models for Systems Modeling and Con-
trol, Figure 5
Plot of the error after 50 generations of the HGA
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Hybrid Soft Computing Models for Systems Modeling and Con-
trol, Figure 6
Comparison between outputs of the ideal controller (1) and the
fuzzy controller with the HGA (2)

Hybrid Soft Computing Models for Systems Modeling and Con-
trol, Figure 7
Zoom in of Fig. 6 to view in more detail the difference between
the controllers

the performance of the fuzzy logic controller. We can also
appreciate this fact more clearly in Fig. 7, where we have
amplified the simulation results from Fig. 6 for a better
view.

Application to the Control of the Bar and Ball System

In this section, we describe the ball and beam experi-
ment [23], which was also used as a basis for testing the
genetic approach of fuzzy controller optimization.

A ball is placed on a beam, see Fig. 8, where it is al-
lowed to roll with one degree of freedom along the length
of the beam. A lever arm is attached to the beam at one

Hybrid Soft Computing Models for Systems Modeling and Con-
trol, Figure 8
Diagram of the ball and beam system

end and a servo gear at the other. As the servo gear turns
by an angle theta, the lever changes the angle of the beam
by a magnitude “alpha”. When the angle is changed from
the horizontal position, gravity causes the ball to roll along
the beam. A controller will be designed for this system so
that the ball’s position can be manipulated.

For this problem, we will assume that the ball rolls
without slipping and friction between the beam and ball
is negligible. The constants for this example are defined as
follows:
M mass of the ball 0.11 kg
R radius of the ball 0.015m
d lever arm offset 0.03m
g gravitational acceleration 9.8m/s2

L length of the beam 1.0m
J moment of inertia 9:99 � 10�6 kgm2

r ball position coordinate
˛ beam angle coordinate
� servo gear angle

The Lagrangian equation of motion for the ball is then
given by the following equation:

(J/R2 C m)r00 C mg sin ˛ � mr(˛0)2 D 0 : (8)

Simulation Results with the Complete HGA

� NIND= 50; %Number of individuals in the population
� MAXGEN= 80; % Maximum number of generations
� GGAP = 0.8; % Generation gap
� PRECI = 120; % Length of the Chromosome

In this case, we use the complete HGA with the following
parameters:
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Hybrid Soft Computing Models for Systems Modeling and Con-
trol, Table 2
Fuzzy rules in indexed and linguistic form

Indexed Rules Linguistic Rules
1 1, 1 (1): 1 If error is N and derror is N then Angle is NG
1 2, 2 (1): 1 If error is N and derror is Z then Angle is N
2 1, 2 (1): 1 If error is Z and derror is N then Angle is N
2 2, 3 (1): 1 If error is Z and derror is Z then Angle is Z
2 3, 4 (1): 1 If error is Z and derror is P then Angle is P
3 2, 4 (1): 1 If error is P and derror is Z then Angle is P
3 3, 5 (1): 1 If error is P and derror is P then Angle is PG

Hybrid Soft Computing Models for Systems Modeling and Con-
trol, Table 3
Fuzzy rules in indexed and linguistic form

Indexed Rules Linguistic Rules
1 1, 1 (1): 1 If error is N and derror is N then Angle is NG
1 2, 2 (1): 1 If error is N and derror is Z then Angle is N
2 1, 2 (1): 1 If error is Z and derror is N then Angle is N
2 2, 3 (1): 1 If error is Z and derror is Z then Angle is Z
2 3, 4 (1): 1 If error is Z and derror is P then Angle is P
3 2, 4 (1): 1 If error is P and derror is Z then Angle is P

At the end of the genetic evolution seven fuzzy rules
were obtained, which are shown in Table 2.

Simulation Results with a Method Dased Only
on Mutation

In this section, we show results for the HGAmethod based
only onmutation (no crossover was used). The parameters
of the genetic algorithm are:

� NIND= 50; %Number of individuals in the population
� MAXGEN= 250; % Maximum number of generations
� GGAP = 0.8; % Generation gap
� PRECI = 120; % Length of the chromosome

Table 3 shows the fuzzy rules obtained at the end with this
type of genetic algorithm.

Simulation Results with a Method Based Only
on Crossover

In this section, we show results for the HGAmethod based
only on crossover (no mutation was used). The parame-
ters of the genetic algorithm are the same. The fuzzy rules
obtained at the end of the genetic evolution are shown in
Table 4.

Hybrid Soft Computing Models for Systems Modeling and Con-
trol, Table 4
Fuzzy rules in indexed and linguistic form

Indexed rules Linguistic rules
1 1, 1 (1): 1 If error is N and derror is N then Angle is NG
1 3, 3 (1): 1 If error is N and derror is P then Angle is Z
2 1, 2 (1): 1 If error is Z and derror is N then Angle is N
2 3, 4 (1): 1 If error is Z and derror is P then Angle is P
3 2, 4 (1): 1 If error is P and derror is Z then Angle is P
3 3, 5 (1): 1 If error is P and derror is P then Angle is PG

Comparison of the Simulation Results

In this section we show the comparison of the fuzzy con-
trollers that were obtained with the different types of ge-
netic algorithms that were considered. We show in Figs. 9
and 10 the comparison of the responses of the different
fuzzy controllers. From these figures we can appreciate
that the different types of HGA work. However, a pseu-
dobacterial genetic algorithm (PBGA) does not give a valid
fuzzy controller. The PBGA is not described in this paper,
but can be seen with detail in [16] and [18].

Table 5 shows the comparison between the different
methods used. This table summarizes response times of
the controllers and the number of fuzzy rules of the cor-
responding controllers. This table also contains the infor-
mation of a PID controller. We also show in Fig. 11 the
behavior of the PID controller to have a basis for compar-
ison with the other controllers.

Hybrid Soft Computing Models for Systems Modeling and Con-
trol, Figure 9
Responses of the fuzzy controllers obtained (green=PBGA,
red =HGA complete, blue= ideal fuzzy, black =HGA with only
mutation)
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Hybrid Soft Computing Models for Systems Modeling and Con-
trol, Figure 10
Magnification of Fig. 9

Hybrid Soft Computing Models for Systems Modeling and Con-
trol, Table 5
Comparison of the different methods

Methods Time Reference Number
of rules

Only mutation 12.000 0.25 6
Ideal Fuzzy System
(Not optimized)

13.8000 0.25 12

Complete HGA 12.000 0.25 7
PBGA Did not control 0.25 9
Only crossover Did not control 0.25 7
Traditional (PID) 400 0.25 Transfer

Function

Hybrid Soft Computing Models for Systems Modeling and Con-
trol, Figure 11
Response of the PID controller (blue= reference, black = res-
ponse of the controller)

We can appreciate from Table 5 that the best result
corresponds to the method using only mutation, because it
achieved a lower number of fuzzy rules without losing the
efficiency of the control goal. The complete HGA method
also achieves control but with one more fuzzy rule. The
ideal fuzzy controller (from the experts) also achieves con-
trol but with 12 fuzzy rules. The other methods do not
achieve the control goal.

Hierarchical Genetic Algorithms
for Neural Networks

The bottleneck problem for NN application lies within the
optimization procedures that are used to obtain an optimal
NN topology. Hence, the formulation of the Hierarchical
Genetic Algorithm (HGA) is applied for this purpose. The
HGA differs from the standard GA with a hierarchy struc-
ture in that each chromosome consists of multilevel genes.
Each chromosome consists of two types of genes, i. e. con-
trol genes and connection genes. The control genes in the
form of bits, are the genes for layers and neurons for acti-
vation. The connection genes, a real value representation,
are the genes for connection weightings and neuron bias.

With such a specific treatment, a structural chro-
mosome incorporates both active and inactive genes. It
should be noted that the inactive genes remain in the chro-
mosome structure and can be carried forward for fur-
ther generations. Such an inherent genetic variation in the
chromosome avoids any trapping at local optima, which
has the potential to cause premature convergence. Thus
it maintains a balance between exploiting its accumu-
lated knowledge and exploring the new areas of the search
space. This structure also allows larger genetic variations
in chromosome while maintaining high viability by per-
mitting multiple simultaneous genetic changes. As a re-
sult, a single change in high level genes will cause multiple
changes (activation or deactivation in the whole level) in
lower level genes. In the case of the traditional GA, this is
only possible when a sequence of many random changes
takes place. Hence the computational power is greatly im-
proved.

The fitness function used in this work combines the
information the error objective and also the information
about the number of nodes as a second objective. This is
shown in the following equation.

f (z) D
�

1
˛  Ranking(ObjV1)C ˇ ObjV2

�
10 : (9)

The first objective is basically the average sum of squared
of errors as calculated by the predicted outputs of the
MNN compared with real values of the function. This is



4706 H Hybrid Soft ComputingModels for Systems Modeling and Control

given by the following equation.

f1 D
1
N

NX

iD1

(Yi � yi ) : (10)

The parameters of the genetic algorithm for this case are
as follows:

� Type of crossover operator: Two-point crossover
� Crossover rate: 0.8
� Type of mutation operator: Binary mutation
� Mutation rate: 0.05
� Population size per generation: 10
� Total number of generations: 100

The evolution of neural networks is used in the follow-
ing section to optimize hybrid intelligent systems for time
series prediction. In particular, in the neuro-genetic ap-
proach the evolution is used to optimize the neural net-
work for prediction, and in the neuro-fuzzy-genetic ap-
proach the evolution is used to optimize the neuro-fuzzy
system.

Experimental Results for Time Series Prediction

In this section, we illustrate the application of interval
type-2 fuzzy logic to the problem of time series prediction.

Hybrid Soft Computing Models for Systems Modeling and Control, Figure 12
Forecasting the Mackey-Glass time series with a neural network. On top it is shown the comparison of the prediction with the neural
network (red) and the original time series (blue). Below it is shown the forecasting error

The Mackey-Glass time series is used to compare the re-
sults of interval type-2 fuzzy logic with the results of other
intelligent methods. In particular, a comparison is made
with type-1 fuzzy systems, neural networks, neuro-fuzzy
systems and neuro-genetic and fuzzy-genetic approaches.

Prediction with a Neural Network

In this case, we did find a neural network model for this
time series using 5 time delays and 6 periods. The archi-
tecture of the neural network used was 4–12–1 with 150
epochs, and 500 data points for training/500 data points
for validation. The mean square error for prediction is
0.0043 (see Fig. 12).

Prediction with an Adaptive Neuro–Fuzzy Inference
System (ANFIS)

To find the ANFISmodel an analysis wasmade of the data,
and the decision was to use a 5 time delay with 6 periods.
The time series was divided into 500 data points for train-
ing and 500 data points for validation. The ANFIS model
was designedwith 4 inputs (2 membership functions each)
and 1 output with 16 linear functions, giving a total of 16
fuzzy rules. The training was of 50 epochs and the mean
squared error of prediction is of 0.0016 (see Fig 13).
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Hybrid Soft Computing Models for Systems Modeling and Control, Figure 13
Forecasting theMackey-Glass time serieswithANFIS. The figure on top shows the comparison of thepredicted values and theoriginal
time series. The following figures show the error plot and the membership functions obtained with ANFIS

Prediction with an Interval Type-2 TSK Fuzzy Model

To find the type-2 fuzzy model an analysis was made of
the data, and the decision was to use a 5 time delay with 6
periods. The time series was divided into 500 data points
for training and 500 data points for validation. The model
was designed with 4 inputs (with two interval type-2 (ig-
bellmtype2) membership functions each) and one output

with 16 interval linear functions, giving a total of 16 fuzzy
rules. The training was of 50 epochs and the mean squared
error of prediction is of 0.00023 (see Fig. 14).

Prediction with a Neuro-Genetic Model

In this case, we use a genetic algorithm for training a neu-
ral network model for this time series using 5 time de-
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Hybrid Soft Computing Models for Systems Modeling and Control, Figure 14
Forecasting the Mackey-Glass time series with an interval type-2 TSK fuzzy model. The figure on top shows the comparison of the
predicted values and the original time series. The following figures show the error plot and the interval type-2membership functions
obtained

lays and 6 periods. The architecture of the neural network
usedwas 4–12–1with 200 generations, and 500 data points
for training/500 data points for validation. The mean
square error for prediction is 0.00064 (see Fig. 15). The
genetic parameters are: population size = 30, crossover ra-
tio = 0.75, and mutation ratio = 0.01.

Prediction with Type-1 Fuzzy Models Optimized
with Genetic Algorithms

In this section, we show prediction results of type-1 fuzzy
models that were optimized using genetic algorithms. In
all cases, we have 4 inputs (with 2 membership functions)
and 1 output with 16 functions. The parameters of the ge-

netic algorithms are the same as in the previous section.
We show in Fig. 16 the results of a TSK model (mean
squared error of 0.00647) and in Fig. 17 the results of
a Mamdani model (mean squared error of 0.00692).

The Mackey-Glass time series shows chaotic behavior
an for this reason has been chosen many times as a bench-
mark problem for prediction methods. We show in Ta-
ble 6 a summary of the results using the methods men-
tioned previously. Based on mean squared error (RMSE)
of forecasting, we can conclude that the interval type-2
fuzzy model (IT2 FLS on Table 6) is the best one to pre-
dict future values of this time series. Also, based on the
training required, we can conclude that the interval type-2
fuzzy model is the best one because it only requires one
epoch.
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Hybrid Soft Computing Models for Systems Modeling and Control, Figure 15
Forecasting the Mackey-Glass time series with a neuro-genetic model. The figure on top shows the comparison of the predicted
values and the original time series. The figure on the middle shows the error plot. The figure on the bottom shows the evolution of
the mean squared error as the generations increase up to 250

Hybrid Soft Computing Models for Systems Modeling and Con-
trol, Table 6
Summary of results for the mackey-glass time series

Method RMSE Data
Training/
Checking

Epochs or
Generations

NNFF (Fig. 12) 0.00430 500/500 150
CANFIS (Fig. 13) 0.00160 500/500 50
IT2FLS(TSK) (Fig. 14) 0.00023 500/500 1
NNFF-GA (Fig. 15) 0.00064 500/500 150
FLS(TSK)-GA (Fig. 16) 0.00647 500/500 200
FLS(MAM)-GA (Fig. 17) 0.00693 500/500 200

Finally, from Table 6 we can say that the use of evolu-
tion helps in the design of hybrid intelligent systems. The

results of the hybrid intelligent systems shown in the last
three rows (of Table 6) are very good, and this is a conse-
quence of using genetic algorithm for optimizing the neu-
ral networks or the fuzzy systems.

Conclusions

We consider in this paper the case of automatic anesthe-
sia control in human patients for testing the optimized
fuzzy controller. We did have, as a reference, the best fuzzy
controller that was developed for the automatic anesthe-
sia control, and we consider the optimization of this con-
troller using the HGA approach. After applying the genetic
algorithm the number of fuzzy rules was reduced from 12
to 9 with a similar performance of the fuzzy controller.
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Hybrid Soft Computing Models for Systems Modeling and Control, Figure 16
Forecasting the Mackey-Glass time series with a TSK fuzzy model optimized using a genetic algorithm
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Hybrid Soft Computing Models for Systems Modeling and Control, Figure 17
Forecasting the Mackey-Glass time series with a Mamdani fuzzy model optimized using a genetic algorithm
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Of course, the parameters of the membership functions
were also tuned by the genetic algorithm. We did com-
pare the simulation results of the optimized fuzzy con-
trollers obtained with the HGA against the best fuzzy con-
troller that was obtained previously with expert knowl-
edge, and control is achieved in a similar fashion. Since
simulation results are similar, and the number of fuzzy
rules was reduced, we can conclude that the HGA ap-
proach is a good alternative for designing fuzzy systems.
We also consider the case of controlling the bar and ball
system, and the genetic approach was able to optimize the
number of rules from 12 to 6. In conclusion, the HGA
approach is a good alternative in optimizing fuzzy con-
trollers. Future work will include testing the proposed ap-
proach with the optimization of other fuzzy controllers.
We also described the application of the evolutionary ap-
proach for the problem of designing hybrid intelligent
systems in time series prediction. In this case, the goal
is to design the best predictor for complex time series.
Simulation results show that the evolutionary approach
optimizes the hybrid intelligent systems in time series
prediction.

Future Directions

The evolutionary approach is a good alternative in opti-
mizing fuzzy controllers. Future work will include test-
ing the proposed approach with the optimization of other
fuzzy controllers and comparison with results of existing
approaches. We also described the application of the evo-
lutionary approach for the problem of designing hybrid
intelligent systems in time series prediction. In this case,
the goal is to design the best predictor for complex time
series. Simulation results show that the evolutionary ap-
proach optimizes the hybrid intelligent systems in time
series prediction. In this case, future work will include
applying the hybrid approach to other problems of time
series prediction, and compare the results with existing
approaches.
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Glossary

Conservation law Several physical laws state that cer-
tain basic quantities such as mass, energy, or electric
charge, are globally conserved. A conservation law is
a mathematical equation describing how the density of
a conserved quantity varies in time. It is formulated as
a partial differential equation having divergence form.

Flux function The flux of a conserved quantity is a vec-
tor field, describing how much of the given quantity
moves across any surface, at a given time.

Shock Solutions to conservation laws often develop
shocks, i. e. surfaces across which the basic physical
fields are discontinuous. Knowing the two limiting val-
ues of a field on opposite sides of a shock, one can de-
termine the speed of propagation of a shock in terms
of the Rankine–Hugoniot equations.

Entropy An entropy is an additional quantity which is
globally conserved for every smooth solution to a sys-
tem of conservation laws. In general, however, en-
tropies are not conserved by solutions containing
shocks. Imposing that certain entropies increase (or
decrease) in correspondence to a shock, one can de-
termine a unique physically admissible solution to the
mathematical equations.

Definition of the Subject

According to some fundamental laws of continuum
physics, certain basic quantities such as mass, momen-

tum, energy, electric charge. . . , are globally conserved. As
time progresses, the evolution of these quantities can be
described by a particular type of mathematical equations,
called conservation laws.

Gas dynamics, magneto-hydrodynamics, electromag-
netism, motion of elastic materials, car traffic on a high-
way, flow in oil reservoirs, can all be modeled in terms
of conservation laws. Understanding, predicting and con-
trolling these various phenomena is the eventual goal of
the mathematical theory of hyperbolic conservation laws.

Introduction

Let u D u(x; t) denote the density of a physical quan-
tity, say, the density of mass. Here t denotes time, while
x D (x1; x2; x3) 2 R3 is a three-dimensional space vari-
able. A conservation law is a partial differential equation of
the form

@

@t
u C div f D 0 : (1)

which describes how the density u changes in time. The
vector field f D ( f1; f2; f3) is called the flux of the con-
served quantity. We recall that the divergence of f is

div f D
@ f1
@x1
C
@ f2
@x2
C
@ f3
@x3

:

To appreciate the meaning of the above Eq. (1), consider
a fixed region ˝ � R3 of the space. The total amount of
mass contained inside˝ at time t is computed as
Z

˝

u(x; t)dx :

This integral may well change in time. Using the conserva-
tion law (1) and then the divergence theorem, one obtains

d
dt

Z

˝

u(x; t)dx D
Z

˝

@

@t
u(x; t)dx D �

Z

˝

div fdx

D �

Z

˙

f � nd˙ :

Here ˙ denotes the boundary of ˝ , while the integrand
f � n denotes the inner product of the vector f with the
unit outer normal n to the surface ˙ . According to the
above identities, no mass is created or destroyed. The total
amount of mass contained inside the region˝ changes in
time only because some of the mass flows in or out across
the boundary˙ .

Assuming that the flux f can be expressed as a function
of the density u alone, one obtains a closed equation. If the
initial density ū at time t D 0 is known, then the values
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of the function u D u(x; t) at all future times t > 0 can be
found by solving the initial-value problem

ut C div f(u) D 0 u(0; x) D ū(x) :

More generally, a system of balance laws is a set of par-
tial differential equations of the form

8
<̂

:̂

@
@t u1 C div f1(u1; : : : ; un) D �1 ;

� � �
@
@t un C div fn(u1; : : : ; un) D �n :

(2)

Here u1; : : : ; un are the conserved quantities, f1; : : : ; fn
are the corresponding fluxes, while the functions
�i D �i(t; x; u1; : : : ; un) represent the source terms. In
the case where all �i vanish identically, we refer to (2) as
a system of conservation laws.

Systems of this type express the fundamental balance
equations of continuum physics, when small dissipation
effects are neglected. A basic example is provided by the
equations of non-viscous gases, accounting for the con-
servation of mass, momentum and energy. This subject is
thus very classical, having a long tradition which can be
traced back to Euler [21] and includes contributions by
Stokes, Riemann, Weyl and von Neumann, among several
others.

In spite of continuing efforts, the mathematical the-
ory of conservation laws is still largely incomplete. Most of
the literature has been concerned with two main cases: (i)
a single conservation law in several space dimensions, and
(ii) systems of conservation laws in one space dimension.
For systems of conservation laws in several space dimen-
sions, not even the global-in-time existence of solutions
is presently known, in any significant degree of general-
ity. Several mathematical studies are focused on particular
solutions, such as traveling waves, multi-dimensional Rie-
mann problems, shock reflection past a wedge, etc. . .

Toward a rigorous mathematical analysis of solutions,
the main difficulty that one encounters is the lack of regu-
larity. Due to the strong nonlinearity of the equations and
the absence of dissipation terms with regularizing effect,
solutions which are initially smooth may become discon-
tinuous within finite time. In the presence of discontinu-
ities, most of the classical tools of differential calculus do
not apply. Moreover, the Eqs. (2) must be suitably rein-
terpreted, since a discontinuous function does not admit
derivatives in a classical sense.

Topics which have been more extensively investigated
in the mathematical literature are the following:

� Existence and uniqueness of solutions to the initial-
value problem. Continuous dependence of the solu-
tions on the initial data [8,10,24,29,36,49,57].

� Admissibility conditions for solutions with shocks,
characterizing the physically relevant ones [23,38,39,
46].

� Stability of special solutions, such as traveling waves,
w.r.t. small perturbations [34,47,49,50,62].

� Relations between the solutions of a hyperbolic system
of conservation laws and the solutions of various ap-
proximating systems, modeling more complex physical
phenomena. In particular: vanishing viscosity approx-
imations [6,20,28], relaxations [5,33,48], kinetic mod-
els [44,53].

� Numerical algorithms for the efficient computation of
solutions [32,41,41,56,58].

Some of these aspects of conservation laws will be outlined
in the following sections.

Examples of Conservation Laws

We review here some of the most common examples of
conservation laws. Throughout the sequel, subscripts such
as ut ; fx will denote partial derivatives.

Example 1 (Traffic flow) Let u(x, t) be the density of cars
on a highway, at the point x at time t. This can bemeasured
as the number of cars per kilometer (see Fig. 1). In first
approximation, following [43] we shall assume that u is
continuous and that the speed s of the cars depends only
on their density, say s D s(u). Given any two points a, b on
the highway, the number of cars between a and b therefore
varies according to

Z b

a
ut(x; t)dx D

d
dt

Z b

a
u(x; t)dx

D [inflow at x D a]� [outflow at x D b]
D s(u(a; t)) � u(a; t) � s(u(b; t)) � u(b; t)

D �

Z b

a
[s(u)u]xdx :

Since the above equalities hold for all a, b, one obtains the
conservation law in one space dimension

ut C [s(u)u]x D 0 ; (3)

where u is the conserved quantity and f (u) D s(u)u is the
flux function. Based on experimental data, an appropriate
flux function has the form

f (u) D a1


ln

a2
u

�
u (0 < u � a2) ;

for suitable constants a1;~a2.
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Hyperbolic Conservation Laws, Figure 1
Modelling the density of cars by a conservation law

Example 2 (Gas dynamics) The Euler equations for
a compressible, non-viscous gas in Eulerian coordinates
take the form
8
ˆ̂
ˆ̂̂
ˆ̂̂
<̂

ˆ̂
ˆ̂̂
ˆ̂̂
:̂

@
@t�C div(�v) D 0
(conservation of mass) ;
@
@t (�vi )C div(�vi v)C @

@xi
p D 0 i D 1; 2; 3;

(conservation of momentum)
@
@t E C div((E C p)v) D 0
(conservation of energy) :

Here � is the mass density, v D (v1; v2; v3) is the velocity
vector, E is the energy density, and p the pressure. In turn,
the energy can be represented as a sum

E D �
jvj2

2
C �e ;

where the first term accounts for the kinetic energy while e
is the internal energy density (related to the tempera-
ture). The system is closed by an additional equation
p D p(�; e), called the equation of state, depending on the
particular gas under consideration [18]. Notice that here
we are neglecting small viscous forces, as well as heat con-
ductivity. Calling fe1; e2; e3g the standard basis of unit vec-
tors in R3, one has @p/@xi D div(pei ). Hence all of the
above equations can be written in the standard divergence
form (1).

Example 3 (Isentropic gas dynamics in Lagrangian vari-
ables) Consider a gas in a tube. Particles of the gas will
be labeled by a one-dimensional variable y determined by
their position in a reference configuration with constant
unit density. Using this Lagrangian coordinate, we denote
by u(y, t) the velocity of the particle y at time t, and by
v(y; t) D ��1(y; t) its specific volume.

The so-called p-system of isentropic gas dynamics [57]
consists of the two conservation laws

vt � ux D 0 ; ut C px D 0 : (4)

The system is closed by an equation of state p D p(v) ex-
pressing the pressure as a function of the specific volume.

A typical choice here is p(v) D kv�� , with � 2 [1; 3]. In
particular � � 1:4 for air.

In general, p is a decreasing function of v. Near a con-
stant state v0, one can approximate p by a linear function,
say p(v) � p(v0) � c2(v � v0). Here c2 D �p0(v0). In this
case the Eq. (4) reduces to the familiar wave equation

vtt � c2vxx D 0 :

Shocks andWeak Solutions

A single conservation law in one space dimension is a first
order partial differential equation of the form

ut C f (u)x D 0 : (5)

Here u is the conserved quantity while f is the flux. As long
as the function u is continuously differentiable, using the
chain rule the equation can be rewritten as

ut C f 0(u)ux D 0 ; (6)

According to (6), in the x–t-plane, the directional deriva-
tive of the function u in the direction of the vector
v D ( f 0(u); 1) vanishes.

At time t D 0, let an initial condition u(x; 0) D ū(x)
be given. As long as the solution u remains smooth, it can
be uniquely determined by the so-calledmethod of charac-
teristics. For every point x0, consider the straight line (see
Fig. 2)

x D x0 C f 0
�
ū(x0)


t :

On this line, by (6) the value of u is constant. Hence

u
�
x0 C f 0

�
ū(x0)


t ; t


D ū(x0)

Hyperbolic Conservation Laws, Figure 2
Solving a conservation law by the method of characteristics. The
function u D u(x; t) is constant along each characteristic line
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Hyperbolic Conservation Laws, Figure 3
Shock formation

for all t � 0. This allows to construct a solution up to
the first time T where two or more characteristic lines
meet. Beyond this time, the solution becomes discontinu-
ous. Figure 3 shows the graph of a typical solution at three
different times. Points on the graph of umove horizontally
with speed f 0(u). If this speed is not constant, the shape of
the graph will change in time. In particular, there will be an
instant T at which one of the tangent lines becomes verti-
cal. For t > T , the solution u(�; t) contains a shock. The
position y(t) of this shock can be determined by impos-
ing that the total area of the region below the graph of u
remains constant in time.

In order to give a meaning to the conservation law (6)
when u D u(x; t) is discontinuous, one can multiply both
sides of the equation by a test function ' and integrate by
parts. Assuming that ' is continuously differentiable and
vanishes outside a bounded set, one formally obtains

“
fu't C f (u)'xgdxdt D 0 : (7)

Since the left hand side of the above equation does not
involve partial derivatives of u, it remains meaningful for
a discontinuous function u. A locally integrable function u
is defined to be a weak solution of the conservation law (6)
if the integral identity (7) holds true for every test func-
tion ', continuously differentiable and vanishing outside
a bounded set.

Hyperbolic Systems in One Space Dimension

A system of n conservation laws in one space dimension
can be written as

8
<̂

:̂

@
@t u1 C

@
@x [ f1(u1; : : : ; un)] D 0 ;

� � �
@
@t un C

@
@x [ fn(u1; : : : ; un)] D 0 :

(8)

For convenience, this can still be written in the form (5),
but keeping in mind that now u D (u1; : : : ; un) 2 Rn is
a vector and that f D ( f1; : : : ; fn) is a vector-valued func-
tion. As in the case of a single equation, a vector function

u D (u1; : : : ; un) is called a weak solution to the system of
conservation laws (8) if the integral identity (7) holds true,
for every continuously differentiable test function ' van-
ishing outside a bounded set.

Consider the n � n Jacobian matrix of partial deriva-
tives f at the point u:

A(u) :D D f (u) D

0

@
@ f1/@u1 � � � @ f1/@un

� � �

@ fn/@u1 � � � @ fn/@un

1

A :

Using the chain rule, the system (8) can be written in the
quasilinear form

ut C A(u)ux D 0 : (9)

We say that the above system is strictly hyperbolic if
every matrix A(u) has n real, distinct eigenvalues, say
1(u) < � � � < n(u). In this case, one can find a basis of
right eigenvectors of A(u), denoted by r1(u); : : : ; rn(u),
such that, for i D 1; : : : ; n,

A(u)ri (u) D i (u)ri (u) ; jri(u)j D 1 :

Example 4 Assume that the flux function is linear: f (u) D
Au for some constant matrix A 2 Rn�n . If 1 < 2 <

� � � < n are the eigenvalues of A and r1; : : : ; rn are the
corresponding eigenvectors, then any vector function of
the form

u(x; t) D
nX

iD1

gi (x � i t)ri

provides a weak solution to the system (8). Here it is
enough to assume that the functions gi are locally inte-
grable, not necessarily continuous.

Example 3 (continued) For the system (4) describing isen-
tropic gas dynamics, the Jacobian matrix of partial deriva-
tives of the flux is

D f D
�
�@u/@v �@u/@u
@p/@v @p/@u

�
D

�
0 �1

p0(v) 0

�
:

Assuming that p0(v) < 0, this matrix has the two real
distinct eigenvalues ˙

p
�p0(v). Therefore, the system is

strictly hyperbolic.

Entropy Admissibility Conditions

Given two states u�; uC 2 Rn and a speed , consider the
piecewise constant function defined as

u(x; t) D

(
u� if x < t ;
uC if x > t :
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Then one can show that the discontinuous function u is
a weak solution of the hyperbolic system (8) if and only if
it satisfies the Rankine–Hugoniot equations

(uC � u�) D f (uC) � f (u�) : (10)

More generally, consider a function u D u(x; t) which
is piecewise smooth in the x–t-plane. Assume that these
discontinuities are located along finitely many curves
x D �˛(t), ˛ D 1; : : : ;N , and consider the left and right
limits

u�˛ (t) D lim
x!�˛(t)�

u(x; t); uC˛ (t) D lim
x!�˛(t)C

u(x; t):

Then u is a weak solution of the system of conservation
laws if and only if it satisfies the quasilinear system (9) to-
gether with the Rankine–Hugoniot equations

� 0˛(t)
�
uC˛ (t) � u�˛ (t)


D f

�
uC˛ (t)


� f

�
u�˛ (t)



along each shock curve. Here � 0˛ D d�˛/dt.
Given an initial condition u(x; 0) D ū(x) contain-

ing jumps, however, it is well known that the Rankine–
Hugoniot conditions do not determine a unique weak so-
lution. Several “admissibility conditions” have thus been
proposed in the literature, in order to single out a unique
physically relevant solution. A basic criterion relies on the
concept of entropy: A continuously differentiable function
� : Rn 7! R is called an entropy for the system of conser-
vation laws (8), with entropy flux q : Rn 7! R if

D�(u) � D f (u) D Dq(u) :

If u D (u1; : : : ; un) is a smooth solution of (8), not only
the quantities u1; : : : ; un are conserved, but the additional
conservation law �(u)t C q(u)x D 0 holds as well. Indeed,

D�(u)utCDq(u)ux DD�(u)[�D f (u)ux ]CDq(u)ux D 0:

Hyperbolic Conservation Laws, Figure 4
Solutions of a Riemann problem. Left: the linear case. Right: a nonlinear example

On the other hand, if the solution u is not smooth but con-
tains shocks, the quantity � D �(u) may no longer be con-
served. The admissibility of a shock can now be character-
ized by requiring that certain entropies be increasing (or
decreasing) in time. More precisely, a weak solution u of
(8) is said to be entropy-admissible if the inequality

�(u)t C q(u)x � 0

holds in the sense of distributions, for every pair (�; q),
where � is a convex entropy and q is the corresponding
flux. Calling u�; uC the states to the left and right of the
shock, and  its speed, the above condition implies

[�(uC) � �(u�)] � q(uC) � q(u�) :

Various alternative conditions have been studied in the
literature, in order to characterize the physically admissi-
ble shocks. For these we refer to Lax [39], or Liu [46].

The Riemann Problem

Toward the construction of general solutions for the sys-
tem of conservation laws (8), a basic building block is the
so-called Riemann problem [55]. This amounts to choos-
ing a piecewise constant initial data with a single jump at
the origin:

u(x; 0) D

(
u� if x < 0 ;
uC if x > 0 :

(11)

In the special case where the system is linear,
i. e. f (u) D Au, the solution is piecewise constant in the x–
t-plane. It contains nC 1 constant states u� D !0; !1;

: : : ; !n D uC (see Fig. 4, left). Each jump !i � !i�1 is
an eigenvector of the matrix A, and is located along the
line x D i t, whose speed equals the corresponding eigen-
value i .

For nonlinear hyperbolic systems of n conservation
laws, assuming that the amplitude juC � u�j of the jump
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is sufficiently small, the general solution was constructed
in a classical paper of Lax [38], under the additional hy-
pothesis

(H) For each i D 1; : : : ; n, the ith field is either genuinely
nonlinear, so that Di (u) � ri(u) > 0 for all u, or lin-
early degenerate, with Di (u) � ri(u) D 0 for all u.

The solution is self-similar: u(x; t) D U(x/t). It still con-
sists of nC 1 constant states !0 D u�, !1; : : : ; !n D uC

(see Fig. 4, right). Each couple of adjacent states !i�1, !i
is separated either by a shock satisfying the Rankine Hugo-
niot equations, or else by a centered rarefaction. In this sec-
ond case, the solution u varies continuously between !i�1
and !i in a sector of the t–x-plane where the gradient ux
coincides with an i-eigenvector of the matrix A(u).

Further extensions, removing the technical assump-
tion (H), were obtained by T. P. Liu [46] and by S. Bian-
chini [3].

Global Solutions

Approximate solutions to a more general Cauchy prob-
lem can be constructed by patching together several so-
lutions of Riemann problems. In the Glimm scheme [24],
one works with a fixed grid in the x–t plane, with mesh
sizes 
x, 
t. At time t D 0 the initial data is approx-
imated by a piecewise constant function, with jumps at
grid points (see Fig. 5, left). Solving the corresponding Rie-
mann problems, a solution is constructed up to a time 
t
sufficiently small so that waves generated by different Rie-
mann problems do not interact. By a random sampling
procedure, the solution u(
t; �) is then approximated by
a piecewise constant function having jumps only at grid
points. Solving the new Riemann problems at every one of
these points, one can prolong the solution to the next time
interval [
t; 2
t], etc. . .

An alternative technique for constructing approximate
solutions is by wave-front tracking (Fig. 5, right). This
methodwas introduced byDafermos [17] in the scalar case
and later developed by various authors [7,19,29]. It now

Hyperbolic Conservation Laws, Figure 5
Left: the Glimm scheme. Right: a front tracking approximation

provides an efficient tool in the study of general n � n sys-
tems of conservation laws, both for theoretical and numer-
ical purposes.

The initial data is here approximated with a piecewise
constant function, and each Riemann problem is solved
approximately, within the class of piecewise constant func-
tions. In particular, if the exact solution contains a cen-
tered rarefaction, this must be approximated by a rarefac-
tion fan, containing several small jumps. At the first time
t1 where two fronts interact, the new Riemann problem is
again approximately solved by a piecewise constant func-
tion. The solution is then prolonged up to the second
interaction time t2, where the new Riemann problem is
solved, etc. . .

The main difference is that with the Glimm scheme
one specifies a priori the nodal points where the the Rie-
mann problems are to be solved. On the other hand, in
a solution constructed by wave-front tracking the loca-
tions of the jumps and of the interaction points depend
on the solution itself. Moreover, no restarting procedure
is needed.

In the end, both algorithms produce a sequence of ap-
proximate solutions, whose total variation remains uni-
formly bounded. We recall here that the total variation of
a function u : R 7! Rn is defined as

Tot.Var. fug :D sup
NX

iD1

ju(xi) � u(xi�1)j ;

where the supremum is taken over all N � 1 and all N-tu-
ples of points x0 < x1 < � � � < xN . For functions of several
variables, a more general definition can be found in [22].
Relying on a compactness argument, one can then show
that these approximations converge to a weak solution to
the system of conservation laws. Namely, one has:

Theorem 1 Let the system of conservation laws (8) be
strictly hyperbolic. Then, for every initial data ū with suf-
ficiently small total variation, the initial value problem

ut C f (u)x D 0 u(x; 0) D ū(x) (12)
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has a unique entropy-admissible weak solution, defined for
all times t � 0.

The existence part was first proved in the famous pa-
per of Glimm [24], under the additional hypothesis (H),
later removed by Liu [46]. The uniqueness of the solu-
tion was proved more recently, in a series of papers by the
present author and collaborators, assuming that all shocks
satisfy suitable admissibility conditions [8,10]. All proofs
are based on careful analysis of solutions of the Riemann
problem and on the use of a quadratic interaction func-
tional to control the formation of new waves. These tech-
niques also provided the basis for further investigations of
Glimm and Lax [25] and Liu [45] on the asymptotic be-
havior of weak solutions as t !1.

It is also interesting to compare solutions with differ-
ent initial data. In this direction, we observe that a func-
tion of two variables u(x, t) can be regarded as a map
t 7! u(�; t) from a time interval [0; T] into a space L1(R) of
integrable functions. Always assuming that the total varia-
tion remains small, the distance between two solutions u; v
at any time t > 0 can be estimated as

ku(t) � v(t)kL1 � L ku(0) � v(0)kL1 ;

where L is a constant independent of time.
Estimates on the rate of convergence of Glimm ap-

proximations to the unique exact solutions are available.
For every fixed time T � 0, letting the grid size 
x; 
x
tend to zero keeping the ratio 
t/
x constant, one has
the error estimate [11]

lim
�x!0

��uGlimm(T; �) � uexact(T; �)
��
L1p


x � j ln
xj
D 0 :

An alternative approximation procedure involves the
addition of a small viscosity. For " > 0 small, one consid-
ers the viscous initial value problem

u"t C f (u")x D " u"xx ; u"(x; 0) D ū(x) : (13)

For initial data ū with small total variation, the analysis
in [6] has shown that the solutions u" have small total vari-
ation for all times t > 0, and converge to the unique weak
solution of (12) as "! 0.

Hyperbolic Systems in Several Space Dimensions

In several space dimensions there is still no comprehen-
sive theory for systems of conservation laws. Much of
the literature has been concerned with three main top-
ics: (i) Global solutions to a single conservation law. (ii)
Smooth solutions to a hyperbolic system, locally in time.
(iii) Particular solutions to initial or initial-boundary value
problems.

Scalar Conservation Laws

The single conservation law on Rm

ut C div f(u) D 0

has been extensively studied. The fundamental works of
Volpert [59] and Kruzhkov [36] have established the
global existence of a unique, entropy-admissible solution
to the initial value problem, for any initial data u(x; 0) D
ū(x) measurable and globally bounded. This solution can
be obtained as the unique limit of vanishing viscosity ap-
proximations, solving

u"t C div f(u") D "
u" ; u"(x; 0) D ū :

As in the one-dimensional case, solutions which are ini-
tially smooth may develop shocks and become discontin-
uous in finite time. Given any two solutions u; v, the fol-
lowing key properties remain valid also in the presence of
shocks:

(i) If at the initial time t D 0 one has u(x; 0) � v(x; 0)
for all x 2 Rm , then u(x; t) � v(x; t) for all x and all
t � 0.

(ii) The L1 distance between any two solutions does not
increase in time. Namely, for any 0 � s � t one has

ku(t) � v(t)kL1(Rm ) � ku(s) � v(s)kL1(Rm ) :

Alternative approaches to the analysis of scalar conserva-
tion laws were developed by Crandall [16] using nonlin-
ear semigroup theory, and by Lions, Perthame and Tad-
mor [44] using a kinetic formulation. Regularity results
can be found in [30].

Smooth Solutions to Hyperbolic Systems

Using the chain rule, one can rewrite the system of conser-
vation laws (2) in the quasi-linear form

ut C
mX

˛D1

A˛(u)ux˛ D 0 : (14)

Various definitions of hyperbolicity can be found in the
literature. Motivated by several examples from mathemat-
ical physics, the system (14) is said to be symmetrizable hy-
perbolic if there exists a positive definite symmetric matrix
S D S(u) such that all matrices S˛(u) D SA˛ are symmet-
ric. In particular, this condition implies that each n � n
matrix A˛(u) has real eigenvalues and admits a basis of lin-
early independent eigenvectors. As shown in [23], if a sys-
tem of conservation laws admits a strictly convex entropy
�(u), such that the Hessian matrix of second derivatives
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D2
u�(u) is positive definite at every point u, then the sys-

tem is symmetrizable.
A classical theorem states that, for a symmetrizable hy-

perbolic system with smooth initial data, the initial value
problem has a unique smooth solution, locally in time.
This solution can be prolonged in time up to the first
timewhere the spatial gradient becomes unbounded at one
or more points. In this general setting, however, it is not
known whether the solution can be extended beyond this
time of shock formation.

Special Solutions

In two space dimensions, one can study special solutions
which are independent of time, so that u(x1; x2; t) D
U(x1; x2). In certain cases, one can regard one of the vari-
ables, say x1 as a new time and derive a one-dimensional
hyperbolic system of equations for U involving the re-
maining one-dimensional space variable x2.

Another important class of solutions relates to two-di-
mensional Riemann problems. Here the initial data, as-
signed on the x1-x2 plane, is assumed to be constant
along rays through the origin. Taking advantage of this
self-similarity, the solution can be written in the form
u(x1; x2; t) D U(x1/t; x2/t). This again reduces the prob-
lem to an equation in two independent variables [35]. Even
for the equation of gas dynamics, a complete solution to
the Riemann problem is not available. Several particular
cases are analyzed in [42,61].

Several other examples, in specific geometries have
been analyzed. A famous problem is the reflection of
a shock hitting a wedge-shaped rigid obstacle [15,51].

NumericalMethods

Generally speaking, there are three major classes of nu-
merical methods suitable for partial differential equations:
finite difference methods (FDM), finite volume methods
(FVM) and finite element methods (FEM). For conserva-
tion laws, one also has semi-discrete methods, such as the
method of lines, and conservative front tracking methods.
The presence of shocks and the rich structure of shock in-
teractions cause the main difficulties in numerical compu-
tations.

To illustrate the main idea, consider a uniform grid in
the x–t-plane, with step sizes 
x and 
t. Consider the
times tn D n
t and let Ii D [xi�1/2; xiC1/2] be a cell. We
wish to compute an approximate value for the cell aver-
ages ūi over Ii. Integrating the conservation law over the
rectangle Ii � [tn ; tnC1] and dividing by
x, one obtains

ūnC1
i D ūni C


t

x

[Fi�1/2 � FiC1/2] ;

where FiC1/2 is the average flux

FiC1/2 D
1

t

Z tnC1

tn
f (u(xiC1/2))dt :

FVM methods seek a suitable approximation to this aver-
age flux FiC1/2. First order methods, based on piecewise
constant approximations, are usually stable, but contain
large numerical diffusion which smears out the shock pro-
file. High order methods are achieved by using polynomi-
als of higher degree, but this produces numerical oscilla-
tions around the shock. The basic problem is how to accu-
rately capture the approximated solution near shocks, and
at the same time retain stability of the numerical scheme.
A common technique is to use a high order scheme on re-
gions where the solution is smooth, and switch to a lower
order method near a discontinuity. Well-known meth-
ods of this type include the Godunov methods and the
MUSCL schemes, wave propagation methods [40,41], the
central difference schemes [52,58] and the ENO/WENO
schemes [56].

The conservative front tracking methods combine the
FDM/FVMwith the standard front tracking [26,27]. Based
on a high order FDM/FVM, the methods in addition
track the location and the strength of the discontinuities,
and treat them as moving boundaries. The complexity in-
creases with the number of fronts.

In the FEM setting, the discontinuous Galerkin’s
methods are widely used [13,14]. The method uses finite
element discretization in space, with piecewise polynomi-
als approximation, but allows the approximation to be dis-
continuous at cell boundaries.

Some numerical methods can be directly extended
to the multi-dimensional case, but others need to use
a dimensional splitting technique, which introduces addi-
tional diffusion. The performance of numerical algorithms
is usually tested with some benchmark problem, and little
is known theoretically, apart from the case of a scalar con-
servation law. Moreover, it remains a challenging problem
to construct efficient high order numerical methods for
systems of conservation laws, both in one and in several
space dimensions.

Future Directions

In spite of extensive research efforts, the mathematical
theory of hyperbolic conservation laws is still largely in-
complete.

For hyperbolic systems in one space dimension, a ma-
jor challenge is to study the existence and uniqueness of
solutions to problems with large initial data. In this direc-
tion, some counterexamples show that, for particular sys-
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tems, solutions can become unbounded in finite time [31].
However, it is conjectured that for many physical systems,
endowed with a strictly convex entropy, such pathologi-
cal behavior should not occur. In particular, the so-called
“p-system” describing isentropic gas dynamics (4) should
have global solutions with bounded variation, for arbitrar-
ily large initial data [60].

It is worth mentioning that, for large initial data,
the global existence of solutions is known mainly in the
scalar case [36,59]. For hyperbolic systems of two con-
servation laws, global existence can still be proved, rely-
ing on a compensated compactness argument [20]. This
approach, however, does not provide information on the
uniqueness of solutions, or on their continuous depen-
dence on the initial data.

Another major open problem is to theoretically an-
alyze the convergence of numerical approximations. Er-
ror bounds on discrete approximations are presently avail-
able only in the scalar case [37]. For solutions to hy-
perbolic systems of n conservation laws, proofs of the
convergence of viscous approximations [6], semidiscrete
schemes [4], or relaxation schemes [5] have always relied
on a priori bounds on the total variation. On the other
hand, the counterexample in [2] shows that in general
one cannot have any a priori bounds on the total vari-
ation of approximate solutions constructed by fully dis-
crete numerical schemes. Understanding the convergence
of these discrete approximations will likely require a new
approach.

At present, the most outstanding theoretical open
problem is to develop a fundamental existence and
uniqueness theory for hyperbolic systems in several space
dimensions. In order to achieve an existence proof, a key
step is to identify the appropriate functional space where
to construct solutions. In the one-dimensional case, so-
lutions are found in the space BV of functions with
bounded variation. In several space dimensions, however,
it is known that the total variation of an arbitrary small so-
lution can become unbounded almost immediately [54].
Hence the space BV does not provide a suitable framework
to study the problem. For a special class of systems, a pos-
itive result and a counterexample, concerning global ex-
istence and continuous dependence on initial data can be
found in [1] and in [9], respectively.
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Glossary

Homeomorphism, diffeomorphism A homeomorphism
is a continuous map f : M ! N which is one-to-one
and onto, and whose inverse f�1 : N ! M is also con-
tinuous. It may be seen as a global continuous change
of coordinates. We call f a diffeomorphism if, in addi-
tion, both it and its inverse are smooth.WhenM D N,
the iterated n-fold composition f ı n: : : ı f is denoted
by f n. By convention, f 0 is the identity map, and
f�n D ( f n)�1 D ( f�1)n for n � 0.

Smooth flow A flow f t : M ! M is a family of diffeo-
morphisms depending in a smooth fashion on a pa-
rameter t 2 R and satisfying f sCt D f s ı f t for all s,
t 2 R. This property implies that f 0 is the identity
map. Flows usually arise as solutions of autonomous
differential equations: let t 7! � t(v) denote the solu-
tion of

Ẋ D F(X) ; X(0) D v ; (1)

and assume solutions are defined for all times; then
the family � t thus defined is a flow (at least as
smooth as the vector field F itself). The vector field
may be recovered from the flow, through the relation
F(X) D @t� t(X) jtD0.

Ck topology Two maps admitting continuous derivatives
are said to be C1-close if they are uniformly close,
and so are their derivatives. More generally, given any
k � 1, we say that two maps are Ck-close if they ad-
mit continuous derivatives up to order k, and their
derivatives of order i are uniformly close, for every
i D 0; 1; : : : ; k. This defines a topology in the space of
maps of class Ck.

Foliation A foliation is a partition of a subset of the am-
bient space into smooth submanifolds, that one calls
leaves of the foliation, all with the same dimension
and varying continuously from one point to the other.
For instance, the trajectories of a vector field F, that is,
the solutions of Eq. (1), form a 1-dimensional foliation
(the leaves are curves) of the complement of the set of
zeros of F. The main examples of foliations in the con-
text of this work are the families of stable and unstable
manifolds of hyperbolic sets.

Attractor A subset � of the ambient space M is invari-
ant under a transformation f if f�1(�) D �, that is,
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a point is in � if and only if its image is. � is invari-
ant under a flow if it is invariant under f t for all t 2 R.
An attractor is a compact invariant subset� such that
the trajectories of all points in a neighborhood U con-
verge to � as times goes to infinity, and � is dynami-
cally indecomposable (or transitive): there is some tra-
jectory dense in �. Sometimes one asks convergence
only for points in some “large” subset of a neighbor-
hood U of �, and dynamical indecomposability can
also be defined in somewhat different ways. However,
the formulations we just gave are fine in the uniformly
hyperbolic context.

Limit sets The !-limit set of a trajectory f n(x); n 2 Z is
the set!(x) of all accumulation points of the trajectory
as time n goes toC1. The ˛-limit set is defined anal-
ogously, with n! �1. The corresponding notions
for continuous time systems (flows) are defined analo-
gously. The limit set L(f ) (or L( f t), in the flow case) is
the closure of the union of all 0!-limit and all ˛-limit
sets. The non-wandering set ˝( f ) (or ˝( f t), in the
flow case) is that set of points such that every neigh-
borhood U contains some point whose orbit returns
to U in future time (then some point returns to U in
past time as well). When the ambient space is compact
all these sets are non-empty. Moreover, the limit set is
contained in the non-wandering set.

Invariant measure A probability measure � in the am-
bient space M is invariant under a transformation f
if �( f�1(A)) D �(A) for all measurable subsets A.
This means that the “events” x 2 A and f (x) 2 A have
equally probable. We say � is invariant under a flow
if it is invariant under f t for all t. An invariant proba-
bility measure � is ergodic if every invariant set A has
either zero or full measure. An equivalently condition
is that� can not be decomposed as a convex combina-
tion of invariant probability measures, that is, one can
not have � D a�1 C (1 � a)�2 with 0 < a < 1 and
�1; �2 invariant.

Definition

In general terms, a smooth dynamical system is called
hyperbolic if the tangent space over the asymptotic part
of the phase space splits into two complementary direc-
tions, one which is contracted and the other which is ex-
panded under the action of the system. In the classical, so-
called uniformly hyperbolic case, the asymptotic part of
the phase space is embodied by the limit set and, most cru-
cially, one requires the expansion and contraction rates to
be uniform. Uniformly hyperbolic systems are now fairly
well understood. They may exhibit very complex behav-

ior which, nevertheless, admits a very precise description.
Moreover, uniform hyperbolicity is the main ingredient
for characterizing structural stability of a dynamical sys-
tem. Over the years the notion of hyperbolicity was broad-
ened (non-uniform hyperbolicity) and relaxed (partial hy-
perbolicity, dominated splitting) to encompass a much
larger class of systems, and has become a paradigm for
complex dynamical evolution.

Introduction

The theory of uniformly hyperbolic dynamical systems
was initiated in the 1960s (though its roots stretch far
back into the 19th century) by S. Smale, his students
and collaborators, in the west, and D. Anosov, Ya. Sinai,
V. Arnold, in the former Soviet Union. It came to encom-
pass a detailed description of a large class of systems, of-
ten with very complex evolution. Moreover, it provided
a very precise characterization of structurally stable dy-
namics, which was one of its original main goals.

The early developments were motivated by the prob-
lem of characterizing structural stability of dynamical sys-
tems, a notion that had been introduced in the 1930s by
A. Andronov and L. Pontryagin. Inspired by the pioneer-
ing work of M. Peixoto on circle maps and surface flows,
Smale introduced a class of gradient-like systems, having
a finite number of periodic orbits, which should be struc-
turally stable and, moreover, should constitute the major-
ity (an open and dense subset) of all dynamical systems.
Stability and openness were eventually established, in the
thesis of J. Palis. However, contemporary results of M.
Levinson, based on previous work by M. Cartwright and
J. Littlewood, provided examples of open subsets of dy-
namical systems all of which have an infinite number of
periodic orbits.

In order to try and understand such phenomenon,
Smale introduced a simple geometric model, the now fa-
mous “horseshoe map”, for which infinitely many periodic
orbits exist in a robust way. Another important example
of structurally stable system which is not gradient like was
R. Thom’s so-called “cat map”. The crucial common fea-
ture of these models is hyperbolicity: the tangent space at
each point splits into two complementary directions such
that the derivative contracts one of these directions and
expands the other, at uniform rates.

In global terms, a dynamical system is called uniformly
hyperbolic, or Axiom A, if its limit set has this hyperbolic-
ity property we have just described. Themathematical the-
ory of such systems, which is the main topic of this paper,
is now well developed and constitutes amain paradigm for
the behavior of “chaotic” systems. In our presentation we
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go from local aspects (linear systems, local behavior, spe-
cific examples) to the global theory (hyperbolic sets, stabil-
ity, ergodic theory). In the final sections we discuss several
important extensions (strange attractors, partial hyperbol-
icity, non-uniform hyperbolicity) that have much broad-
ened the scope of the theory.

Linear Systems

Let us start by introducing the phenomenon of hyperbol-
icity in the simplest possible setting, that of linear transfor-
mations and linear flows. Most of what we are going to say
applies to both discrete time and continuous time systems
in a fairly analogous way, and so at each point we refer to
either one setting or the other. In depth presentations can
be found in e. g. [6,8].

The general solution of a system of linear ordinary dif-
ferential equations

Ẋ D AX ; X(0) D v ;

where A is a constant n � n real matrix and v 2 Rn is
fixed, is given by

X(t) D etA � v ; t 2 R ;

where etA D
P1

nD0(tA)
n /n!. The linear flow is called hy-

perbolic if A has no eigenvalues on the imaginary axis.
Then the exponential matrix eA has no eigenvalues with
norm 1. This property is very important for a number of
reasons.

Stable and Unstable Spaces

For one thing it implies that all solutions have well-defined
asymptotic behavior: they either converge to zero or di-
verge to infinity as time t goes to˙1. More precisely, let

� Es (stable subspace) be the subspace of Rn spanned by
the generalized eigenvector associated to eigenvalues
of A with negative real part.

� Eu (unstable subspace) be the subspace of Rn spanned
by the generalized eigenvector associated to eigenval-
ues of A with positive real part

Then these subspaces are complementary, meaning
that Rn D Es ˚ Eu, and every solution etA � v with
v 62 Es [ Eu diverges to infinity both in the future and in
the past. The solutions with v 2 Es converge to zero as
t !C1 and go to infinity as t! �1, and analogously
when v 2 Eu, reversing the direction of time.

Robustness and Density

Another crucial feature of hyperbolicity is robustness: any
matrix that is close to a hyperbolic one, in the sense that
corresponding coefficients are close, is also hyperbolic.
The stable and unstable subspaces need not coincide, of
course, but the dimensions remain the same. In addition,
hyperbolicity if dense: any matrix is close to a hyperbolic
one. That is because, up to arbitrarily small modifications
of the coefficients, one may force all eigenvalues to move
out of the imaginary axis.

Stability, Index of a Fixed Point

In addition to robustness, hyperbolicity also implies sta-
bility: if B is close to a hyperbolic matrix A, in the sense
we have just described, then the solutions of Ẋ D BX have
essentially the same behavior as the solutions of Ẋ D AX.
What we mean by “essentially the same behavior” is that
there exists a global continuous change of coordinates, that
is, a homeomorphism h : Rn ! Rn , that maps solutions
of one system to solutions of the other, preserving the time
parametrization:

h
�
etA � v


D etB � h(v) for all t 2 R :

More generally, two hyperbolic linear flows are conjugated
by a homeomorphism h if and only if they have the same
index, that is, the same number of eigenvalues with nega-
tive real part. In general, h can not be taken to be a diffeo-
morphism: this is possible if and only if the twomatricesA
and B are obtained from one another via a change of basis.
Notice that in this case they must have the same eigenval-
ues, with the same multiplicities.

Hyperbolic Linear Systems

There is a corresponding notion of hyperbolicity for dis-
crete time linear systems

XnC1 D CXn ; X0 D v ;

with C a n � n real matrix. Namely, we say the system is
hyperbolic if C has no eigenvalue in the unit circle. Thus
a matrix A is hyperbolic in the sense of continuous time
systems if and only if its exponential C D eA is hyperbolic
in the sense of discrete time systems. The previous obser-
vations (well-defined behavior, robustness, denseness and
stability) remain true in discrete time. Two hyperbolic ma-
trices are conjugate by a homeomorphism if and only if
they have the same index, that is, the same number of
eigenvalues with norm less than 1, and they both either
preserve or reverse orientation.
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Local Theory

Nowwemove on to discuss the behavior of non-linear sys-
tems close to fixed or, more generally, periodic trajectories.
By non-linear system we understand the iteration of a dif-
feomorphism f , or the evolution of a smooth flow f t , on
some manifold M. The general philosophy is that the be-
havior of the system close to a hyperbolic fixed point very
much resembles the dynamics of its linear part.

A fixed point p 2 M of a diffeomorphism f : M ! M
is called hyperbolic if the linear part D fp : TpM ! TpM
is a hyperbolic linear map, that is, ifDf p has no eigenvalue
with norm 1. Similarly, an equilibrium point p of a smooth
vector field F is hyperbolic if the derivative DF(p) has no
pure imaginary eigenvalues.

Hartman–Grobman Theorem

This theorem asserts that if p is a hyperbolic fixed point
of f : M ! M then there are neighborhoods U of p in M
and V of 0 in the tangent space TpM such that we can find
a homeomorphism h : U ! V such that

h ı f D D fp ı h ;

whenever the composition is defined. This property means
that hmaps orbits ofDf (p) close to zero to orbits of f close
to p. We say that h is a (local) conjugacy between the non-
linear system f and its linear part Df p. There is a corre-
sponding similar theorem for flows near a hyperbolic equi-
librium. In either case, in general h can not be taken to be
a diffeomorphism.

Stable Sets

The stable set of the hyperbolic fixed point p is defined by

Ws(p) D
˚
x 2 M : d( f n(x); f n(p)) �����!

n!C1
0
�
:

Given ˇ > 0 we also consider the local stable set of size
ˇ > 0, defined by

Ws
ˇ
(p) D fx 2 M : d( f n(x); f n(p)) � ˇ for all n � 0g:

The image ofWs
ˇ
under the conjugacy h is a neighborhood

of the origin inside Es. It follows that the local stable set is
an embedded topological disk, with the same dimension
as Es. Moreover, the orbits of the points in Ws

ˇ
(p) actu-

ally converges to the fixed point as time goes to infinity.
Therefore,

z 2 Ws(p) , f n(z) 2 Ws
ˇ (p) for some n � 0 :

Stable Manifold Theorem

The stable manifold theorem asserts thatWs
ˇ
(p) is actually

a smooth embedded disk, with the same order of differen-
tiability as f itself, and it is tangent to Es at the point p.
It follows that Ws(p) is a smooth submanifold, injectively
immersed inM. In general,Ws (p) is not embedded inM:
in many cases it has self-accumulation points. For these
reasons one also refers toWs (p) andWs

ˇ
(p) as stableman-

ifolds of p. Unstable manifolds are defined analogously, re-
placing the transformation by its inverse.

Local Stability

We call index of a diffeomorphism f at a hyperbolic fixed
point p the index of the linear part, that is, the number
of eigenvalues of Df p with negative real part. By the Hart-
man–Grobman theorem and previous comments on lin-
ear systems, two diffeomorphisms are locally conjugate
near hyperbolic fixed points if and only if the stable in-
dices and they both preserve/reverse orientation. In other
words, the index together with the sign of the Jacobian de-
terminant form a complete set of invariants for local topo-
logical conjugacy.

Let g be any diffeomorphism C1-close to f . Then g has
a unique fixed point pg close to p, and this fixed point is
still hyperbolic. Moreover, the stable indices and the ori-
entations of the two diffeomorphisms at the correspond-
ing fixed points coincide, and so they are locally conju-
gate. This is called local stability near of diffeomorphisms
hyperbolic fixed points. The same kind of result holds for
flows near hyperbolic equilibria.

Hyperbolic Behavior: Examples

Now let us review some key examples of (semi)global hy-
perbolic dynamics. Thorough descriptions are available in
e. g. [6,8,9].

A Linear Torus Automorphism

Consider the linear transformation A : R2 ! R2 given by
the following matrix, relative to the canonical base of the
plane:

�
2 1
1 1

�
:

The 2-dimensional torus T 2 is the quotient R2/Z2 of the
plane by the equivalence relation

(X1; y1) � (x2; y2) , (x1 � x2; y1 � y2) 2 Z2 :
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Since A preserves the lattice Z2 of integer vectors, that is,
since A(Z2) D Z2, the linear transformation defines an in-
vertible map fA : T 2 ! T 2 in the quotient space, which is
an example of linear automorphism of T 2. We call affine
line in T 2 the projection under the quotient map of any
affine line in the plane.

The linear transformation A is hyperbolic, with
eigenvalues 0 < 1 < 1 < 2, and the corresponding
eigenspaces E1 and E2 have irrational slope. For each point
z 2 T 2, letWi(z) denote the affine line through z and hav-
ing the direction of Ei, for i D 1; 2:

� distances along W1(z) are multiplied by 1 < 1 under
forward iteration of f A

� distances alongW2(z) are multiplied by 1/2 < 1 under
backward iteration of f A.

Thus we call W1(z) stable manifold and W2(z) unstable
manifold of z (notice we are not assuming z to be periodic).
Since the slopes are irrational, stable and unstable mani-
folds are dense in the whole torus. From this fact one can
deduce that the periodic points of f A form a dense subset
of the torus, and that there exist points whose trajectories
are dense in T2. The latter property is called transitivity.

An important feature of this systems is that its behav-
ior is (globally) stable under small perturbations: given
any diffeomorphism g : T 2 ! T 2 sufficiently C1-close to
f A, there exists a homeomorphism h : T 2 ! T 2 such that
h ı g D fA ı h. In particular, g is also transitive and its pe-
riodic points form a dense subset of T 2.

The Smale Horseshoe

Consider a stadium shaped region D in the plane divided
into three subregions, as depicted in Fig. 1: two half disks,
A and C, and a square, B. Next, consider a map f : D! D
mapping D back inside itself as described in Fig. 1: the in-
tersection between B and f (B) consists of two rectangles,
R0 and R1, and f is affine on the pre-image of these rectan-
gles, contracting the horizontal direction and expanding
the vertical direction.

The set � D \n2Z f n(B), formed by all the points
whose orbits never leave the square B is totally discon-
nected, in fact, it is the product of two Cantor sets. A de-
scription of the dynamics on � may be obtained through
the following coding of orbits. For each point z 2 � and
every time n 2 Z the iterate f n(z) must belong to eitherR0
or R1. We call itinerary of z the sequence fsngn2Z with val-
ues in the set f0; 1g defined by f n(z) 2 Rsn for all n 2 Z.
The itinerary map

�! f0; 1gZ ; z 7! fsngn2Z

Hyperbolic Dynamical Systems, Figure 1
Horseshoe map

is a homeomorphism, and conjugates f restricted to � to
the so-called shift map defined on the space of sequences
by

f0; 1gZ ! f0; 1gZ ; fsngn2Z 7! fsnC1gn2Z :

Since the shift map is transitive, and its periodic points
form a dense subset of the domain, it follows that the same
is true for the horseshoe map on�.

From the definition of f we get that distances along
horizontal line segments through points of � are con-
tracted at a uniform rate under forward iteration and, du-
ally, distances along vertical line segments through points
of� are contracted at a uniform rate under backward iter-
ation. Thus, horizontal line segments are local stable sets
and vertical line segments are local unstable sets for the
points of�.

A striking feature of this system is the stability of its dy-
namics: given any diffeomorphism g sufficiently C1-close
to f , its restriction to the set �g D \n2Zgn(B) is conju-
gate to the restriction of f to the set � D � f (and, conse-
quently, is conjugate to the shift map). In addition, each
point of �g has local stable and unstable sets which are
smooth curve segments, respectively, approximately hori-
zontal and approximately vertical.

The Solenoid Attractor

The solid torus is the product space S1 �D, where
S1 D R/Z is the circle and D D fz 2 C : jzj < 1g is
the unit disk in the complex plane. Consider the map
f : S1 �D ! S1 �D given by

(�; z) 7! (2�; ˛z C ˇei� /2) ;
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Hyperbolic Dynamical Systems, Figure 2
The solenoid attractor

� 2 R/Z and ˛; ˇ 2 R with ˛ C ˇ < 1. The latter condi-
tion ensures that the image f (S1 �D) is strictly contained
in S1 �D. Geometrically, the image is a long thin domain
going around the solid torus twice, as described in Fig. 2.
Then, for any n � 1, the corresponding iterate f n(S1 �D)
is an increasingly thinner and longer domain that winds 2k

times around S1 �D. The maximal invariant set

� D \n�0 f n(S1 �D)

is called solenoid attractor. Notice that the forward orbit
under f of every point in S1 �D accumulates on �. One
can also check that the restriction of f to the attractor is
transitive, and the set of periodic points of f is dense in�.

In addition� has a dense subset of periodic orbits and
also a dense orbit. Moreover every point in a neighbor-
hood of� converges to� and this is why this set is called
an attractor.

Hyperbolic Sets

The notion we are now going to introduce distillates the
crucial feature common to the examples presented pre-
viously. A detailed presentation is given in e. g. [8,10].
Let f : M ! M be a diffeomorphism on a manifold M.
A compact invariant set � � M is a hyperbolic set for f
if the tangent bundle over� admits a decomposition

T�M D Eu ˚ Es ;

invariant under the derivative and such that kD f�1 j
Euk <  and kD f j Esk <  for some constant  < 1
and some choice of a Riemannian metric on the manifold.
When it exists, such a decomposition is necessarily unique
and continuous. We call Es the stable bundle and Eu the
unstable bundle of f on the set�.

The definition of hyperbolicity for an invariant set of
a smooth flow containing no equilibria is similar, except
that one asks for an invariant decomposition T�M D

Eu ˚ E0 ˚ Es, where Eu and Es are as before and E0 is
a line bundle tangent to the flow lines. An invariant set
that contains equilibria is hyperbolic if and only it con-
sists of a finite number of points, all of them hyperbolic
equilibria.

Cone Fields

The definition of hyperbolic set is difficult to use in con-
crete situations, because, in most cases, one does not know
the stable and unstable bundles explicitly. Fortunately, to
prove that an invariant set is hyperbolic it suffices to have
some approximate knowledge of these invariant subbun-
dles. That is the contents of the invariant cone field crite-
rion: a compact invariant set is hyperbolic if and only if
there exists some continuous (not necessarily invariant)
decomposition T�M D E1 ˚ E2 of the tangent bundle,
some constant  < 1, and some cone field around E1

C1
a(x) D fv D v1Cv2 2 E1

x˚E
2
x : kv2k � akv1kg; x 2 �;

which is

(a) forward invariant: D fx (C1
a(x)) � C1

�a( f (x)) and
(b) expanded by forward iteration: kD fx (v)k � �1kvk

for every v 2 C1
a(x)

and there exists a cone field C2
b (x) around E2 which is

backward invariant and expanded by backward iteration.

Robustness

An easy, yet very important consequence is that hyperbolic
sets are robust under small modifications of the dynamics.
Indeed, suppose� is a hyperbolic set for f : M ! M, and
let C1

a(x) and C2
b(x) be invariant cone fields as above. The

(non-invariant) decomposition E1 ˚ E2 extends continu-
ously to some small neighborhood U of�, and then so do
the cone fields. By continuity, conditions (a) and (b) above
remain valid onU, possibly for a slightly larger constant .
Most important, they also remain valid when f is replaced
by any other diffeomorphism g which is sufficiently C1-
close to it. Thus, using the cone field criterion once more,
every compact set K � U which is invariant under g is
a hyperbolic set for g.

Stable Manifold Theorem

Let � be a hyperbolic set for a diffeomorphism
f : M ! M. Assume f is of class Ck. Then there exist
"0 > 0 and 0 <  < 1 and, for each 0 < " � "0 and x 2 �,
the local stable manifold of size "

Ws
" (x) D fy 2 M : dist( f n(y); f n(x)) � " for all n � 0g;
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and the local unstable manifold of size "

Wu
" (x) D fy 2 M : dist( f�n(y); f�n(x)) � "

for all n � 0g

are Ck embedded disks, tangent at x to Es
x and Eu

x , respec-
tively, and satisfying

� f (Ws
" (x)) � Ws

" ( f (x)) and f�1(Wu
" (x)) � Wu

" ( f�1(x));
� dist( f (x); f (y)) �  dist(x; y) for all y 2 Ws

" (x)
� dist( f�1(x); f�1(y)) �  dist(x; y) for all y 2Wu

" (x)
� Ws

" (x) and Wu
" (x) vary continuously with the point x,

in the Ck topology.

Then, the global stable and unstable manifolds of x,

Ws (x) D
[

n�0

f�n
�
Ws
" ( f

n(x))


and Wu(x) D
[

n�0

f n
�
Wu
" ( f
�n(x))


;

are smoothly immersed submanifolds of M, and they are
characterized by

Ws (x) D fy 2 M : dist( f n(y); f n(x))! 0 as n!1g
Wu(x) D fy 2 M : dist( f�n(y); f�n(x))! 0

as n!1g :

Shadowing Property

This crucial property of hyperbolic sets means that possi-
ble small “errors” in the iteration of themap close to the set
are, in some sense, unimportant: to the resulting “wrong”
trajectory, there corresponds a nearby genuine orbit of the
map. Let us give the formal statement. Recall that a hyper-
bolic set is compact, by definition.

Given ı > 0, a ı-pseudo-orbit of f : M ! M is a se-
quence fxngn2Z such that

dist(xnC1; f (xn)) � ı for all n 2 Z :

Given " > 0, one says that a pseudo-orbit is "-shadowed
by the orbit of a point z 2 M if dist( f n(z); xn) � " for all
n 2 Z. The shadowing lemma says that for any " > 0 one
can find ı > 0 and a neighborhood U of the hyperbolic
set � such that every ı-pseudo-orbit in U is "-shadowed
by some orbit in U. Assuming " is sufficiently small, the
shadowing orbit is actually unique.

Local Product Structure

In general, these shadowing orbits need not be inside th
hyperbolic set �. However, that is indeed the case if � is

amaximal invariant set, that is, if it admits some neighbor-
hood U such that� coincides with the set of points whose
orbits never leaveU:

� D
\

n2Z

f�n(U) :

A hyperbolic set is a maximal invariant set if and only if it
has the local product structure property stated in the next
paragraph.

Let � be a hyperbolic set and " be small. If x and y are
nearby points in � then the local stable manifold of x in-
tersects the local unstable manifold of y at a unique point,
denoted [x; y], and this intersection is transverse. This
is because the local stable manifold and the local unsta-
ble manifold of every point are transverse, and these lo-
cal invariant manifolds vary continuously with the point.
We say that � has local product structure if there exists
ı > 0 such that [x; y] belongs to� for every x; y 2 � with
dist(x; y) < ı.

Stability

The shadowing property may also be used to prove that
hyperbolic sets are stable under small perturbations of the
dynamics: if � is a hyperbolic set for f then for any C1-
close diffeomorphism g there exists a hyperbolic set �g
close to� and carrying the same dynamical behavior.

The key observation is that every orbit f n(x) of f in-
side � is a ı-pseudo-orbits for g in a neighborhood U,
where ı is small if g is close to f and, hence, it is shadowed
by some orbit gn(z) of g. The correspondence h(x) D z
thus defined is injective and continuous.

For any diffeomorphism g close enough to f , the or-
bits of x in the maximal g-invariant set �g(U) inside U
are pseudo-orbits for f . Therefore the shadowing prop-
erty above enables one to bijectively associate g-orbits of
�g(U) to f -orbits in �. This provides a homeomorphism
h : �g(U)! � which conjugates g and f on the respec-
tive hyperbolic sets: f ı h D h ı g. Thus hyperbolic max-
imal sets are structurally stable: the persistent dynamics
in a neighborhood of these sets is the same for all nearby
maps.

If� is a hyperbolic maximal invariant set for f then its
hyperbolic continuation for any nearby diffeomorphism g
is also a maximal invariant set for g.

Symbolic Dynamics

The dynamics of hyperbolic sets can be described through
a symbolic coding obtained from a convenient discretiza-
tion of the phase space. In a few words, one partitions the
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set into a finite number of subsets and assigns to a generic
point in the hyperbolic set its itinerary with respect to this
partition. Dynamical properties can then be read out from
a shift map in the space of (admissible) itineraries. The
precise notion involved is that of Markov partition.

A set R � � is a rectangle if [x; y] 2 R for each
x; y 2 R. A rectangle is proper if it is the closure of its in-
terior relative to �. A Markov partition of a hyperbolic
set � is a cover R D fR1; : : : ; Rmg of � by proper rect-
angles with pairwise disjoint interiors, relative to �, and
such

Wu( f (x)) \ Rj � f (Wu(x)\ Ri )
and f (Ws(x) \ Ri ) � Ws( f (x)) \ Rj

for every x 2 int�(Ri ) with f (x) 2 int�(Rj). The key fact
is that any maximal hyperbolic set� admits Markov parti-
tions with arbitrarily small diameter.

Given a Markov partitionR with sufficiently small di-
ameter, and a sequence j D ( jn)n2Z in f1; : : : ;mg, there
exists at most one point x D h(j) such that

f n(x) 2 Rjn for each n 2 Z :

We say that j is admissible if such a point x does exist and,
in this case, we say x admits j as an itinerary. It is clear
that f ı h D h ı � , where � is the shift (left-translation)
in the space of admissible itineraries. The map h is contin-
uous and surjective, and it is injective on the residual set
of points whose orbits never hit the boundaries (relative
to�) of the Markov rectangles.

Uniformly Hyperbolic Systems

A diffeomorphism f : M ! M is uniformly hyperbolic, or
satisfies the Axiom A, if the non-wandering set ˝( f ) is
a hyperbolic set for f and the set Per( f ) of periodic points
is dense in ˝( f ). There is an analogous definition for
smooth flows f t : M ! M; t 2 R. The reader can find the
technical details in e. g. [6,8,10].

Dynamical Decomposition

The so-called “spectral” decomposition theorem of Smale
allows for the global dynamics of a hyperbolic diffeomor-
phism to be decomposed into elementary building blocks.
It asserts that the non-wandering set splits into a finite
number of pairwise disjoint basic pieces that are compact,
invariant, and dynamically indecomposable. More pre-
cisely, the non-wandering set ˝( f ) of a uniformly hyper-
bolic diffeomorphism f is a finite pairwise disjoint union

˝( f ) D �1 [ � � � [�N

of f -invariant, transitive sets �i , that are compact and
maximal invariant sets. Moreover, the ˛-limit set of every
orbit is contained in some�i and so is the !-limit set.

Geodesic Flows on Surfaces with Negative Curvature

Historically, the first important example of uniform hy-
perbolicity was the geodesic flow Gt on Riemannian man-
ifolds of negative curvatureM. This is defined as follows.

Let M be a compact Riemannian manifold. Given any
tangent vector v, let �v : R! TM be the geodesic with
initial condition v D �v (0). We denote by �̇v (t) the ve-
locity vector at time t. Since k�̇v (t)k D kvk for all t, it is
no restriction to consider only unit vectors. There is an
important volume form on the unit tangent bundle, given
by the product of the volume element on the manifold by
the volume element induced on each fiber by the Rieman-
nian metric. By integration of this form, one obtains the
Liouville measure on the unit tangent bundle, which is a fi-
nite measure if the manifold itself has finite volume (in-
cluding the compact case). The geodesic flow is the flow
Gt : T1M ! T1M on the unit tangent bundle T1M of the
manifold, defined by

Gt(v) D �̇v (t) :

An important feature is that this flow leaves invariant the
Liouville measure. By Poincaré recurrence, this implies
that˝(G) D T1M.

A major classical result in Dynamics, due to Anosov,
states that if M has negative sectional curvature then this
measure is ergodic for the flow. That is, any invariant set
has zero or full Liouville measure. The special case whenM
is a surface, had been dealt before by Hedlund and Hopf.

The key ingredient to this theorem is to prove that
the geodesic flow is uniformly hyperbolic, in the sense we
have just described, when the sectional curvature is nega-
tive. In the surface case, the stable and unstable invariant
subbundles are differentiable, which is no longer the case
in general in higher dimensions. This formidable obstacle
was overcome by Anosov through showing that the corre-
sponding invariant foliations retain, nevertheless, a weaker
form of regularity property, that suffices for the proof. Let
us explain this.

Absolute Continuity of Foliations

The invariant spaces Es
x and Eu

x of a hyperbolic system de-
pend continuously, and even Hölder continuously, on the
base point x. However, in general this dependence is not
differentiable, and this fact is at the origin of several im-
portant difficulties. Related to this, the families of stable
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and unstable manifolds are, usually, not differentiable fo-
liations: although the leaves themselves are as smooth as
the dynamical system itself, the holonomy maps often fail
to be differentiable. By holonomy maps we mean the pro-
jections along the leaves between two given cross-sections
to the foliation.

However, Anosov and Sinai observed that if the sys-
tem is at least twice differentiable then these foliations
are absolutely continuous: their holonomy maps send
zero Lebesgue measure sets of one cross-section to zero
Lebesgue measure sets of the other cross-section. This
property is crucial for proving that any smooth measure
which is invariant under a twice differentiable hyperbolic
system is ergodic. For dynamical systems that are only
once differentiable the invariant foliations may fail to be
absolutely continuous. Ergodicity still is an open problem.

Structural Stability

A dynamical system is structurally stable if it is equiva-
lent to any other system in a C1 neighborhood, meaning
that there exists a global homeomorphism sending orbits
of one to orbits of the other and preserving the direction of
time. More generally, replacing C1 by Cr neighborhoods,
any r � 1, one obtains the notion of Cr structural stabil-
ity. Notice that, in principle, this property gets weaker as r
increases.

The Stability Conjecture of Palis–Smale proposed
a complete geometric characterization of this notion: for
any r � 1;Cr structurally stable systems should coincide
with the hyperbolic systems having the property of strong
transversality, that is, such that the stable and unstable
manifolds of any points in the non-wandering set are
transversal. In particular, this would imply that the prop-
erty of Cr structural stability does not really depend on the
value of r.

That hyperbolicity and strong transversality suffice for
structural stability was proved in the 1970s by Robbin,
de Melo, Robinson. It is comparatively easy to prove that
strong transversality is also necessary. Thus, the heart
of the conjecture is to prove that structurally stable sys-
tems must be hyperbolic. This was achieved by Mañé in
the 1980s, for C1 diffeomorphisms, and extended about
ten years later by Hayashi for C1 flows. Thus a C1 diffeo-
morphism, or flow, on a compact manifold is structurally
stable if and only if it is uniformly hyperbolic and satisfies
the strong transversality condition.

˝-stability

A weaker property, called ˝-stability is defined requir-
ing equivalence only restricted to the non-wandering set.

The˝-Stability Conjecture of Palis–Smale claims that, for
any r � 1;˝-stable systems should coincide with the hy-
perbolic systems with no cycles, that is, such that no basic
pieces in the spectral decomposition are cyclically related
by intersections of the corresponding stable and unstable
sets.

The ˝-stability theorem of Smale states that these
properties are sufficient for Cr˝stability. Palis showed
that the no-cycles condition is also necessary. Much later,
based on Mañé’s aforementioned result, he also proved
that for C1 diffeomorphisms hyperbolicity is necessary
for ˝-stability. This was extended to C1 flows by Hayashi
in the 1990s.

Attractors and Physical Measures

A hyperbolic basic piece �i is a hyperbolic attractor if the
stable set

Ws(�i ) D fx 2 M : !(x) � �ig

contains a neighborhood of�i . In this case we callWs(�i )
the basin of the attractor �i , and denote it B(�i). When
the uniformly hyperbolic system is of class C2, a basic
piece is an attractor if and only if its stable set has posi-
tive Lebesgue measure. Thus, the union of the basins of all
attractors is a full Lebesgue measure subset of M. This re-
mains true for a residual (denseGı ) subset ofC1 uniformly
hyperbolic diffeomorphisms and flows.

The following fundamental result, due to Sinai, Ruelle,
Bowen shows that, no matter how complicated it may be,
the behavior of typical orbits in the basin of a hyperbolic
attractor is well-defined at the statistical level: any hyper-
bolic attractor� of a C2 diffeomorphism (or flow) supports
a unique invariant probability measure � such that

lim
n!1

1
n

n�1X

jD0

'( f j(z)) D
Z
' d� (2)

for every continuous function ' and Lebesgue almost every
point x 2 B(�). The standard reference here is [3].

Property (2) also means that the Sinai–Ruelle–Bowen
measure � may be “observed”: the weights of subsets may
be found with any degree of precision, as the sojourn-time
of any orbit picked “at random” in the basin of attraction:

�(V ) D fraction of time the orbit of z spends in V

for typical subsets V of M (the boundary of V should
have zero �-measure), and for Lebesgue almost any point
z 2 B(�). For this reason � is called a physical measure.
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It also follows from the construction of these physical
measures on hyperbolic attractors that they depend con-
tinuously on the diffeomorphism (or the flow). This sta-
tistical stability is another sense in which the asymptotic
behavior is stable under perturbations of the system, dis-
tinct from structural stability.

There is another sense in which this measure is “phys-
ical” and that is that � is the zero-noise limit of the sta-
tionary measures associated to the stochastic processes ob-
tained by adding small random noise to the system. The
idea is to replace genuine trajectories by “random orbits”
(zn)n , where each zn C 1 is chosen "-close to f (zn). We
speak of stochastic stability if, for any continuous func-
tion ', the random time average

lim
n!1

1
n

n�1X

jD0

'(z j)

is close to
R
' d� for almost all choices of the random or-

bit.
One way to construct such random orbits is through

randomly perturbed iterations, as follows. Consider a fam-
ily of probability measures �" in the space of diffeomor-
phisms, such that each �" is supported in the "-neigh-
borhood of f . Then, for each initial state z0 define
znC1 D fnC1(zn), where the diffeomorphisms f n are in-
dependent random variables with distribution law �".
A probability measure �" on the basin B(�) is stationary
if it satisfies

�"(E) D
Z
�"(g�1(E)) d�"(g) :

Stationary measures always exist, and they are often
unique for each small " > 0. Then stochastic stability cor-
responds to having �" converging weakly to � when the
noise level " goes to zero.

The notion of stochastic stability goes back to Kol-
mogorov and Sinai. The first results, showing that uni-
formly hyperbolic systems are stochastically stable, on the
basin of each attractor, were proved in the 1980s by Kifer
and Young.

Let us point out that physical measures need not exist
for general systems. A simple counter-example, attributed
to Bowen, is described in Fig. 3: time averages diverge over
any of the spiraling orbits in the region bounded by the
saddle connections. Notice that the saddle connections are
easily broken by arbitrarily small perturbations of the flow.
Indeed, no robust examples are known of systems whose
time-averages diverge on positive volume sets.

Hyperbolic Dynamical Systems, Figure 3
A planar flow with divergent time averages

Obstructions to Hyperbolicity

Although uniform hyperbolicity was originally intended
to encompass a residual or, at least, dense subset of all
dynamical systems, it was soon realized that this is not
the case: many important examples fall outside its realm.
There are two main mechanisms that yield robustly non-
hyperbolic behavior, that is, whole open sets of non-hy-
perbolic systems.

Heterodimensional Cycles

Historically, the first such mechanism was the coexistence
of periodic points with different Morse indices (dimen-
sions of the unstable manifolds) inside the same transitive
set. See Fig. 4. This is how the first examples of C1-open
subsets of non-hyperbolic diffeomorphisms were obtained
by Abraham, Smale on manifolds of dimension d � 3. It
was also the key in the constructions by Shub andMañé of
non-hyperbolic, yet robustly transitive diffeomorphisms,
that is, such that every diffeomorphism in a C1 neighbor-
hood has dense orbits.

For flows, this mechanism may assume a novel form,
because of the interplay between regular orbits and sin-
gularities (equilibrium points). That is, robust non-hyper-
bolicity may stem from the coexistence of regular and
singular orbits in the same transitive set. The first, and
very striking example was the geometric Lorenz attractor

Hyperbolic Dynamical Systems, Figure 4
A heterodimensional cycle
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proposed by Afraimovich, Bykov, Shil’nikov and Guck-
enheimer, Williams to model the behavior of the Lorenz
equations, that we shall discuss later.

Homoclinic Tangencies

Of course, heterodimensional cycles may exist only in di-
mension 3 or higher. The first robust examples of non-
hyperbolic diffeomorphisms on surfaces were constructed
by Newhouse, exploiting the second of these two mecha-
nisms: homoclinic tangencies, or non-transverse intersec-
tions between the stable and the unstable manifold of the
same periodic point. See Fig. 5.

Hyperbolic Dynamical Systems, Figure 5
Homoclinic tangencies

It is important to observe that individual homoclinic tan-
gencies are easily destroyed by small perturbations of
the invariant manifolds. To construct open examples of
surface diffeomorphisms with some tangency, Newhouse
started from systems where the tangency is associated to
a periodic point inside an invariant hyperbolic set with
rich geometric structure. This is illustrated on the right
hand side of Fig. 5. His argument requires a very delicate
control of distortion, as well as of the dependence of the
fractal dimension on the dynamics. Actually, for this rea-
son, his construction is restricted to the Cr topology for
r � 2. A very striking consequence of this construction is
that these open sets exhibit coexistence of infinitely many
periodic attractors, for each diffeomorphism on a resid-
ual subset. A detailed presentation of his result and con-
sequences is given in [9].

Newhouse’s conclusions have been extended in two
ways. First, by Palis, Viana, for diffeomorphisms in any
dimension, still in the Cr topology with r � 2. Then, by
Bonatti, Díaz, for C1 diffeomorphisms in any dimension
larger or equal than 3. The case of C1 diffeomorphisms on
surfaces remains open. As a matter of fact, in this setting
it is still unknown whether uniform hyperbolicity is dense
in the space of all diffeomorphisms.

Partial Hyperbolicity

Several extensions of the theory of uniform hyperbolicity
have been proposed, allowing for more flexibility, while
keeping the core idea: splitting of the tangent bundle into
invariant subbundles.We are going to discussmore closely
two such extensions.

On the one hand, one may allow for one or more
invariant subbundles along which the derivative exhibits
mixed contracting/neutral/expanding behavior. This is
generically referred to as partial hyperbolicity, and a stan-
dard reference is the book [5]. On the other hand, while
requiring all invariant subbundles to be either expand-
ing or contraction, one may relax the requirement of uni-
form rates of expansion and contraction. This is usually
called non-uniform hyperbolicity. A detailed presentation
of the fundamental results about this notion is available
e. g. in [6]. In this section we discuss the first type of con-
dition. The second one will be dealt with later.

Dominated Splittings

Let f : M ! M be a diffeomorphism on a closed mani-
foldM andK be any f -invariant set. A continuous splitting
TxM D E1(x)˚ � � � ˚ Ek(x); x 2 K of the tangent bundle
over K is dominated if it is invariant under the derivative
Df and there exists ` 2 N such that for every i < j, ev-
ery x 2 K, and every pair of unit vectors u 2 Ei (x) and
v 2 Ej(x), one has

kD f `x � uk
kD f `x � vk

<
1
2
; (3)

and the dimension of Ei(x) is independent of x 2 K for
every i 2 f1; : : : ; kg. This definition may be formulated,
equivalently, as follows: there exist C > 0 and  < 1 such
that for every pair of unit vectors u 2 Ei (x) and v 2 Ej(x),
one has

kD f nx � uk
kD f nx � vk

< Cn for all n � 1 :

Let f be a diffeomorphism and K be an f -invariant set
having a dominated splitting TKM D E1 ˚ � � � ˚ Ek . We
say that the splitting and the set K are

� partially hyperbolic the derivative either contracts uni-
formly E1 or expands uniformly Ek: there exists ` 2 N
such that

either kD f ` j E1k <
1
2

or k(D f ` j Ek)�1k <
1
2
:

� volume hyperbolic if the derivative either contracts vol-
ume uniformly along E1 or expands volume uniformly
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along Ek: there exists ` 2 N such that

either j det(D f ` j E1)j <
1
2

or j det(D f ` j Ek)j > 2 :

The diffeomorphism f is partially hyperbolic/volume hy-
perbolic if the ambient space M is a partially hyper-
bolic/volume hyperbolic set for f .

Invariant Foliations

An crucial geometric feature of partially hyperbolic sys-
tems is the existence of invariant foliations tangent to uni-
formly expanding or uniformly contracting invariant sub-
bundles: assuming the derivative contracts E1 uniformly,
there exists a unique family F s D fF s(x) : x 2 Kg of in-
jectively Cr immersed submanifolds tangent to E1 at every
point of K, satisfying f (F s(x)) D F s ( f (x)) for all x 2 K,
andwhich are uniformly contracted by forward iterates of f .
This is called strong-stable foliation of the diffeomorphism
on K . Strong-unstable foliations are defined in the same
way, tangent to the invariant subbundle Ek, when it is uni-
formly expanding.

As in the purely hyperbolic setting, a crucial ingredient
in the ergodic theory of partially hyperbolic systems is the
fact that strong-stable and strong-unstable foliations are
absolutely continuous, if the system is at least twice differ-
entiable.

Robustness and Partial Hyperbolicity

Partially hyperbolic systems have been studied since
the 1970s, most notably by Brin, Pesin and Hirsch, Pugh,
Shub. Over the last decade they attracted much attention
as the key to characterizing robustness of the dynamics.
More precisely, let � be a maximal invariant set of some
diffeomorphism f :

� D
\

n2Z

f n(U) for some neighborhood U of � :

The set � is robust, or robustly transitive, if its continua-
tion�g D \n2Zgn(U) is transitive for all g in a neighbor-
hood of f . There is a corresponding notion for flows.

As we have already seen, hyperbolic basic pieces are
robust. In the 1970s, Mañé observed that the converse is
also true when M is a surface, but not anymore if the di-
mension of M is at least 3. Counter-examples in dimen-
sion 4 had been given before by Shub. A series of results
of Bonatti, Díaz, Pujals, Ures in the 1990s clarified the sit-
uation in all dimensions: robust sets always admit some
dominated splitting which is volume hyperbolic; in gen-
eral, this splitting needs not be partially hyperbolic, except
when the ambient manifold has dimension 3.

Lorenz-like Strange Attractors

Parallel results hold for flows on 3-dimensional manifolds.
The main motivation are the so-called Lorenz-like strange
attractors, inspired by the famous differential equations

ẋ D ��x C � y � D 10
ẏ D �x � y � xz � D 28
ż D xy � ˇz ˇ D 8/3

(4)

introduced by E. N. Lorenz in the early 1960s. Numerical
analysis of these equations led Lorenz to realize that sen-
sitive dependence of trajectories on the initial conditions
is ubiquitous among dynamical systems, even those with
simple evolution laws.

The dynamical behavior of (4) was first interpreted by
means of certain geometric models, proposed by Gucken-
heimer, Williams and Afraimovich, Bykov, Shil’nikov in
the 1970s, where the presence of strange attractors, both
sensitive and fractal, could be proved rigorously. It was
much harder to prove that the original Eqs. (4) themselves
have such an attractor. This was achieved just a few years
ago, by Tucker, by means of a computer assisted rigorous
argument.

An important point is that Lorenz-like attractors can-
not be hyperbolic, because they contain an equilibrium
point accumulated by regular orbits inside the attractor.
Yet, these strange attractors are robust, in the sense we
defined above. A mathematical theory of robustness for
flows in 3-dimensional spaces was recently developed by
Morales, Pacifico, and Pujals. In particular, this theory
shows that uniformly hyperbolic attractors and Lorenz-
like attractors are the only ones which are robust. Indeed,
they prove that any robust invariant set of a flow in dimen-
sion 3 is singular hyperbolic.Moreover, if the robust set con-
tains equilibrium points then it must be either an attractor
or a repeller. A detailed presentation of this and related re-
sults is given in [1].

An invariant set � of a flow in dimension 3 is singu-
lar hyperbolic if it is a partially hyperbolic set with split-
ting E1 ˚ E2 such that the derivative is volume contract-
ing along E1 and volume expanding along E2. Notice that
one of the subbundles E1 or E2 must be one-dimensional,
and then the derivative is, actually, either norm contract-
ing or norm expanding along this subbundle. Singular hy-
perbolic sets without equilibria are uniformly hyperbolic:
the 2-dimensional invariant subbundle splits as the sum of
the flow direction with a uniformly expanding or contract-
ing one-dimensional invariant subbundle.



Hyperbolic Dynamical Systems H 4735

Non-UniformHyperbolicity – Linear Theory

In its linear form, the theory of non-uniform hyperbolicity
goes back to Lyapunov, and is founded on the multiplica-
tive ergodic theorem of Oseledets. Let us introduce the
main ideas, whose thorough development can be found in
e. g. [4,6,7].

The Lyapunov exponents of a sequence fAn ; n � 1g of
square matrices of dimension d � 1, are the values of

(v) D lim sup
n!1

1
n
log kAn � vk (5)

over all non-zero vectors v 2 Rd . For completeness, set
(0) D �1. It is easy to see that (cv) D (v) and
(v C v0) � maxf(v); (v0)g for any non-zero scalar c
and any vectors v; v0 . It follows that, given any constant a,
the set of vectors satisfying (v) � a is a vector subspace.
Consequently, there are at most d Lyapunov exponents,
henceforth denoted by 1 < � � � < k�1 < k , and there
exists a filtration F0 � F1 � � � � � Fk�1 � Fk D Rd into
vector subspaces, such that

(v) D i for all v 2 Fi n Fi�1 ;

and every i D 1; : : : ; k (write F0 D f0g). In particular, the
largest exponent is given by

k D lim sup
n!1

1
n
log kAnk : (6)

One calls dim Fi � dim Fi�1 the multiplicity of each Lya-
punov exponent i .

There are corresponding notions for continuous fami-
lies of matrices At ; t 2 (0;1), taking the limit as t goes to
infinity in the relations (5) and (6).

Lyapunov Stability

Consider the linear differential equation

v̇(t) D B(t) � v(t) ; (7)

where B(t) is a bounded function with values in the space
of d � d matrices, defined for all t 2 R. The theory of dif-
ferential equations ensures that there exists a fundamental
matrix At ; t 2 R such that

v(t) D At � v0

is the unique solution of (7) with initial condition v(0) D
v0.

If the Lyapunov exponents of the family At ; t > 0 are
all negative then the trivial solution v(t) � 0 is asymptot-
ically stable, and even exponentially stable. The stability

theorem of A. M. Lyapunov asserts that, under an addi-
tional regularity condition, stability is still valid for non-
linear perturbations

w(t) D B(t) � w C F(t;w) ;

with kF(t;w)k � const kwk1Cc ; c > 0. That is, the triv-
ial solution w(t) � 0 is still exponentially asymptotically
stable.

The regularity condition means, essentially, that the
limit in (5) does exist, even if one replaces vectors v
by elements v1 ^ � � � ^ vl of any lth exterior power of
Rd ; 1 � l � d. By definition, the norm of an l-vector
v1 ^ � � � ^ vl is the volume of the parallelepiped deter-
mined by the vectors v1; : : : ; vk . This condition is usually
tricky to check in specific situations. However, the multi-
plicative ergodic theorem of V. I. Oseledets asserts that, for
very general matrix-valued stationary random processes,
regularity is an almost sure property.

Multiplicative Ergodic Theorem

Let f : M ! M be a measurable transformation, preserv-
ing some measure �, and let A : M ! GL(d;R) be any
measurable function such that log kA(x)k is �-integrable.
TheOseledets theorem states that Lyapunov exponents ex-
ist for the sequence An(x) D A( f n�1(x)) : : : A( f (x))A(x)
for �-almost every x 2 M. More precisely, for �-al-
most every x 2 M there exists k D k(x) 2 f1; : : : ; dg,
a filtration

F0
x � F1

x � � � � � Fk�1
x � Fk

x D Rd ;

and numbers 1(x) < � � � < k(x) such that

lim
n!1

1
n
log kAn(x) � vk D i (x) ;

for all v 2 Fi
x n Fi�1

x and i 2 f1; : : : ; kg. More generally,
this conclusion holds for any vector bundle automorphism
V ! V over the transformation f , with Ax : Vx ! V f (x)
denoting the action of the automorphism on the fiber of x.

The Lyapunov exponents i (x), and their number
k(x), are measurable functions of x and they are con-
stant on orbits of the transformation f . In particular, if the
measure � is ergodic then k and the i are constant on
a full �-measure set of points. The subspaces Fix also de-
pend measurably on the point x and are invariant under
the automorphism:

A(x) � Fi
x D Fi

f (x) :

It is in the nature of things that, usually, these objects are
not defined everywhere and they depend discontinuously
on the base point x.
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When the transformation f is invertible one obtains
a stronger conclusion, by applying the previous result also
to the inverse automorphism: assuming that log kA(x)�1k
is also in L1(�), one gets that there exists a decomposition

Vx D E1
x ˚ � � � ˚ Ek

x ;

defined at almost every point and such that A(x) � Ei
x D

Ei
f (x) and

lim
n!˙1

1
n
log kAn(x) � vk D i (x) ;

for all v 2 Ei
x different from zero and all i 2 f1; : : : ; kg.

These Oseledets subspaces Eix are related to the subspaces
Fix through

F j
x D ˚

j
iD1E

i
x :

Hence, dim Ei
x D dim Fi

x � dim Fi�1
x is the multiplicity of

the Lyapunov exponent i (x).
The angles between any twoOseledets subspaces decay

sub-exponentially along orbits of f :

lim
n!˙1

1
n
log angle

 
M

i2I

Ei
f n(x) ;

M

j…I

E j
f n(x)

!

D 0 ;

for any I � f1; : : : ; kg and almost every point. These facts
imply the regularity condition mentioned previously and,
in particular,

lim
n!˙1

1
n
log j detAn(x)j D

kX

iD1

i (x) dim Ei
x :

Consequently, if detA(x) D 1 at every point then the sum
of all Lyapunov exponents, counted with multiplicity, is
identically zero.

Non-Uniformly Hyperbolic Systems

The Oseledets theorem applies, in particular, when
f : M ! M is a C1 diffeomorphism on some compact
manifold and A(x) D D fx . Notice that the integrability
conditions are automatically satisfied, for any f -invariant
probability measure �, since the derivative of f and its in-
verse are bounded in norm.

Lyapunov exponents yield deep geometric informa-
tion on the dynamics of the diffeomorphism, especially
when they do not vanish. We call � a hyperbolic measure
if all Lyapunov exponents are non-zero at �-almost every
point. By non-uniformly hyperbolic system we shall mean
a diffeomorphism f : M ! M together with some invari-
ant hyperbolic measure.

A theory initiated by Pesin provides fundamental geo-
metric information on this class of systems, especially ex-
istence of stable and unstable manifolds at almost every
point which form absolutely continuous invariant lamina-
tions. For most results, one needs the derivative Df to be
Hölder continuous: there exists c > 0 such that

kD fx � D fyk � const �d(x; y)c :

These notions extend to the context of flows essentially
without change, except that one disregards the invariant
line bundle given by the flow direction (whose Lyapunov
exponent is always zero). A detailed presentation can be
found in e. g. [6].

Stable Manifolds

An essential tool is the existence of invariant families of lo-
cal stable sets and local unstable sets, defined at �-almost
every point. Assume� is a hyperbolic measure. Let Eux and
Esx be the sums of all Oseledets subspaces corresponding to
positive, respectively negative, Lyapunov exponents, and
let �x > 0 be a lower bound for the norm of every Lya-
punov exponent at x.

Pesin’s stable manifold theorem states that, for �-al-
most every x 2 M, there exists a C1 embedded disk Ws

loc(x)
tangent to Es

x at x and there exists Cx > 0 such that

dist( f n(y); f n(x)) � Cx e�n�x � dist(y; x)
for all y 2 Ws

loc(x) :

Moreover, the family fWs
loc(x)g is invariant, in the sense

that f (Ws
loc(x)) � Ws

loc( f (x)) for �-almost every x. Thus,
one may define global stable manifolds

Ws(x) D
1[

nD0

f�n
�
Ws

loc(x)


for �-almost every x :

In general, the local stable disks Ws(x) depend only mea-
surably on x. Another key difference with respect to the
uniformly hyperbolic setting is that the numbers Cx and
�x can not be taken independent of the point, in general.
Likewise, one defines local and global unstable manifolds,
tangent to Eu

x at almost every point. Most important for
the applications, both foliations, stable and unstable, are
absolutely continuous.

In the remaining sections we briefly present three ma-
jor results in the theory of non-uniform hyperbolicity: the
entropy formula, abundance of periodic orbits, and exact
dimensionality of hyperbolic measures.
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The Entropy Formula

The entropy of a partition P ofM is defined by

h�( f ;P) D lim
n!1

1
n
H�(Pn) ;

where Pn is the partition into sets of the form P D P0 \
f�1(P1) \ � � � \ f�n(Pn) with Pj 2 P and

H�(Pn) D
X

P2Pn

��(P) log�(P) :

The Kolmogorov–Sinai entropy h�( f ) of the system is the
supremum of h�( f ;P) over all partitions P with finite en-
tropy. The Ruelle–Margulis inequality says that h�( f ) is
bounded above by the averaged sum of the positive Lya-
punov exponents. A major result of the theorem, Pesin’s
entropy formula, asserts that if the invariant measure � is
smooth (for instance, a volume element) then the entropy
actually coincides with the averaged sum of the positive
Lyapunov exponents

h�( f ) D
Z  kX

jD1

maxf0;  jg

!

d� :

A complete characterization of the invariant measures for
which the entropy formula is true was given by F. Ledrap-
pier and L. S. Young.

Periodic Orbits and Entropy

It was proved byA. Katok that periodic motions are always
dense in the support of any hyperbolic measure. More
than that, assuming the measure is non-atomic, there exist
Smale horseshoes Hn with topological entropy arbitrarily
close to the entropy h�( f ) of the system. In this context,
the topological entropy h( f ;Hn) may be defined as the ex-
ponential rate of growth

lim
k!1

1
k
log #fx 2 Hn : f k(x) D xg :

of the number of periodic points on Hn.

Dimension of Hyperbolic Measures

Another remarkable feature of hyperbolic measures is that
they are exact dimensional: the pointwise dimension

d(x) D lim
r!0

log�(Br (x))
log r

exists at almost every point, where Br(x) is the neighbor-
hood of radius r around x. This fact was proved by L. Bar-
reira, Ya. Pesin, and J. Schmeling. Note that this means
that the measure�(Br (x)) of neighborhoods scales as rd(x)

when the radius r is small.

Future Directions

The theory of uniform hyperbolicity showed that dynami-
cal systems with very complex behavior may be amenable
to a very precise description of their evolution, especially
in probabilistic terms. It was most successful in character-
izing structural stability, and also established a paradigm
of how general “chaotic” systems might be approached.
A vast research program has been going on in the last cou-
ple of decades or so, to try and build such a global theory
of complex dynamical evolution, where notions such as
partial and non-uniform hyperbolicity play a central part.
The reader is referred to the bibliography, especially the
book [2] for a review of much recent progress.
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