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Abstract  

To understand the difference between benign and severe outcomes after Coronavirus 
infection, we urgently need ways to clarify and quantify the time course of tissue and immune 
responses. Here we re-analyze 72-hour time-series microarrays generated in 2013 by Sims and 
collaborators for SARS-CoV-1 in vitro infection of a human lung epithelial cell line. Using a 
Transcriptogram-based top-down approach, we identified three major, differentially-expressed 
gene sets comprising 219 mainly immune-response-related genes. We identified timescales for 
alterations in mitochondrial activity, signaling and transcription regulation of the innate and 
adaptive immune systems and their relationship to viral titer. At the individual-gene level, EGR3 
was significantly upregulated in infected cells. Similar activation in T-cells and fibroblasts in 
infected lung could explain the T-cell anergy and eventual fibrosis seen in SARS-CoV-1 infection. 
The methods can be applied to RNA data sets for SARS-CoV-2 to investigate the origin of 
differential responses in different tissue types, or due to immune or preexisting conditions or to 
compare cell culture, organoid culture, animal models and human-derived samples. 

 

Introduction 

Severe respiratory syndromes during the two previous major outbreaks of lethal Coronavirus, 

SARS-CoV-1 in 2003 [1] and Middle-Eastern Respiratory Syndrome (MERS) in 2012 (for a Review, 

see [2] and references therein), as well as the current SARS-CoV-2 pandemic, often result from 

dysfunctional immune responses triggered by the interaction of the host immune system with 

the virus [3,4]. While strong immune responses are essential to contain and clear viral infection, 

excessive inflammation may damage tissues, delay tissue healing after viral clearance, and lead 

to acute inflammatory responses and/or sepsis. In the case of SARS-CoV-2, the degree and 

severity of immune-response pathologies differs greatly between individuals: while 81% of 

infected individuals show either mild or no symptoms, 14% patients develop severe pneumonia 

and 5% develop acute respiratory critical conditions associated with multi-organ failure that 

require intensive medical care and ventilation and may lead to life-threatening sequels or death 

[5]. Mortality is higher in men than in women, strongly increases after 60 years of age and 
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increases with pre-existing co-morbidities including diabetes, obesity and cardio-vascular 

diseases (https://globalhealth5050.org/covid19/). Because of the complexity of the many 

patterns of response to SARS-CoV-2 we critically need ways to identify important biological 

mechanisms which act at different phases of infection and allow us to reliably identify 

differences in pathway and gene activity between individual patients, tissues within patients, 

individuals with pre-exiting conditions, sex and ethnic differences and age. The immune system 

is complex, sensitive and dynamic, with a delicate balance of triggers, high-gain feed-back loops, 

and complex interactions between its many agents, complicating interpretation of experimental 

measurements of immune-response components and the origins of their variation between 

individuals. In this case, for diagnostic, prognostic, and therapeutic purposes, detailed 

mathematical models of patient-specific immune responses might help us understand the range 

of possible immune responses, and how they depend on patient-specific variables, ranging from 

initial exposure level and coinfections, to age, sex, preexisting conditions and medications, etc.  

Furthermore, besides those directly related to immune dysfunction, in serious cases COVID-19 

symptoms may also include blood and vascular disruption, meaning that the co-activation of 

other pathways with deleterious effects may play an important role in disease outcomes [6]. 

Both constructing mathematical models of a complex system like the human immune 

response and validating such models sufficiently for use to propose therapies or assist with 

diagnoses or prognoses requires integration of extensive data from in vitro, organoid and animal 

experiments with the more limited clinical observations in humans. Acute inflammatory 

responses lead to dramatic and rapid changes in expression of large numbers of genes, requiring 

extensive transcriptome analyses to interpret. For construction and validation of immune-

response models, qualitative information is insufficient; we also need specific quantitative 

information on the time course of immune response and its relationship to viral titer. 

Statistical analyses of transcriptome data are generally classified as either bottom-up, 

starting by identifying differentially-expressed genes, clustering them into differentially-

expressed pathways and then describing the biological functions these pathways alter, or top-

down, starting by identifying altered biological functions, then refining the analysis to 

hierarchically discover the relevant differently-expressed pathways and then genes. In cases of 

immune-system response to viral infection, where changes in gene expression are genome- 

wide, top-down approaches may be more practical, since the large number of differentially-

expressed genes can be overwhelming to analyze and understand using bottom-up techniques. 
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 RNA-Seq or microarray transcriptomes are affected by many sources of variability, 

including differences in experimental techniques, biological differences between apparently 

similar samples, and other confounding variables within samples, like the effect of cell-cycle 

phase. Our Transcriptogram method to quantify whole-genome-level expression changes 

reduces noise and enhances signal-to-noise ratio in transcriptome analyses, increasing the 

power of statistical tests to identify significantly-affected pathways and timescales [7]. 

Transcriptograms provide a high-level visualization of significant changes in gene expression and 

have proved useful in identifying relationships between pathways in fungi [8,9], plants [10,11], 

and humans [12,13,7]. The Transcriptogramer software tool is freely available for download at 

https://lief.if.ufrgs.br/pub/biosoftwarestranscriptogramer/ and has a Bioconductor application 

[14]. 

 Here, as a pattern for future Transcriptogram analyses of SARS-CoV-2 data and to 

illustrate the power of the method in quantifying the detailed and complex temporal pattern of 

immune response to viral infection in cell culture, we present Transcriptogram analyses for 

SARS-CoV-1 time-series data sets of Sims et al. [15]. Sims et al. [15] infected cultures of a clonal 

population of Calu3 2B4 cells, a lung adenocarcinoma cell line isolated from the pleural effusion 

of a 25-year-old Caucasian male, sorted for high expression of the enzyme ACE-2, the cellular 

receptor for SARS-CoV-1 (and SARS-CoV-2). They inoculated cultures with either a wild type 

SARS-CoV-1 virus (WT samples) or a mutant SARS-CoV-1 strain (DORF6 samples) that does not 

express the accessory protein ORF6 at high concentration (a multiplicity of infection MOI of 5), 

so that the probability of cell contamination in the culture approached 1. As controls, they also 

inoculated cultures with a sterile solution (Mock samples). After inoculation, they incubated the 

cultures at 37oC for 40 min, then changed their medium. They then harvested samples for 

microarray assays in triplicate at times they labeled 

0 ℎ, 3 ℎ, 7 ℎ, 12 ℎ, 24 ℎ, 30 ℎ, 36 ℎ, 48 ℎ, 54 ℎ, 60 ℎ, and 72 ℎ. Because they did not report the 

time for the medium change or the time between inoculation and initial harvest, their data lack 

a consistent time-0 data set and all time labels refer to the time after the first RNA harvest. As a 

result, even at 0 ℎ, expression in the infected and control cultures differs (see below). We 

analyzed these data because of the short time intervals between samples at early times, which 

are critical to understanding the rapid changes occurring in tissue response to viral infection, 

and the relatively long duration of the experiment. The experiments also have matched-time 

controls in triplicate at all time points. Sims et al. [15] made their data available through Gene 

Expression Omnibus (GEO) under accession number GSE33267 

(http://www.ncbi.nlm.nih.gov/geo) and we used these data for our analyses.  
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Sims et al. focused their analyses on the role of ORF6 in the immune response, 

examining the differences between the WT and DORF6 time series [15]. Here, we focus on large-

scale and single-gene transcriptomic changes caused by the WT virus w.r.t. the control. Our 

analyses confirm that gene expression changes massively within 24 ℎ, but we also identified 

relevant responses before 7 ℎ and complex temporal changes in expression throughout the time 

course of the experiment. Our analyses identify specific additional significant changes in 

expression in different pathways and individual immune-related genes at 12 ℎ, 36 ℎ and 54 ℎ. 

We identified 219 genes with differential expression at some point of the time sequence and, to 

illustrate the potential of our method, we selected 4 genes with large expression differences 

w.r.t. to control for further scrutiny, EGR3, TWIST1, JUN, and TNFAIP3, all related to immune 

response. To validate our findings, we also examined a pair of genes, HSD11B1 and HSD11B2, 

with known associated effector action on Cortisol/Cortisone balance.  

 

Statistical Methods 
 
Overview and analyses pipeline  
 
We performed a Transcriptogram-based [9,16] top-down analysis of whole-genome 

transcriptome time-series for human epithelial cells cultures, comparing cultures inoculated 

with either a mock or a SARS-CoV-1-containing (WT) solution. We first assessed patterns of 

expression change shared by large numbers of genes, then considered smaller gene sets which 

had strongly covariant temporal signatures and finally examined single genes whose variance 

was statistically significant withing these sets. At each stage, we filtered the data based on the 

statistical significance of the subseries variability. The next section briefly discusses the 

Transcriptogram method and relevant parameters. We then present the data and 

Transcriptograms for the Mock and Wild Type (WT) virus strain time courses, indicate the gene 

sets we focus on and provide a genome-wide visualization of the main patterns of time evolution 

for the covariance-clustered gene data, comparing the infected and non-infected samples. We 

then consider the time evolution of 219 genes whose time courses show fold-changes larger 

than two compared to their pair-matched Mock samples at at least one time point. We clustered 

the genes by time-course similarity and identified 6 clusters. We determined the mean time 

evolution for each cluster. Several of these clusters show complex non-monotonic time courses, 

which we compare to the viral titer. From the changes in behaviors presented by the gene 

clusters, we infer the typical patterns and timescales for Calu3 2B4 epithelial-cell immune 

response to SARS-CoV-1 infection, correlate these timescales with viral titer and identify single 

genes that may possible targets for therapy development. 
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Transcriptograms 
 

Transcriptograms are expression profiles, obtained by running a window average for 

expression levels of multiple genes, previously organized in an ordered gene list, representing 

the whole human genome. Here we consider windows of radius 30, that is, intervals around a 

given gene position including 30 genes to its left and 30 genes to its right in the ordered gene 

list. Averaging over these intervals for each gene in the list produces a smoothed mean 

expression profile. We generate the ordered gene list by first filtering gene products that share 

at least one association as inferred from the STRING Protein-Protein Interaction database with 

confidence scores of 800 or better [12]. The gene-list ordering clusters genes by their biological 

function as defined in the STRING database. The ordered gene list we use for this analysis is 

available as Table ST1 in supplementary information online. Ref. [12] explains the construction 

of the gene list in detail. We then apply this ordered list of genes to analyze gene expression 

data from micro-arrays or RNA-Seq experiments. Because the list clusters genes by attributed 

function, the running window averages expression levels over genes believed to participate in 

the same or similar biological functions.  

One major problem in detecting differential gene expression in microarray or RNA-Seq 

experiments is with the high variance of the data, that can result from measurement noise or 

confounding variables that were not explicitly controlled for. Ref. [7] shows that 

Transcriptograms can reduce the variance of gene expression measurements and enhance the 

power of statistical tests when comparing gene expression levels between gene samples. We 

characterize the ordered genes by projecting onto the gene list selected biological Gene 
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Ontology (GO) terms or KEGG pathways, to associate regions of the list with key biological 

mechanisms.  

 
Fig. 1 Gene list and enrichment of terms related to critical biological functions as a function of position in the 
list. From left to right, in shades of purple, the list is enriched with genes associated with translation and 
mRNA processing then pathways linked to the cell cycle. Next, in shades of blue, genes associated with cell 
differentiation and, in shades of green, genes associated with immune response, cytokine production and 
interaction with the extra-cellular matrix (ECM). Finally, shades of orange denote genes associated with 
energy metabolism. 

Fig. 1 shows term-enrichment profiles projected on the ordered list, obtained for 

selected KEGG pathways and Gene Ontology: Biological function terms (GO:BP). The gene list 

we use comprises 9684 genes, representing those genes whose products participate in at least 

one Protein-Protein Interaction (with a score of 800 or better) as listed in STRING. The horizontal 

axis (intrinsically numbered by gene position from 1 to 9684) has been rescaled to fit the interval 

[0,1]. At each position in the gene list, represented by the horizontal axis, we plot the fraction 

of genes within a window of radius 30 genes around that position associated with a specific term 

or pathway. A profile value near 1 means that almost all genes in that interval link to the term. 

Moving from left to right, we observe successive enrichment of terms associated with specific 

biological functions: at the far left, we see enrichment linked to RNA processing and metabolism, 

then enrichment related to the cell cycle, followed by cell differentiation, the actin cytoskeleton 

and immune systems. Further to the right, we see enrichment for signaling pathways associated 

with secretion, ECM receptors and finally, energy metabolism. Consequently, a running window 
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average of expression data over this ordering, averages the expression of genes linked to the 

same or similar biological functions. 

 

Normalization check using Transcriptograms 

Transcriptograms provide a powerful test for sample normalization by revealing undesired 

variable offsets in expression levels between samples. We ensure sample normalization we as 

follows: we plotted the Transcriptograms of radius 30 for the normalized data available in the 

GEO database (shown in Fig. S1 in the supplementary information online) and verified that each 

sample set shows offsets in its mean in relation to the other sample sets. We then re-normalized 

the expressions levels for each sample data set to set its mean expression to 1. Fig.S1 shows the 

resulting renormalized, single-sample Transcriptograms.  

 

Relative Transcriptograms 

We obtain relative Transcriptograms by dividing the Transcriptogram profile values at each point 

in the ordered gene list by the Transcriptogram profile value for a control sample at the same 

position in the list. 

 

Differential Transcriptograms 

We obtain differential Transcriptograms between two time-series by obtaining the relative 

Transcriptogram for the WT samples at a given time point w.r.t. time-matched Mock samples. 

In a time-series for differential Transcriptograms the control sample is different for each time 

point. 

  

Term Enrichment 

We determined term enrichment for the gene sets consisting of the genes in a given interval of 

the ordered gene list using the Term Enrichment Panther Service, on the Amigo 2 home page 

(http://amigo.geneontology.org/amigo) [17,18,19]. 

 

Covariance matrix 

For each gene i from a gene set with 𝑁𝑁 elements (𝑖𝑖 = 1, … ,𝑁𝑁) we define the differential 

expression 𝑒𝑒𝑖𝑖(𝑡𝑡) as:  

𝑒𝑒𝑖𝑖(𝑡𝑡) =
𝑤𝑤𝑖𝑖(𝑡𝑡)
𝑚𝑚𝑖𝑖(𝑡𝑡)

  , 
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where 𝑡𝑡 represents a time in the time series and 𝑤𝑤𝑖𝑖(𝑡𝑡) and 𝑚𝑚𝑖𝑖(𝑡𝑡) are the averages over 
replicates for the gene-expression values from, respectively, the WT or Mock transcriptomes’ 
normalized datasets. 

We define the covariance matrix 𝐶𝐶𝑖𝑖𝑖𝑖  as: 

𝐶𝐶𝑖𝑖𝑖𝑖 =
1
𝜎𝜎𝑖𝑖𝜎𝜎𝑗𝑗

1
𝑁𝑁𝑡𝑡
�(𝑒𝑒𝑖𝑖(𝑡𝑡) − 〈𝑒𝑒𝑖𝑖〉)�𝑒𝑒𝑗𝑗(𝑡𝑡) − 〈𝑒𝑒𝑗𝑗〉�
𝑡𝑡

,    

Where 𝑁𝑁𝑡𝑡 is the number of the experiment time points (here 𝑁𝑁𝑡𝑡 = 11) and  〈𝑒𝑒𝑖𝑖〉 is the time 
average of the differential expression of the 𝑖𝑖-th gene, 

〈𝑒𝑒𝑖𝑖〉 =
1
𝑁𝑁𝑡𝑡
�𝑒𝑒𝑖𝑖(𝑡𝑡)
𝑡𝑡

,  

and 𝜎𝜎𝑖𝑖  is the standard deviation calculated as:  

𝜎𝜎𝑖𝑖 = �
1
𝑁𝑁𝑡𝑡
�(𝑒𝑒𝑖𝑖(𝑡𝑡) − 〈𝑒𝑒𝑖𝑖〉)2
𝑡𝑡

   . 

Results 

We start our analysis of expression profiles for WT and Mock samples at different times 

by generating relative Transcriptograms as described in the Statistical Methods section, taking 

as the control the Transcriptogram for the Mock sample at time 0 ℎ (which is the time of the 

first RNA harvest, at least 40 minutes after inoculation). Fig. 2 shows the relative 

Transcriptograms at different times for Mock (blue lines) and WT (red lines) samples. The 

relative Transcriptogram for the control expression levels (Mock samples at 0 ℎ) appears as a 

black horizontal line. We also plot the relative Transcriptogram standard errors (due to the 

variance among replicates) for each point of the ordering: these errors are represented by gray, 

light red, and cyan shading around, respectively, the black, red and blue lines. The 

Transcriptogram’s window average reduces the variance between replicates, so the error bars 

are barely visible. 

Fig. 2 presents the relative Transcriptogram profiles at  0 ℎ, 24 ℎ, and 48 ℎ after first 

RNA harvest. The top panel shows that at 𝑡𝑡 = 0 ℎ (approximately 40 minutes after the viral 

inoculation and washout at the start of the experiment) the Mock and WT samples are similar, 

although in some regions the errors do not overlap (around gene positions 0.41 or 0.53, for 

example), indicating that cells are already responding to viral infection at the time of first RNA 

sampling. Fig. 2 shows that at 24 ℎ and 48 ℎ, the relative Transcriptogram profiles of both Mock 

and WT samples differ significantly from the Mock sample mean profile at  0 ℎ. The direction of 

deviations at a given gene location at 48 ℎ is typically the same as that at   24 ℎ, but of greater 

amplitude. To identify intervals in the relative Transcriptograms with significant expression 
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variations, we define and consecutively label contiguous regions along the horizontal axis with 

values larger than 9/5-fold changes in the WT Relative Transcriptogram values at 48 ℎ (labels 

A1, A2,...,A11). From the many terms enriching each region (see Methods section) we select a 

representative term as a label, based on the number of genes associated to that term in that 

region. 

 
Fig. 2. Relative Transcriptograms of radius 30 for Mock and WT samples, using the Mock sample’s expression at 𝑡𝑡 =
0 ℎ 𝑎𝑎s the control. The labeled time is the experimental time after the first RNA harvest (over 40 minutes after 
inoculation). Vertical axes are on 𝑙𝑙𝑙𝑙𝑙𝑙2 scale. Black horizontal lines represent the control sample (Mock) expression. 
Red and Blue lines represent the relative Transcriptograms for, respectively, WT and Mock samples. Gray, Light red 
and cyan shading indicate the standard errors of the respective relative Transcriptograms. We identify 11 intervals, 
indicated by the horizontal color bars, where the red line differs from the control by more than 9/5 at 48h. 

Fig. S2 in the supplementary information online shows equivalent panels for all time 

points (0 ℎ, 3 ℎ, 7 ℎ, 12 ℎ, 24 ℎ, 30 ℎ, 36 ℎ, 48 ℎ, 54 ℎ, 60 ℎ, 72 ℎ). While our method does not 

seek to identify genes related to immune response, most of the bands of significant variance 

correspond to regions enriched with genes participating in pathways linked to the immune 

response. Genes linked to the cell-cycle I region (interval A2) are depressed in both Mock 

samples and WT samples, probably reflecting contact inhibition of proliferation in confluent in 

vitro cultures. However, Fig. S1 in the supplementary information online also shows that at 54 ℎ 

WT samples show some expression recovery of genes linked to the cell cycle. This recovery may 

reflect the onset of cell cycle after the death of some infected cells, which reduces contact 
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inhibition of proliferation, or another tissue-recover mechanism. Changes in expression across 

multiple functional bands of the relative Transcriptogram appear at 24 ℎ. These bands stay fixed 

in width but increase in amplitude until 54 ℎ, after which they slowly decrease in amplitude. For 

more details on the changes in each band, refer to Fig. S2 and movies SM1 and SM2 in the 

supplementary information online. 

The important messages in Fig. 2 and S1 and the animation of the time changes of the 

relative Transcriptograms in movies SM1 and SM2 are that: i) major changes in band expression 

start after 12 ℎ; ii) the bands of expression change in amplitude but not in width, reflecting their 

correspondence with changes in activity of specific biological mechanisms; and iii) gene 

expression in the control samples also changes in time, because cell state changes in culture 

conditions, even in the absence of infection.  

To distinguish cell-culture effects, which affect both WT and control cultures, from the 

effects of infection, we considered time-matched mock expression profiles as controls for the 

WT expression profiles. We define the differential Transcriptogram profile as the ratio of the WT 

transcriptogram value at a given time and gene position to the matched-time Mock 

transcriptogram value at the same gene position. Using a time-matched control helps reduce 

the signal from tissue-culture effects common to both WT and control samples and accentuates 

specific differential infection effects. Differential profiles do not show changes in expression of 

cell-cycle-related genes, for example, since both control and WT expression change in the same 

way in time. Figure 3 shows differential profiles as violet lines, with the light violet shading 

showing the standard error. The horizontal black line shows the control differential expression 

profile for the Mock sample at the corresponding time. Fig. 3 presents the differential profiles 

(WT(t)/Mock(t)) at three time points, Fig. S3 in the supplementary information online presents 

the differential profiles for all time points and SM3 animates these time changes into a movie.  

Differential Transcriptogram profiles show noticeable alterations after 12 ℎ . As before, 

we to associate the most altered bands to biological functions and labeled used Panther to label 

them accordingly. As in Fig. 2, the altered bands remain constant in width but change in 

amplitude.  

We next consider the time evolution of the differential expression (WT(𝑡𝑡)/Mock(𝑡𝑡)) of 

the 590 individual genes that participate in the 17 bands identified as significantly differentially 

expressed in the differential Transcriptograms in Fig. 3 (where we define a significant change as 

either larger than 9/5 or less than 5/9). Table ST2 in the supplementary information online 

presents these results as an Excel file containing the gene names and plots for each gene’s 

relative and differential expression evolution, with brief information on each gene. Among these 
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590 genes, we found 219 for which the expression 𝑤𝑤𝑖𝑖(𝑡𝑡) at one or more time points 𝑡𝑡 differed 

from the time-matched control 𝑚𝑚𝑖𝑖(𝑡𝑡) more than two fold (i.e. 𝑤𝑤𝑖𝑖(𝑡𝑡) > 2𝑚𝑚𝑖𝑖(𝑡𝑡) or 𝑤𝑤𝑖𝑖(𝑡𝑡) <

0.5 𝑚𝑚𝑖𝑖(𝑡𝑡)). Our significance limit is higher because here we are considering single-gene 

differential expression, rather than the differential Transcriptogram values, which are averages 

over the expression of neighboring genes in the list. 

The Transcriptogram analyses identify 219 genes in differentially-expressed 

Transcriptogram bands which are also individually differentially expressed relative to their time-

matched Mock samples. This gene set comprises the genes that respond more intensely to virus 

inoculation. To identify their associated biological functions, we used the Over Representation 

test by Panther, available on the Gene Ontology-Amigo home page 

(http://amigo.geneontology.org/amigo) to find the Reactome Pathways that enrich this set of 

219 genes. Among others, we find that 51 of these genes participate in “Cytokine signaling in 

immune system,” 36 participate in “Innate immune system,” 18 participate in “Toll-like-receptor 

cascade,” 15 participate in “Interleukin 4 and Interleukin 13 signaling” and 8 genes are 

participate in “TNFR2 non-canonical NF-κB´ pathways.” Table ST3 in the supplementary 

information online gives the complete list of over-represented Reactome Pathways for the 219 

genes (P<0.05, Buonferroni corrected). Of the 219 genes, 35 have not been classified as forming 

a representative set for some Reactome Pathway. Thus 84% of the 219 significantly variant 

genes participate in pathways either directly or indirectly involved in components of the immune 

response.  
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Fig. 3. . Differential Transcriptograms WT(t)/Mock(t) (radius 30). Time is time after the first RNA harvest. Vertical axes 
are on 𝑙𝑙𝑙𝑙𝑙𝑙2 scale. Black horizontal lines represent the control sample Mock(t)/Mock(t). Violet lines are the differential 
Transcriptograms for WT(t)/Mock(t). Light violet shading indicates standard errors for WT Transcriptograms. We 
identify 17 bands where the violet line differs from the control more than 9/5-fold at 24 h. The horizontal red lines 
denote the 9/5-fold and 5/9-fold lines in all panels. 

 

Proceeding with our top-down strategy, we look for temporal patterns in the differential 

expression of single genes (not Transcriptogram values) related to immune response by 

considering covariant gene sets for the 219 genes identified as presenting significantly different 

single-gene expression time series among the 590 genes that participate in the significantly 

different bands in the differential Transcriptograms in Fig.3. To find genes with similar patterns 

of temporal evolution, we first calculated the covariance matrix for the differential expression 

time series of the 219 genes (see Statistical methods section). When two genes have the same 

pattern of time change of differential expression, their temporal covariance approaches one. 

Using the covariance matrix, we order genes into covariance clusters (Fig. 4). We identify 3 large 

clusters, A, B and C. The time changes of differential expression of genes in cluster D are less 

strongly correlated than those in clusters A, B and C, so we have subdivided D into three more 

strongly covariant sub-clusters, D1, D2 and D3.  As discussed previously, the ordering of the gene 

list is based on biological function attributed to the genes. The covariance matrix clusters genes 

by the similarity of their differential expression time series. The activation a pathway associated 
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with one biological function may lead to activation of genes associated with different biological 

functions, leading to temporal correlations in their differential expression patterns. Also, 

different genes within a pathway may activate with different time patterns, reducing their 

temporal covariance. Consequently, we do not expect the covariance matrix clusters to directly 

correspond to the differential transcriptogram bands in Fig.3. Instead, Clusters A to D3 are 

covariant gene sets for the genes which both Transcriptogram and single-gene analysis 

identified as significantly differentially expressed in the present experiment. Table ST2 in the 

supplementary materials online is an Excel file containing a separate worksheet for each of the 

17 bands which the Transcriptogram analysis identified as significantly differentially expressed, 

as shown in Fig. 3. For each of these bands, Table ST2 presents plots of the relative and 

differential expression of the 219 genes, in different colors, depending on the time-series 

pattern they follow. All bands have genes which belong to all covariant clusters, showing that 

proximity in the ordered list does not correlate with covariant cluster identity. 

 

 

 

Fig. 4. Covariance matrix for the time changes of differential expression (time-matched control)  for 219 genes selected 
from the significantly differentially expressed Transcriptogram bands identified in Fig. 3. We find 4 major covariant 
clusters. Table 1 lists the genes in each cluster.Fig.5 shows the time-series for the differential expression for each gene 
in each cluster and the averaged differential expression time-series for each cluster. 
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Table 1 List of genes in each covariant cluster (Fig. 4). The time-series of differential expression 
of genes in cluster D are less strongly covariant than those in Clusters A, B and C and form 3 
distinct sub-clusters. 
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Fig. 5 presents the time series for the differential expression of each gene in each cluster, 

together with the cluster average of these values. Within clusters A, B, C, and D1, the genes have 

similar patterns of change of differential expression in time. Clusters D2 and D3 show more 

diverse temporal patterns of evolution. Fig. 6 summarizes the averaged temporal patterns of 

differential gene expression of the clusters. 

 

Fig. 5. Time evolution for the differential expression of the mean for all genes and for individual selected genes in 
covariant clusters A, B, C, D1, D2 and D3. Selected genes in each cluster are highlighted. The control for each gene at 
each time point is the Mock sample expression of the same gene at a matched time. Expression is for individual genes, 
not Transcriptogram averages over the neighbors in the ordered gene list. Clusters A (40 genes),B (40 genes), and C 
(112 genes) have highly covariant differential expression time series. Cluster D is subdivided in three sub-clusters: D1 
(7 genes), D2 (8 genes) and D3 (12 genes). The time series in cluster D1 are more homogeneous than those in D2 and 
D3. The large symbols show the average differential expression vs time for each cluster. Table ST2, in the 
supplementary information online shows the individual relative expression time series for each gene in full detail.  

Fig. 6 consolidates the results for the averaged cluster time series. Because clusters B, 

D1, and D3 have similar temporal dynamics, we merge them into a single cluster B’ using an 

average weighted by their number of components. Fig. 6 shows three distinct time courses for 

elements of the cells´ response to virus inoculation. The vertical axes represent single gene 

differential expression in the WT samples w.t.r. the Mock samples. Genes in the consolidated 

cluster B’ decrease (𝑃𝑃 < 0.0052) in expression relative to the control at 𝑡𝑡 =  0 ℎ. After 12 ℎ 

changes in differential expression increase rapidly, with 36 ℎ and 54 ℎ having (local) maxima in 

the collective differential expression dynamics. To test the significance of the difference of the 

fold-change we estimated the P-value for each time-point using a two-tailed Welch test. We also 
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calculated P values to assess significant differences in mean differential expression at each time-

point across clusters. We present these results in Table 2.  

Fig. 6 shows the temporal pattern of response in the infected cells triggered by virus 

inoculation together with the time evolution of the viral titer, reproduced from Ref. [15], 

measured in units of PFU/ml (plaque forming units per milliliter) for 6 samples for each time 

point. We can observe that: 

1) Viral titer initially decreases from 0 ℎ to 3 ℎ, then increase rapidly from 3 ℎ to 36 ℎ, 

decrease between 36 ℎ and 48 ℎ, then increase to a small, but statistically 

significant second maximum at 54 ℎ, and finally decrease from 54 ℎ to the end of 

the experiment. The first genes to respond significantly to viral inoculation belong 

to cluster B´. Cluster B’ is the only cluster whose mean expression is significantly 

different from Mock sample expression before 12 ℎ (see Table 2).  

2) In Cluster A (40 genes) average differential expression does not differ significantly 

from the control until 12 ℎ. Between 12 ℎ and 54 ℎ its average differential 

expression decreases, reaching a minimum at 54 ℎ. After 54 ℎ average differential 

expression increases until the end of the experiment but always remains less than 

0.5. This cluster is enriched in genes involved in mitochondrial activity. Shi and 

collaborators showed that the SARS-CoV-1 protein designated opening reading 

frame-9b (ORF-9B) localizes to the outer mitochondrial membrane, manipulating 

host-cell mitochondria, and disturbing mitochondrial anti-viral signaling [20]. This 

interference could explain why Cluster A’s mean differential expression moves 

opposite to the viral titer. 

3) The genes in Cluster B´ (40+7+12 genes) have the richest temporal dynamics of 

mean differential expression. At  0 ℎ, differential expression is already depressed in 

the WT relative to the control, indicating that some genes change their expression 

very rapidly w.r.t. the control, during the 40 min incubation time before RNA 

harvesting (0 ℎ). Average differential expression increases between 0 ℎ and 7 ℎ 

then decreases until 12 ℎ, then increases again, reaching a maximum at  30 ℎ. It 

then decreases until 48 ℎ, then increases to a second, more modest maximum, at 

 54 ℎ and finally decreases until the end of the experiment. Although the maximum 

at  54 ℎ is modest in amplitude, it is statistically significant and coincides with the 

minimum value of the average differential gene expression in Cluster A and the 

second peak in viral titer, suggesting that it reflects a real change in biological 

function. The term enrichment analysis for Cluster B showed that 36 of the 40 genes 

in this cluster participate in Gene Ontology (GO) terms linked to “response to 
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stimulus,” with 13 specifically tagged as “response to cytokines.” The great majority 

of the products of these genes localize either to the extracellular matrix, indicating 

signaling activity, or to the nucleus, indicating response to signaling. The other two 

clusters forming cluster B´, Cluster D1 (7 genes) contains genes associated with 

terms for ion transport, potassium included, while Cluster D2 (12 genes) contains a 

diverse spectrum of genes that all associate with the broad GO term “Immune 

Response.” 

4) In Cluster C (112 genes), after 12 ℎ mean differential expression increases 

monotonically to a maximum at 54 ℎ after which it decreases until the end of the 

experiment. This maximum at 54 ℎ coincides with the maximum at 54 ℎ in Cluster 

B´, the minimum in Cluster A, and the modest second peak in viral titer. Term 

enrichment analysis of the genes in Cluster C shows that the great majority of these 

genes have GO annotations involved in “immune response and signaling,” including 

“production and regulation of cytokines” (58 genes), ``I-kappaB kinase/Nf-kappaB 

signaling´´ (19 genes),``response to hormone´´ (19 genes), and ̀ `innate and adaptive 

immune response´´.  

5) In Cluster D2 (8 genes) mean differential expression (Fig. 6 inset) increases 

monotonically after 12 ℎ. The individual gene differential expression time series 

show that this increase is due to a strong monotonic increase of CCL5 differential 

expression(see Fig. 5, right-middle panel), a chemoattractant for blood monocytes, 

memory T-helper cells and eosinophils. The other genes present significant 

differential expression only at a few time points and their time series show modest 

differential expression as compared to CCL5. Also, their differential expression time 

series have different patterns: some monotonically increase, others are more stable 

in time, and a few first, then recover after 36 ℎ. 
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Fig. 6. Time evolution of viral titer [15] (right 𝑙𝑙𝑙𝑙𝑙𝑙10 axis) and average differential expression of the covariant gene 
clusters A, B’ and C (left 𝑙𝑙𝑙𝑙𝑙𝑙2 axis). The inset shows the time evolution of cluster D2. The control for each time point is 
the time-matched Mock sample. We identify three main phases for the host-virus interaction in the cell cultures. In 
the first phase, denoted by a pale-pink background, clusters A and C have differential expression near 1, while cluster 
B’ differential expression moves opposite to the viral titer. In the second phase, denoted by a pale-blue background, 
average differential expression in cluster A decreases monotonically while average differential expression in both 
clusters B’ and C increase similarly, in parallel with increasing viral titer. In the third phase, denoted by a pale-yellow 
background, differential expression in clusters B’ and C diverge after the viral titer reaches its maximum, with Cluster 
B´ tracking viral titer evolution. After 54 ℎ, however, viral titer and the average differential expression of clusters B´ 
and C decrease while average differential expression in cluster A increases.  
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In summary, we have identified three gene clusters (A, B´, and C) with distinct temporal 

evolution. Clusters B´ and C have the most distinctive patterns of temporal change, probably 

reflecting their specific functional roles during early infection. To illustrate the power of our 

method, we selected six genes from these clusters and analyzed their differential expression 

evolution. We then discuss their possible roles in the cellular response to virus inoculation.  

We begin by considering the gene pair HSD11B1 (from cluster C) and HSD11B2 (from 

cluster B´). Both genes are linked to Cortisone-Cortisol balance. Cortisol is anti-inflammatory, is 

secreted by the adrenal gland, is present in plasma, and can be converted to inactive Cortisone 

by the enzyme 11-beta-hidroxysteroid dehydrogenase type 2 (HSD-2), the product of the 

HSD11B2 gene (For a review, see [21]). The time series for HSD11B2 presented in the middle-

left panel of Fig. 5 (red line), shows that its differential expression in infected cells begins to 

increase after 12 ℎ up to 36 ℎ reaching a 32-fold change w.r.t. control, after which it gradually 

decreases to an 8-fold change . The reduction in anti-inflammatory Cortisol signaling between 

12 ℎ and 36 ℎ probably enhances pro-inflammatory signaling in response to infection. HSD11B1 

differential expression also starts increasing after 12 ℎ, but peaks later, at about 54 ℎ, as shown 

in the bottom-left panel of Fig. 5 (red line). 11-beta-hidroxysteroid dehydrogenase type 1 (HSD-

1), the product of the gene HSD11B1, converts Cortisone back into Cortisol, possibly restoring 

anti-inflammatory signaling, after the initial pro-inflammatory response. The data shows the 

time evolution for the well-known interplay between Cortisone-Cortisol. 

Table 1. P values for the time series depicted in Fig. 6.  
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Fig. 5, bottom-left panel (olive green) highlights the differential expression evolution of 

JUN and TNFAIP3  from cluster B. JUN encodes c-Jun, a protein that participates in the 

transcription-factor complex “Activator Protein-1” (AP-1) that has complex context-dependent 

behaviors [22]. In epithelial cells AP-1 components (containing c-Jun) may participate in 

apoptosis or cell proliferation. JUN differential expression evolution seems to increase with viral 

titer with a few hours of delay. Cell cycle mean expression is depressed in both Mock and WT 

samples compared to Mock sample expression at 0 ℎ (the interval marked A2 in Fig. 2 and Fig. 

S1 in the supplemental information online), probably due to contact inhibition in the culture. 

However, Fig. S1 shows that cell-cycle gene expression recovers after 60 ℎ. Both apoptosis and 

proliferation may occur in the infected culture. The observed time series for JUN differential 

expression may relate to these differences in cell cycle-related expression between WT and 

Mock samples.  

TNFAIP3 encodes the protein A20, a negative regulator of the NF-κB protein complex. 

TNFAIP3 is thus a negative regulator of inflammation and is known to be rapidly induced after 

Toll-like receptors interact with a pathogen or respond to TNF-α or IL-1 cytokines [22]. The 

bottom-left panel in Fig. 5, shows a peak for differential expression of TNFAIP3 at 48 ℎ, followed 

by monotonic decrease until the end of the experiment. Comparing the time-series for the 

differential expression of TNFAIP3 shown in the bottom-left panel in Fig. 5 with the viral titer 

evolution in Fig. 6, we may infer that TNFAIP3 follows the viral titer with about a 4 ℎ delay. This 

temporal relationship suggests that the anti-inflammatory response due to TNFAIP3 in the WT 

sample gradually decreases as the viral titer decreases. 

 Fig. 5, middle-left panel shows the dynamics of differential expression of individual 

genes in cluster B. We have highlighted in navy blue the expression of EGR3 and TWIST1, the 

two genes whose differential expression presents the largest fold changes in cluster B. TWIST1 

negatively regulates the NF-κB protein complex. TWIST1 is thus anti-inflammatory [23]. The 

variation in the TWIST1 time series in the middle-left panel of Fig. 5 generally follows the viral 

titer evolution in Fig. 6. EGR3 is a zinc-finger transcription factor of the Early Growth 

Transcription family (EGR) that responds early to environmental stimuli to induce cell 

proliferation, differentiation, and immune responses [24]. In resting epithelial cells, EGR3 is 

usually weakly expressed, but a wide variety of extracellular signals such as cytokines and T-cell 

receptor (TCR) activation can promote EGR3 expression [24]. Fig. 5 middle-left panel shows that 

EGR3 differential expression increases after 12 ℎ and remains high, varying between 16- and 32-

fold change from 20 ℎ to 54 ℎ, then decreasing when the viral titer begins to decrease after 

54 ℎ (Fig. 6). This correspondence suggests that the virus may activate EGR3 in epithelial cells. 

If the virus also promotes EGR3 in T cells, fibroblasts, and endothelial cells it could explain T-cell 
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anergy in SARS-CoV-1 and SARS-CoV-2 infection in T cells, since the co-activation of T-cell 

receptors by antigen and EGR3 may lead to T cell anergy [25,26]. Furthermore, EGR3 regulates 

fibrogenic responses in fibroblasts [27], and EGR3 may cause vascular disruption when active in 

vascular endothelial cells [28]. The infected lung contains epithelial cells, T-cells, fibroblasts, and 

endothelial cells, all of which express the ACE-2 receptor for SARS-CoV-1 and SARS-CoV-2 [29]. 

Both T-cell depletion due exhaustion or anergy, and fibrotic sequels have been reported in SARS-

CoV-1 [30] and SARS-CoV-2 [31] patients. We wonder whether these effects on T-cells and 

fibroblasts may correlate with the activation of EGR3 by the virus. Also, since EGR3 activates 

VEGF in endothelial cells [28], its activation in infected cells may link to the endothelialitis, 

thrombosis, and angiogenesis reported in COVID-19 [6]. 

 

Conclusions and Perspectives 

Transcriptogram analysis of microarray time series by Sims et al. [15] for SARS-CoV-1 

infection of Calu3-2B4 cells, a human epithelial cell line, selected for ACE-2 expression [9] 

identifies three main gene sets with well-defined dynamics, summarized in Fig. 6. Differential 

expression profiles indicate that some cell responses (Cluster B´) begin very soon after 

inoculation, and that mitochondrial activity decreases until 54 ℎ, then partially recovers. 

Considering that clusters B´ and C consist mostly of genes associated with immune response, 

our results show that the dynamics of these genes in response to viral inoculation follows two 

different time-evolution patterns. While Cluster B´ consists mainly of genes related to innate 

immune response, Cluster C comprises genes related to both innate and adaptive immune 

responses. Because mathematical models usually consider variables that aggregate the effect of 

multiple genes into broad representations of classes of biological mechanisms or pathways, 

these mean differential expression time series can serve as direct validation data for 

mathematical models of epithelial-cell responses to SARS-CoV-1 infection. Beyond pro/anti-

inflammatory signaling via, for example, the negative regulation of NF-κB complex by TNFAIP3 

and the interplay between HSD11B1 and HSDB11B2 differential expression, the genes in each 

cluster suggest that the response to viral inoculation also includes regulation of apoptosis and 

proliferation, via JUN, and has secondary effects on cell differentiation (with different possible 

outcomes, depending on the cell type), via EGR3. These effects follow the temporal patterns of 

either Cluster B´ or Cluster C suggesting coordinated patters of cellular responses. Because the 

Transcriptogram analysis selects genes most functionally relevant to the specific behavioral 

changes in a particular experiment, we could identify the correlated responses of genes 

annotated to different pathways or GO terms (which would be hard to identify if we conducted 
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correlation analyses of the temporal expression changes of all genes at once). The differential 

Transcriptogram, by identifying differential expression bands of functionally related genes, 

greatly reduces the number of “genes of interest” making their detailed temporal analysis 

practical.  

Because gene expression changes in control samples in cell culture as well as in infected 

samples, using time-matched gene expression controls is critical to distinguish cell-culture 

effects from infection effects.   

Our analysis identified six genes which we analyzed in more detail. We chose four 

because they had time series with the largest fold-changes in their clusters: JUN and TNFAIP3 

from cluster C and TWIST1 and EGR3 from Cluster B´. We discussed their roles in the anti-viral 

immune response in detail in the last section.  

EGR3 activation relates to the virus using ACE-2 to invade the cell. EGR3 activation may 

explain a number of symptoms in patients with severe responses to SARS-CoV-1 and SARS-CoV-

2 infection. Other cell types in the infected lung may be infected by the virus: in particular, if 

EGR3 activation also occurs in infected T-cells, it could explain T-cell anergy (against viral 

antigens), in infected fibroblasts, it could link to observed fibrosis, and in infected endothelial 

cells, it could explain the endothelialitis, thrombosis, and angiogenesis reported in COVID-19. 

 Our analysis also identified as differentially expressed two genes from a well-known 

feed-back loop which regulates Cortisol-Cortisone balance. Infection perturbs the resting 

Cortisone-Cortisol homeostasis and we would expect that each gene would follow a different 

time course in response to infection. We find that differential expression of the proinflammatory 

HSD11B2 follows Cluster B´ and peaks with viral titer, while the anti-inflammatory HSD11B1  

follows Cluster C and peaks later. We will examine the remaining 213 genes iidentified as 

signifiant by our Transcriptogram analsysis in future work 

 Our Transcriptogram method hierarchically prioritizes groups of differentially-

expressed genes by first considering those bands in the ordered list with the most altered 

expression w.r.t. to the control. This filtering reduces the number of genes of interest to a 

tractable set and suggests shared mechanistic functions for the observed gene expression 

patterns. These gene sets are defined by the data directly, not by reference to previously-

defined pathways or biological functions. We could apply the same methodology to identify 

functional differences between cell-culture responses to SARS-CoV-1 infection between male-

derived and female derived cells or between adult-derived and juvenile-derived cells (to identify 

sex-linked and age-linked changes in response pattern). The same methods could identify critical 

differences in cell responses to SARS-CoV-1 and SARS-CoV-2 infection or among responses to 

infection by other respiratory viruses. We could also study differences in response between cells 
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derived from different possible loci of infection (nasal, throat, bronchial, alveolar, heart, kidney), 

or to compare infection responses between classical cell culture and organoids, between 

organoids derived from different donors, or between different initial infection intensities.  
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