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We investigate the emerging scenarios from a two-population Susceptible-Infected-Recovered-Asymptomatic-
Symptomatic-Dead (SIRASD) model, where populations differ by their degree of compliance with social distancing
policies. Considering epidemiological parameters estimated from data of the propagation of SARS-CoV-2 in Brazil
– where there is a significant stake of the population making their living in the informal economy and thus prone
to not follow self-isolation – we assert that if the confinement measures are lifted too soon, namely as much as one
week of consecutive declining numbers of new cases, it is very likely the appearance of a second peak .

The ongoing COVID-19 pandemic has turned into the
deepest global health crisis of our time and raised sev-
eral questions on its evolution and how to quell it. In
the absence of a vaccine much of the public health poli-
cies revolve around self-isolation or lockdown measures.
The former depends on the adherence of the popula-
tion, which is influenced by the capacity of staying home
whilst keeping livelihood. In a middle income country
like Brazil a large stake of the population makes a living
in the informal economy that does not fit home-working.
Between the rock of breaching self-isolation to obtain in-
come, and possibly get infected, and the hard place of
staying home, and end up starving, the stance of these
people is crucial to a successful pandemic control pro-
gram, namely the emergence of a second peak as indi-
viduals either cannot help abiding by self-isolation or as-
sume the worse is over.

I. INTRODUCTION

Despite existing some differences among the countries
public health policies, the vast majority of them has tried to
reduce the growth rate of the COVID-19 pandemic by imple-
menting policies of social distancing1 aiming at preventing
mayhem of the health-care systems, the so-called “flattening
of the curve”. A series of models have been brought forth
to the specific study of the evolution of COVID-19 through
the world2–31. Initially, some of those works focused on its
calibration in order to estimate typical parameters of the dis-
ease, like infection rates, epidemic doubling times among
others3,5,16–19,22,23,26–28. After these preliminary studies,
many authors considered the effect of several types of non-
pharmaceutical interventions2,4,10–15,20,21,24,25,31.

Despite the concerns related to public health, there are
other impacts due to the implementation of social isolation
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policies. For example, it has been reported a decrease of
4.2% in global CO2 emission in first quarter of 202032. In
addition, we also observe economic impacts due social dis-
tancing policies. Indeed, in some countries a considerable
amount of the population is occupied with informal employ-
ments. These individuals, as well as people working in fun-
damental activities (hospitals, supermarkets, drugstores, and
others) usually are not obeying the social distancing policies
due to their professional activities.

A study analyzed the impacts of mobility lockdown in
Italy due to the fast spreading of COVID-1933 in which the
authors identified two ways through which mobility restric-
tions affect the population. They verified that the impact of
lockdown is stronger in municipalities with higher fiscal ca-
pacity, and also that mobility restrictions are stronger in mu-
nicipalities for which inequality is higher and where indi-
viduals have lower income per capita, causing a segregation
effect. In Ref. 33, the authors also discussed about the in-
come distribution, that play an important role: municipal-
ities where inequality is greater have experienced stronger
increase in mobility and their citizens are more at risk. Fi-
nally, they concluded that the results suggest the necessity
of asymmetric fiscal measures. In other words, according
to that work, central governments should implement finan-
cial transfer mechanisms to people, companies and local lo-
cal government in the form of living allowances, no-interest
loans and treasury transfers to compensate the loss of tax in-
come to allow each case to cope with the current scenario.
As also stated in Ref. 33, the absence of targeted lines of
intervention during the lockdown would induce a further in-
crease in poverty and inequality.

Another work deals with wealth distributions under the
spread of infectious diseases34. Considering the coupling of
a compartmental epidemic dynamics with a kinetic model of
wealth exchange, the authors found that that the spread of
the disease seriously affects the distribution of wealth. In-
deed, the evolution of a disease together with the dynamics
of wealth exchange changes the wealth distributions from a
bimodal form to a fat-tailed one34. Still talking about eco-
nomic implications of mobility restrictions, it was reported
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the decline of Gross Domestic Product in China35.
In this work, we intend to discuss the effectiveness of so-

cial distance policies in developing and emerging countries
where the share of informal employment in total employment
is very high. Although it is not always true that there is a rela-
tionship between informal employment and poverty, we may
find a clear positive relationship among them. It is worth
mentioning that in developing and emerging countries the
share of informal employment in total employment ranges
from 50 per cent to more than 98 per cent36. In this context,
we investigate emerging scenarios for a generalized SIR-like
model taking into account a heterogeneous propensity of in-
dividuals to comply with the self-isolation policies.

Our work relates to the recent interesting contributions
that consider the effect of social factors into epidemics
models37–40 and works that have tried to study and forecast
the early evolution of the COVID-19 pandemics and the pub-
lic policy response to it3,4,6–9.

The rest of the work is organized as follows: In Section II,
we introduce the SIRASD models used in this work and how
we split the population in two groups: the group of individ-
uals that work in the informal economy can afford partially
self-isolation and the rest of population that has the choice
of self-isolation. In Section III, we present the main results
of our model. Furthermore, while Section IV presents a dis-
cussion of our results, Section V presents their limitations.
Finally, Section VI stresses the main results of the our work.

II. MODEL

FIG. 1. Susceptible - Infected - Recovered - Asymptomatic - Symp-
tomatic - Dead (SIRASD) compartmental model.

We divide the population into two types of individuals:

• Type 1: the group that has the option of self-isolation.
This group represents a fraction f1 of the full popula-
tion.

• Type 2: low income workers in the gig economy and
informal sectors. This group represents a fraction f2 =
1− f1 of the full population.

Let φu be the noncompliance degree of the group u con-
cerning governmental containment policies. Thus 1− φu is
the degree of engagement with self-isolation advice.

For the COVID-19 there are both asymptomatic and symp-
tomatic cases. Thereby we consider a framework close
to Ref. 4 (and references therein). That is we consider
a SIRASD (Susceptible-Infected-Recovered-Asymptomatic-
Symptomatic-Dead) model where here extend it for the in-
clusion of two groups.

To explain in details our model consider two individuals
{i, j} belonging to the groups {u,z}, respectively. Then

• If i is in the state S and if j is infected in the state X =
{A or I} then a transmission event occurs in which i
enters in the state I with rate pφzφuβX or enters in the
state A with rate (1− p)φzφuβX . Where p proportion
of individuals who develop symptoms.

• If i is in the state A then it enters in the state R with
rate γA.

• If i is in the state I then it enters in the state D with
rate qγI , otherwise it enters in the state R with rate
(1− q)γI . Where q is the probability of an individual
in the class I dying from infection before recovering

It is important to stress that D(t) informs how many in-
dividuals who tested positive for COVID-19 were de-
clared dead at date t.

An illustration of transition between the compartments
is shown in Fig.1. From the aforementioned rules the set
of coupled ODEs that governs the system considering the
mean-field assumption. Explicitly, we arrive at:

dSu

dt
=−Su

N

2

∑
z=1

φuφz(βIIz +βAAz), (1)

dAu

dt
=

Su

N
(1− p)

2

∑
z=1

φuφz(βIIz +βAAz)− γAAu, (2)

dIu

dt
=

Su

N
p

2

∑
z=1

φuφz(βIIz +βAAz)− γIIu, (3)

dRu

dt
= (1−q)γIIu + γAAu, (4)

dDu

dt
= qγIIu, (5)

with N = ∑
2
u=1(Su +Au + Iu +Ru + Iu). The interaction can

involve individuals within the same group (intragroup inter-
action: φ1φ1, φ2φ2) or between different groups (intergroup
interaction: φ1φ2, φ2φ1).

All the epidemiological parameters used in this study
comes from4: βA = 0.458, βI = 0.455, γA = 0.144 and
p = 0.624. To obtain q, γI and φu we still need to apply a
term-by-term comparison between our Eqs. (1)-(5) and their
system of Eqs. 4 considering a group-free population:

• qγI ≡ γSρ/(1−ρ)

• (1−q)γI ≡ γS

• φuφu = ψ .

Thus, q = ρ = 0.029, γI = γS/(1− ρ) = 0.149 and φu =√
0.638 = 0.799. We set N = 210147125. We consider an

initial condition as I1(t0) = 1 and A1(t0) = 0.5 for the group
1. For the group 2 we set I2(t0) = A2(t0) = 0.
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FIG. 2. Time series for the number of individuals in the class ∑i Ii as well as ∑i(Ai + Ii) considering the protocols I (left) and II (right). In
the protocol II we apply φ = 0.799→ φ = 0.7 on day t(2)policy = 90 after the first case (red shaded region).

FIG. 3. Time series for the number of individuals in the class ∑i Ii as well as ∑i(Ai + Ii). The first white, yellow and red shaded areas are
explained in the previous Figure. The last white region represents the case with soft self-isolation rules.
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FIG. 4. Dependence of the peak size of ∑i(Ai+ Ii) with tOFF. Parameters: tmax = 365, f1 = 0.6, φ
(2)
1 = φ

(2)
2 = 0.7, φ

(3)
1 = 0.8 and φ

(3)
2 = 0.9.

Regime I: the second peak is larger than the first one. Regime II: the secondary peak is smaller than the first one. Regime III: absence of a
second peak. Each of these regimes is illustrated in Fig. 3.

FIG. 5. Dependence of P2 as well as RES with φ off
1 vs φ off

2 . Diagrams obtained for tmax = 365 days, tOFF = 7, f1 = 0.6 and f2 =
0.4. The regimes I,II and III are explained in the Fig.4. P2 is computed considering both symptomatic and asymptomatic individuals, ie
A1 +A2 + I1 + I2.

III. RESULTS

In this section we present the results solving our coupled
ODEs using the solveivp of python. Specifically, we use
the RK45 method that implements an explicit Runge-Kutta
method of order 5(4). Such procedure manages the error
considering an accuracy of the 4-order and it employs a 5-

order accurate formula to take the steps.
Apart from the number of individuals in each class, there

is a second quantity of interest, namely the Relative Epi-
demic Size (RES) that is computed from t0 to t

RES =
2

∑
z=1

Sz(t0)−Sz(t)
N

(6)
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In order to better grasp our full protocol lets first consider
the case with f1 = 1. Let u be the index of group u. We con-
sider φu = φ

(0)
u = 1 during the initial stage of the epidemic

spreading because the level of self-isolation is almost null.
We shall assume φ

(0)
u → φ

(1)
u = 0.799 on day t(1)policy = 25 af-

ter the beginning of the epidemic spreading. With this proce-
dure (we call it protocol I) we obtain the time series shown in
Fig.2(a) that recover the results presented in Ref. 4 consider-
ing the scenarios with the current confinement rules imposed
by the government for an indefinite time.

Consider the protocol II shown in Fig.2(b). During the
explosive growth of the epidemic, the isolation policy is im-
proved by better surveillance. Explicitly, we decrease the
noncompliance degree from φ

(1)
u = 0.799 to φu = φ

(2)
u on

day t(2)policy = 90 after the first case at day t0. Henceforth we

set φ
(2)
u = 0.7, but the nature of our results does not change

qualitatively for other values. In Fig. 2(b) we see that such
strengthening of the confinement restrictions leads to a sub-
stantial decrease in the number of symptomatic and asymp-
tomatic individuals.

The self-isolation measures are permanent in the protocols
I and II. However, after the epidemic growing phase, there
might be political and economic pressure to ease strict con-
finement rules. In that sense, lets us move to the protocol III
with temporary self-isolation guidelines. Explicitly,

• After each time step (day) we monitor δ I(t) =
∑z (Iz(t)− Iz(t−1))

• At t0 we set tdecrease = 0. For each dI(t) < 0 we in-
crease tdecrease in one unit.

• If tdecrease = tOFF we set φu = φ
(3)
u . That is if dI(t) <

0 during tOFF consecutive days, the social distancing
rules are relaxed.

Figure 3 exhibits the time series for the number of indi-
viduals infected considering f1 = 0.6 and f2 = 0.4. The self-
isolation measures are lifted tOFF days after the peak. At
that moment the degree of the degree of noncompliance is
increased to φ

(3)
1 = 0.8 and φ

(3)
2 = 0.9 (last white regions in

Fig. 3). If the interruption of the confinement rules takes
place one week after the peak, tOFF = 7, we see that the sec-
ond outbreak is larger than the first one. This scenario is
different for tOFF = 15, where the secondary peak is smaller
than the first one. If tOFF = 30 days then there is no rising of
the secondary peak even though there is a rise in the person-
to-person contagion.

Figure 4 shows how the time for interruption of the con-
finement rules impacts the epidemic spreading behavior. The
peak size is computed taking into account both symptomatic
and asymptomatic individuals A1+A2+ I1+ I2. Specifically,
there are three main outcomes. Easing the mobility restric-
tions too soon triggers an abrupt rise of the new cases that
leads to a pronounced second peak that is worse than the
first one. This is the regime I. In regime II, the secondary
chain of contagion also leads to a new noticeable outbreak
but now with magnitude smaller than the first one. In regime
III, there is no second local maximum. Then, we highlight
that there are two thresholds: (i) for prevention of a second

large-scale epidemic outbreak; (ii) for prevention of a second
small-scale outbreak.

Figure 5 disentangles the role played by the degree of non-
compliance φ

(3)
u of each group u. When the confinement

guidelines are lifted too early (tOFF = 7) the majority of the
combinations of φ

(3)
1 vs φ

(3)
2 leads to the regime I where the

second outbreak is more aggressive than the first one. In this
setting, the relative epidemic size (RES) can achieve about
90% of the population in the long-run (1 year in such figure).
For combinations of moderated values of φ

(3)
1 vs φ

(3)
2 , there

is a substantial region in regime II where RES is mostly be-
tween 70%-80% of the population. The non-negligible pres-
ence of the regime III indicates that the prevention of a sec-
ondary epidemic outbreak can be achieved if the engagement
of the population with the stay-at-home guidelines does not
decrease too much.

Let us now turn our attention to our main results depicted
in Figs.6-7 for f1 = {0.6, ...,1} and tOFF = {7,15,30}. In
panels (a-c) each barplot or boxplot is obtained considering
grids with 61x61 combinations of φ

(3)
1 × φ

(3)
2 ∈ [φ

(2)
1 ,1]×

[φ
(2)
2 ,1] where φ

(2)
1 = φ

(2)
2 = 0.7. Thus, all the panels (a-

c) totalize 3 ∗ 5 ∗ 61 ∗ 61 = 55815 different projections. The
panels (d-f) show the results for the those combinations sat-
isfying φ

(3)
2 ≥ φ

(3)
1 . In the boxplot the gray shaded box goes

from the first quartile to the third quartile and the horizontal
line inside the box is the median.

Figure 6 shows the barplots for the proportion of each
regime pregime for several f1 and tOFF. In the setting with
tOFF = 7 and f1 = 0.6, the overwhelming majority of con-
figurations lead to the establishment of the regime I, as pre-
viously observed. But, this advantage of the regime I de-
crease as f2 decreases (by increasing f1). In the setting
with tOFF = 15 all the scenarios exhibit a smaller proportion
for the regime I in comparison with corresponding scenar-
ios for tOFF = 7. However, there is a dual effect of rising
f1. On the one hand, it increases the proportion of configu-
rations associated with the regime III. On the other hand, it
also increases the possibilities for the emergence of regime
I. In the setting with tOFF = 30 we also see a double-edged
sword: (a) the percentage of regime I is null and all the per-
centage of the regime III are higher than the corresponding
to the cases tOFF = {7,15}; (b) an increase of f1 increases
the relative advantage of regime II. These nonmonotonic ef-
fects arises because some combinations φ

(3)
1 ×φ

(3)
2 favor the

regime I and other combinations favor the regime III as de-
picted in Figure 5. Such mechanism is corroborated with the
panels (d-f) where we see that the combinations satisfying
φ
(3)
2 ≥ φ

(3)
1 leads to a monotonic behavior of pregime vs f1 for

all tOFF = {7,15,30}.
Figure 7 shows the boxplots for RES considering decreas-

ing values of f2 = 1− f1 as well for increasing values of
tOFF. Such results show that an increment in tOFF leads to an
overall decrease in the relative epidemic size (RES). But a
detailed analysis in each panel shows that an increase in f1
produces an increase in the interquartile range of values for
RES (gray area). This indicates the presence of a twofold
effect since RES can achieve smaller values as f1 increases,
but it also leads to the possibility for RES reaching higher
values. Again such twofold effect arises because some com-
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FIG. 6. Barplot with the proportion of each regime pregime in diagrams similar to the shown in Fig.5. (Top) All 61x61 combinations of

φ
(3)
1 ×φ

(3)
2 ∈ [0.7,1]× [0.7,1]. (Bottom) Combinations satisfying φ

(3)
2 ≥ φ

(3)
1 .

FIG. 7. Boxplot with the range of values exhibited by RES in diagrams similar to the shown in Fig.5. (Top) All 61x61 combinations of
φ
(3)
1 ×φ

(3)
2 ∈ [0.7,1]× [0.7,1]. (Bottom) Combinations satisfying φ

(3)
2 ≥ φ

(3)
1 .
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binations φ
(3)
1 × φ

(3)
2 are responsive for an increase in RES

and other combinations promote a decrease in RES as un-
veiled in Figure 5. This is confirmed with the panels (d-f)
where the combinations satisfying φ

(3)
2 ≥ φ

(3)
1 leads to a de-

crease in RES as f1 increases for all tOFF = {7,15,30}.

IV. DISCUSSION

The findings in Figs.6-7 are our main results. Such figures
show that for epidemiological parameters estimated from
data of SARS-CoV-2 in Brazil it is very likely the emer-
gence of a second peak (regimes I+II) if the preventive mea-
sures are lifted too soon. Even more alarming, there is a
non-negligible risk for the magnitude of such second peak
be higher than the first one (regime I). Apart from this, we
note that for a given tOFF there is the possibility for a twofold
effect in which an intervention designed to hamper the epi-
demic spreading can backfire. However, in such a situation
the establishment of positive or negative outcomes depends
on the combinations of φ

(3)
1 vs φ

(3)
2 as indicated in Fig.5.

Such findings highlight that it is significant to have a sub-
stantial alignment between different interventions designed
to decrease the degree of noncompliance as well as to sup-
port the fraction of the population that cannot afford for the
self-isolation even after the first peak of spreading. More-
over, complementary studies using different parameters to
the Brazilian case we could verify that the present model is
also capable of reproducing different situations of separated
peaks as found in several U.S.A. cities during the spanish
flu pandemics41,42. Therein, it is possible to assess the im-
pact of different public health measures in the number and
evolution of fatalities, with some cities basically exhibiting a
single peak (an indicator of proper policies) and other cities
with significant second peaks. Importantly, some of the cities
showing two peaks were cities that had social-economical
problems reminiscent of those one can find in Brazil. In
other words, although we have adjusted our model to the
present COVID-19 case, our model is likely to be relevant
in the analysis of other situations, namely the computational
forward testing of public health policies.

Other correlated works considering epidemiological pa-
rameters estimated from data of COVID-19 spreading have
also shown the possibility of a second epidemic peak. In
Ref. 43, it is shown – with variants of the SIR model –
the potential of the second peak of infections for the UK.
In Ref. 44, the authors calibrated a stochastic agent-based
model from data in France and they projected that it would
be unlikely to prevent the second chain of contagions once
quarantine is lifted. A second chain of spreading was
also predicted – using a generalization of the SIR model
– as a potential outcome for Italy after the relaxation of
the mobility restrictions45. A recent work considering the
case of Brazil in a group-free Susceptible-Exposed-Infected-
Recovered-Dead model presented some time series suggest-
ing that the social isolation must hold until the end of 2020
in order to diminish the second peak29. Effectively, the con-
clusion of all those works is that the safer situation is to hold
the isolation for as long as possible in order to decrease the
second peak height.

V. LIMITATIONS

We consider that as the epidemic starts to climb sharply
there will be an increased pressure to decrease the degree
of noncompliance (red shaded region in Fig.3). At this point
we still assumed the same level of compliance of both groups
because of the current implementation of income transfer for
the group 2. After the first peak and as soon as the stay-
at-home restrictions are suspended we set different levels of
compliance with the post-quarantine stage for each group
(last white region in Fig.3).

Besides, our work does not consider explicitly an upper
bound for the capacity of the healthcare system. Underre-
porting is another feature that is not modeled here and we
have not considered the clear regional heterogeneity in Brazil
as well.

All of these constraints can induce quantitative fluctua-
tions in the time series for the COVID-19 in Brazil, however,
we do not expect qualitative discrepancies concerning our
projections about the risk of a second peak of transmissions
if the confinement rules are suspended too early.

VI. FINAL REMARKS

Our work have used Brazilian data to model the evolution
of the dynamics of COVID-19, to analyze the effectiveness
of social distancing policies and to estimate the likelihood of
arising a second peak in Brazil. We apply a SIRASD model
considering a population split in two groups with different
behaviours, namely a group that belongs to a class that is
able to self-isolate and a group that is formed by low income
workers in the gig economy or informal sectors. While the
first group usually belongs to the higher income class or is
able to work at home, the second group is usually in a low
income class and supplies services to consumers and busi-
nesses, and is not able to provide their services in home of-
fice. In this context, the results show that the existence of
these two types of social behaviours strongly affects the dy-
namics and possibility of a second peak in the evolution of
COVID-19 in Brazil. Based on these results, it is possible to
understand that in order to master the evolution of the dis-
ease, low income people — who largely make their living
on informality — must adhere to self-isolation as pointed by
public health authorities worldwide. In order to solve the
dilemma choosing between i) going out to get few earnings
and risk being infected or ii) stay home and face starvation
in favor of the latter, the present results signal it is pivotal the
design of income transfer policies that pay for these people
to stay at home at least 30 days after of the first peak.
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