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In recent years, conservative dynamical systems have become a vivid area of research
from the statistical mechanical characterization viewpoint. With this respect, several area-
preserving maps have been studied. It has been numerically shown that the probability
distribution of the sum of the suitable random variable of these systems can be well
approximated by a Gaussian (q-Gaussian) when the initial conditions are randomly selected
from the chaotic sea (region of stability islands) in the available phase space. In this study, we
will summarize these results and discuss a special case for the standard map, a paradigmatic
example of area-preserving maps, for which the map is totally integrable.
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In the area of dynamical systems,
area-preserving conservative low-dimensional
mappings are very important [1, 2] and constitute
an extremely vivid research field. Among many
others, the most well-known paradigmatic
example of such mappings is the so-called
Taylor–Chirikov or standard map defined as

pn+1 = pn −K sin(xn),

xn+1 = xn + pn+1,
(1)

where p and x are taken as modulo 2π and K is
the map parameter which controls the amount of
nonlinearity and nonintegrability of the system.
Typical examples of the phase space are given in
Figure 1. It is evident from this figure that the
case K = 0 and K = 8 are extreme cases in
the sense that the phase space consists of only
stability islands for the former, whereas it only
exhibits chaotic sea in the latter. The other two

∗E-mail: ugur.tirnakli@ege.edu.tr
†E-mail: tsallis@cbpf.br; Also at Complexity Science
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cases demonstrate how the chaotic sea develops
as K increases from 0 to larger values. This
map was firstly introduced by Taylor [3] and
Chirikov [4], and was afterwards shown to mimic
many dynamical features of real physical systems
[5, 6]. Besides the dynamical properties that have
been extensively studied in the literature, the
statistical mechanical characterization of the map
has recently been discussed in details [7, 8]. To
achieve this, one needs to define a random variable
from the map variable x as

y =

T∑
n=1

(xn − 〈x 〉) , (2)

where 〈 · · · 〉 implies averaging over a large number
of iterations T and a large number of randomly
chosen initial conditions M , more precisely,

〈x〉 = 1

M

1

T

M∑
j=1

T∑
n=1

x(j)n . (3)

For arbitrary values of the control parameter
K, the probability distribution of these sums
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appears to be modelled remarkably well by q-
Gaussians defined as

Pq(y; 0; 1) = Aq

√
Bq expq(−y2), (4)

where Aq is the normalization factor, Bq is a
parameter which characterizes the width of the
distribution and expq(x) is called q-exponential
which is given by

expq(x) = [1 + (1− q)Bqx]
1

1−q . (5)

It is worth to note here that the Gaussian
is a special case of Equation 4 in the q → 1
limit. Very similar to the fact that the Gaussians
are the attractors of the standard central limit
theorem, the q-Gaussians are the attractors of
the generalized central limit theorem [9–11].
It is numerically shown that, if the initial
conditions are taken randomly from the initial
conditions that are inside the stability islands,
this distribution is a q-Gaussian with q ' 1.935,
whereas it is a Gaussian if the initial conditions
are taken from the chaotic sea. The reason for this
kind of behavior can be discussed by considering
the Lyapunov spectrum for each initial condition
without making an average over all initial
conditions as usually done in the literature.
Typical examples of such spectra, calculated
by using Benettin algorithm [12], are given in
Figure 2 for the same map parameter values used
in Figure 1. It is clearly seen that, all initial
conditions from the chaotic portion of the phase
space have positive Lyapunov exponents, sensibly
larger than zero, whereas they are always in the
vicinity of zero if the initial conditions are from
the stability islands. The ergodic nature of the
trajectories living in the chaotic sea gives rise to
a Gaussian probability distribution as expected.
On the other hand, ergodicity breakdown for
the trajectories of stability islands with nearly
zero Lyapunov exponents causes non-Gaussian
probability distribution, which appear to sensibly
approach a q-Gaussian with q ' 1.935.

FIG. 1. Phase space portrait of the standard map with
some representative values of map parameter K.
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FIG. 2. (color online) Lyapunov spectrum for the
standard map for the same representative values of
K indicated in Figure 1.

FIG. 3. (color online) Probability distribution
obtained for the K = 0 case. A quite large number
of initial conditions is used (M = 2 × 108) for
good statistics. The number of summands used in the
simulations is also large enough (T = 222) in oder to
visualize the limit distribution. The precise method
for the determination of P (0) has been introduced in
[13].

FIG. 4. (color online) q-logarithmic representation of
the probability distribution obtained for the K = 0
case. The black straight lines precisely represent the
q-Gaussian distribution in different scales.

For the calculation of the limit probability
distribution with a given map parameter value,
one needs to randomly choose a large number of
initial conditions (we use M = 2× 108) from the
entire phase space and use a large enough number
of iteration steps (we use T = 222) in order to
obtain a satisfactory statistical description of the
system. Normally one can plot the probability
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distribution P (y) with respect to the random
variable y, but another way of representing the
same plot is to scale the axis by P (0) as done
in Figure 3 for K = 0 case. In this way, one can
guarantee that the widths of the distributions will
always be the same and can be calculated from
the normalization of the probability distribution.
Moreover, this scaling provides one more bonus
in the sense that now the only fitting parameter
that remains in Equation 4 is the value for q.
We also represent the same data in q-logarithmic
plot in Figure 4. Here, q-logarithm is the inverse
function of the q-exponential given in Equation 5
and defined as

lnq(x) =
x1−q − 1

1− q
. (6)

Since the standard map is only integrable forK =
0, this case is not only more interesting than the
others but also a better candidate for attempting
analytical treatment. Strictly speaking, when
K = 0, the map becomes

xn+1 = xn + np0 with p0 = constant , (7)

which is obviously far simpler than the general
standard map with K 6= 0. It is certainly
intriguing to verify that the limit distribution of
this integrable case is very well approximated by
a q-Gaussian with q ' 1.935. This observation
appears to deserve intensive work, either analytic
and/or numeric, to better understand the reasons
and underlying dynamics triggering this simple
tendency, which so well exhibits q-statistics.
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