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Abstract

I consider a simple, deterministic SEIR-like model without spatial or age structure, including a

presymptomatic state and distinguishing between reported and nonreported infected individuals.

Using a time-dependent contagion factor β(t) (in the form a piecewise constant function) and

literature values for other epidemiological parameters, I obtain good fits to observational data for

the cumulative number of confirmed cases in over 160 regions (103 countries, 24 Brazilian states

and 34 U.S. counties). The evolution of β is useful for characterizing the state of the epidemic. The

analysis provides insight into general trends associated with the pandemic, such as the tendency

toward reduced contagion, and the fraction of the population exposed to the virus.
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I. INTRODUCTION

The Covid-19 pandemic has stimulated the development of epidemic modelling in various

directions: identification of epidemiological parameters, projection of general trends under

different intervention policies, analysis of the propagation of outbreaks between geographic

regions, age and/or social classes, and so on. In this context it is desirable to deploy a range

of models, with varied levels of detail. Highly detailed models afford greater realism, but at

the cost of a proliferation of unknown parameters. In the present study I analyze a simple,

deterministic model without spatial or age-class structure. The question motivating this

study is whether a plausible model with a limited number of free parameters can reproduce

the broad features of the evolution of outbreaks. A related effort, using a discrete-time

stochastic model, has been developed by Karlen [1], while Paiva et al. test the predictive

power of such an approach [2]. Further applications of simple deterministic models to the

current pandemic may be found in [3, 4].

The simplest deterministic, dynamic epidemic models belong to the SIR family (SEIR,

SEAIR, etc.) [5–7]. The choice of the specific variant from this class is guided by cer-

tain characteristics of the Covid-19 epidemic: (i) a delay between exposure to the virus and

becoming cantagious; (ii) a further delay between becoming contagious and exhibiting symp-

toms; (iii) the broad range of symptoms, ranging from negligible to life-threatening; and (iv)

significant undercounting of cases, due in part to the large variation in gravity of cases as

well as to limited testing capacity. These observations suggest that the minimal sequence of

states (susceptible, infected, removed) be expanded to include exposed and presymptomatic

states between S and I, and further, that the class of infecteds be split into confirmed and

unconfirmed subclasses.

An essential fact regarding the present state of the pandemic is that the fraction of

exposed individuals is globally very small, with most estimates suggesting just a few percent,

far smaller than what would be necessary to slow the growth of outbreaks through the

depletion of susceptibles. (In exceptional, resticted regions, such as New York City, for

which some studies suggest that ∼ 20% of the population may have been exposed [8], there

may be significant reduction in the suscpetible fraction, albeit still below the level required

for herd immunity.) Thus the reduction of case-number growth rates in almost all outbreaks

(at least initially; see Fig. 1) cannot be attributed to large-scale exposure and immunity.
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FIG. 1: Evolution of cumulative case numbers in 103 regions (countries and large provinces) with

at least 2000 reported cases as of 20 June 2020. Data from [11]

The dominant factor in cutting growth rates is mitigation or intervention in the form of

social distancing, mask use, reduced mobility, lockdown, testing and tracking, etc. The

effect of such measures, broadly speaking, is to reduce contagion. It is therefore essential to

include a time-dependent contagion parameter in the model. (The fact that the adoption

of, and adherence to, mitigations are unpredictible political and social events highlights the

difficulty of long-term forecasting using epidemic models. One may nevertheless hope that

such models can suggest the likely consequences of different mitigation policies.)

In the model adopted here, a susceptible individual may become exposed through con-

tact with a presymptomatic or infected individual at a rate propotional to the contagion

parameter, β(t), which in fact contains all of the adjustable parameters of the model. (Other

epidemiological parameters are fixed at values taken from the literature.) In keeping with

the minimalist approach adopted here, the functional representation of β is close to the sim-

plest possible. It is worth noting that β is linearly proportional to the basic reproduction
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number R0, and can be related to the relative growth rate α. The history of β(t), in a given

region or globally, obtained by fitting the data for cumulative case numbers, affords some

measure of the control (or resurgence) of the epidemic, and allows to detect some overall

trends, which appear to hold idependently of region size or location. I find that a rather

simple (piecewise constant) representation yields reasonable fits to most of the time series.

The remainder of this paper is organized as follows. In Sec. II I define the model and

discuss its behavior in the linear regime, as well as presenting some examples of the response

to changes in β. In Sec. III, model fits to 103 countries, 24 Brazilian states, and 34 U.S.

counties and cities with large outbreaks are presented. Simulations of a stochastic version of

the model are used to characterize uncertainties in β(t), and the sensitivity of the quality of

fit to variations in β(t) is also examined. Sec. IV contains a discussion of overall trends on

contagion rates and fractions of susceptibles, as well as examining the sensitivity of β(t) to

changes in the epidemiological parameters. I close in Sec. V with a summary and comments

on possible extensions of this study.

II. SEAUCR MODEL

The model divides the population into the following categories: susceptible (S); exposed

(E); presymptomatic (A); infected but unconfirmed (U); infected and confirmed (C); re-

moved (R). It follows the general lines of the model used by Costa, Cota and Ferreira [9]

to represent a given region within a network. (In the present study, however, there is no

network or other spatial structure.) The states and allowed transitions are shown in Fig. 2.

Denoting the fraction of the population in a given state by the corresponding lower-case

letter, we have the following set of equations:
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FIG. 2: States and transitions. The only distinction between substates U and C is that the former

contains cases that have not been reported, whereas those in the latter class have been.

ds

dt
= −β(t)(θa+ u+ φc)s, (1)

de

dt
= β(t)(θa+ u+ φc)s− γee, (2)

da

dt
= γee− (γa + γ′a)a (3)

du

dt
= γaa− (rc + γi)u (4)

dc

dt
= rcu− γic . (5)

Of central importance in this study is the cumulative fraction of confirmed cases, C(t), which

is governed by,

dC

dt
= rcu, (6)

with the initial value, C(0), estimated from observational data, as discussed below.

I adopt the following set of fixed-parameter values, used in [9, 10]: γe = γa = (2.6 day)−1,

γ′a = (5.2 day)−1, γi = (3.2 day)−1, rc = (10 day)−1, φ = 0.3 and θ = 1. The choice φ < 1

reflects the hypothesis that a fraction of individuals with confirmed infections are isolated

(or self-isolate) from the general population. (Although I use θ = 1 in the present analysis,

a value smaller than unity could be used to represent a reduced level of contagion during the

presymptomatic phase.) I regard these parameter values as plausible. Precise values are not

available, and in any case a realistic treatment of disease progression would use nontrivial

distributions of transition times (leading to integrodifferential equations), rather than the
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exponential distributions implicit in SIR-like models. It seems likely that in fitting data,

modest changes in the parameter values can be compensated by rescaling β (see Sec. IV.B).

The fixed parameters determine the response times of the epidemic as well as the fraction

of cases that are reported. From Fig. 2, one sees that to be reported, a presymptomatic

individual must progress to state U (and not directly to state R), and thence to C (rather

than directly to R), so that the fraction of reported cases is:

frep =
γa

γa + γ′a

rc

rc + γi

. (7)

The first factor is connected to exposure leading to identifiable symptoms, while the second

involves severity of symptoms as well as testing capacity. Both are subject to change as

testing policies and capacities are altered. For the parameter values used here, frep ' 0.207.

In the studies discussed below, the model equations are integrated numerically using a

fourth-order Runge-Kutta scheme with a timestep of 0.1 [12]. All studies use θ = 1. i.e.,

unreported infected and presymptomatic individuals are considered equally contagious.

A. Initial-stage evolution

Equations (1-5) become a linear set when we fix s = s0, as holds (with s0 = 1) in the

initial phase of an outbreak. Setting β(t) = β (independent of time), the equations for e, a,

u and c admit an exponential solution, with e = Eeαt, and similarly for the other variables.

Substituting the exponential forms into the linear equations (and setting s0 = 1), one finds,

β =
(α + γe)(α + Γa)

γe

[
θ + γa

α+Γi

(
1 + φrc

α+γi

)] , (8)

where Γa ≡ γa + γ′a and Γi = γi + rc. The amplitudes in the exponential-growth regime

follow,

A =
γe

α + Γa

E ,

U =
γa

α + Γi

A,

C =
rc

α + γi

U , (9)
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while the cumulative number of reported cases is C(t) = Z(eαt − 1), well approximated by

Zeαt for αt� 1, with Z = (rc U/α).

Note that in practice, we only have access to the daily number of confirmed cases and

its accumulated value, C(t). To determine the initial conditions for integrating the model

equations, we localize the earliest apparent linear-growth period in the graph of lnC versus

t, (always discarding points with lnC < 2), and fit a straight line to these data, yielding α

and Z. We use these values to fix the other amplitudes and the initial value of β(t), denoted

β1 in what follows.

Analysis of the linear regime also furnishes an expression for the basic reproduction

number R0 in terms of the other parameters. Consider the initial condition e = e0 = 1/N

and a = u = c = 0, i.e., one exposed in a population of N − 1 ' N susceptibles. The

mean number of exposed individuals at time t is e(t) = e0e
−γet, so that the mean number of

presymptomatics, due to the single initial exposed individual, is

NA(t) = γe

∫ t

0

dt′e−Γa(t−t′)e−γet =
γe

Γa − γe

(
e−γet − e−Γat

)
, (10)

yielding a mean number of new exposed individuals,

NE,A = βθ

∫ ∞
0

NA(t)dt =
βθ

Γa

. (11)

Treating the contribtions due to states U and C in an analogous manner, we arrive at the

mean number of new exposed individuals that are down to the initial one:

R0 =
β

Γa

[
θ +

γa

Γi

(
1 +

φrc

γi

)]
. (12)

Using Eq. (8), one verifies that α = 0 corresponds to R0 = 1, as expected. For the parameters

used here α = 0 corresponds to β = 0.28534 ≡ βc. In what follows, the relative growth rate

of exposed individuals, α̃ ≡ ė/e, is a convenient index of the state of the epidemic.

B. Time-dependent contagion parameter

Given an observational time series for the cumulative case number C(t) of the form shown

in Fig. 1, we can estimate the initial exponential growth rate, α1, and calculate the initial

value of β using Eq. (8). Reproducing the subsequent evolution requires determining the
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function β(t) over the available time interval. I adopt a simple functional form for β(t)

incorporating a small set of adjustable parameters to be determined by least-squares fitting.

Consider a contagion factor that switches between β1 and β2 during the interval [τ, τ ′], and

is constant outside this interval:

β(t) =


β1, 0 ≤ t < τ

β1 +
(
t−τ
τ ′−τ

)λ
(β2 − β1), τ ≤ t < τ ′

β2, t ≥ τ ′,

(13)

with λ ≥ 0. Fits to data using this expression lead, in general, to best-fit values of λ near

zero, suggesting the use of a step function for β(t). I therefore adopt the following piecewise

constant expression,

β(t) =


β1, 0 ≤ t < t1

β2, t1 ≤ t < t2

β3, t ≥ t2,

(14)

Recalling that β1 has already been fixed in the analysis of the initial exponential-growth

phase, there are four free parameters (two switching times, and two additional β values)

available to fit the data for t ≥ t1. Denoting the difference between the model and obser-

vational values of lnC at day j by ∆j, the objective is to vary the four free parameters

simultaneously, so as to minimize the weighted square error,

m.s.e. ≡
∑

j ∆2
jwj∑

j wj
. (15)

Two weighting functions are used: wj = j2 (for overall fits), and wj = exp[j/10] for situations

in which one requires more precise parameter estimates for the final portion of the time series.

Before turning to analyses of observational time series, it is interesting to examine the

effect of a changing β on the model evolution. Figures 3, 4 and 5 show evolutions in

which β is reduced from a supercritical value to another, smaller supercritical value; from

a supercritical to a subcritical value; and from a supercritical to a larger value. The curves

for e(t) show the expected discontinuity in slope, while those for a, u and c appear smooth,

although they have discontinuities in progressively higher derivatives. Of note is the rapid

switch between exponential regimes in the curves for e, somewhat longer delays for a, u and
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FIG. 3: Model evolution starting in the exponential-growth regime with β = 0.5 for t < 20, with

β reduced to 0.35 for t ≥ 20. The delay times for e, a, u, c and C to attain their new exponential

growth regimes to with 2% are 2, 2, 4, 10, and 65 days, respectively.

c, and much longer delays for C(t) to fully enter the new exponential growth regime (or

to attain a constant value for a subcritical β value). This observation no doubt underlies

the utility of a discontinuous β(t) in fitting cumulative case numbers. Another important

conclusion is that a subcritical contagion rate (β < βc) does not immediately manifest itself

as a flat C(t); there may be a delay of several weeks.

III. RESULTS

In this section I present results of fitting the model parameters to the cumulative numbers

of reported cases. Figure 6 shows a typical example, illustrating the choice of the initial

exponential-growth regime. The piecewise-constant function for β(t), taking three distinct
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FIG. 4: Model evolution starting in the exponential-growth regime with β = 0.5 for t < 20, with β

reduced to 0.203 < βc for t ≥ 20. Delay times for e, a, u, c and C to attain their new asymptotic

behaviors to within 2% are 4, 6, 6, 15, and 63 days, respectively.

FIG. 5: Model evolution starting in the exponential-growth regime with β = 0.35 for t < 20, with

β increased to 0.5 for t ≥ 20. Delay times for e, a, u, c and C to attain their new regimes to within

2% are 2, 2, 4, 8, and 38 days, respectively.
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FIG. 6: Data (points) and fit (curve) for cumulative case number in the Brazilian state of Sergipe

up to 23 June 2020. The dashed line shows β(t) fit to these data, with numerical values above.

Weight function wt = t2. Inset: Raw data, showing the initial exponential-growth regime chosen

for linear fitting, and excluded points prior to this regime.

values, captures the principal features of the time series, but not the minor fluctuations or

(possibly spurious) small jumps near days 22 and 28. Visually, the quality of fit is typical

of most cases although, as noted below, there are exceptions. In the following subsections

I review the results for U.S. counties and cities, Brazilian states, and countries. Given the

somewhat noisy character of the time series, I opt for resolutions of 0.01 in β2 and β3, and

one day in t1 and t2.

A. U.S. counties

I fit data from the 34 U.S. counties or large cities that had 10 000 or more confirmed cases

as of 12 June 2020 [11]. Most of the fits are of good quality, as illustrated by that for Cook

Co., Illinois; a few are of poorer quality as exemplified by Nassau Co., New York (see Fig. 7).

In the latter case a fourth time interval (and an associated β value) would be required to fit

the full time series. An interesting point regarding the Cook Co. time series is that although
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FIG. 7: Data (points) and fits (curves) for cumulative case numbers in Cook Co., Illinois (main

graph) and Nassau Co., New York (inset) up to 12 June 2020. The dashed lines show β(t) fit to

these data, with numerical values above. Weight function wt = t2.

the final β value is 0.30, slightly above βc, the epidemic is in fact becoming smaller (i.e.,

α̃ < 0 in the final part of the time series). This is because the final susceptible fraction

sf ' 0.88, so that the effective contagion rate, β3s, is about 0.26. Note that this conclusion

depends on the fraction of reported cases, which is 0.207 for the parameters employed here.

The full set of fits to 34 regions is shown in the video: tmser12-6a

It is instructive to compare the effect of chaging the weight from t2 to an exponentially

growing function, exp[t/10]. The comparison for Maricopa Co., Arizona shows that the

latter weight yields a better fit to the final two weeks or so, at the cost of of somewhat

larger errors for the intermediate period (see Fig. 8). The r.m.s. errors of the two fits are

approximately 0.07 (t2 weighting) and 0.10 (exponential weighting).
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FIG. 8: Data (points) and fits (curves) for cumulative case numbers in Maricopa Co., Arizona up

to 12 June 2020. The red curve is obtained using the weight function wt = t2, the blue using

wt = exp[t/10]. The dashed lines show the corresponding β(t), with numerical values above,

following the same color code. Inset: Residuals ∆ for the two fits.

B. Brazilian states

I fit data from 23 Brazilian states and the Distrito Federal (up to 24 June 2020), that

had 2 000 or more confirmed cases as of 2 June 2020 [13]. A typical example is shown in

Fig. 6; the full set of fits is shown in the video: tmserst24-6

C. Countries

Fits to the data [11] for 103 regions (countries or in some cases, provinces) are performed

in a similar manner. The set includes those regions having at least 2 000 confirmed cases

up to 20 June 2020, excluding China. The full set is shown here: tmser20-6. In about one

fifth of the regions studied, the fit appears to miss some portion of the data in a manner

that cannot be attributed to an erratic time series, although the overall trends are generally

captured; an additional interval seems to be required in these cases. In the “typical” scenario

of a smoothly varying curvature, three β values appear to be sufficient. Several examples are
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shown in Fig. 9. The fits for Azerbaijan, Costa Rica, Japan and Thailand are quite good.

The data for Ecuador are pathological (discontinuous and nonmonotonic), while those for

Senegal suggest the appearance of a second outbreak at some moment prior to day 30.

D. Stochastic model

In this subsection I discuss briefly a model with internal (multiplicative) Gaussian noise.

The motivation is two-fold: First, the time series generated by the stochastic model (using

parameters determined via the deterministic model in one of the cases discussed in the

preceding subsections) furnish surrogate data to be analyzed using the same (deterministic)

procedure applied to the observational data, as a means of estimating the uncertainties in

the fit parameters β2, β3, t1 and t2. Second, the results of stochastic simulations allow one

to judge the extent to which irregularities in the observational time series can in fact be

attributed to internal fluctuations.

The equations governing the stochastic model are:

ds

dt
= −β(t)(θa+ u+ φc)s−As, (16)

de

dt
= β(t)(θa+ u+ φc)s+As − γee−Ae, (17)

da

dt
= γee+Ae − (γa + γ′a)a−Aa −A′a, (18)

du

dt
= γaa+Aa − (rc + γi)u−Au −A′u, (19)

dc

dt
= rcu+A′u − γic−Ac, (20)

The cumulative case number follows,

dC

dt
= rcu+A′u. (21)

The noise term As is defined so,

As =

√
βχs

N
ξs(t), (22)
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FIG. 9: Fits to data for cumulative case numbers in six countries up to 20 June 2020. Weight

function wt = t2.
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FIG. 10: Observational data for the Brazilian state of Sergipe (points), model fit (thick red curve)

and twenty realizations of the stochastic SEAUCR equations (thin blue curves) using the fit pa-

rameters obtained in the model fit.

where χ = θa + u + φc and ξs(t) is zero-mean, unit-intensity, Gaussian white noise, i.e.,

〈ξs(t)ξs(t
′)〉 = δ(t − t′). The other noise terms are defined analogously; the noise terms are

mutually independent.

The set of stochastic differential equations are integrated numerically using an Euler

scheme with timestep h = 0.01. One step in the evolution of s is given by,

s(t+ h)− s(t) = −hβχs−
√
hβχs

N
z ≡ −(a+ b), (23)

where z is a Gaussian random number with zero mean and unit variance, and a and b denote

the deterministic and stochastic contributions, respectively. Analogous expressions hold for

the other equations. It is essential that at each step, the population fraction a+b transferred

from one state to another be nonnegative. This condition is enforced by “tempering” the

noise [14, 15] such that −a ≤ b ≤ a. In the rare cases in which a+ b < 0, it is reset to zero,

and similarly, if a+ b > 2a it is reset to 2a. (Note that tempering only on the negative side

would induce a bias toward positive noise values.)
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I compare observational data for the Brazilian state of Sergipe, the deterministic model

fit, and twenty independent realizations of the stochastic model (using the fit parameters

obtained from the deterministic model) in Fig. 10. The stochastic model yields a set of

smooth curves which follow the deterministic evolution quite closely. Since the initial con-

dition for the stochastic model is the same used in the deterministic analysis, the dispersion

about the deterministic model is initially small, although it grows to encompass the fluctu-

ations in the observational data in the latter part of the evolution. It is nevertheless clear

that the stochastic model does not reproduce the fluctuations in the observational data,

which is characterized by a number of small jumps and slowly varying oscillations (with a

coherence time of roughly ten days) about the model fit. In other words, the observational

fluctuations are not explained completely by internal fluctautions included in the stochastic

model. Sources of additional fluctuations may include (1) independent outbreaks in localized

regions beginning on different days; (2) changes in reporting policy or testing capacity; (3)

variations in intervention policies between locales and over time.

Applying the same analysis used to fit the observational data to the stochastic time

series, one finds minimal variations in parameters β1 and β3, and uncertainties (given by

the standard deviation of the mean) of 0.05 in β2, and of 0.7 and 0.3 days, respectively, in

t1 and t2. Analysis of stochastic time series for the case of Fairfield County, Connecticut

yields similar conclusions regarding fluctuations and similar values for the uncertainties in

the fit parameters (in this case the uncertainty in β2 is 0.03). The stochastic simulations

yield the following estimates for the relative uncertainty in the final number of cumulative

cases: 2.6% (Sergipe, 85th day of fit) and 1.0% (Fairfield, 89th day of fit).

E. Uncertainty estimates of parameters in β(t)

The smoothness of the time-series generated using the stochastic model suggests that

analyses of these series may underestimate the uncertainties in the parameters β2, β3, t1

and t2. (Additionally, analyzing sets of stochastic time series for each region treated in this

study would be very time consuming.) As an alternative, I examine how the quality of fit, as

reflected in the mean-square error (m.s.e.) defined in Eq. (15), changes as these parameters

are varied. Denoting the best-fit parameter values by β∗2 , β∗3 , t∗1 and t∗2, I determine the

smallest change ∆β2 such that using β∗2 + ∆β2 (with other parameters fixed at their best-fit
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values) causes the m.s.e. to double. ∆β2 is then taken as an uncertainty estimate for β2, and

similarly for the other fit parameters. (While this procedure ignores possible compensatory

effects when two or more parameters are varied simultaneously, it should yield preliminary

uncertainty estimates.) I use the same resolutions in ∆βi (0.01), and in ∆ti (one day) as

employed in the fitting procedure. The resulting estimates are given in Table I in the form

of means and standard deviations for the three data sets analyzed.

The average estimated uncertainties are approximately one to two times the parameter

resolutions. The relatively large standard deviation in ∆β2 for the set of U.S. counties and

cities is due principally to two cases in which ∆β2 = 0.20. Both are associated with a single-

day interval (i.e., t2 = t1 + 1) such that varying β2 has minimal impact on the quality of

fit. In all three data sets, there are many instances in which changing β3 by 0.01 results in

a sizeable (five- or ten-fold) increase in the mean-square error, suggesting that a somewhat

higher resolution could be used for this parameter.

Set ∆β2 ∆β3 ∆t1 ∆t2

U.S. 0.024 (0.044) 0.012 (0.005) 1.1 (0.5) 2.1 (1.7)

Brazil 0.016 (0.014) 0.014 (0.006) 1.1 (0.3) 2.1 (1.3)

World 0.018 (0.024) 0.014 (0.010) 1.2 (0.6) 1.8 (1.6)

TABLE I: Fit-parameter uncertainty estimates as described in text for three data sets. Each entry

reports the average uncertainy over the set, followed in parentheses by the standard deviation.

IV. DISCUSSION

In this section I examine some tendencies evident in the results.

A. Evolution of contagion rates

As is evident in Fig. 1, there is a general (though not universal) tendency toward reduced

infection rates. This is reflected in the progression of sample-average β values shown in

Fig. 11. In all three samples, 〈β3〉 is the smallest; for the U.S. and World samples, the

mean of β2 is substantially smaller than that of β1, while for Brazil, 〈β2〉 ' 〈β1〉, which is
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FIG. 11: Mean values of β1, β2 and β3 for U.S. counties and cities, Brazilian states (B), and

countries (W). The dashed horizontal line denotes the critical value, βc. Inset: averages for regions

with small, medium and large populations as defined in text. Error bars denote standard deviations

of the mean.

substantially smaller than 〈β1〉 for the other two sets. The inset of Fig. 1 shows a similar

analysis pooling all three sets, grouped into 55 regions with population N < 5×106, 48 with

5× 106 < N < 3× 107, and 35 with N > 3× 107; the tendency of the contagion parameter

to decrease is if anything more evident in this case. In Fig. 12 the mean value of β(t) is

plotted over time for the three data sets. For each region, time zero corresponds to the first

day of the time series included in the fit. The overall reduction in the contagion parameter

is evident, as well as the tendency to a smaller dispersion of values.

B. Sensitivity to changes in epidemiological parameters

In the studies reported above, the epidemiological parameters γe, γa, γ′a, γi, rc and φ are

kept fixed at the values specified in Sec. II. Here I examine how some of the results, and the

quality of fit, change under modest rescalings (reduction or increase by 20%) of each such

parameter, maintaing the others fixed. Intuitively, reductions in γa, γ′a, and γi, prolong the
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FIG. 12: Mean value of β versus time for U.S. counties and cities, Brazilian states (B), and countries

(W). Here time zero corresponds to the first day fit for each region. Error bars denote standard

deviations of the mean. The dashed horizontal line denotes the critical value, βc.

mean lifetime of contagious states A, U and C, so that the observational data can be fit with

smaller values of β; conversely, increases in these rates should be associated with increased

β. Reducing rc can result in conflicting effects: First, slowing the transition from U to C

(which is less contagious) should reduce β.; on the other hand, the reduction in confirmed

cases (for the same number of infections) might require a larger a larger β to reproduce the

observation case numbers. The effect of changes in γe on β is less obvious. By contrast, since

the relative growth rate, α̃ = d ln e/dt = ė/e, is strongly linked to the observational case

numbers, one would expect an “ideal” model to yield predictions for α̃ that are independent

of parameter values. (To be more precise, the prediction for α̃ under steady growth should

be insensitive to parameter variations; such variations do affect the response times, so that

transients would in principle be affected.)

In Table II I report the changes in β3 and in α̃f (the value on the final day of the series)

provoked by 20% increases and reductions in the various parameters, as well as in the m.s.e.

of the best fit, in the form of averages over the set of 103 countries analyzed above. (Using

the original parameter set, the average m.s.e. is 2.8(3) ×10−3.) The changes induced in β3
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follow the anticipated trends for γa, γ′a, and γi. For reasons that are unclear, the response to

a change in γe is similar. Changes in α̃ are generally less significant, relative to uncertainty,

and do not follow a consistent pattern. The alterations induced by changing rc and φ are

virtually insignificant. Finally, only changes in γe and γa lead to significant alterations in the

quality of fit. The modest increases in m.s.e., both for increases and reductions, suggest that

these parameters are well chosen. The absence of significant changes in m.s.e. in response

to variations in the other parameters suggests that the values used here are not strongly in

error.

Par. 〈∆β3〉 〈∆α̃〉 (×10−3) 〈∆(m.s.e.)〉 (×10−4)

γe -0.023(3) 0.030(3) 5(2) 3(2) 3(2) 6(3)

γa -0.008(3) 0.013(4) -3(4) -1(5) 4(2) 4(2)

γ′a -0.017(2) 0.026(3) 2(2) 4(2) 2(2) 2(3)

γi -0.022(3) 0.026(3) 4(3) 1(2) 3(2) 3(2)

rc -0.002(2) 0.006(2) 1(2) 2(2) 2(2) -1(1)

φ -0.005(2) -0.001(2) 1.5(1.2) 1.6(1.5) 1(1) 1(1)

TABLE II: Changes in β3, α̃, and the mean squared error (mse) induced by changes in a given

parameter. In each entry, the first number corresponds to a 20% reduction in the parameter, the

second to a 20% increase. Values are means over the set of 103 countries analyzed above; numbers

in parentheses are uncertainties (standard deviation of the mean).

C. Fraction of exposed individuals

A critical issue governing the evolution of the pandemic is the fraction of the population

that has been exposed to the virus, since, in the absence of an effective vaccine or strict

mitigation policies, only broad exposure and attendant immunity can halt the spread of

infection. While the global (cumulative) number reported cases represents a small fraction

of the world population, estimates of the prevalence of unreported infections (due to asymp-

tomatic or weakly symptomatic cases, as well as to limitations in testing) suggest total case

numbers larger than reported values by a factor of five, ten or even more. Subject to this

uncertainty, the model employed here furnishes an estimate of the exposed fraction.

For the parameters employed in the present analysis, about four fifths of cases go unre-

ported. The cumulative fraction of exposed individuals on thefinal day of the time series,

etot = 1 − xf , ranges from < 0.1% to about 25%, with a strong tendency toward small
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FIG. 13: Cumulative exposed fraction etot versus population size for 103 countries (circles), 34

U.S. counties and cities (squares), and 24 Brazilian states (diamonds). The diagonal lines show the

lower limits on etot imposed by the criteria of 2000 or more reported cases (countries and Brazilian

states) and 10 000 or more cases (U.S.), recalling that the model assumes that actual case numbers

are about five times greater than the reported values.

fractions in highly populated regions. In particular, all regions with etot ≥ 0.1 have popu-

lations smaller than 2 × 107; only six regions have etot > 0.2, and these have populations

smaller than 3 × 106. The general trend is illustrated in the scatter plot of Fig. 13, which

shows that larger values of etot become increasingly rare as population size N increases. A

population-weighted mean over the 103 countries studied yields a mean value of etot = 0.012.

Although the restriction to regions with 2000 or more cases means that many regions are

excluded, it is worth noting that the 103 included regions correspond to about 70% of the

world population.

Two regions with rather high values of etot (as of 12 June 2020) are New York City

and Suffolk County, Massachusetts, for which the model prediction is 15%. These tally

reasonably well with antibody testing results of about 20% exposed in New York City (19

April 2020) [8] and 10% in Boston (15 May 2020) [16].

22

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 7, 2020. .https://doi.org/10.1101/2020.08.06.20169557doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.06.20169557
http://creativecommons.org/licenses/by-nc-nd/4.0/


V. CONCLUSIONS

I have shown how a simple SEIR-like model with a time-dependent infection rate, β(t),

is capable of fitting many time series of confirmed Covid-19 cases. This supports the asser-

tion that, at the present stage of the pandemic, reductions in the exponential growth rate

are principally due to interventions (social isolation, lockdowns, mask-wearing) and not to

depletion of the population of susceptibles. Even under the most “optimistic” scenarios, it

is difficulat to imagine that the global fraction of the exposed population is more than a

few percent (although it may be an order of magnitude greater in specific limited regions).

The observational data and the model-based analysis both point to a strong suppression of

contagion in many, but not all cases. Since the model lacks spatial structure, one would ex-

pect it to be most appropriate for relatively small regions such as cities, states or provinces,

or smaller countries. A collection of such models could then be used to represent regions

connected by movement of individuals [9, 10]. It is nevertheless interesting that the simple

model captures the evolution in larger regions rather well.

Simulations of a stochastic version of the model permit one to estimate the contribution

to uncertainties in β(t) due to intrinsic fluctuations, and show that in general, the latter do

not explain the apparent noisyness of the data. A preliminary analysis suggests that β values

are typically uncertain by a few percent, and switching times by a day or two. Changes in

the quality of fit under varions of the epidemiological parameters (excluding β(t)) are quite

modest, suggesting that the values adopted here are plausible, and sufficient for modelling

on this level of detail.

Given the overall success in fitting observational data using a simple (piecewise constant)

representation of β(t), the model proposed here seems a good candidate for continued studies.

In analysing longer time series, additional time intervals and associated β values will be

required, but this appears to be a straightforward extension of the current approach. Another

short-term goal is to analyze mortality time series in parallel with case numbers, which should

provide a test of model consistency as well as estimates of mortality rates. A more ambitious

(and uncertain) goal is that of predicting the consequence of changes in intervention policies,

a task that requires analysis of how such interventions have affected contagion up to now.
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