Classical Spin Systems with Long-Range Interactions: The Role of the Lattice Dimension in the Nonextensive Behavior

Leonardo JL Cirto¹, Antonio Rodríguez², Fernando D Nobre^{1,3}, Constantino Tsallis^{1,3,4}

 1 Centro Brasileiro de Pesquisas Físicas (CBPF) – Rio de Janeiro – Brasil

²Universidad Politécnica de Madrid (UPM) – Madrid – Spain

³National Institute of Science and Technology for Complex Systems (INCT-SC) – Rio de Janeiro – Brazil ⁴Santa Fe Institute (SFI) – New Mexico – United States

Preliminary numerical analysis of a *d*-dimensional Hamiltonian system composed by *N* classical localized XY- and Heisenberg-like spins \mathbf{S}_i 's is presented. The model has a two-body interaction $\Phi(r_{ij})$ between spins at sites *i* and *j* that decays with distance r_{ij} as a power-law, *i.e.*, $\Phi(r_{ij}) \propto \mathbf{S}_i \cdot \mathbf{S}_j / r_{ij}^{\alpha}$ with $\alpha \geq 0$. The parameter α controls the interaction range and both the fully-coupled and nearest-neighbor-interaction models are recovered in the particular limits $\alpha = 0$ and $\alpha \to \infty$, respectively. The dynamics and thermostatistics of the system are investigated through molecular dynamics simulations in d=1, 2 and 3 dimensional lattices.

Previous d = 1 studies revealed that anomalous behaviors emerge when the system is in the long-range regime ($\alpha < 1$), such as long-lived non-Boltzmannian quasi-stationary states, ergodicity breaking and non-Maxwellian velocity distributions [see J. Stat. Mech.: Theor. Exper. 4, P04012 (2015) and references therein]. On the other hand, in the short-range regime ($\alpha > 1$) there are no anomalous behaviors: all the standard Boltzmann-Gibbs results are recovered. It has been shown that these non-Maxwellian velocity distributions in the long-range regime actually can be well described by q-Gaussians, a function which is one of the landmarks of the nonextensive statistical mechanics build on the nonadditive entropy S_q . We are primarily interested in the influence of d on the velocity distributions, *i.e.*, in see how higher values of d modify the previous d=1 results. More specifically, we want to verify a possible universal scaling law in the velocity distribution ruled by the α/d ratio as preliminary results have already pointed out. Scaling laws linking the spatial dimension (d) and the interaction range (α) frequently appear in complex/nonextensive systems.

Financial support: CNPq, FAPERJ, CAPES and the John Templeton Foundation.