Pressure exerted by a grafted polymer on the limiting line of a semi-infinite square lattice
 INCT-SC, 24/4/2013

Iwan Jensen (Melbourne Univ.), Wellington G. Dantas (UFF), Carlos M. Marques (Univ.
Strasbourg), and Jürgen F. Stilck (UFF)

Outline

- Introduction

Outline

- Introduction
- Exact enumerations

Outline

- Introduction
- Exact enumerations
- Analysis and results

Outline

- Introduction
- Exact enumerations
- Analysis and results
- Final discussions and conclusion

Introduction

Soft Matter: localized pressure on small area exerted by a end-grafted polymer chain. Distribution of the pressure close to grafting point. Biological and technological relevance: polymer chains grafted to cell membranes, bilayer phases, vesicle suspensions...

Introduction

Soft Matter: localized pressure on small area exerted by a end-grafted polymer chain. Distribution of the pressure close to grafting point. Biological and technological relevance: polymer chains grafted to cell membranes, bilayer phases, vesicle suspensions...
T. Bickel, C. Marques and C. Jeppesen, Phys. Rev. E 62, 1124 (2000); T. Bickel, C. Jeppesen and C. M. Marques, Eur. Phys. J. E 4, 33 (2001).

Introduction

Effect of excluded volume interactions: end-grafted SAWs on a semi-infinite square lattice, using exact enumerations. Guttmann, Jensen,... Exact enumerations of SAW's on square lattice: $c_{71}=4190893020903935054619120005916$.

Introduction

Effect of excluded volume interactions: end-grafted SAWs on a semi-infinite square lattice, using exact enumerations. Guttmann, Jensen,... Exact enumerations of SAW's on square lattice: $c_{71}=4190893020903935054619120005916$. Critical exponents are modified by the excluded volume constraint. For example: $\left\langle R^{2}\right\rangle \approx n^{2 \nu} . \nu_{R W}=1 / 2$, $\nu_{S A W}=3 / 4(d=2)$.

Introduction

Effect of excluded volume interactions: end-grafted SAWs on a semi-infinite square lattice, using exact enumerations. Guttmann, Jensen,... Exact enumerations of SAW's on square lattice: $c_{71}=4190893020903935054619120005916$. Critical exponents are modified by the excluded volume constraint. For example: $\left\langle R^{2}\right\rangle \approx n^{2 \nu} . \nu_{R W}=1 / 2$, $\nu_{S A W}=3 / 4(d=2)$.
SAW grafted at origin $(0,0)$ to a rigid wall placed at $x=0$:

Introduction

SAW with n steps: $Z_{n}=c_{n}^{(1)}$. Helmholtz free energy

$$
F_{n}=-k_{B} T \ln c_{n}^{(1)} .
$$

Introduction

SAW with n steps: $Z_{n}=c_{n}^{(1)}$. Helmholtz free energy
$F_{n}=-k_{B} T \ln c_{n}^{(1)}$.
Pressure at a point $(0, r): P_{n} a^{2}=-\Delta F_{n}$, which leads to:

$$
p_{n}(r)=\frac{P_{n}(r) a^{2}}{k_{B} T}=-\ln \frac{c_{n}^{(1)}(r)}{c_{n}^{(1)}}
$$

where $c_{n}^{(1)}(r)$ is the number of SAWs with the cell excluded.

Introduction

SAW with n steps: $Z_{n}=c_{n}^{(1)}$. Helmholtz free energy $F_{n}=-k_{B} T \ln c_{n}^{(1)}$.
Pressure at a point $(0, r): P_{n} a^{2}=-\Delta F_{n}$, which leads to:

$$
p_{n}(r)=\frac{P_{n}(r) a^{2}}{k_{B} T}=-\ln \frac{c_{n}^{(1)}(r)}{c_{n}^{(1)}},
$$

where $c_{n}^{(1)}(r)$ is the number of SAWs with the cell excluded.
Thermodynamic limit $p(r)=\lim _{n \rightarrow \infty} p_{n}(r)$. Density of monomers at $(0, r): \rho(r)=1-\lim _{n \rightarrow \infty} c_{n}^{(1)}(r) / c_{n}^{(1)}$, therefore:

$$
p(r)=-\ln [1-\rho(r)] .
$$

Exact enumerations

SAW's are counted using a transfer matrix formalism in suitable chosen rectangles. Details in I. Jensen, J. Phys. A 37, 5503 (2004). Actually, the generating function of the SAW's $G(x)=\sum_{n} c_{n}^{(1)} x^{n}$ is calculated up to a certain order.

Exact enumerations

SAW's are counted using a transfer matrix formalism in suitable chosen rectangles. Details in I. Jensen, J. Phys. A 37, 5503 (2004). Actually, the generating function of the SAW's $G(x)=\sum_{n} c_{n}^{(1)} x^{n}$ is calculated up to a certain order.

Exact enumerations

SAW's are counted using a transfer matrix formalism in suitable chosen rectangles. Details in I. Jensen, J. Phys. A 37, 5503 (2004). Actually, the generating function of the SAW's $G(x)=\sum_{n} c_{n}^{(1)} x^{n}$ is calculated up to a certain order.

Update of the generation functions, indexed by signature S, when boundary is moved one step:
$G_{S^{\prime}}^{n e w}(x)=G_{S^{\prime}}^{o l d}(x)+x^{m} G_{S}(x)$.

Exact enumerations

Exact enumerations for for $c_{n}^{(1)}$ and $c_{n}^{(1)}(r)$ for $r=1,2,3,4,5,10,20$ and n up to 59:

Exact enumerations

Exact enumerations for for $c_{n}^{(1)}$ and $c_{n}^{(1)}(r)$ for $r=1,2,3,4,5,10,20$ and n up to 59:
$c_{n}^{(1)}$:
$3,7,19,49,131,339,899,2345, \ldots, 6663833305674862002802763$.

Exact enumerations

Exact enumerations for for $c_{n}^{(1)}$ and $c_{n}^{(1)}(r)$ for $r=1,2,3,4,5,10,20$ and n up to 59:
$c_{n}^{(1)}$:
3, 7, 19, 49, 131, 339, 899, 2345, ..., 6663833305674862002802763.
$c_{n}^{(1)}(1)$:
$2,5,13,35,91,242,630,1672, \ldots, 4747450605648675761162683$.

Exact enumerations

Exact enumerations for for $c_{n}^{(1)}$ and $c_{n}^{(1)}(r)$ for $r=1,2,3,4,5,10,20$ and n up to 59:
$c_{n}^{(1)}$:
$3,7,19,49,131,339,899,2345, \ldots, 6663833305674862002802763$.
$c_{n}^{(1)}(1)$:
$2,5,13,35,91,242,630,1672, \ldots, 4747450605648675761162683$.
Direct calculation of the pressures:

Analysis and results

Critical behavior of the generating function:

$$
\begin{equation*}
G(x)=\sum_{n} c_{n}^{(1)} x^{n} \sim A(1-\mu x)^{-\gamma_{1}} \tag{1}
\end{equation*}
$$

with $\gamma_{1}=61 / 64$. Parity effect: besides the physical singularity $x_{c}=1 / \mu$ there is another singularity at $x=x_{-}=-x_{c}$, with exponent γ_{-}.

Analysis and results

Critical behavior of the generating function:

$$
\begin{equation*}
G(x)=\sum_{n} c_{n}^{(1)} x^{n} \sim A(1-\mu x)^{-\gamma_{1}} \tag{2}
\end{equation*}
$$

with $\gamma_{1}=61 / 64$. Parity effect: besides the physical singularity $x_{c}=1 / \mu$ there is another singularity at $x=x_{-}=-x_{c}$, with exponent γ_{-}.
Series analysis: differential approximants (A. J. Guttmann in Phase Transitions and Critical Phenomena, vol. 13, Academic Press (1989)). Some results:

Analysis and results

r	L	x_{c}	γ
0	0	$0.379052260(64)$	$0.953097(70)$
0	4	$0.379052241(20)$	$0.953072(17)$
0	8	$0.379052243(14)$	$0.953071(15)$
1	0	$0.3790522582(30)$	$0.9530884(24)$
1	4	$0.3790522575(38)$	$0.9530879(30)$
1	8	$0.379052257(11)$	$0.953090(14)$

Analysis and results

r	L	x_{-}	γ_{-}
0	0	$-0.3790526(38)$	$1.5002(19)$
0	4	$-0.3790492(30)$	$1.5023(13)$
0	8	$-0.3790498(21)$	$1.5016(12)$
1	0	$-0.3790425(97)$	$1.5074(74)$
1	4	$-0.379030(26)$	$1.523(29)$
1	8	$-0.379058(16)$	$1.4988(69)$

Analysis and results

r	L	x_{-}	γ_{-}
0	0	$-0.3790526(38)$	$1.5002(19)$
0	4	$-0.3790492(30)$	$1.5023(13)$
0	8	$-0.3790498(21)$	$1.5016(12)$
1	0	$-0.3790425(97)$	$1.5074(74)$
1	4	$-0.379030(26)$	$1.523(29)$
1	8	$-0.379058(16)$	$1.4988(69)$

Conclusion: x_{c}, γ, and γ_{-}are the same.

Analysis and results

Amplitudes: fit of the enumeration data to asymptotic form:

$$
\begin{aligned}
c_{n}^{(1)}(r)= & \mu^{n}\left[n^{\gamma_{1}-1}\left(A(r)+\sum_{j=2} a_{j}(r) / n^{j / 2}\right)+\right. \\
& \left.(-1)^{n} n^{-\gamma_{-}-1} \sum_{k=0} b_{k}(r) / n^{k}\right],
\end{aligned}
$$

with $\mu=2.63815853035(2), \gamma_{1}=61 / 64$ and $\gamma_{-}=3 / 2$.
Evidence for this behavior comes from detailed studies with unconstrained SAWs enumerations: (S. Caracciolo, A. J. Guttmann, I. Jensen, A. Pelissetto, A. N. Rogers, and A. D. Sokal, J. Stat. Phys. 120, 1037 (2005))

Analysis and results

Analysis and results

This leads to estimates for the amplitudes and, therefore, for the pressures. For example: $A=1.124705(5)$,
$A(1)=0.801625(5), A(2)=0.97564(2)$ and
$A(5)=1.09325(10)$.

Analysis and results

Pressures:

r	$p(r)-$ SAWs	$p(r)$-gaussian
1	0.33863	0.15915
2	0.14218	0.06366
3	0.07334	0.03183
4	0.04347	0.01872
5	0.02844	0.01224
10	0.00735	0.00315

Analysis and results

The result is compared with exact values for gaussian chains:

$$
p_{G}(r)=\frac{P_{G}(r) a^{d}}{k_{B} T}=\frac{\Gamma(d / 2)}{\pi^{d / 2}} \frac{1}{\left(r^{2}+1\right)^{d / 2}}
$$

Analysis and results

The result is compared with exact values for gaussian chains:

$$
p_{G}(r)=\frac{P_{G}(r) a^{d}}{k_{B} T}=\frac{\Gamma(d / 2)}{\pi^{d / 2}} \frac{1}{\left(r^{2}+1\right)^{d / 2}}
$$

(a)

(b)

Final discussions and conclusion

No direct comparison between athermal SAW's on a lattice and gaussian chains in the continuum. Possible reason for no effect of self-avoidance constraint: low densities of monomers.

Final discussions and conclusion

No direct comparison between athermal SAW's on a lattice and gaussian chains in the continuum. Possible reason for no effect of self-avoidance constraint: low densities of monomers.
Force on polymer at grafting point:

$$
f=\frac{\mathcal{F} a}{k_{B} T}=2 \sum_{r=1}^{\infty} p(r) .
$$

Gaussian chains: $f_{G}=1$. SAWs: $f_{S A W} \approx 1.533$

Final discussions and conclusion

No direct comparison between athermal SAW's on a lattice and gaussian chains in the continuum. Possible reason for no effect of self-avoidance constraint: low densities of monomers.
Force on polymer at grafting point:

$$
f=\frac{\mathcal{F} a}{k_{B} T}=2 \sum_{r=1}^{\infty} p(r) .
$$

Gaussian chains: $f_{G}=1$. SAWs: $f_{S A W} \approx 1.533$ Ideal chains (RW): Force on the grafting point may be calculated using an image walker. The result is: $f_{R W}=\ln 2 \approx 0.6931$.

Final discussions and conclusion

$p\left(r_{i}\right)+p\left(r_{j}\right)$ always smaller than $-\Delta F\left(r_{i}, r_{j}\right) /\left(k_{B} T\right)$: attractive attraction between excluded cells for finite $\left|r_{i}-r_{j}\right|$.

Final discussions and conclusion

$p\left(r_{i}\right)+p\left(r_{j}\right)$ always smaller than $-\Delta F\left(r_{i}, r_{j}\right) /\left(k_{B} T\right)$: attractive attraction between excluded cells for finite $\left|r_{i}-r_{j}\right|$. Exact solution for directed walks: power law decay of pressure with smaller exponent $p(r) \approx r^{-3 / 2}$ (E. J. Janse van Rensburg and T. Prellberg, arXiv 1210.2761 (2012)).

Final discussions and conclusion

$p\left(r_{i}\right)+p\left(r_{j}\right)$ always smaller than $-\Delta F\left(r_{i}, r_{j}\right) /\left(k_{B} T\right)$: attractive attraction between excluded cells for finite $\left|r_{i}-r_{j}\right|$. Exact solution for directed walks: power law decay of pressure with smaller exponent $p(r) \approx r^{-3 / 2}$ (E. J. Janse van Rensburg and T. Prellberg, arXiv 1210.2761 (2012)). Work in progress: 1) Adsorbing wall, energy $-\epsilon$ associated to each monomer on wall. 2) Solution on semi-infinite Bethe lattice, exponential decay of $p(r)$.

Final discussions and conclusion

$p\left(r_{i}\right)+p\left(r_{j}\right)$ always smaller than $-\Delta F\left(r_{i}, r_{j}\right) /\left(k_{B} T\right)$: attractive attraction between excluded cells for finite $\left|r_{i}-r_{j}\right|$. Exact solution for directed walks: power law decay of pressure with smaller exponent $p(r) \approx r^{-3 / 2}$ (E. J. Janse van Rensburg and T. Prellberg, arXiv 1210.2761 (2012)). Work in progress: 1) Adsorbing wall, energy $-\epsilon$ associated to each monomer on wall. 2) Solution on semi-infinite Bethe lattice, exponential decay of $p(r)$.
Reference: J. Phys. A 46115004 (2013); arXiv:1301.3432.

