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Soft Matter: localized pressure on small area exerted by a
end-grafted polymer chain. Distribution of the pressure
close to grafting point. Biological and technological
relevance: polymer chains grafted to cell membranes,
bilayer phases, vesicle suspensions...
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Effect of excluded volume interactions: end-grafted SAWs
on a semi-infinite square lattice, using exact enumerations.
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on a semi-infinite square lattice, using exact enumerations.
Guttmann, Jensen,... Exact enumerations of SAW’s on
square lattice: c71 = 4 190 893 020 903 935 054 619 120 005 916.
Critical exponents are modified by the excluded volume
constraint. For example: 〈R2〉 ≈ n2ν . νRW = 1/2,
νSAW = 3/4 (d = 2).
SAW grafted at origin (0, 0) to a rigid wall placed at x = 0:

x

y
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SAW with n steps: Zn = c
(1)
n . Helmholtz free energy

Fn = −kBT ln c
(1)
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Pressure at a point (0, r): Pna
2 = −∆Fn, which leads to:
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where c
(1)
n (r) is the number of SAWs with the cell excluded.
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where c
(1)
n (r) is the number of SAWs with the cell excluded.

Thermodynamic limit p(r) = limn→∞ pn(r). Density of

monomers at (0, r): ρ(r) = 1− limn→∞ c
(1)
n (r)/c

(1)
n , therefore:

p(r) = − ln[1− ρ(r)].
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Exact enumerations

SAW’s are counted using a transfer matrix formalism in
suitable chosen rectangles. Details in I. Jensen, J. Phys. A
37, 5503 (2004). Actually, the generating function of the

SAW’s G(x) =
∑

n c
(1)
n xn is calculated up to a certain order.

– p. 6



Exact enumerations

SAW’s are counted using a transfer matrix formalism in
suitable chosen rectangles. Details in I. Jensen, J. Phys. A
37, 5503 (2004). Actually, the generating function of the

SAW’s G(x) =
∑

n c
(1)
n xn is calculated up to a certain order.

– p. 6



Exact enumerations

SAW’s are counted using a transfer matrix formalism in
suitable chosen rectangles. Details in I. Jensen, J. Phys. A
37, 5503 (2004). Actually, the generating function of the

SAW’s G(x) =
∑

n c
(1)
n xn is calculated up to a certain order.

Update of the generation functions, indexed by signature S,
when boundary is moved one step:
Gnew

S′ (x) = Gold
S′ (x) + xmGS(x).
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Exact enumerations

Exact enumerations for for c(1)n and c
(1)
n (r) for

r = 1, 2, 3, 4, 5, 10, 20 and n up to 59:
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Exact enumerations for for c(1)n and c
(1)
n (r) for

r = 1, 2, 3, 4, 5, 10, 20 and n up to 59:

c
(1)
n :
3, 7, 19, 49, 131, 339, 899, 2345, . . . , 6663833305674862002802763.

c
(1)
n (1) :
2, 5, 13, 35, 91, 242, 630, 1672, . . . , 4747450605648675761162683.
Direct calculation of the pressures:
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Analysis and results

Critical behavior of the generating function:

G(x) =
∑

n

c
(1)
n xn ∼ A(1− µx)−γ1 ,(1)

with γ1 = 61/64. Parity effect: besides the physical
singularity xc = 1/µ there is another singularity at
x = x− = −xc, with exponent γ−.
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Critical behavior of the generating function:

G(x) =
∑

n

c
(1)
n xn ∼ A(1− µx)−γ1 ,(2)

with γ1 = 61/64. Parity effect: besides the physical
singularity xc = 1/µ there is another singularity at
x = x− = −xc, with exponent γ−.
Series analysis: differential approximants (A. J. Guttmann
in Phase Transitions and Critical Phenomena, vol. 13,
Academic Press (1989)). Some results:
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Analysis and results

r L xc γ

0 0 0.379052260(64) 0.953097(70)
0 4 0.379052241(20) 0.953072(17)
0 8 0.379052243(14) 0.953071(15)
1 0 0.3790522582(30) 0.9530884(24)
1 4 0.3790522575(38) 0.9530879(30)
1 8 0.379052257(11) 0.953090(14)
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Analysis and results

r L x− γ−

0 0 -0.3790526(38) 1.5002(19)
0 4 -0.3790492(30) 1.5023(13)
0 8 -0.3790498(21) 1.5016(12)
1 0 -0.3790425(97) 1.5074(74)
1 4 -0.379030(26) 1.523(29)
1 8 -0.379058(16) 1.4988(69)
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r L x− γ−

0 0 -0.3790526(38) 1.5002(19)
0 4 -0.3790492(30) 1.5023(13)
0 8 -0.3790498(21) 1.5016(12)
1 0 -0.3790425(97) 1.5074(74)
1 4 -0.379030(26) 1.523(29)
1 8 -0.379058(16) 1.4988(69)

Conclusion: xc, γ, and γ− are the same.
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Analysis and results

Amplitudes: fit of the enumeration data to asymptotic form:

c
(1)
n (r) = µn



nγ1−1



A(r) +
∑

j=2

aj(r)/n
j/2



+

(−1)nn−γ−−1
∑

k=0

bk(r)/n
k

]

,

with µ = 2.63815853035(2), γ1 = 61/64 and γ− = 3/2.
Evidence for this behavior comes from detailed studies with
unconstrained SAWs enumerations: (S. Caracciolo, A. J.
Guttmann, I. Jensen, A. Pelissetto, A. N. Rogers, and A. D.
Sokal, J. Stat. Phys. 120, 1037 (2005))
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Analysis and results
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This leads to estimates for the amplitudes and, therefore,
for the pressures. For example: A = 1.124705(5),
A(1) = 0.801625(5), A(2) = 0.97564(2) and
A(5) = 1.09325(10).
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Analysis and results

Pressures:

r p(r)− SAWs p(r)-gaussian
1 0.33863 0.15915
2 0.14218 0.06366
3 0.07334 0.03183
4 0.04347 0.01872
5 0.02844 0.01224

10 0.00735 0.00315
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Analysis and results

The result is compared with exact values for gaussian
chains:

pG(r) =
PG(r)a

d

kBT
=

Γ(d/2)

πd/2
1

(r2 + 1)d/2
,
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Final discussions and conclusion

No direct comparison between athermal SAW’s on a lattice
and gaussian chains in the continuum. Possible reason for
no effect of self-avoidance constraint: low densities of
monomers.
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Final discussions and conclusion

No direct comparison between athermal SAW’s on a lattice
and gaussian chains in the continuum. Possible reason for
no effect of self-avoidance constraint: low densities of
monomers.
Force on polymer at grafting point:

f =
Fa

kBT
= 2

∞
∑

r=1

p(r).

Gaussian chains: fG = 1. SAWs: fSAW ≈ 1.533
Ideal chains (RW): Force on the grafting point may be
calculated using an image walker. The result is:
fRW = ln 2 ≈ 0.6931.
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Final discussions and conclusion

p(ri) + p(rj) always smaller than −∆F (ri, rj)/(kBT ):
attractive attraction between excluded cells for finite |ri− rj |.
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Work in progress: 1) Adsorbing wall, energy −ǫ associated
to each monomer on wall. 2) Solution on semi-infinite Bethe
lattice, exponential decay of p(r).
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Final discussions and conclusion

p(ri) + p(rj) always smaller than −∆F (ri, rj)/(kBT ):
attractive attraction between excluded cells for finite |ri− rj |.
Exact solution for directed walks: power law decay of
pressure with smaller exponent p(r) ≈ r−3/2 (E. J. Janse
van Rensburg and T. Prellberg, arXiv 1210.2761 (2012)).
Work in progress: 1) Adsorbing wall, energy −ǫ associated
to each monomer on wall. 2) Solution on semi-infinite Bethe
lattice, exponential decay of p(r).
Reference: J. Phys. A 46 115004 (2013); arXiv:1301.3432.
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