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A quasispecies is a set of interrelated genotypes that evolve according to the principles of selection and mutation. Quasispecies studies invariably assume that it is possible for
any genotype to mutate into any other, but recent finds indicate that this assumption is not necessarily true. Here we adopt a network structure to constrain the occurrence of

mutations. Our results support the theory’s assertions regarding the adaptation of the quasispecies to the fitness landscape and also its possible demise.

Introduction

A quasispecies is the stationary state of a population of genotypes whose members mutate into one
another while replicating without recombination. Quasispecies theory is applicable to the dynamics
of RNA viruses and in cancer research, among other topics, providing interesting insight into the
dynamics of any population of genotypes. Its central hypothesis is that, although each individual
genotype can be ascribed a fitness that is a function of its replicative capacity, the actual fitness is
a property of the population rather than of the genotype. Normally a genotype is represented as a
length-L string of0’s and1’s, so the number of genotypes in the population is2L. Every genotype can
mutate into every other, so essentially there is no structure constraining the occurrence of mutations.

Random-graph model

In contrast to standard quasispecies theory1, which assume that it is possible for any genotype to
mutate into any other, we assume2 that then genotypes are the nodes of a directed graphD with self-
loops at all nodes. The set of in-neighbors of nodei in D is denoted byIi and its set of out-neighbors
by Oi. The existence of an edge directed from nodei to nodej means that it is possible for genotype
i to mutate into genotypej during replication. This happens with probabilityqij. Letting qii be the
probability that genotypei remains unchanged during replication leads to

∑

j∈Oi
qij = 1.

LetXi denote the abundance of genotypei at any given time, and similarly letxi = Xi/
∑n

k=1Xk be
its relative abundance. Then:

ẋi =
∑

j∈Ii

fjqjixj − φxi, (1)

whereφ =
∑n

k=1 fkxk is the average fitness of alln genotypes. Eq. (1) is the well-known quasispecies
equation, now written for graphD.

We assume that both the structure of graphD and the dynamics of mutation depend on how susceptible
each of theL loci in a genotype is to undergo a mutation. Forℓ = 1, 2, . . . , L, we letsℓ be a positive
number that grows with the susceptibility that a genotype undergoes a mutation at locusℓ, the same for
all genotypes. Thus, an edge exists in graphD directed from genotypei to genotypej with probability
pij such that

pij = p
∑L

ℓ=1
hℓ/sℓ, (2)

wherep is a probability parameter andhℓ = 1 if and only if the two genotypes differ at locusℓ (hℓ = 0,
otherwise).

Henceforth we work on the hypothesis that, at the stationarystate,xi depends on the fitnessfi as a
power law for every genotypei. That is, we assume thatxi = bfai for suitablea > 0 whenẋi = 0. Such
functional dependency turns up in some of the cases we study and, furthermore, facilitates some of the
analytical calculations that we carry out in this section. It immediately follows that the stationary-state
value of the average fitness isφ = b

∑L
h=0

(L
h

)

2−(a+1)h, yielding

φ = b
[

1 + 2−(a+1)
]L

. (3)

From the constraint
∑n

i=1 xi = 1 we obtainb
∑L

h=0

(L
h

)

2−ah = 1, and, therefore,b = (1 + 2−a)−L.

Results

For fixed values of the lengthL and the probability parameterp, our results are based on generating104

independent instances of graphD and solving Eq. (1) numerically for each instance. This is achieved
by letting the initial population to be uniform over all genotypes and time-stepping the corresponding
equations until attaining convergence.

We study two susceptibility scenarios. The first one, henceforth referred to as the uniform case, sets
sℓ = 1 for every locusℓ. In the second scenario, which we refer to as the inverse-decay case, we have
sℓ = 1/ℓ for locusℓ.

The resulting relative abundances of the quasispecies are given in Fig. 1 as a function of the genotypes’
fitnesses.
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Figure 1. Relative abundances at the stationary state.

This figure also reveals how the dominance of the wild type in the population behaves asp is increased
and mutations into ever more different genotypes begin to beboth allowed by the structure ofD and
made more frequent during the dynamics.

A clearer view into this is afforded by Fig.2, where we show the relative abundance of the wild type
in the quasispecies as a function ofp.
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Figure 2. Relative abundance of the wild type at the stationary state.

A better glimpse into wild-type survival comes from considering the average fitnessφ of the quasis-
pecies.
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Figure 3. Average fitness at the stationary state.

Conclusions

We have revisited the quasispecies theory assumptions, in particular: that any mutation can occur and
that all genotypes loci have the same susceptibility to undergo mutations. In our model the mutational
interactions among genotypes are on a random graph and we adopt susceptibilities that influence both
the graph’s structure and the dynamics of the population. The resulting model has a probability,p, as
its single parameter. Increasingp makes the graph denser and allows more mutations as the population
evolves toward the quasispecies.

Our results were given for the nontrivial fitness landscape in which a genotype’s fitness decays ex-
ponentially with its Hamming distance to the wild type. Theyhave also been based on two specific
susceptibility scenarios and a power-law relationship between a genotype’s relative abundance in the
quasispecies and its fitness.

As with other variations of the quasispecies theory, the modifications we have introduced all corrob-
orate the theory’s central idea, that selection and mutation act on the entire ensemble of genotypes.
They also corroborate the crucial role of the error-relatedparameter (p, in our case) in separating two
distinct regimes, one in which the quasispecies adapts to the fitness landscape, the other in which it
becomes degenerate. It remains to be seen whether the same will continue to hold as alternative fitness
landscapes and variations of the remaining assumptions arestudied.
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