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Spatial Solitons in Nonlinear Optics 
Mathematical Model: Nonlinear Schrödinger Equation (NLSE) 

 

 

As a dynamical system: 

- It has infinitely many degrees of  freedom (P.DΕ.) 

- It has infinitely many integrals of the motion (unphysical)  

Stationary solution Bright Soliton (+): 

 

Stationary solution Dark Soliton (-): 

 

Galilean transformation: 
(traveling waves) 
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Spatial Solitons in Nonlinear Optics 
   Spatially localized waves: 
-  Do not change under propagation 
-  Balance beteen diffraction and nonlinearity  

Bright soliton Dark soliton 

Elastic interaction between two solitons  

They conserve their shape and velocity 
during propagation and interactions 
(collisions) with other solitons   

Bright soliton 
Dark soliton 












Spatial solitons viewed as lattice solitons 
• Applications to Noninear Optics 

 
Nonlinear Waveguide arrays 
(α) 1D AlGaAs, (b) 2D silica glass 

Review papers: 

D.N. Christodoulides et al, “Discretizing light behaviour in linear and nonlinear waveguide lattices”, Nature 424, 
817 (2003) 

A.A. Sukhorukov et al, “Spatial Optical Solitons in Waveguide Arrays”, IEEE J. Quant. Electron. 39, 31 (2003)  

J.W. Fleischer et al, “Spatial photonics in nonlinear waveguide arrays” , Opt. Express 13, 1780 (2005) 

        Important in optical fibers 

and nonlinear photonic crystals  



Physically relevant mathematical model 

Nonlinear Schrödinger equation with spatially dependent coefficients 

 

 
Transversally: ε(x),  linear refraction index,     g(x),  nonlinear refraction index 

- Non-integrable system: No rigorous soliton solutions 

- No translational symmetry):  No traveling wave solutions 

 Stationary solutions: 

  

lead to a dynamical system: 
 

Which is: - Non-autonomous (x- horizontal inhomogeneity) 
   -  Chaotic (near the saddle point at the origin,  associated with the  
                     soliton solution) 

Give up?   
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Not yet! Try a perturbative approach! 
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In realistic photonic structures  the linear and nonlinear properties are 
transversally inhomogeneous:  

   n0(x), linear refractive index      n2(x), non-linear refractive index 
   ε, perturbative parameter 

Stationary solutions: 

Dynamical system: 

Hamiltonian 1+1/2 degrees of freedom: 

Soliton existence in complex photonic structures 



The unperturbed system ε = 0 for β>0 has a homoclinic solution:  

 

 

 

which corresponds to the stationary soliton of NLSE for every x0.  

0 0

0 0 0

( ) sech ( ) ,

( ) sech ( ) tanh ( )

q x x x

p x x x x x

β β

β β β

 = ± − 
   = − −   

The homoclinic orbit:  

- is formed by the smooth connection of the 
stable and unstable manifolds of the saddle 
fixed point at the origin  

- when ε ≠ 0 this smooth curve breaks into an 
infinite number of points where the stable and 
unstable manifolds intersect 

Soliton existence in complex photonic structures 



Perturbations (ε≠0) bring about a dramatic change of the phase space  portrait 
and generically break this curve in to an infinity of possible homoclinic orbits 
lying at the intersections of the stable and unstable manifolds     

ε=0 ε≠0 ε≠0 

x 

Poincaré Maps Solitons occur at the zeros of the 
Melnikov function M(x0), which is 

proportional to the distance between 
the manifolds d(x0) and is a periodic 

function of  x0 !!! 

S. Wiggins, Introduction to Applied Nonlinear 
Dynamical Systems and Chaos, Springer (2003) 

Soliton existence in complex photonic structures 



Nonlinear Kronig-Penney Model: Αnalytical solutions  

A method for constructing analytical solutions (Y. Kominis, 2005) 
 
Suppose we could choose our efractive indices in such a way that we could 
write our NLS equation in the form 
.   
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L, length of linear regime  
N,            length of nonlinear regime 
T=L+N,   spatial period 

where    ε(x), g(x): piecewise constant 
functions  



Nonlinear Kronig-Penney Model: Self - Focusing 
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Our method 
 

 Exploits the phase space dynamics  to compose exact solutions by matching  
 analytical soliton solutions u(x)and du(x)/dx of the nonlinear problem at the 
boundaries of the linear regimes 

Assumptions: 
- The linear subsystem has periodic (sinusoidal) solutions 
 

- The nonlinear subsystem has an orbit homoclinic to (0,0) 

Lβ ε<

Nβ ε>



Nonlinear Kronig-Penney Model: Self - Focusing 

Construction of soliton solutions in the composite phase space. The dark dots 
are located at the boundaries between the linear and nonlinear regimes. 

n: odd n: even 

We choose values of the parameter  β, for which an integer number (n) of half 
periods is contained in the linear regime of length L. 

Resonance Condition 
 

 

For these β = βn all boundary conditions are satisfied simultaneously! 
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Nonlinear Kronig-Penney Model: Self - Focusing 

n=1 n=2 n=3 

x0=0 

x0=N/4 

x0=N/2 

 n is the number of zeros within the linear part 
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